Top Banner
Mapping Geoheritage Géraldine Regolini-Bissig Emmanuel Reynard (Eds) 35 Lausanne, juin 2010
135

Mapping Geoheritage

Jan 19, 2017

Download

Documents

dangngoc
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mapping Geoheritage

N° 34

www.unil.ch/igul

Lawali DAMBO, (2007) : Usages de l'eau à Gaya (Niger) : entres fortes potentialités et contraintes majeures. Thèse de doctorat, 354 pages. Version couleur sur CD-ROM annexé. Christophe LAMBIEL, (2006) : Le pergélisol dans les terrains sédimentaires à forte déclivité : distribution, régime thermique et instabilités. Thèse de doctorat, 260 pages. Jean-Pierre PRALONG, (2006) : Géotourisme et utilisation des sites naturelsd'intérêt pour les sciences de la Terre : les régions de Crans-Montana-Sierre (Valais, Alpes suisses) et Chamonix-Mont-Blanc (Haute-Savoie, Alpesfrançaises). Thèse de doctorat, 224 pages.

Lawali DAMBO, Emmanuel REYNARD, (eds) (2005) : Vivre dans les milieux fragiles : Alpes et Sahel. Hommage au Professeur Jorg WInistorfer. 348 pages.

Marina MARENGO et Jean-Bernard RACINE, (avec la collaboration de C.-A. BLANC) (2005) : De l'Etat Providence à la solidarité communautaire : le monde associatif à Lausanne. (Agenda 21). Vers un nouveau projet de société locale. 242 pages.

Veronica NOSEDA, (2005) : "Violences urbaines". Une exploration au-delà des interprétations reçues. 142 pages.

Caterina GENTIZON, (2004) : Méthode d'évaluation des réserves naturelles en suisse. Le cas de la Pierreuse et des Grangettes. Thèse de doctorat, 222 pages.

Emmanuel REYNARD, Jean-Pierre PRALONG, (eds) (2004) : Paysages géomorphologiques. Actes de colloque. 258 pages.

Patrick GILLARD, (2003) : Mendier ou mourir ? Dynamiques spatiales de l'extrême pauvreté au Niger. Thèse de doctorat, 328 pages.

Micheline COSINSCHI-MEUNIER, (2003) : Entre transparence et miroitement,la transfiguration cartographique. Pour une épistémologie ternaire de la cartographie. Thèse de doctorat, 425 pages.

N° 33

N° 32

N° 31

N° 30

N° 29

N° 28

N° 27

N° 26

N° 25

Quartier - DorignyAnthropoleCH-1015 Lausanne

Mapping Geoheritage

Géraldine Regolini-BissigEmmanuel Reynard (Eds)

Map

pin

g G

eoh

erit

age

G

éral

dine

Reg

olin

i-Bis

sig

/ Em

man

uel R

eyna

rd (E

ds)

35 35 35

Lausanne, juin 2010

Nb pages?

< C

entr

age

bloc

titr

e >

Limite textesFormat B5 : 250/176 mm

Page 2: Mapping Geoheritage

Impressum

Coordinateur de l’édition :

Regolini-BissigGéraldine

ReynardEmmanuel

Manière de citer cet ouvrage :

Regolini-BissigG.,ReynardE.(Eds)(2010).MappingGeoheritage,Lausanne,Institutdegéographie,Géovisions,35.

Directeur de la publication :

EmmanuelReynard

Carte page de couverture : Valvasor’smapofanintermittentkarstlake.Oneofthefirstgeomorphositemaps(Valvasor,1689)

Maquette, mise en page et graphisme :

GastonClivaz

Impression :

EasydocumentSA

Casepostale Tél.:+41244456581

1440Montagny-Chamard Site:http://www.easydoc.ch/

Publié par : Institutdegéographie UniversitédeLausanne Anthropole 1015Lausanne Site : http://www.unil.ch/igul

©2010InstitutdeGéographie-UNIL ISBN:978-2-940368-10-5

Geoheritage.indb 1 22.06.10 15:28

Page 3: Mapping Geoheritage

Geoheritage.indb 2 22.06.10 15:28

Page 4: Mapping Geoheritage

Table des matières - III -

Tabledesmatières

Mappinggeoheritageforinterpretivepurpose:definitionand

interdisciplinaryapproachGéraldineRegolini-Bissig....................................................................1

Geoheritagepopularisationandcartographicvisualisationinthe

Tsanfleuron-Sanetscharea(Valais,Switzerland)SimonMartin.............................................15

Mappinggeomorphologicalhazardsinrelationtogeotourismandhikingtrails

PierluigiBrandolini,ManuelaPelfini...............................................................................................31

ConservinggeoheritageinSloveniathroughgeomorphositemappingBojanErharti ..........47

Bringinggeoheritageunderwater:methodologicalapproachestoevaluation

andmappingAlessioRovereetal..........................................................................................65

Dendrogeomorphologicalinvestigationsforassessingecologicalandeducational

valueofglacialgeomorphosites.TwoexamplesfromtheItalianAlpsManuelaPelfinietal......81

GISandgeomaticsapplicationfortheevaluationandexploitationofPiemonte

geomorphositesLucaGhiraldietal.......................................................................................97

CreationandtestofamobileGISapplicationtosupportfielddatacollection

andmappingactivitiesongeomorphositesMarcoGiardinoetal..........................................115

Geoheritage.indb 3 22.06.10 15:28

Page 5: Mapping Geoheritage

Geoheritage.indb 4 22.06.10 15:28

Page 6: Mapping Geoheritage

Introduction - V -

The new interest for the geomorphological heritage has induced the InternationalAssociation of Geomorphologists (IAG) to create in September 2001, at the 5thInternationalConferenceonGeomorphologyheldinTokyo,aspecificworkinggroupaimed at working on issues concerning geoheritage, geotourism andgeoconservation. It aims to improve knowledge and scientific research on thedefinition,assessment,cartography,promotionandconservationofgeomorphosites.ThegroupischairedbyEmmanuelReynard(UniversityofLausanne,Switzerland)andPaolaCoratza(UniversityofModenaandReggioEmilia,Italy).

Experiences are shared during workshops and international conferences. Theworkshop“MappingGeoheritage”wasorganisedby the InstituteofGeographyofLausanneUniversityinSionandLausanne,Switzerland,from17to20June2008.20participants coming fromsix countries (Switzerland, France, Italy, Slovenia,PortugalandPoland)tookpart.

Theobjectivesoftheworkshopwere:

• to discuss experiences and needs in mapping issues in geoheritageandgeotourism;

• toidentifyresearchperspectivesingeoheritagemapping;• todevelopnewmethodsandlegendstobeusedforthecartography

ofgeoheritage;

• topracticeNTICandGISinmappinggeoheritage.

Thisvolumeof“TravauxetRecherchesdel’IGUL”presentseightcontributions.Inthefirstarticle,G.Regolini-Bissig(UniversityofLausanne)proposesrecommendationsforelaborating geotourist maps. The second paper, written by S. Martin (University ofLausanne) is a kind of application of Regolini-Bissig’s proposals. It presents thedifferentsteps for thepreparationofageotouristmapof theglacio-karsticareaofTsanfleuron (Swiss Alps). Four papers present case studies in variousgeomorphological contexts. P. Brandolini (University of Genova) and M. Pelfini(University of Milano) propose a method for mapping geomorphological hazardsalonghiking trailsused forgeotourism.B.Erhartic (SlovenianAcademyofSciencesandArts)discussesmapping issuesat thescaleof thecountryandofageosite.A.Rovereandcolleagues(UniversityofGenova)discussmapping issuesofunderwatergeoheritage. Finally, M. Pelfini and colleagues (University of Milano) presentinvestigationscarriedoutonglacialgeomorphositesintheItalianAlps.Thelasttwopapers have a more technical value. The first one, written by L. Ghiraldi andcolleagues (Universities of Modena and Torino), concerns the use of GIS andgeomaticstools intheassessmentandexploitationofgeomorphosites,whereasthesecond, written by M. Giardino and colleagues (University of Torino) presents aspecificGISmobilemappingtoolusefulfordatacollectionandmappinginthefield.

Geoheritage.indb 5 22.06.10 15:28

Page 7: Mapping Geoheritage

- VI - Mapping Geohritage

We hope that the papers collected in this volume will be useful for researchersworking on geomorphosites and geotourism, and that they will help to fill a gapconcerning mapping development in the domain of geoheritage management,conservationandpromotion.

Lausanne,April2010

EmmanuelReynardandGeraldineRegolini-Bissig

Geoheritage.indb 6 22.06.10 15:28

Page 8: Mapping Geoheritage

Mappinggeoheritageforinterpretivepurpose:definition

andinterdisciplinaryapproach

GéraldineRegolini-Bissig

InstituteofGeography

UniversityofLausanne

Anthropole

CH-1015Lausanne

E-Mail:[email protected]

In Regolini-BissigG., Reynard E. (Eds) (2010). Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.1-13.

Geoheritage.indb 1 22.06.10 15:28

Page 9: Mapping Geoheritage

Geoheritage.indb 2 22.06.10 15:28

Page 10: Mapping Geoheritage

Mapping geoheritage for interpretive purpose: definition and interdisciplinary approach - 3 -

1. Introduction

Since the raise of awareness of the importance of Earth Heritage (EuropeanManifestoonEarthHeritageandGeodiversity,2004),geomorphositeshaveobtainedincreasing attention from the scientific community.Assessmentmethods, classifica-tionandconservationstrategieshavebeendevelopedtosafeguardthegeomorpho-logical heritage for present and future generations (Reynard et al., 2009). On theotherhand,EarthHeritagecreatesopportunitiestodevelopeducationalandrecrea-tional programs aswell as tourismprojects. Various interpretive supports and localdevelopmentprojectshavebeenengendered in thepast fewyears topromote thegeoheritage.

ThepromotionofEarthHeritageholdsthechallengingtasktorevealtoapublicofnon-specialists(Cartonetal.,2005)notonlyitsbeautybut,aboveall,itsvalueastes-timonyofEarthHistory.Today’spromotionismanifoldandconcernsdifferentpopula-risation products and services such as thematic walks, brochures and educationalpanels,guidedvisits,etc.Mapsareoftenemployedaspartofthecitedproductstoshowitinerariesorpointsofinterest.Theyalsoexistasindependentmedia,throughwhich it ispossibletovisualisegeoscientific information. Inthiscase,mapsbecomeinterpretive media that serve popularisation purposes. However, the efficiency of amap depends on how good the map is designed and how good the knowledgetransferbetweentheparties(scientists,public)operates(MacEachren,1995).

This paper proposes two definitions of maps used in Earth Heritage promotion(geotouristmaps and interpretivemaps). It focuses thenon the implementationofinterpretive maps by pointing out the advantages of using an interdisciplinaryapproachtoimprovemapeffectiveness.

2. DefinitionAmapthatisproducedinthefieldofEarthHeritagepromotioniscommonlycalledgeotouristmap. “Geo” stands for theprovenienceof the information fromEarthsciences (geography, geology or geomorphology) and “tourist“ specifies both therecreationalcircumstancesinwhichthemapisconsultedandtheusers.Inspiteoftheamountofgeotouristmapsandincreasinginvestigationonthistopic(Cartonetal., 2005; Castaldini et al., 2005a, 2005b; Bertacchini et al., 2008; Coratza &Regolini-Bissig,2009;Bissig,2008),nodefinitionhasbeenproposedsofar.Byiden-tifyingthesharedcharacteristicsofalargesampleofmapsoneobservessomesimi-larities.Theyalladdressapublicofnon-specialists,communicategeoscientificinfor-mationand integrate informationabout tourist facilitiesand services.Accordinglytothislowestcommondenominatorageotouristmapcan,therefore,bedefinedas “a map that is used to communicate with a public of non-specialists and that visua-lises geoscientific information as well as tourist information”.

Geoheritage.indb 3 22.06.10 15:28

Page 11: Mapping Geoheritage

- 4 - Géraldine Regolini-Bissig

Inpractice,therespectiveproportionoftouristandgeoscientificinformationaswellasthesystemusedforrepresentingsuchinformation(visuallanguage,levelofsimpli-ficationoftheinformation,backgroundchoice,etc.)areverydifferentfromonegeo-touristmaptoanother(Coratza&Regolini-Bissig,2009).Theterm“geotourist map” has, therefore, to be thought of as an umbrella term, in which different types ofmaps can be distinguished. A classification based on a statistical analysis of morethanfiftygeotouristmaps(Bissig,2008)differentiatesbetweenfivegroupswithdif-ferentlevelsofscientificcontentandtouristinformation:

1) Indexmaps:Theycontainlowtouristinformationandlowgeoscien-tificinformation.Theirprincipalgoalistolocaliseitinerariesorpointsofinterest.

2) Touristmaps:Inthistypeofmap,majorattentionisgiventothere-presentationof tourist information such as picnic areas, car parks,accommodation,etc. Scientific information is,on the contrary,un-substantial.

3&4)Geoscientific maps for amateurs of Earth sciences: The scientificcontentishighandthetouristcomponentismedium.ItisnecessarytodistinguishbetweentwotypesofgeoscientificmapsforamateursofEarthsciencesbecauseoftheirdifferentrepresentationsystem.

5) Interpretivemaps: Theypresent a goodbalancebetween scientificandtouristinformation.Furthermore,theytrytointerprettherepre-sentedlandscapebyrevealingitsparticularities.

Becauseofthediversityofgeotouristmapsitisnecessarytogiveamoreprecisedefi-nitionof interpretive maps: theyareclearlydesignedforthepurposeofknowledgetransfer between specialists and a public not or poorly familiar with geosciences.Usedasanillustrationinsteadofasimpleorientationdevice,themapcommunicatesspatiallyrelevantinformationthathelpstounderstandcomplexgeoscientificpheno-mena.Forinstance,themapcanpicturepastandpresentprocesses,whichcontribu-tedtotheformationandevolutionofagivenlandscape.Asthefollowingdefinitionclearlystates,theessenceofinterpretivemapsistorevealmeaning.Touristinforma-tionisnotessentialbutmaybeaddedtoprovidetheuserwithpracticalvisitinforma-tion.

An interpretive map is used to communicate with a public of non-specialists. It focuses on

the communication of geoscientific themes in order to provide the opportunity for the user

to understand geomorphological or geological phenomena, formation or evolution. Tourist

information is of secondary importance.

Definition of interpretive maps

Geoheritage.indb 4 22.06.10 15:28

Page 12: Mapping Geoheritage

Mapping geoheritage for interpretive purpose: definition and interdisciplinary approach - 5 -

3. Challengesofmapmakingforinterpretivepurpose

3.1 Informationexchanges

Themostimportantdifferencebetweeninterpretivemapsandothergeotouristmapsis thewaygeoscientific information ispresented to thepublic. Themethodologicalapproach,which leads togeotouristmaps – especially geoscientificmaps for ama-teursofEarthsciences(Castaldinietal.,2005a,2005b;Bertacchinietal.,2007)–ischaracterisedbytheprincipleofsimplification.Startingwithageologicalorgeomor-phologicalmapforspecialists,thesimplificationisachievedthroughthereductionofthe initial legend, and some specific figures being combined (e.g. active and relictlandslides = landslides) or abandoned. In a second stage, basic tourist information(servicesand facilities) isadded. In spiteof thesimplificationprocessapplied in theimplementationphase,thederivedmapsareoftenrathercomplex.Furthermore,theyarebasedonamerereproductionofgeoscientificfactsfromthespecialists’represen-tationandlegendsystem,thatthepublicmayhavedifficultyinunderstanding(Kruhl,2006).

Fortheimplementationofaninterpretivemap,theapproachwithregardstotwokeyprocessingstages–definedbyCoratza&Regolini-Bissig (2009)ascodificationanddecodificationphases–shouldbereconsidered(Fig.1). Inthefirstphase,themap-maker chooses the information that is to be communicated and designs the map.Themodalitiesaccording towhich theelements tobepresentedonan interpretivemapareselecteddiffersignificantlyfromtheonesfollowedinothergeotouristmapsimplementation: it concentrates on the communication of specific themes and isdirected to awell-defined target group (see examplebelow). In the secondphase,theusersextract thecodified information.Foran interpretationtobeeffective, thebridgework (map) has to be correctly understood by the recipient (user).Communicationanddesignissuesare,therefore,thefocusofinterest.

Fig.1 Information exchange between cartographer and map user (Coratza &Regolini-Bissig,2009).

Geoheritage.indb 5 22.06.10 15:28

Page 13: Mapping Geoheritage

- 6 - Géraldine Regolini-Bissig

3.2Defininganewapproach

The codification process determines what is going to be the content of the map.Ratherthanprovidingasimplifiedversionofamapforspecialists(seeCartonetal.,2005),theproposedapproachleadstothe interpretationofthegeoscientificrealityof the mapped area. By interpretation we refer to the definition given by Tilden(1957)inthefieldofheritageinterpretation: “Heritage interpretation is an educatio-nal activity which aims to reveal meanings and relationships through the use of origi-nal objects, by firsthand experience, and by illustrative media, rather than simply to communicate factual information”.Thus,theinterpretiveapproachinmappingEarthHeritage means to assemble the information in order to communicate a specificmeaning insteadofpointingoutthesinglegeoscientificelements,as it isoftenthecase inconventionalgeotouristmaps.Providingexplanationsregardingthedistribu-tion or interaction of the various elements will lead to a higher understanding oflandscapeformationbytheuser.

Coratza&Regolini-Bissig(2009)proposedguidelinesforEarthHeritagemappingthatintegrateaseriesofinterpretationprinciples.Theyhavebeenadapted(Table1)tofitthe specific fieldofmapping EarthHeritage for tourist purpose. Someof theprin-ciples are illustrated here by using the example of an exercise conducted during amappingworkshopinSwitzerland.

Being confronted with the task of designing an interpretive map for the site ofDerborence(Valais,Switzerland)(Regolini-Bissigetal.,2009),theparticipants(severalgeographersandgeologists)first identifieditsmaingeomorphologicalfeatures.Thiswasmade inorder tochooseoneorafew themes thatweregoingtoberevealedwith a map. In general, landscape interpretation can pick up nearly every topic aslongasthefield isappropriate.However,theprincipalthemeisoftensuggestedbythefielditself.Secondarythemesorlessevidentfeaturesshouldnotbeshownonthesame map, but would be better placed in subsequent illustrations, as they wouldunnecessarily increase the visual load of the map and somehow hide the principleinformation.ThecreationofLakeDerborenceoffersaninterestingstorytotell.Itsori-ginisduetolargehistoricalrockslidesandthelakecurrentlytendstobefilledbyallu-vialsediments(Bekker,1883;Mariétan,1960).Othergeomorphologicalfeaturesandprocessesnotrelatedtotheformationofthelakeweredeliberatelyignoredthereaf-ter.

Secondly,theparticipantsidentifiedthepotential usersofthemap.Choosingaspeci-fictargetgroup is important inordertoadaptthecontenttotheirpreviousknowl-edge and conceptions of geoscientific processes (Megerle, 2008) and to their mapreadingskills(Kealy,1998).Asthevisitorsoftheareaaremainlycomposedoffami-liesthatcometostayaroundthelakeforadaytrip,itwasdecidedtocreateamapforthistargetgroup.

Geoheritage.indb 6 22.06.10 15:28

Page 14: Mapping Geoheritage

Mapping geoheritage for interpretive purpose: definition and interdisciplinary approach - 7 -

Map components Guiding questions Guiding principles

User Who is the intended audience?

Maps should not be designed the same way whether they are pro-duced for amateurs of Earth sciences, seniors, families, teenagers or children. Different map user groups have different requirements and map reading skills. Choosing one of these groups or defining the intended audience by analysing the composition of visitors of a given site helps to focus the mapping efforts and to produce tangible maps.

PurposeWhat is the purpose of the map?

Maps are produced and serve different purposes such as localising geosites and giving tourist information (index and geotourist maps), interpret geomorphological and geological features (interpretive maps) and providing simplified geological or geomorphological information (maps for amateurs of Earth sciences). Each application requires spe-cific mapping principles in order to fulfil the specific needs.

Theme What is going to be revealed with the map?

In order to limit the features to be shown on a map, only a small number of elements should be presented at one time. Especially for interpretive maps one should focus on one or two principal themes. Secondary themes are better left for subsequent illustrations. It is also recom-mended to portray information sequentially (series of maps) or operate with zooms, instead of overloading a document.

The components above define the general framework of a map. They influence the decisions about the following elements, which have to be coherent with this framework.

LevelWich complexity of information is desired / required?

The “Level” refers to the complexity of the data. It depends on both the purpose of the map and on the user. In any case do not burden the reader with unnecessary details.

Scale

Which level of detail for the representation of the surroundings and the geomorphosites is desired / required?

One element to consider is the ratio between the area to be covered and the size of the map. The visualisation of the surroundings (map back-ground) and of the geomorphosites (point symbols, pictorial symbols, adapted geosciences mapping symbols) also influences the scale.

Dimensionality

How to show the mor-phology of the mapped area?

Whether to work with topographic backgrounds, digital terrain models, satellite imagery, air photographs or drawings depends on the purpose of the map and on the intended audience. It may be useful to produce several alternatives and test with the user which one works best.

Design

How to produce maps that look good and are easy to understand?

It is important to adapt the design to the defined target group and to fol-low cartographic conventions and basic graphic and map design rules. In order to furnish a well-designed map, it can be useful to entrust the final design of the document to a graphic designer.

Form and sizeFor what purpose and in which context is the map going to be used?

The choice of the map form (paper or digital maps, material and size of the paper map) is crucial as it will affect the production and up-date costs. It should also be considered that the map study ought to be as comfortable as possible in a given situation. For example, a large fold up map may not be the best option for a windy trail along the coast, as it would flap in the wind.

CostsWhat are the costs involved in preparing and publishing the map?

How much of the budget can be employed to acquire data? To carry out field research or to process data? To eventually produce the map? The cost is an important aspect for every mapping project as it determines a series of the characteristics of the map such as mapping techniques (software, data processing) and print options (material, size, colour).

Table1 Guiding principles for geotourism mapping (modified after Coratza &Regolini-Bissig,2009).

Geoheritage.indb 7 22.06.10 15:28

Page 15: Mapping Geoheritage

- 8 - Géraldine Regolini-Bissig

The purpose ofthemaparoseoutoftheprincipalthemeandthe intentiontopro-duce an interpretive map rather than an index or geotourist map. The idea was,therefore,toexplainthecreationofLakeDerborence.Consequently,thegroupcrea-tedamapwiththetitle“HowwasLakeDerborenceformed?”(Regolini-Bissigetal.,2009). Stating clearly thepurposeof amapwitha titlehelps to communicate theintentofthemapandtodrawattention.Theformulationasaquestionisgenerallymore effective as a plain description of what is presented (e.g. Geotourist map ofLakeDerborence).

The level of a map is defined according to several parameters. It depends on thepurposeandthepotentialusersofthemap.Itvariesalsoifthemaphastobeself-explanatoryor if it isaccompaniedbywritteninformation,abrochure,forexample.Beingconfrontedtoapublicwithpresumedbasicgeoscientificknowledge,thecom-plexityofthedata (Level) waskeptaslowaspossible.Itwasfurtherreducedbypre-sentingthedataonaseriesofmaps.Atthesametime,theinterpretiveaspectcouldbeenhancedaseachmaprepresentsastepinthesuccessionoftheeventsthatleadtotheformationofthelake.Therewasnoneedforadditionalwritteninformation.

Fig.2 FirstofaseriesofthreemapsexplainingtheformationofLakeDerborence.Inthismaptwolandslidesandtheirdepositsarerepresented(mapdesignedbyL.GhiraldiandV.Garavaglia).

Geoheritage.indb 8 22.06.10 15:28

Page 16: Mapping Geoheritage

Mapping geoheritage for interpretive purpose: definition and interdisciplinary approach - 9 -

Having an approach based on interpretation principles determines what is to beshownonamap.Thequestionofhowitistoberepresentedleadstoinvestigationsconcerningthecommunicationprocessbetweenthemapmakerandthepublicanddesign issues.Visual representationofgeoscientific information (codification)must,therefore,fittheusers’levelofgeoscientificknowledgeandmapreadingskills(deco-ding).Asseenabove,geoscientiststendtorepresentdatausingthesamerepresenta-tion and legend system used for communication among themselves. This may bemisunderstoodandcanleadtomisinterpretationofthedatapresented.Justastextswrittenwithtoomanytechnicalexpressions,inatoosmallfontorwithoutrelationtothereaders’experienceareunsuccessfulfromaninterpretivepointofview(Lehnes&Glawion,2006),poorlydesignedmapswillnotkeepthereaders’attentionandmayberegardedasuseless.Geoscientistsinvolvedinmappingprojectsshould,therefore,have basic knowledge concerning visual information transmission and hold thenecessarycommunicationknow-howwiththechosenmedia.

Due to their prevalent training in natural sciences, geoscientists have often littleexperience in other branches such as human sciences. In many cases, mapimplementation could be enhanced using an interdisciplinary approach. Ideally, aproject should be carried out in a collaborative effort (Patterson, n.d) by a teamcomposed of scientists from different fields related to knowledge acquisition(psychologists), mapping issues (cartographers) and visual communication (graphicdesigners).Astimeandmonetaryresourcesarelikelytobelimited,astepuptoaninterdisciplinary approach could also be to incorporate major findings of relatedfields. Of course, this implies investing time but has the advantage of avoidingconceptualandfundamentaldesignmistakes.

3.3Howtomeetthemappingchallenges?

Itisnotourambitiontogivepracticalmappingadviceinthispaper,buttopointoutresearch fields thatcanhelpmanagemapcodificationanddecoding.Ashort sum-maryofdifferentresearchfieldsandafewpracticalexamplesshowtheircontributionformappingenterprises.

Heritage interpretation

The already cited heritage interpretation deals with the mediation of scientificknowledge.Interpretationstrategiesandcommunicationtechniquesweredevelopedbydifferentauthors (Tilden,1957;Ham,1992;Beck&Cable,1998)andweresuc-cessfully applied in various settings of natural and cultural heritage interpretation:parks,zoos,museums,naturecentres,andhistoricalsites. Insomecountries (USA), interpreters are professionals that follow a specific training to acquire skills andknowledgeallowingthemtoperformeffectiveinterpretation. Inothercases,geoin-terpretation isoften in thehandsof scientistsandneedsyet tobeprofessionalised(Kruhl,2006;Megerle,2008).

Geoheritage.indb 9 22.06.10 15:28

Page 17: Mapping Geoheritage

- 10 - Géraldine Regolini-Bissig

Differentexamples showthatgeneral interpretationprinciples canbeblendedwithtraditional cartographicprinciples (Bailey et al., 2007; Patterson,n.d.). Butheritageinterpretation also pays attention to maps as independent communication tools.Specificstudiesonhowandinwhichcontextthismediumbestservesinterpretationwerecarriedout.Oneexampleisthecaseof living maps (Bremenetal.,1992).Thisgiantcanvasmap,onwhich thevisitorscanplacenames,boundariesandsymbolicprojects, was developed to support the visualisation of large landscapes. Otherstudies focused on the topics of orientation and way finding. Interesting resultsconcern,forexample,theeffectivenessof2Dversus3Dmaps(Schoesberger,2007).

Cognitive sciences

Thecognitivesciencesisanotherresearchfieldthatstudiesthefunctionalityofspatialandmap knowledge acquisition. Including results about place recognition and way findingmechanismsaswellas visual-cognitiveprocessesofhuman-map interactionwillhelp todesignmoreaccessiblemaps(MacEachren,1995).

Graphic design

A very important point in map implementation is the design or how a map notproperlydesigned“willbeacartographicfailure”(Robinson,1985).Beforestartingaproject, it is, therefore, useful to get familiar with the elementary mapmakingprinciples. The presented guiding principles for geotourism mapping (Table  1) canhelp to ask essential design questions (user, level, dimensionality) that will affectmany of the successive design choices. However, applying these principles cannotfully compensate expert mapping knowledge. It is, therefore, recommended toconsult cartographic manuals (MacEachren, 1995; Slocum et al., 2009) and designhandbooks. At the end of the mapping process, Martin & Reynard (2009) rightlyproposetoentrust thefinaldesigntoagraphicdesigner.Aprofessional, thus, thatassembles together images according to visual communication principles in a waythatisbothaccessibleandaesthetic.

Social investigations

Evenifinsomecasesthemapmakercanbenefitfromalreadyacquiredknowledgeasdescribed above, there may still be a need for investigations concerning the mapusers,eitherbecausetheinformationisboundtothelocationorbecausegeneralisedinformationisnotavailableyet.

The determination of the target group is typical location-bound information.Currently, a lot of geotourist destinations do not dispose of statistical informationabout their visitors (Megerle, 2008). Often the most basic information such asgender,ageprofile, finaleducationalattainment,work status,party sizeor levelofgeologicalstudiesaremissingandmappingprojectsarecarriedoutwithoutdefining

Geoheritage.indb 10 22.06.10 15:28

Page 18: Mapping Geoheritage

Mapping geoheritage for interpretive purpose: definition and interdisciplinary approach - 11 -

a clear target group beforehand. This and other questions concerning the visitor’smotivation and focus of interest (Hose, 1996; Pralong, 2006), conceptions ofgeoscientific processes or landform recognition (Kramar & Pralong, 2005; Bissig &Kozlik,2008)canbeansweredbymeansofempiricalinvestigationmethodsprovidedbySocialSciences(Reynard&Berrebi,2008).Theyneedonlytobeadaptedforourpurposes. For a higher adequacy of the products that are to be proposed,standardisedquestionnairescanbedistributedonthespotorsurveysusingscenariosandpicturescanbeconductedwithdifferenttargetgroups.

4. ConclusionandperspectivesTheamountofdifferentgeotouristmaptypesandthemanifoldand individualwaytheyareimplementedshowthatgeotouristmappingisaquiterecenttopic.Inordertobetterapprehendmappurposeandmapcreation,ageneraldefinitionofthe geo-tourist map aswellasaclassificationofthedifferentsub-typeswasgiven.Thepaperfocusedthenoninterpretive maps,whichinouropinionhavethegreatestpotentialforknowledgetransferbetweengeoscientistsandthepublic.

The elementary guiding principles that lead to the implementation of this kind ofmaps were presented and illustrated by the means of an example (map of LakeDerborence). Itwasclearlypointedoutthatmapproductioncannotdealexclusivelywith the codification phase, but must also include the phase of decodification.Importancewasalsogiventodesignquestions,whichhavetobeconsideredinordertooffer intelligiblecommunication.Finally,an interdisciplinaryapproach invitingtheintegrationoffindingsfromrelatedscienceswassuggestedtofurtherimprovemapimplementation.

Forthefuture, itwouldbedesirabletoharmonisemapimplementationforthedif-ferentmaptypesonanationalandrespectively international level inordertofacili-tateinformationreceptionfortheuser.Asharedmappingphilosophyasproposedinthispaperwiththedescribedapproachfortheimplementationofinterpretivemapsisonlythebeginning. Itneedstobediscussedtofinda largeconsensusbeforethenextstep–thedevelopmentofastandardisedmapdesign–canbeundertaken.

Geoheritage.indb 11 22.06.10 15:28

Page 19: Mapping Geoheritage

- 12 - Géraldine Regolini-Bissig

ReferencesBaileyH.,SmaldoneD.,ElmesG.,RobertB.(2007).Geointerpretation:theinterpretivepotential

ofmaps, Journal of Interpretation Research,12(2),46-59.

BeckL.,CableT.(1998). Interpretation for the 21st Century: Fifteen guiding principles for inter-

preting nature and culture,ChampainIL,SagamorePublishing.

BekkerF.(1883).BergsturzderDiablerets,Ann. CAS,18,310-316.

Bertacchini M., Benito A., Castaldini, D. (2008). Carta geo-archeo-turistica del territorio di

Otricoli (Terni, Umbria), Proceedings of the 3rd National Conference of the Italian

Association Geology and Tourism,Bologna1-3March2007,213-220.

Bremen G., Albrecht B., Dale M., Hertel E. (1992). The living map: Bridging the gap, 1992

National Interpreters Workshop Proceedings,216-219.

BissigG.(2008).Mappinggeomorphosites:ananalysisofgeotouristmaps,Geoturystika,3(14),

3-12.

Bissig G., Kozlik L. (2008). Wahrnehmung von geomorphologischen und geologischen

Landschaftselementen und Interpretationsmöglichkeiten mittels des 3 Geschichten

Modells, In Röhling H.-G., Zellmer H. (Hrsg). GeoTop 2008 „Landschaften lesen

lernen“, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften,56,14.

Carton A., Coratza P., Marchetti M. (2005). Guidelines for geomorphological sites mapping:

examplesfromItaly,Géomorphologie: relief, processus, environnement,3,209-218.

CastaldiniD.,Valdati J., IliesD.C. (2005a).Thecontributionofgeomorphologicalmapping to

environmentaltourisminprotectedareas:examplesfromtheApenninesofModena

(northernItaly),Revista de Geomorfologie,7,91-106.

CastaldiniD.,ValdatiJ.,IliesD.C.,ChiriacC.(2005b).Geo-touristmapofthenaturalreserveof

SalsediNirano(ModenaApennines,northernItaly),Il Quaternario,18(1),245-255.

Coratza P., Regolini-Bissig G. (2009). Methods for mapping geomorphosites, In Reynard E.,

CoratzaP.,Regolini-BissigG.(Eds).Geomorphosites,München,PfeilVerlag,89-103.

EuropeanManifestoonEarthHeritageandGeodiversity(2004).Rec (2004) 3 of the Council of

Europe on conservation of the geological heritage and areas of special geological

interest.AdoptedbytheCommitteeofministersonMay2004.

HamS. (1992).Environmental interpretation: a practical guide for people with big ideas and

small budgets,Golden,Fulcrum.

Hose T. A. (1996). Geotourism, or can tourist become casual rock hounds?, In Geology on

your doorstep: the role of urban geology in Earth heritage conservation, London,

GeologicalSociety,207-228.

KealyM. (1998).Mapmakingforparklands, In Information Design – Tools and Techniques for

Park-Produced Publications,NationalParkService,UnitedStatesDepartmentofthe

Interior,31-51.

KramarN.,PralongJ.-P.(2005).Ladidactiquedessciences :unechancepourlessciencesdela

Terre,InDamboL.,ReynardE.(Eds).Vivre dans les milieux fragiles : Alpes et Sahel,

Lausanne,InstitutdeGéographie,TravauxetRecherches,31,43-56.

Geoheritage.indb 12 22.06.10 15:28

Page 20: Mapping Geoheritage

Mapping geoheritage for interpretive purpose: definition and interdisciplinary approach - 13 -

Kruhl J. H. (2006). Rahmenbedingungen einer Geotop- und Geopark-bezogenen Didaktik, In

VogtJ.,MegerleA. (Hrsg.).Geopark-undGeotourismusforschung.Ergebnissedes

internationalenWorkshopsinKarlsruhe2006,Regionalwissenschaftliche Forschung,

31,41-49.

Lehnes P., Glawion, R. (2006). Landschaftsinterpretation. Erd- und Landschaftsgeschichte als

Freizeit-Erlebnis,Geographie und Schule,159,23-28.

MacEachrenA. (1995).How maps work: representation, visualization, and design,NewYork,

GuilfordPress.

MariétanI.(1960).LeValdeDerborence,Bull. Murithienne,77,92-126.

Martin S., Reynard E. (2009). How can a complex geotourist map be made more effective?

Popularisation of the Tsanfleuron heritage (Valais, Switzerland), 6th European

Congress on Regional Geoscientific Cartography and Information Systems,Munich,

9-12June2009,Proceedings,vol.2,261-264.

Megerle H. (2008). Geotourimus. Innovative Ansätze zur touristischen Inwertsetzung und

nachhaltigen Regionalentwicklung,GeographieinWissenschaftundPraxis,Band1,

RottenburgamNeckar,VerlagKersting,

PattersonT.(n.d.).Developing a new visitor map of Glacial Bay National Park, Alaska. http://nps.

gov/hfc/pdf/glba-article.pdf(retrieved18.02.2009).

PralongJ.-P.(2006).Géotourisme et utilisation de sites naturels d’intérêt pour les sciences de la

Terre : les régions de Crans-Montana-Sierre (Valais, Alpes suisses) et Chamonix-Mont-

Blanc (Haute-Savoie, Alpes françaises),Thèsededoctorat,FacultédesGéoscienceset

del’Environnement,UniversitédeLausanne.

Regolini-Bissig G., Alves A., Brandolini P., Garavaglia V., Ghiraldi L., Giardino M., Hobléa F.,

MartinS.,PelfiniM.,ReynardE.,RodriguesM.-L.,ThelerD.,WelcE.(2009).Howwas

LakeDerborence(VS,Switzerland)formed?Popularisationofgeosciencesbymeans

ofageotouristmap,6th European Congress on Regional Geoscientific Cartography

and Information Systems,Munich,9-12June2009,Proceedings,vol.2,290-293.

ReynardE.,BerrebiY.(2008).Percorsigeodidatticieaspettativedelpubblico.InGeologia e turi-

smo - beni geologici e geodiversità. Atti del 3° congresso nazionale, Bologna 1-2-3

marzo 2007, Regione Emilia-Romagna, Associazione Italiana Geologia e Turismo,

15-21.

ReynardE.,CoratzaP.,Regolini-BissigG.(2009)(Eds).Geomorphosites, München, PfeilVerlag.

RobinsonA.H.(1985).Elements of cartography,NewYork,Wiley.

Schoesberger D. (2007). Evaluating the effectiveness of 2D vs. 3D trailhead maps: A study

conducted at Zion National Park, United States, 6th ICA Mountain Cartography

Workshop “Mountain Mapping and Visualisation”,201-205.

SlocumT.A.,McMasterR.B.,KesslerF.C.,HowardH.H.(2009).Thematic cartography and geovi-

sualization,UpperSaddleRiver,PearsonEducation.

TildenF.(1957).Interpreting our Heritage,NorthCarolina,UniversityofNorthCarolinaPress.

Geoheritage.indb 13 22.06.10 15:28

Page 21: Mapping Geoheritage

Geoheritage.indb 14 22.06.10 15:28

Page 22: Mapping Geoheritage

Geoheritagepopularisationandcartographicvisualisation

intheTsanfleuron-Sanetscharea(Valais,Switzerland)

SimonMartin

InstituteofGeography

UniversityofLausanne

Anthropole

CH-1015Lausanne

E-Mail:[email protected]

In Regolini-BissigG., Reynard E. (Eds) (2010). Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.15-30.

Geoheritage.indb 15 22.06.10 15:28

Page 23: Mapping Geoheritage

Geoheritage.indb 16 22.06.10 15:28

Page 24: Mapping Geoheritage

Geoheritage popularisation and cartographic visualisation - 17 -

1. Introduction

ThispaperpresentstheunderlyingconceptsdevelopedbytheInstituteofGeographyoftheUniversityofLausanne(Switzerland)forapopularisationprojectofthegeohe-ritageintheTsanfleuron-Sanetscharea(Valais,Switzerland).Duetoitswidescientificinterest,thelocalgeoheritageisofgreatvalue(Reynard,2008).Thearticledetailsthecomplementary links existing between the different parts of a geotourist project –databases,educationalpanels,educationalmaterialandgeotouristmap–developedfor popularising the geoheritage value of the area. Each element of the project isbrieflypresented.Specialfocusissetonmappingquestions:howcartographicdesignandinformationstructurecanbesetinordertofacilitatemap’suseandcomprehen-sion.Inthisway,theTsanfleuron-SanetschmapispresentedasanappliedexampleoftheguidingprinciplesproposedbyCoratzaandRegolini-Bissig(2009).

2. GeoheritageintheTsanfleuron-Sanetscharea

2.1AccessandlocationTheareaofTsanfleuron ispartofLes Diableretsmountainmassif (Fig. 1).Therearetwo main entrance points linked by hiking trails. In the west, the cable carGlacier 3000leadsfromPillon passtoanalpinerestaurant(Fig. 3,point2)andtotheski fields on Tsanfleuron  Glacier. In the east, the Sanetsch  pass (Fig.  3, point 5) isaccessible by car from Sion. From the pass, tourists mainly go for a walk on thelapiés of Tsanfleuron(karsticarea,Fig. 2)situatedinfrontoftheglacier.Onthispart,tourist facilities canalsobe found:hutandhotel.Manyotherhiking trails link theTsanfleuronareatoitssurroundings:Derborence,Savièse,Gsteig,Pillon(Fig. 3).Thetouristareacoversmorethan50 km2betweentheSanetsch passintheeastandtheglacierinthewest.

Léman lake

Rhône river

Aigle

Les Diablerets

Gstaad

SION

Martigny

Savièse

GsteigPillonPass Sanetsch

Pass

MAPTsan�euronGlacier

Tsan�euronLapiés

Switzerland

Valais

10km

© SwissTopo 2007 - IGUL - S. Martin 2009 Fig.1 Situationmap.

Geoheritage.indb 17 22.06.10 15:28

Page 25: Mapping Geoheritage

- 18 - Simon Martin

Fig.2 Geological3DmapofTsanfleuron-Sanetscharea(simplifiedfromGremaudandNessi,2006).

2.2Geoheritage

With9 km2,thekarsticarea isoneofthe largest inSwitzerland(Reynard,2008). ItcoversawideplateaupendingtothenortheastandbelongingtotheDiableretsandMont-Gondnappes,partof theHelveticdomain.TheTsanfleuron lapiésaremainlyformedinEoceneandCretaceous(Urgonian)limestones(Fig. 2).Thelimitsbetweenthetwonappesandotherstructuralfracturescouldinfluencethekarsticerosionandthegroundwaterflows(Gremaud,2008).Althoughthemainpartofwaterflowseas-twardtotheGlareysource(Morgerivervalley),theTsanfleuronkarsticareaalsosup-pliesseveralsurroundingsprings(Savoyetal.,2008).

Thekarsticareawasalsoextensivelystudied(Corbel,1957;Maire,1976;T th,2006,2008).Apartfromcarbonatecrusts,manyotherkarsticformscanbeobserved:widerange of karren forms, dolines and other glacio-karstic landforms likeSchichttreppenkarst or roches moutonnées karren. Morphological differencesbetween the upper and lower part of the lapiés were identified by Maire (1976):downhill the Little Ice Age (LIA) moraines, the karstic landforms are various and

Light limestone

Grey limestone

Chalky limestone

Schist

Sandstone

Sanetschpass

Prarochethut

Sanetschhostel

Tour St-Martinrestaurant

Arête del’Arpille

Sanetschhorn / Mont-Brun

Oldenhorn

La Fava Tête-Noire

Tsanfleuron Lapiés

Les Diablerets

Tsar

ein

Lapi

és

IGUL / S. Martin 08d’ap. V. Gremaud 2006

Fault

Moraines / tills

Geoheritage.indb 18 22.06.10 15:28

Page 26: Mapping Geoheritage

Geoheritage popularisation and cartographic visualisation - 19 -

sharp,whereasabovethislimit,thelandscapeismostlyaffectedbyglacialprocesses(Fig. 3,4).

Tsanfleuron Glacier is a rather thin plateau glacier. Therefore, it has retreated fastduring the last century. At its LIA maximum, around 1850, the glacier left largemorainescrossingthepresent lapiés.Asmall tongueextendstheglacieron itseas-ternpart.Theglacierhasbeenwidelystudied:e.g.basalicelayersformation(Tison&Lorrain,1987;Hubbard&Sharp,1995;Hubbardetal.,2000)andrelationbetweenglacier and limestone bedrock with precipitation of carbonate crusts (Hallet et al.,1978;SouchezandLemmens,1985).Moreover,fromOctobertoMay,theglacierisusedforskiingfromGlacier3000cablecarstation(Fig. 3,point2).

ThehistoricalrockfallsofDerborence,inthenearsurroundingsofTsanfleuron,werealso taken into account in the popularisation project. Indeed, rockfall deposits arevisible from the Tour St-Martin (Fig.  3, point 3). As this event is linked with locallegendsonLes Diableretsmountain(diable meansdevil)andalsobecamethesubjectof a novel (C.-F.  Ramuz, Derborence, 1934), it contributes to the cultural value(Reynard,2005)ofthearea.Furthermore,theSanetschpasshassomeimportanceasalanguagefrontierandwatershedlimit(RhoneandRhinerivercatchmentareas).

3. ThegeotouristprojectAfirstattemptwasmadeafewyearsagotopopularisetherichnaturalfeaturesoftheTsanfleuronarea(Collectif,1995;Reynard,2004).Ageotouristtrailwasproposedonthekarsticareawithaleafletdescribingnaturalfeaturesandprocesses(includingglacier)and some tourist information.However, thispopularisationprojectwasnotwellcommunicatedtoalargepublic(Reynard,2008).

In 2008, on the request of the municipality of Savièse (Valais, Switzerland), theUniversityofLausannedevelopedadditionalgeotouristproductson thewholearea(Tsanfleuron lapiés and glacier, Fig.  1): educational panels, material for school chil-dren and a geotourist map. This project partly meets the popularisation plan pro-posedbyReynard(2006).

3.1Databases

The first step was to collect existing information on the area. Separate databaseswerecreatedforeachtypeofdata:bibliography(EndNote),pictures(MS Access)andgeodata(ESRI ArcGIS).Thethreedatabasesshouldbeabletointeractonewithano-therandallowwiderinteractivityindatahandling.

Geoheritage.indb 19 22.06.10 15:28

Page 27: Mapping Geoheritage

- 20 - Simon Martin

3.2Educationalpanels

Themainpartoftheprojectwastodevelopmaterialforeducationpanels.Theyhadtopresentthewholediversityofthegeoheritage.Asthepanelswereputonlynearbuildings,theirnumber–five–andlocationwerelimited.Visitors’ specificitiesaddedsomeconstraints.Firstly,thetextwaswritteninthreelanguages(French,EnglishandGerman).Thisleadstoaconsiderableuseofschemes,picturesandmapstocommu-nicate.Secondly,asthemajorityoftouristsstayinonlyonepartofthearea–glacierorlapiés–informationhadtobesortedandsometimesrepeated(Table1).

Location Tourist facilities Theme 1 Theme 2

1. Sanetsch pass car park, bus stop Introduction (context) Karst

2. Sanetsch hostel

catering, lodgingbus stop

Same as panel 1 Same as panel 1

3. Prarochet hut catering, lodging Karst Glacier

4. Tour St-Martin cateringSnow Bus stop

Geology Derborence rock falls

5. Scex Rougecatering, ski lifts

Snow Bus stop, cable car station

Introduction (context) Glacier

Table1 Descriptionoftheeducationalpanels(Tsanfleuron-Sanetscharea;forloca-tion,seeFig. 3).

3.3Materialforschoolchildren

AccordingtothemunicipalityofSavièse,thegeotouristprojectshouldalsobeaimedatthelocalpopulation.Thus,itwasawaytoinformthepopulationonthevalueofthe landscape and natural features and raise environmental awareness. With thesameintention,manyillustrationscreatedforthepanelswereadaptedtoschooluse.Theybecamethebasematerialofaslideshowpresentinginasimplewaythemaingeomorphologicprocesses(karsticandglacial).Anewchapterwasadded,presentingthedangerofhumanmisuseofthenaturalarea:soildestructionandwaterpollution.BoththeslideshowandindividualpicturesweresetonaCDdistributedtothetea-chersinthecommune.

3.4Geotouristmap

Inadditiontotheeducationalpanels,amapwasdesignedtoinformtouristsonhikingtrails and other facilities: restaurants, hostels, transportation. Moreover, additionaleducational informationwasdevelopedforthebackofthemap.Wechosetofocuson the glacial and karstic processes, with more detailed information than on thepanels.Thelinksbetweenthemap(frontside)andeducationalinformation(backside)werepreservedby theuseof a colour codeandpictograms for each theme (Fig.  3and 4).Theselinksalsoallowtheinteractiononthefieldwitheducationalpanels.

Geoheritage.indb 20 22.06.10 15:28

Page 28: Mapping Geoheritage

Geoheritage popularisation and cartographic visualisation - 21 -

Fig.

3

Geo

tour

ist

map

of

Tsan

fleur

on-S

anet

sch

area

(fr

ont

side

).

Geoheritage.indb 21 22.06.10 15:28

Page 29: Mapping Geoheritage

- 22 - Simon Martin

Fig.4 Schemeofthethreemorphologicareaslinkingbothsidesofthemap.

4. Mappingthegeoheritage

4.1Methodology

TheTsanfleuron-Sanetschmapisaddressedtonon-specialists,accordingtothecate-goriesofCarton etal. (2005). Itsmainpurpose istoorientatepeople,butthemapshould also give information on local geoheritage  (landforms and processes). Themappingprocess raisedseveralquestions,particularlyon themap’sdesignandsor-ting of content. The guiding principles for mapping geomorphosites proposed byCoratza&Regolini-Bissig(2009)wereusedasmethodologicalbasis(Table2),inaddi-tiontomoregeneralcartographicmethods (MacEachren,1994;Bailey etal.,2007;Slocum etal.,2009).

Identifyingthefutureusersofthemapand itsmainpurposesareessentialstepsoftheprocess,astheyinfluenceallotheraspectsofthemap.Furthermore,thechoicesmade during the mapping process must be coherent with the defined framework(Martin&Reynard,2009).

Glacier Moraine

2006

1975

1960

1880

1850

Affected by glacier:softened landforms

Affected by karstic processes:sharp landforms

Geoheritage.indb 22 22.06.10 15:28

Page 30: Mapping Geoheritage

Geoheritage popularisation and cartographic visualisation - 23 -

Map components Guiding questions Guiding principles for the map of Sanetsch-Tsanfleuron

1. Users Who is the intended audience?

a. upper part (glacier): tourists (mainly foreigners) come for a one-day trip, but generally remain on the glacier.

b. lower part (Sanetsch pass, karstic area): local people, hik-ers and families coming for a one-day trip.

c. whole area: hikers going through the lapiés of Tsanfleuron.

2. Purpose What is the purpose of the map?

Category of “promotion maps” (Bissig, 2008) with particular aims: orientation, basic tourist information and educational elements. It should help the users to understand the main geomorphological components of the landscape (see Theme).

3. ThemeWhat is going to be revealed with the map?

Focus on the interaction of glacial and karstic processes that have shaped the landscape.

4. LevelWhich complexity of information is de-sired / required?

According to the diversity of users, the map should allow two levels of complexity: general information (visual) and more de-tailed, but still popularised, information (textual).

5. Scale What is the area to be covered?

The area covers the trails between main access points (Sanetsch pass and Glacier 3’000 station) and the places of interest (whole lapiés and glacier of Tsanfleuron).

6. DimensionalityHow to show the morphology of the mapped area?

Orthophoto whose relief is shown by a superimposed hillsha-ded layer (based on a 25m DEM).

7. Design

How to produce maps that look good and are easy to un-derstand?

Adapted to users and purpose; information sorted by themes and complexity levels; links between levels and media (see also Martin & Reynard, 2009).

8. Form and size

For what purpose and in which context is the map going to be used?

Available on the spot, the map should be used as a guide, to consult on the way, in complement to a topographic map but also in interaction with educational boards visible in the field.

Table2 Guidingprinciples(accordingtoCoratzaandRegolini-Bissig,2009)adoptedforthegeotouristmapofTsanfleuron-Sanetsch.

4.2EducationalcontentEducationalcontentshouldnotoverloadthemap(Coratza&Regolini-Bissig,2009),asthismustfirstlyorientatetheusers.Wechosetofocusonthreethemes:(1)glacialdynamics and landforms, (2) karstic processes and landforms and (3) the relationbetweenbothprocessesandassociatedlandforms.Themapshowstheareaswhereeachthemeprevails,aboveandbelowLittleIceAgemoraines(Fig. 3,4;accordingtoMaire(1976).Theonlyothereducationalelementsdisplayedonthemaparethehis-toricalextensionsoftheglacierfrom1850untiltoday,basedontopographicalmapsanalysis.

Geoheritage.indb 23 22.06.10 15:28

Page 31: Mapping Geoheritage

- 24 - Simon Martin

Fig.5 Exampleofscheme(glacialstriation).

Ontheback, information isorganisedaccordingtothethreethemes(Fig. 4).Texts,explanatoryschemes(Fig. 5)andannotatedpictures(Fig. 6)helptheusertounders-tand the landforms he sees on the field (with help of the map) and complete theinformationdisplayedbyeducationalpanels. Theuseof variousmedia (map, sche-mes, text), multiple scales (general context, processes and forms) and strong linksbetween them (colour, pictograms, text) allow multi-level reading. This is the keypointwhenbeingaimedatnon-specialistandheterogeneoususers.

Fig.6 Exampleofannotatedpicture(moraines).

LachonMoraine - Moräne - Moraine

IGUL / S. Martin 08

Geoheritage.indb 24 22.06.10 15:28

Page 32: Mapping Geoheritage

Geoheritage popularisation and cartographic visualisation - 25 -

4.3Backgroundlayer

Inorder to facilitateorientation, thebackground layer represents the terrain. It isalsoameanstoincreasetheattractivenessofthemap.Tokeepthemapreadable,backgroundwithaheavyvisualload–suchastopographicalmapsoraerialphoto-graphs – should be avoided. Patterson (2002) recommends using a backgroundrepresenting the terrain as “real” as possible: remove lines, rasterize all vectoritems, modulate tones and texturize areas (forests, rocks…). For the Tsanfleuron-Sanetsch map, we first chose to use a hillshaded layer with hypsometric tinting(Fig. 7, left).However,thelastversionusesahillshadedorthophoto(Fig. 7,right).Reliefishardertounderstand,but–accordingtothemajority–themaplooksbet-ter in thisway. Tobringout important informationandpictograms, the thematicareascoverpartlytheunderlyingorthophoto(Fig.3).

Fig.7 Hillshadedbackgroundlayerwithhypsometrictinting(left)andorthophoto(right).

+

=

+

=

Geoheritage.indb 25 22.06.10 15:28

Page 33: Mapping Geoheritage

- 26 - Simon Martin

4.4 Informationlayers

Asthegeotouristmapmeetsseveralpurposes,numeroustypesofinformationaretobe displayed (Table  3). However, only useful information must first be selected inorder to keep the map simple and attractive. Both questions “what to put on themap” and “what to omit” should be resolved by keeping in mind the chosenpurposesandtheuserneeds(Martin&Reynard,2009).Itisalsoessentialtodifferen-tiate the categories of information by the use of visual variables (Bertin, 1967;MacEachren,1994).Inthisway,themapallowstheusertofindeasilywhatheisloo-kingfor.

Purpose Information Geometry Representation

Orientation

location pointpictogram; coordinates,

names

routes and direction line linear sign (3 types)

landscape surfacehillshaded orthophoto

(Fig. 7)

View

viewpoint pointoriented pictogram,

(Fig. 8b)view direction line/angle

best time for view (photo) ---pictogram (3 types)

(Fig. 8a)

Geoheritage

(geo)site point/line/surf linear sign (moraines)

thematic trail line 3 colours

thematic area surface 3 colours

Basic tourist information

transportation point/linepictogram (4 types),

linear sign

catering, lodging point pictogram (2 types)

time of walk --- text (arrow)

Table3 CategoriesofinformationdisplayedontheTsanfleuron-Sanetschmapandtheirrepresentation.

Orientation

Themapshouldinformtheuseronhiscurrentposition,onhisdestination(s)andonthegeneralaspectsofthesurroundinglandscape.Infact,itisatoolforbuildinganindirect experience of space (Golledge & Stimson, 1997; Bailey et al., 2007).Orientation isalso importantforunderstandingspatial interactionsandphenomenasuchasglacierretreat.

Geoheritage.indb 26 22.06.10 15:28

Page 34: Mapping Geoheritage

Geoheritage popularisation and cartographic visualisation - 27 -

There are two main categories of tourists visiting the Tsanfleuron-Sanetsch area(Table 2):peoplestayinginonepartofthearea(ontheglacieraroundthecablecarstationoronthe lapiés betweenSanetsch passandPrarochetHut)andhikerscros-singthearea.Thesenormallyalreadyhaveatopographicmap.Thegeotouristmapis,therefore,usedasacomplement.Toallowinteractionbetweenbothkindsofmaps,wechosetokeepafewsimilarplacenames(glaciers,summits),northwardorienta-tionandcoordinatepoints.Touristsstayinginonepartdonotneedaprecisemap,asthepathnetworkiswellindicatedinthefield.Forthem,wekeptonlyvisibleoruse-fulitems:skilifts,hydrographicalnetwork,pathwaysandtouristfacilities(Fig. 3).

View

Viewpointsonaestheticpanoramasaretouristattractions.Butlookingonthelands-capecanalsobeawaytounderstandnaturalprocessesandlandforms.Severalviewsaredisplayedon theeducationalpanelsandon thebackof themapwithannota-tionsandschemes.Eachviewpointselectedforthemapreferstothesepicturesandoffersalookonaspecifictheme(glacier,rockfalls,lapiés,allpartsofthearea).

Fig.8 a)Besttimeforviewpictogram;b)Viewpointpictogram.

Alongwithdirectionalviewpoints,apictograminformstheuseronthebesttimetosee the landscapeor to takeapicture from thispoint (Fig. 8a). This ideawaspro-posedataregionalscalebyCarton etal. (2005).

Geoheritage

AlthoughthegeotouristmapofTsanfleuron-Sanetschareadealswithgeomorpholgi-cal features, it is not a geomorphosite map. Apart from moraines, no landform isrepresentedonthemap.Onlymorphologicallysimilarareasaredisplayed(Fig. 3).Themapis,therefore,usedasaninterfacetoaccessandorganisetheeducationalinfor-mationonthebackandgiveageneralviewofthelandscapeandspatialdistributionofphenomena.

matin

Morgen

morning

midi/Mittag/midday

après-midi

Nachmittag

afternoona. b.

Geoheritage.indb 27 22.06.10 15:28

Page 35: Mapping Geoheritage

- 28 - Simon Martin

Thetwomaintypesofmorphologyaresymbolisedonthemapwithpictograms.Onerepresentsstriated(oralittlekarstified)roches moutonnéeswhereastheothershowssharpkarrenwithsinkholes(Fig. 4).Alongwiththeexplanationontheback,theusercan,therefore,recognisetheinterestinglandformsonthefield,whateverthewayhefollows.

Basic tourist information

Asitisamountainarea,thereareonlyafewtouristfacilities.Therewas,therefore,no need to select them. All what could be useful to plan a short trip while beingalreadyonthespotwaskeptonthemap:timeofthewalkbetweentwopoints,des-tinationsoutsideof themap’sboundaries, transportation (busstops,cablecars,carparks),hostels, restaurants (Fig. 3).However,as themapwillnotbereprintedeachyear, changeable information (timetables, price lists) was rejected. Pictograms weremade explicit in order to reduce textual information and legend. It is all the moreimportantsincethemap’susersspeakdifferentlanguages.

Onthebackside,additionalinformationisgivenontwothemes.Firstly,peopleinte-restedinlearningmoreaboutlocalgeoheritagearegiveninformationabouttheedu-cational panels and the educational brochure (Reynard, 2004). Secondly, hikers aremadeawareofthedangersinmountainareaandtheimportanceofpreservingtheenvironment(rubbish,dogs,useofvehicles).Therefore,themapparticipatesinbothof the geoheritage popularisation’s main goals: protection and tourist promotion(Reynard,2008).

5. ConclusionandperspectivesConsidering a geotourist project as a whole permits us to increase communicationeffectiveness.However, it implies clearly sorting the informationbetween thediffe-rentmediaandkeepingstrongvisualandthematiclinksbetweenthem.

Furthermore,projectdesign–especially themap– shouldbe coherentwithapre-defined framework. In this way, the guiding principles proposed by Coratza &Regolini-Bissig (2009) help taking each element into account. The first questionsshould,therefore,be:whoaretheusers,whatarethepurpose(s)and,then,whatisthetheme?Thisbasicframeworkinfluencesinformationcomplexityandsorting(dif-ferentlevels)andgeneraldesignofpanels,figuresandmap.

A geotourist map (and other complementary media) can be considered as a userinterface, linking to thematic information. But themap should alsobe a simplifiedrepresentationof landscapethatallowslinksbetweenobservedrealityandscientificexplanationtobemade.Specialeffortshould,therefore,bemadetovisualisemoreeffectivelynaturallandscapeandfeatures.

Geoheritage.indb 28 22.06.10 15:28

Page 36: Mapping Geoheritage

Geoheritage popularisation and cartographic visualisation - 29 -

Spatialand informational interactionmaybeakeytomanagecomplex informationcontentandincreasemapeffectiveness.Moreover,thiscouldsolvetherecurrentpro-blem of users heterogeneity bywidening the multi-level reading possibilities. Thus,peoplewhodonotlikereadingmapscouldalsocomprehend“their”geoheritage.

ReferencesBaileyH.,SmaldoneD.,ElmesG.,BurnsR.(2007).Geointerpretation:theinterpretivepotential

ofmaps,Journal of Interpretation Research,12,45-59.

BertinJ.(1967).Sémiologie graphique. Les diagrammes, les réseaux, les cartes,Paris,Mouton.

Bissig G. (2008). Mapping geomorphosites: an analysis of geotourist maps, Geoturystika, 3,

3-12.

Carton A., Coratza P., Marchetti M. (2005). Guidelines for geomorphological sites mapping:

examplesfromItaly,Géomorphologie : relief, processus, environnement,3,209-218.

Collectif(1995).Tsanfleuron. Commune de Savièse,Savièse,Commissionculturelle.

Coratza P., Regolini-Bissig G. (2009). Methods for mapping geomorphosites, In Reynard E.,

CoratzaP.,Regolini-BissigG.(Eds).Geomorphosites,München, Pfeil,89-103.

CorbelJ.(1957).Karstshauts-alpins,Revue de Géographie de Lyon,32,135-158.

GremaudV.(2008).GéologiedukarstdeTsanfleuron. InHobléaF.,ReynardE.,DelannoyJ.-J.

(Eds). Karsts de montagne. Géomorphologie, patrimoine et ressources, Collection

Edytem,CahiersdeGéographie,7,127-134.

Gremaud V., Nessi J. (2006). Etude structurale et hydrogéologique de la région du Col du

Sanetsch et du Lapiaz de Tsanfleuron,Mémoiredemaster,UniversitédeLausanne.

HalletB.,LorrainR.,SouchezR.(1978).Thecompositionofbasalicefromaglacierslidingover

limestones,Geological Society of America Bulletin,89,314-320.

HubbardB.,SharpM.(1995).BasalicefaciesandtheirformationintheWesternAlps,Arctic and

Alpine Research,27,301-310.

Hubbard B., Tison J.-L., Jansens L., Spiro B. (2000). Ice-core evidence of the thickness and

character of clear-facies basal ice, Glacier de Tsanfleuron, Switzerland, Journal of

Glaciology,46,140-150.

MacEachren A. M. (1994). Some truth with maps. A primer on symbolization and design,

WashingtonDC,AssociationofAmericanGeographers.

MaireR.(1976).Recherches géomorphologiques sur les karsts haut-alpins des massifs de Platé,

du Haut-Giffre, des Diablerets et de l’Oberland occidental, Thèse de doctorat,

UniversitédeNice.

Martin S., Reynard E. (2009). How can a complex geotourist map be made more effective?

Popularisation of the Tsanfleuron heritage (Valais, Switzerland). 6th European

Congress on Regional Geoscientific Cartography and Information Systems. Munich,

9-12June2009,Proceedings,vol.2,261-264.

Patterson T. (2002). Getting real: reflecting on the new look of National Park Service Maps,

3rd ICA Mountain Cartography Workshop, Timberline Lodge, Mt. Hood, Oregon,

15-19.05.02.

Geoheritage.indb 29 22.06.10 15:28

Page 37: Mapping Geoheritage

- 30 - Simon Martin

ReynardE. (2004).Tsanfleuron, entre roche et glace. Une invitation à la découverte géomor-

phologique du karst de Tsanfleuron,CommunedeSavièse,Commissiondesrelations

publiquesettourisme.

ReynardE. (2005).Géomorphositesetpaysages,Géomorphologie  : relief, processus, environ-

nement,3,181-188.

ReynardE.(2006).ValorisationgéotouristiquedukarstdeTsanfleuron(Valais,Suisse).InLugon

R. (Ed.). Gestion durable de l’environnement karstique, Sion, Institut universitaire

KurtBösch,69-79.

ReynardE.(2008).LelapiazdeTsanfleuron.Unpaysageglacio-karstiqueàprotégeretàvaloriser.

InHobléaF.,ReynardE.,DelannoyJ.-J.(Eds).Karsts de montagne. Géomorphologie,

patrimoine et ressources,CollectionEdytem,CahiersdeGéographie,7,157-168.

Savoy L., Favre G., Masotti D. (2008). Hydrogéologie du karst de Tsanfleuron et essais mul-

titraçages. Années 2005 et 2006. In Hobléa F., Reynard E., Delannoy J.-J. (Eds).

Karsts de montagne. Géomorphologie, patrimoine et ressources,CollectionEdytem,

CahiersdeGéographie,7,135-146.

SlocumT.A.,McmasterR.B.,Kessler F.C.,HowardH.H. (2009).Thematic cartography and

geovisualization,UpperSaddleRiver,PearsonEducation.

Souchez R., Lemmens M. (1985). Subglacial carbonate deposition. An isotopic study of a

present-daycase,Palaeogeography, Palaeoclimatology, Palaeocology,51,357-364.

TisonJ.-L.,LorrainR.(1987).Amechanismofbasalice-layerformationinvolvingmajorice-fabric

changes,Journal of Glaciology,33,47-50.

T thG.(2006).Classification and development of bare karren cells in calcareous high mountains,

PhDthesis(abstract),Szombathely,UniversityofPécs.

T thG.(2008).Unenouvelleapprochedusystèmedeslapiésalpinsnus,InHobléaF.,ReynardE.,

DelannoyJ.-J.(Eds).Karsts de montagne. Géomorphologie, patrimoine et ressources,

CollectionEdytem,CahiersdeGéographie,7,147-156.

Geoheritage.indb 30 22.06.10 15:28

Page 38: Mapping Geoheritage

Mappinggeomorphologicalhazardsinrelationto

geotourismandhikingtrails

ManuelaPelfini

DepartmentofEarthSciences“ArditoDesio”

UniversityofMilanoviaMangiagalli34

I-20133Milano

E-Mail:[email protected]

PierluigiBrandolini

DepartmentofAntiquity,MedievalandGeographical-EnvironmentalSciences

UniversityofGenovaviaBalbi2

I-16126Genova

E-Mail:[email protected]

In Regolini-BissigG., Reynard E. (Eds) (2010). Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.31-45.

Geoheritage.indb 31 22.06.10 15:28

Page 39: Mapping Geoheritage

Geoheritage.indb 32 22.06.10 15:28

Page 40: Mapping Geoheritage

Mapping geomorphological hazards in relation to geotourism and hiking trails - 33 -

1. Introduction

Theactivityofgeotourismnecessarily involvesthe interactionwiththenaturalenvi-ronment,andthedegreeofcontactwillvarydependingonthegeotourists’culturalbackground and physical ability (Swarbrooke et al., 2003; Dowling & Newsome,2006).Inthissense,thereareincreasingrequeststoexploitaterritorybycreatingsui-tablenetworksoftrails(Gray,2004;Brandolinietal.,2007;Reynardetal.,2009).Itis, therefore, necessary to survey the potential hazards and the geomorphologicalfeaturesthatcouldimpedeprogressalongtouristitinerariesinordertoallowtouriststoenjoy the landscapeandavoidpotentialharm (Bell,1999;Piccazzoetal.,2007;Reynard,2008,Pelfinietal.,2009).Theknowledgeofthenaturalenvironmentrepre-sentsthefirststepintheriskmitigation.

Climateandmeteorologicalvariabilityplayanimportantroleintheincreaseofboththegeomorphologicalandenvironmentalhazardlevels,forexampledebrisflowsandavalanchetriggering.Thesefactorsalso increasethevulnerabilityofhumanvisitors,duetothepresenceofslipperypaths,wetrocks,andhightemperatureandhumidityinlowaltitudeandcoastalenvironments,orduetolossoforientationoraworsenedphysicalconditioninthecaseofbadweatherathighaltitudes.

The high-altitude mountain environment, for example, appears to be significantlymodified in recent decades because of the rapid and intense reduction in glaciermasses, the degradation of permafrost, and the ever-increasing diffusion of touristsettlements and infrastructures. Today, alpine skiing, alpinism, and other extremesportspractisedbeyondwalking routesoronpathswith limitedaccessibilityareofgreatpopularity.Inareasrecentlyuncoveredbyglaciers,numerousunsettlingpheno-menaareoccurring:slopesandvalleybottomsarecoveredwithabundantunstabledebris,glacialdepositsonlypartiallyconsolidatedandoftenwithanicecoreareeasi-lyremovedbyrunningwater,glacierfrontsaresometimessuspendedovervalleybot-tomswith thepossibilityofdischargingmassesof iceorbouldersandglacier lakesare susceptible to rapid emptying. Theseprogressive climatic variationshave led toenvironmentalchangesthatarerenderingsomealpinetrailsimpossibletopass,gla-cier-coveredareas,usedforsummerskiing,unpracticableandstretchesofexcursiontrailsinaccessible.

Along the coasts, the intense expansion of tourism facilities such as residences,docks,bathingandsportingareas,andanincreaseinthenumberofvisitorsoverthelast few decades, have caused significant changes in the original morphologicalbalance and the natural dynamics of the coastline and the coastal slopes. Thegrowingdispersionofcoastaltrails,mainlysteepseasideaccessroutesatthefootofslopesorcliffs,hasnecessarilyledtoanincreaseintheriskofaccident,heightenedbythefactthatpeopleusingthesepathsareofteninadequatelyequipped.

Geoheritage.indb 33 22.06.10 15:28

Page 41: Mapping Geoheritage

- 34 - Pierluigi Brandolini, Manuela Pelfini

This is particularly important when new itineraries are proposed for environmentalvalorisation and for geomorphosite use. Moreover, temporary situationsdue tome-teorologicalandclimateinfluencescanmodifyhazardandriskscenarios.

In theframeworkof thenational researchproject“Geomorphologicalheritageasaresource for a sustainable tourism” and of the Italian Association of PhysicalGeographyandGeomorphology(AIGEO)WorkingGroup“Geomorphologicalhazardinrelationtotouristactivities”,amethodtoestablishacensus,inastandardisedway,ofalltheelementsthatcancontributetotheriskassessmentintourismapplicationswasproposedandtested.Itwassuccessivelyappliedtodifferentmorphoclimaticandmorphogenetic situations, in different environments, coastal and mountain areas,mainly in the western Ligurian rocky coast and in the central Alps (Lombardy andTrentinoAltoAdige).

Fig.1 Maintopicstobeconsideredingeotouristpromotion,planningandmana-gementofhikingtrails.

Somemaintopicswereconsideredwiththeaimofrealisingspecific thematicmaps(geotouristmaps),whichshouldbereadablebyalargenumberofusersandnotonlyby specialists. Themapswill includegeneral tourist information (number of hikers,typeofvisitors,facilities,periodoffrequentation,etc.);geosites(type,value,cultural,aesthetic, research, educational, etc.); trail characteristics (trail bed type, steepness,

Geoheritage.indb 34 22.06.10 15:28

Page 42: Mapping Geoheritage

Mapping geomorphological hazards in relation to geotourism and hiking trails - 35 -

state of conservation, etc.); geomorphological hazard and risk (running water,marine, glacial, anthropogenic hazards, etc.); climate and meteorological variability(rainstorm,fog,high/lowtemperature,humidityetc.)(Fig.1).

Thegoalofthisarticle istopointouttypicalsituationsofgeomorphologicalhazardandtouristvulnerabilityalonghikingtrails,inordertohighlighttheimportanceofaneasily readable geotourist map following the guidelines proposed by Coratza &Regolini-Bissig(2009).Twoexamplesarepresented,usingdifferentscalesinordertoshowmapsanddetailedsituations.

2. Methods

2.1HazardsurveyThe first step is thecensusofgeomorphologicalhazards through traditionalgeomor-phologicalsurveysandthemappingofthematdifferentscales,byusingascientificallyaccepted legend (e.g.Gruppo Nazionale Geografia Fisica e Geomorfologia, 1986;1993)

Intheframeofthenationalproject“Climateandgeomorphologicalrisks inrelationtotourismdevelopment”(Piccazzoetal.,2007),weproposedastandardisedanalysismethodology(datacollectionmodel)forriskassessmentintouristareas(Brandolinietal., 2004; 2007). A survey protocol was defined to quantify the geomorphologicalhazardlevels,toundertakeacensusofelementsofvulnerabilityofagivenareainclu-ding themorphologicalelementsand thegeographical-physicalprocesses thatmayhighlightthevulnerability,toapproachriskscenarios.

Themethodconsistsofthecompilationoffivesheetsduringthesurveyphaserelatedtothedescriptionoftheareaortouristitinerary,themappinganddescribingofthegeomorphologicalhazard,themappinganddescribingofthegeomorphologicalele-ments that can increase vulnerability, the analysis of tourism vulnerability (touristinfluxandinfrastructures)andtheestimationofgeomorphologicalrisk(Aringolietal.,2007).

Geoheritage.indb 35 22.06.10 15:28

Page 43: Mapping Geoheritage

- 36 - Pierluigi Brandolini, Manuela Pelfini

Fig.2 Aproposalofsymbolstorepresenttrailfeaturesingeotouristmaps(modi-fiedafterPelfinietal.,2007).

2.2Trailnetworkanalysis

Thesecondstepisacensusofnaturalaspects,includingthemorphologicalelementsoftheroute,whicharenothazardousinthestrictestsense,butwhichmayimpedeor render passage difficult. The physical and morphological characteristics of trailsmaketheirusemoreorlesssuitablefordifferentusers.Additionalelementschangeaccordingtothestabilityofthesubstrateorduetothedynamicprocessesinprogressortotheweatherconditions.Severaloftheseaspectsmayincreasethedifficultyofpassage.Onmostoccasions, tourist vulnerability varies in relation toknowledgeofthe territory, physical and psychological preparation, and equipment. These areimportantaspectsbutthatcannotbegeneralisedorcodedwithcertainty.Thetrailsareanalysedandsubdividedintosegmentswithhomogenouscharacteristics,synthe-

Geoheritage.indb 36 22.06.10 15:28

Page 44: Mapping Geoheritage

Mapping geomorphological hazards in relation to geotourism and hiking trails - 37 -

sisingmoreinformationconcerningthepathinaunique,easilyunderstandable,sym-bol.Thesymbolrepresentsacombinationofsimplesignsrepresentativeofthegeo-metriccharacteristicsofthetrailandoftheslopeonwhichthetrailpasses.Forthewholedescription,seePelfinietal.,2007(Fig.2).

2.3Vulnerabilityanalysis

Thesuccessiveanalysisconsiders themaincharacteristicsofvisitors thatmainly fre-quentatrail.Detailedtrailinformationisparticularlyimportantandusefultomitigatevulnerability of inexpert tourists that have little environmental knowledge aboutnaturalhazards.Atypicalexampleisrepresentedbytrailsusedforaccessingbeachesalongrockycoasts(Brandolinietal.,2006).Heretheequipmentisgenerallynotade-quatebecausetheaimsaresunbathingandswimming.Acclivityandrockexposurecan represent risk for users. Analogous environmental characteristics are generallybetter approached in a mountain environment where excursionists are, in general,more consciousofmountain characteristics andundertake trailswithbetter equip-ment.Nevertheless, reportsonaccidents revealbothchangingenvironmental situa-tions and increasing vulnerability. In fact, access facilities (e.g. cableways) allowpeopletoreachhighaltitudes(especiallyglacierenvironments)easily;inthesecases,theignoranceofprocessesandmorphologicalelementsinducingrisks(e.g.crevasses)canbeverydangerous.

2.4Meteorologicalrelatedinformation

Meteorological information is particularly importantwheregeomorphosites are fre-quented by people not accustomed to natural hazards. High temperatures couldincreasehumanvulnerability in summeralongcoastal trailsaswellas thecoldandraincaninhighmountainenvironments.Cloudsatlowaltitudescanleadtoalossofpositioning. Moreover, in any morphoclimatic environment rainstorms can increasebothtrailwalkingandslopeinstabilityphenomena.Acensusofmorphologicalsitua-tions susceptible tomodifications in relation tometeorological events is, therefore,veryuseful.

2.5Datacomputerisation

All the data are collected into computer supports, inserted in a GeographicalInformation System environment, also using a pocket PC with Global PositioningSystem(GPS)tools.

Geoheritage.indb 37 22.06.10 15:28

Page 45: Mapping Geoheritage

- 38 - Pierluigi Brandolini, Manuela Pelfini

3. Casestudies

3.1AnexamplefromtheLiguriancoast(NorthwesternItaly)

*(withthecontributionofF.Faccini)

A typical case representative of a tourist area in a coastal environment is PalmariaIslandintheLiguriaregion(NorthwesternItaly).Withalandareaof1.65km2andamaximumelevationofabout190ma.s.l.,itisaverysmallisland,whichisinscribedintheUNESCOWorldheritagelist.Itisasiteofgreatgeomorphologicalandculturalvalue, characterised in particular by the presence of historic quarrying traces ofPortoromarble – a grey-black limestonewith yellow veins – datedback toRomantimes(Brandolinietal.,2005,2009).

Highrockycliffsonthewesternandsouthernslopescharacterisetheisland,whereassmall promontories andpocketbeaches feature along the remaining coastline. ThegeomorphologicalsettingofthecoastlineandofthedrainagepatternappearstobeconditionedbyNW-SEandNE-SWtectonic lineations: theprocesses inprogressaremainlyrelatedtomarine,gravityandrunningwateractivities,subordinatelytokarstphenomena.Man-madelandformsrelatedtoquarryingandmining,agriculturalter-racingandmilitarystructuresarealsoimportant.

Theclimateoftheislandsischaracterisedbyanannualmeanrainfallofabout900 mm,withamaximuminOctober(120 mm)andaminimuminJulywithvaluesbelow30 mm,and an annual mean temperature of about 15°C. Mean air temperature data shows aminimuminthewintermonths(8-9°C)andamaximuminJulyandAugust(23°C).

Itispossibletovisitthewholeislandinhalfaday,walkingalongaringtrailofapproxi-mately4km,rangingfromsealevelto190 ma.s.l.Thepathisarticulatedinsomesec-tionstodetourtopeculiargeo-panoramicpointsofinterestandgeositesrelated,inparti-cular, to significant outcrops of “Portoro marble” both in open-cast and undergroundquarries, to exemplary cliffs, wave-cut in dolomite and limestone bedrocks and some-timesborderedbypocketbeaches,andtoseaandkarstcaves,whichindicatetracesofsealevelchangesandhumanpresenceinthePrehistoricAge(Brandolinietal.,inpress).

Thegeotouristmap(Fig.3)showsthelocationofthemaingeosites,geo-panoramicpoints,andhistoricalsitesrelatedtohikingtrailfeaturesandpresenceofgeomorpho-logicalhazards.

Several rock fall phenomena have been detected along some parts of the trailnetwork.Amongthese,wenotepotentialrockfalls,especiallyneartheverticalfrontsof the numerous abandoned quarries and the beaches frequented for sun tanningandbathing.Alongthelittoral,hazardsareconnectedtostrongseastorms,particu-larlythosefromtheSWandSE(Fig.5).

Geoheritage.indb 38 22.06.10 15:28

Page 46: Mapping Geoheritage

Mapping geomorphological hazards in relation to geotourism and hiking trails - 39 -

Types of geosites Tourist vulnerability (hiking path features)

1. Geomine 8. Slipperyorramblingtrack

2. Karst 9. Narrowtrail

3. Geomorphological 10. Exposedpath

4. Geological 11. Tracksteepness–a.low;b.medium;c.high

Geomorphological hazards Other geotourist emergences

5. Rockfall 12. Beach

6. Debrisflow(associatedwithheavyrainfall) 13. Geo-panoramicpoint

7. Seastorm 14. Militarystructures

Fig.3 GeotouristmapofPalmariaIslandandlegend(afterBrandolinietal.,2009).

Geoheritage.indb 39 22.06.10 15:28

Page 47: Mapping Geoheritage

- 40 - Pierluigi Brandolini, Manuela Pelfini

Fig.5 Eastern sector of Palmaria Island. Cala del Pozzale (a) and Cala delloSchenello(b)beaches,affectedbyrockfallanddebrisslidephenomena.

Following the criteria, mentioned in the previous paragraphs, for subdividing thetrails intosegmentswithhomogeneouscharacteristics,thepathwayinsoutheasternandsouthwesternsectorsofPalmariaIslandisdistinguishedbyalocationalongsteepslopes, by frequent narrow stretches, mainly dirty or debris covered. The state of

Fig.4 Trail sectors in thewestern sideof Palmaria Island affected bygeomorphological hazards dueto running water and rock fallprocesses.

a) b)

Geoheritage.indb 40 22.06.10 15:28

Page 48: Mapping Geoheritage

Mapping geomorphological hazards in relation to geotourism and hiking trails - 41 -

conservationofthetrailsis,ingeneral,quitegood,withtheexceptionofthesteepersectors, where the trail bed is affected by erosional phenomena due to runningwater. In the caseof suddenandheavy rainfall, thepath canbecomeunevenandveryslippery,andcanbeaffectedalsobydebrisflows(Fig.4).

Inthenorthernsectoroftheisland,thetrail–dirtyorasphalted–islocatedinaplainzone,justalongthecoast,afewmetersabovethebeach,oralongtheembankmentintheberthingarea,anditpresents, ingeneral,agoodstateofconservation,withtheexceptionofonesegmentaffectedbywaveerosionattack.

3.2AnexamplefromtheOrtles-CevedaleGroup,ItalianAlps*

*(withthecollaborationofM.BozzoniandV.Garavaglia)

AtypicalsituationfromtheAlpineenvironmentisrepresentedbytrailsintheSoldaValley(ProvinceofBolzano),attheboundarybetweenLombardyandTrentinoAltoAdige,intheStelvioNationalPark(CentralItalianAlps).Thisisaglacialvalleydeeplyworkedbyglacierfluctuationsandclearsignalsoftheiractivityareconservedinthemorainesystemsborde-ring the glaciers; these are now strongly shrinking or already extinguished. One of thetrailscrossesthewesternsideofthevalleywherethreeglaciers,consideredglacialgeo-morphosites, are located: Vedrette “Alta” and “Bassa del Marlet” and Vedretta delFinimondo.Alongthepath,examplesofhazardandriskarepresent.

The trail connects three mountain huts: Coston, K2 and Tabaretta. It is highly fre-quentedespeciallyinthemiddlepart(K2-Tabaretta)whereachairliftallowsvisitorstoreach the K2 refuge easily; a gentle walk through the forest makes it possible toreachandthentocrosstheglaciers.Itispossibletoobserveglacialgeomorphositesinteresting, also, from an educational point of view (Pelfini 2007; Garavaglia andPelfinisubmitted).TheFinimondoGlacier is locatedinashort,narrowvalleyontheeastern sideof theOrtles; snowaccumulation isduemainly toavalanchesand thetongueiscoveredbydebris;theglacierisusedforwinterskiing.TheAltodelMarletGlacierissituatedatthebottomofasteepvalley;itisfedmainlybyavalanchesfromtheOrtlespeakandshowsaverysteeptopography,unevenandcoveredbydebris.Itisnowcataloguedasadebris covered glacier. TheBassodelMarletGlaciermovesdownvalleyfromthenortherncrestofMountOrtles,inaneasterlydirection;itoccu-piesasteepnarrowvalley,thetongue isverycrevassedand intheupperpart,ava-lanchedepositsaccumulate,whereasthelowerpart ishalfdebriscovered.ThetwoMarletglaciersdepositedahugemorainesystemformedbylateralridgesbuiltduringtheLittleIceAgefluctuations.

The trail system locatedon thewestern sideof theSolda valley, consistingofninepaths,wascarefullyanalysedpayingparticularattentiontomorphologicalcharacte-risticsandgeomorphologicalhazardsthatcanaffecttrails.Morphologicalevidencespossiblyrepresentingdifficultiesforpassageandcausingan increase invulnerability

Geoheritage.indb 41 22.06.10 15:28

Page 49: Mapping Geoheritage

- 42 - Pierluigi Brandolini, Manuela Pelfini

were marked along the trail, and numerical values related to slope and exposurewerededucedbyautomaticfunctionsfromthedigitalelevationmodel(DEM).Finally,seasonalgeomorphologicalhazardsandsituationsalongthetrailswereoutlined(ava-lanches,residualsnowcover,etc.).

Fig.6 PanoramicviewofthewesternsideoftheSoldavalley.CostonandK2hutsareindicatedbytrianglesdrawnonthelimitofthetrail.Thetrailischaracterisedbyhazardsitesand/orsiteswhere vulnerability could increasebecauseof localmorphologyor temporary situa-tions(residualsnow).Someofthesesituationsareshowninfigures7,8and9.

Fig.7 A portion of the trail Coston-K2. Herethe trail is cut intoa steep rocky slope.The trail bottom can maintain its trackthanks to a wooden support. Only oneperson at time can walk on it, with asteel rope for assistance. The symbolevidencestheflatbottomofthetrailandthe material that characterises the trail(rectangularform),theslopeinclination,thepassageofonlyonepersonattime;thesmallcircleindicatesthepresenceofthesafetysupport(steelrope).

Geoheritage.indb 42 22.06.10 15:28

Page 50: Mapping Geoheritage

Mapping geomorphological hazards in relation to geotourism and hiking trails - 43 -

Fig.8 Aportionof the trailCoston-K2. The trail is hiddenby residual snow.Thepicturewastaken in June 2005. Snow patches are very frequent at the beginning of the summerseasonabove2500 ma.s.l.Thesymbolshowsagreyrectanglecorrespondingtothesnowcover;theinclinationoftherectangleindicatesthetrailbottomheightontheslope;thetwosegments,aboveandbelowthetrail,representapproximatelytheinclinationoftheslope.Thetwodottedlinesevidencethepossibilityofthepassageoftwopeopleattime.

Fig.9 Another portion of the sametrail (represented in Fig. 6) par-tially buried under a deposit ofdebris and blocks. This is anexample of a typical situationoccurringathighaltitudesatthebeginning of the summer sea-son. Due to the frequency oftheseinstabilityphenomena,an-nual maintenance is requiredand, sometimes, new works af-ter heavy rainstorms. This kindofhazard, if evidencedongeo-tourist maps, allows walkers tofrequenttrailswithmoresafety.Moreover, public managers canusethesameinformationtode-cideonmodificationsof the iti-nerary, temporary interruptionsorintakingotherdecisions.

Geoheritage.indb 43 22.06.10 15:28

Page 51: Mapping Geoheritage

- 44 - Pierluigi Brandolini, Manuela Pelfini

Aportionof the trail connecting theCostonandK2huts is analysedhere (Fig.6).Manyofthesituationscorrespondnotonlytogeomorphologicalhazardsbutalsotomorphologicalsituationsinducinganincreaseofthetouristvulnerability,(Fig.7-9).

4. ConclusionsIn the framework of planning and management of existing or new itineraries, theexamples reported in this paper arenot exhaustiveof thewhole rangeof possiblecasescorrelatedtogeomorphologicalhazardandrisk.Theyarejustrepresentativeofanemergingnecessitytoprovidehikerswithobjectiveinformationfortheevaluationoftheirownvulnerability,usingsuitableandobjectivesymbolsonmaps,whichshouldhelpthehikerstoevaluatethepathdifficultiesinrelationtotheirownskills.

In fact, informationsuchas“difficultoreasy trail”shouldbeavoidedbecauseper-ceptionof trail difficulties (trail bed type, steepness,width, etc.) are subjective anddepend on training, equipment, as well as the environmental knowledge of thehikers.

The selection and simplification of information and the symbols placed on a mapmustbeadequatelyrelatedtothescaleofthemap.Itisalsoappropriatenottoinserttoomanysymbolsinordertosimplifythecomprehensionofthegeotouristmap.

Nevertheless,hikingtrailsdemarkedashazardousordifficulttoaccessshouldnotbeunderstoodasameansofcausingalarm,but ratherasauseful instrument for riskmitigation,withtheaimofdevelopingandpromotingsustainabletourisminitiativessuchasgeotourism.Finally,wefirmlyhopethatlocalauthoritieswouldexploitsuchknowledgeinordertoimplementsuitablepreventionmeasureswherenecessary.

ReferencesAringoliD.,FaraboliniP.,PambianchiG.(2007).Valutazionedellapericolositàgeomorfologicalungo

i sentieri escursionistici del Parco Nazionale dei Monti Sibillini (Appennino centrale),

InPiccazzoM.,BrandoliniP.,PelfiniM.(Eds).Clima e rischio geomorfologico in aree

turistiche,Bologna,PàtronEditore,145-178.

BellF.G.(1999).Geological hazards: their assessment, avoidance and mitigation,London,Taylor

andFrancis.

BennettM.R.,DoyleP.(1997).Environmental geology,Oxford,Wiley.

BrandoliniP.,MottaM.,PambianchiG.,PelfiniM.,PiccazzoM.(2004).Howtoassessgeomor-

phological risk in tourist areas, 32nd International Geological Congress, Florence

20-28August,Abstracts1,29.

Brandolini P., Faccini F., Piccazzo M., Robbiano A. (2005). The islands of Palmaria, Tino and

Tinetto(LigurianSea, Italy):geomorphology,georesourcesandculturalheritage, In

6th International Conference on Geomorphology, September 7-11, 2005,Zaragoza

(Spain),AbstractsVolume,407.

Geoheritage.indb 44 22.06.10 15:28

Page 52: Mapping Geoheritage

Mapping geomorphological hazards in relation to geotourism and hiking trails - 45 -

BrandoliniP.,FacciniF.,PiccazzoM.(2006).Geomorphologicalhazardandtouristvulnerability

alongPortofinoParktrails(Italy),Natural Hazard and Earth System Sciences,6,1-8.

BrandoliniP.,FarabolliniP.,MottaM.,PambianchiG.,PelfiniM.,PiccazzoM.(2007).Lavaluta-

zionedellapericolositàgeomorfologicainareeturistiche,InPiccazzoM.,Brandolini

P.,PelfiniM.(Eds).Clima e rischio geomorfologico in aree turistiche,Bologna,Pàtron

Editore,11-27.

BrandoliniP.,FacciniF.,PiccazzoM.,RobbianoA.(2009).Geomorphology,environmentalgeol-Geomorphology,environmentalgeol-

ogyandnatural-culturalheritageofPalmaria,TinoandTinettoislands(Portovenere

Park,Italy),Mem. Descr. Carta Geol. d’It.,86,15-28.

Coratza P., Regolini-Bissig G. (2009). Methods for mapping geomorphosites, In Reynard E.,

CoratzaP.,Regolini-BissigG.(Eds).Geomorphosites,München,PfeilVerlag,89-103.

DowlingR.,NewsomeD.(2006)(Eds).Geotourism,Chichester,Elsevier.

GrayM.(2004).Geodiversity. Valuing and conserving abiotic nature,Chichester,Elsevier.

GaravagliaV.,PelfiniM.(submitted).Thedidacticvalueofglacialgeomorphositesalonghiking

trails:aproposalofanintegratedapproach,Geoheritage.

GruppoNazionaleGeografiaFisicaeGeomorfologia(1986).Ricerchegeomorfologichenell’Alta

ValdiPejo(GruppoCevedale), Geogr. Fis. Dinam. Quat.,9,137-191.

GruppoNazionaleGeografiaFisicaeGeomorfologia(1993).Propostadilegendageomorfologica

adindirizzoapplicativo, Geogr. Fis. Dinam. Quat.,16,129-152.

PelfiniM.withthecollaborationGaravagliaV.andSantilliM.(2007).Geografiafisica,geomorfo-withthecollaborationGaravagliaV.andSantilliM.(2007).Geografiafisica,geomorfo-V.andSantilliM.(2007).Geografiafisica,geomorfo-V.andSantilliM.(2007).Geografiafisica,geomorfo-andSantilliM.(2007).Geografiafisica,geomorfo-

logiaeitinerarididatticiinambientealpino. Ambiente,società,territorio.Geografia

nelle scuole,4,luglio-agosto2007.

Pelfini M., Brandolini P. Carton A., Piccazzo M., Bozzoni M., Faccini F., Zucca F. (2007).

Rappresentazioneincartadellecaratteristichedeisentieriaifinidellamitigazionedel

rischiogeomorfologico,Bollettino dell’Associazione Italiana di Cartografia, 126-127-

128,101-123.

PelfiniM.,BrandoliniP.,CartonA.,PiccazzoM.(2009).Geotouristtrails:ageomorphologicalrisk-

impact analysis, In Reynard E., Coratza P., Regolini-Bissig G. (Eds). Geomorphosites,

München,PfeilVerlag,131-144.

PiccazzoM.,BrandoliniP.,PelfiniM.(2007)(Eds).Clima e rischio geomorfologico in aree turistiche,

Bologna,PàtronEditore.

ReynardE.(2008).Scientificresearchandtouristpromotionofgeomorphologicalheritage,Geogr.

Fis. Dinam. Quat.,31,225-230.

ReynardE.,CoratzaP.,Regolini-BissigG.(2009)(Eds).Geomorphosites,München,PfeilVerlag.

Swarbrooke J., Beard C., Leckie S., Pomfret G. (2003). Adventure tourism: the new frontier,

Oxford,Butterworth-Heinemann.

Geoheritage.indb 45 22.06.10 15:28

Page 53: Mapping Geoheritage

Geoheritage.indb 46 22.06.10 15:28

Page 54: Mapping Geoheritage

ConservinggeoheritageinSloveniathrough

geomorphositemapping

InRegolini-BissigG., Reynard E. (Eds) (2010). Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.47-63.

BojanErharti

AntonMelikGeographicalInstitute

ScientificResearchCentreoftheSlovenianAcademyofSciencesandArts

Gosposkaulica13

Sl-1000Ljubljana

E-Mail:[email protected]

Geoheritage.indb 47 22.06.10 15:28

Page 55: Mapping Geoheritage

Geoheritage.indb 48 22.06.10 15:28

Page 56: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 49 -

1. Introduction

Thatdifference shouldnotonlybe toleratedbut also celebrated is nowcommonlyaccepted.Thetrendtowardsvaluingdiversityhasnowherebeenmoreevidentthaninbiology. Inrecentdecades,growingconcernaboutspeciesextinctionandhabitatlosshasledtosomeimportantinternationalenvironmentalagreements.Theprotec-tionofabioticnaturalheritageinSloveniahasneverbeengivensufficientattention,and it is considered that it should be protected adequately within the context ofothercomponentsoftheenvironment.

Sloveniahasanextremelycomplexterritoryaswellasarichenvironmentalheritage.Therefore,specificinstrumentsandmodelsareindispensableforpropermanagementandappraisal.Mapsofabioticandbioticnaturalheritagecanbeveryuseful tools,allowingthemostdiversetopicstoberepresentedwithsimplegraphics.Amapcan,therefore, be defined as a basic introductory instrument for providing informationconcerningboththecomplexityandtheindividualcomponentsofaterritory(Cartonetal.,2005). The studyofgeomorphosites (Panizza,2001)and,moregenerally,ofgeositesandgeoheritage, isavery recentdevelopment.Todate, investigationscar-riedoutongeomorphosites inSloveniahavebeen limitedandhavemostlyfocusedonidentification,classification,andprotection(AgencijaRepublikeSlovenijezaokol-je, 2009). The problem of cartographic representation has been engaged with butnot yet resolved. This article presents the first attempt to map geoheritage inSlovenia.

TheintroductionpresentssomemaincharacteristicsofSloveniaandrecentdevelop-ments in nature conservation in Slovenia. Special attention is given to the abioticcomponentsofnature.ThesecondpartdealswithmappingabioticnaturalheritageandgeomorphositesonthebasisofanexperimentalstudycarriedoutinSloveniabytheauthor.Bled,aworld-renownedtouristcentreinnorthwestSloveniaandanareawith a large number of natural attractions, was chosen as a case study. AlthoughtourisminBledishighlightedbyitsculturalcomponents(athousand-year-oldcastleand a church on a small island), natural (in particular, geomorphological) featuresprovidethebasisandattractivenessforstudyingthesite.

Geoheritagemappingisseenasanimportanttoolforstrengtheningtheknowledgeofgeomorphologicalvalues; thisagreeswith thestatementbyCartonetal. (2005)that “geomorphological maps are useful tools for identification, selection, andassessmentofgeomorphosites”.

2. MaincharacteristicsofSloveniaTheRepublicofSloveniacovers20’273km2withapopulationof2’025’000inhabitants(2007) (Statistical Yearbook of the Republic of Slovenia, 2008). It is situated in thesoutheasternpartoftheAlpsandonthenorthernmostpartoftheBalkanPeninsula.It

Geoheritage.indb 49 22.06.10 15:28

Page 57: Mapping Geoheritage

- 50 - Bojan Erharti

encompasses four geographical regions: the Alps, Dinaric Alps, Mediterranean andPannonianbasins(OroženAdamic,2004).Asignificantlandscapeandbiologicaldiversi-tywithina relatively small territory isoneof themain characteristicsof Slovenia. It isgreatly supported by different types of climate, geological structure, varied relief andgreatdifferencesinaltitude(from0to2864 m,600 mbeingtheaverage).Fromwesttoeast,theclimatechangesfrom(Sub)mediterraneantocontinental,whichisdemonstra-tedbytheannualamountofprecipitation(2000to3000 mmintheAlpsinthewest,800 mmintheeastofthecountry).

Fig.1 Valvasor’smapofanintermittentkarstlake.Oneofthefirstgeomorphositemaps(Valvasor,1689)?

Forestscoveralmost1.2millionhectaresorabout60%oftheterritory,whichmakesSlovenia the third most forested country in Europe. Although forests are withoutdoubtSlovenia’sgreatwealth,theyalsorepresentaprobleminfieldresearchongeo-morphological heritage and abiotic nature. Observations are difficult, especially inyoungforests,andaerialimagesusuallydonotpenetratethroughdensetreecrowns.

Duetoprevailingcarbonatebedrock(42%),appropriateclimateandamountofpre-cipitation, karst phenomena are especially well developed in Slovenia. The Sežana-Komen karst region attracted attention of researchers early in history since it waslocatedclosetoimportantrailwayroute(Vienna-Trieste).

Geoheritage.indb 50 22.06.10 15:28

Page 58: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 51 -

Oneofthefirstandmostfamousresearchersofkarstgeomorphologyandhydrologywas J.V.Valvasor (1641-1693).Hewas the first toprofessionallydescribeandpre-sentthe“functioning”ofan intermittentkarst lakeonamap.He interpretedkarstphenomena inaccurately from today’sperspectivebutprofessionally enough forhistimesso thathis renownedstudyof intermittentCerknicaLake (Fig.1+2)earnedhimmembershipintheeminentBritishRoyalSociety.

Fig.2 Valvasor’ssketchofthe“functioning”ofanintermittentkarstlake(Valvasor,1689).

3. ProtectedareasinSlovenia

3.1Naturalheritage

Due toEU requirements, Slovenia introducedNatura2000asamechanism for theconservationofnaturalhabitats,wildfauna(especiallywildbirds),andflora.Theaimof the network is to assure the long-term survival of Europe’s most valuable andthreatened species and habitats. It comprises Special Areas of Conservation (SAC)designated by member states under the Habitats Directive, and also incorporatesSpecial Protection Areas (SPAs), which are designated under the Birds Directive(Natura2000).TheaveragepercentageofNatura2000areasinEUcountriesis15%,whereasinSloveniaitismuchhigher,over36%ofSlovenianterritory(Natura2000).

Geoheritage.indb 51 22.06.10 15:28

Page 59: Mapping Geoheritage

- 52 - Bojan Erharti

This very high percentage is a consequence of the relatively well-preserved naturalenvironmentinSlovenia(70%ofNatura2000areforests).

Natura2000isbasedprimarilyonbiologicalcriteria,whichtelllittleaboutthediversi-tyofabioticnatureinSlovenia.AlthoughNatura2000isprimarilydesignedtomain-taincertainaspectsofbiodiversity,protectedareasalsoconserveabioticnature.

CategoryCentresNumber

CentresArea (km2)

% of State territory

Wider protected areas

National park 1 838 4.1

Regional park 3 434 2.1

Landscape park 42 1015 5.0

Smaller protected areas

Strict nature reserve/wilderness area 1 0.02 0.0

Nature reserve 52 69.8 0.3

Natural monument 1217 155.5 0.8

Total 1316 2320 11.4

Table1 Types,numbers,andsizeofprotectedareas inSloveniaaccordingto IUCNcategories (Agencija Republike Slovenije za okolje, 2009, Lampic & Mrak,2007,StatisticalYearbookoftheRepublicofSlovenia2008).Note:thetotalareaissmallerthanthesumofpartialnumbers,becausesomesmallerpro-tectedareasarepartofwiderprotectedareas.

Nature protection in Slovenia is defined through the Nature Conservation Act of1999(Zakonoohranjanjunarave,2004).Accordingtotheact,thewiderprotectedareas(nationalparks,regionalparks,landscapeparks)coverapproximately2300km²oraround11%ofSlovenia (AgencijaRepublikeSlovenijezaokolje,2009).Theper-centageofprotectedareasincomparisontootherEuropeancountriesranksSlovenianearthebottomoftheinternationalscale(Berginc,2007).

3.2Abioticnaturalheritage

TheSlovenianNatureConservationActdefines10differentkindsofvaluablenaturalfeatures (Erhartic, 2009): geomorphological, subsurfacegeomorphological, geologi-cal, hydrological, botanical, dendrological, zoological, ecosystem, landscape, anddesignednature.Atleastfourofthemcorrespondtotheterm“geodiversity”(diversi-tyofabioticnature) (Gray,2004): surfacegeomorphological,undergroundgeomor-phological, geological and hydrological valuable natural features. However, othertypesofvaluablenaturalfeaturesmayalsocontainabioticnature.

Geoheritage.indb 52 22.06.10 15:28

Page 60: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 53 -

Fig. 3 Valuable natural features in Slovenia in 2008 (Agencija Republike Slovenije za okolje, 2009).

There are about 19’000 valuable natural features in Slovenia (Agencija Republike Slovenije za okolje, 2009). Figure 3 shows that half of them are underground geomorphological valuable features because all karst caves are declared as (subsurface) valuable natural features of national importance. The large number of trees as a natural value is also not difficult to explain. Surface geomorphological and hydrological natural features follow, in third and fourth place. Abiotic natural values as defined above represent 73% of Slovenia’s valuable natural features.

Around 85% of valuable natural features can be shown as points (caves, erra-tic boulders, trees), and the rest of them are indicated as areas, mostly very small. There are only 338 areas larger than (Agencija Republike Slovenije za okolje, 2009). Table 2 shows the ten largest valuable natural features.

Slovenia has a good on-line register of valuable natural features, designed and maintained by the Environmental Agency of the Republic of Slovenia and the Institute of the Republic of Slovenia for Nature Conservation. Unfortunately, the list does not indicate why a specific feature was declared as a natural value. However, the expert evaluation criteria are exceptionality, representativeness, complexity, conservation status, rarity and ecosystem, and scientific or evidential importance; aesthetic and cultural values are not among them. This is the main problem of the Slovenian Nature Conservation Act and has consequences on the nature conservation system as a whole, as well as on geomorphosite assessment and mapping. According to the act, specific landforms or sites cannot be declared valuable natural features due to their outstanding beauty (aesthetic aspect) or cultural significance.

Geoheritage.indb 53 22.06.10 15:28

Page 61: Mapping Geoheritage

- 54 - Bojan Erharti

Name Type Feature (form) Area (km2)

Pokljuka geomorphological karst mountain plateau 136.64

Jelovica geomorphological karst mountain plateau 109.63

Nanos geomorphological, geological thrust structure 91.01

Kraški rob geomorphological, botanical, zoo-logical

thrust structure 65.05

Menina planina geomorphological karst mountain plateau 52.34

Krakovski gozd zoological, botanical flooded forest 46.36

Mura hydrological, zoological river 43.97

Vrata geomorphological glacier valley 43.87

Cerkniško polje geomorphological, hydrologicalkarst polje (with intermit-tent lake)

35.44

Trnovski gozd geomorphological, botanical thrust 32.49

Table2 Thetenlargestvaluablenaturalfeaturesbysurface.Theirtotalareais656.8km²,whichis3.24%ofthenationalterritory.Thelargemajorityofthemaregeomorphologicalfeatures(AgencijaRepublikeSlovenijezaokolje,2009).

3.3HolisticapproachAlthoughnatureconservationinSloveniaisstilllargelythedomainofbiologists,thesituationisslowlychanging.Conservationismovingfromtheprotectionofspecies,totheprotectionofbiodiversity,andtowardsaholisticapproachtonatureconserva-tion (Serrano&Ruiz-Flano,2007),which takes intoaccountbio-,geo-,and lands-cape diversity. Some non-governmental organisations and the Scientific ResearchCentreoftheSlovenianAcademyofSciencesandArtshaveundertakentheinitiativewithregardtoaholisticconcept.

The changes in conservation concepts, both in Europe and in Slovenia, and theincorporationofbiodiversityhaveledtoagreaterunderstandingoftherolethattheabiotic components of a landscape play in determining value, an aspect withoutwhich it is not possible to conserve nature. Indeed, protected areas and places ofmaximum interest are often defined as such because of the abiotic elements thatmake up these outstanding landscapes (Serrano & Ruiz-Flano, 2007). Abiotic ele-mentsanddynamicsareconsideredimportant,notonlyforsustaininglife,butalsofor supporting the smooth functionality of terrestrial and marine systems and theconservationofhabitatsandlandscapes.

Followingtheseconcepts,asystematicstudyofabioticnaturewasalsorecentlyini-tiatedinSlovenia.Theassessmentshouldbeconductedfollowingvariousstepsindi-catedbyanumberofauthors(Panizza,2001,2003;Pereiraetal.,2007;Rodriguez,2008):

1.Identification,inventoryofheritage;2.Classification,evaluation(qualitativeandquantitativeassessment);

Geoheritage.indb 54 22.06.10 15:28

Page 62: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 55 -

3.Mapping(cartography);4.Protection,conservation,preservation;5.Presentation,interpretation,promotion.

Themannerofaccomplishingall these steps isquitean important issuebecause itinvolves the communication of a message from a scientific source (the first fourphases)tothegeneralpublic,whoarethepotential“users”ofgeoheritage(thefifthphase). Initspractical(casestudy)part,thisarticlefocusesinparticularonthethirdstepofanalysis:mappinggeoheritage.

4. MappinggeoheritageComparedwith the research carriedout ingeomorphosite assessment andpromo-tion,geomorphositemappinghasnotreceivedthesameconsideration.Today,scien-tists from various European countries are engaged in geomorphosite mapping(Coratza&Regolini-Bissig,2009). It is importanttohavedetailedgeomorphologicalmapsthatprovidefundamentaldataformeticulousdescriptionofsites.Large-scalegeomorphositemappingshould,therefore,beconsideredanelementarypartoftheassessmentprocesswhencarryingoutinventories(Serrano&Gonzales-Trueba,2005;Perreiraetal.,2007;Coratza&Regolini-Bissig,2009).General overview maps (Fig.4)canbeused in various areas, such ashazard assessment, spatial planning, tourismpurposes (planningof interpretative trails), and soon.At the endof the inventoryprocess,itmayalsobeusefultocreate thematic overview maps tosynthesizethedis-tribution of various parameters that were assessed (e.g. glacial geomorphosites,punctiformgeomorphosites)(Coratza&Regolini-Bissig,2009).

Thefirstmappresentedhere(Fig.4)showsthegeneraldistributionofgeomorphologi-calheritage inSlovenia.Simplesymbolsareusedto indicatethe locationofgeomor-phositesonasimpledigitalelevationmodel(DEM)map.Thevarietyofsymbolshapesandcoloursproducesextra informationfor immediatecomprehension.Eachgeomor-phositeonthemaphasanumberinthecorrespondingtable(notshowninfigure4)with additional information such as name, ID number, type, and a short description(similartothoseshownintable2).

Thereisnospaceforanyotherinformationonsuchamap.Therefore,small-scalemapsareinmostcasesjustindex maps.However,moreadvancedmapshavereferencesymbolsthat are specific ideograms with a precisely coded meaning, similar to those used innatureguidesoronnotices(Cartonetal.,2005).Thesesymbolsallowaninitialsubdivi-sionofgeositesintovariouscategories(e.g.alargeorsmallsymbolforasiteofnationalorlocalimportance,awavetoshowahydrologicalfeature,anammonitetoshowageo-logical-paleontologicalsiteorfeature,etc.)thatmayinteresttheuser.

Geoheritage.indb 55 22.06.10 15:28

Page 63: Mapping Geoheritage

- 56 - Bojan Erharti

Fig.4 Map showinggeomorphological valuablenatural features. Becauseof thesmallmapscale,geomorphositesarepresentedonlywithpunctualsymbols.Thelargestconcentrationoccursinmountainandkarstregions.

Map scaleisanextremelyimportantaspectofmapping.Withregardtogeomorpho-sites,amapcanbeateitherasmalloralargescale,butit isappropriatetohavealimit between the two extremes. Carton et al. (2005) propose that maps at a1:200’000scaleor lesscanbeusedasgeomorphosite indexes (distributionofgeo-morphosites inacountryorregion),whereasthoseat largerscalescanbeusedforshowinggeomorphositesindetail.

5. CasestudyofBled

5.1Bled:shortoverviewThelakesidesettlementofBled(500ma.s.l.)isoneoftheoldesttouristcentresinSlovenia.ItliesinabasinattheeasternfootoftheJulianAlps,wheretheBohinjgla-ciercutseveralhills,createdthelakehollowandseveralmorainedeposits.TheseIceAgegravelmoundsalsoconstitutetheterracedregionsouthandeastofBled.LakeBledwascreatedonlyabout14,000yearsagowhenwater flooded thedepressionleftbyarecedingglacier. Itwasoncemuch largerandtwiceasdeepas it is today,withaneffluentatitseasternend.Thecurrenteffluentstream,theJezernica,etcheditswaysouthandsincethenthelakestarteddecreasinginsize.Today,it is2100 mlongand30 mdeep.Itssurfacetemperatureinsummeris24°Canditremainswarm

Geoheritage.indb 56 22.06.10 15:28

Page 64: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 57 -

enough for swimminguntil the autumn.On thegeological fault-linenear the lakethereisathermalspringwhichhasbeentappedtosupplytheindoorswimmingpool(Gosar&Jersic,1999).

Thefirstvisitors toBledwerepilgrimsvisitingtheChurchofStMaryonthe island.Bledwasalsofrequentedbythenobilityduetoitsoutstandingbeautyandthepre-sence of thermal springs. Tourism in Bled would never have developed if IgnacNovak,anadministratorofBledCastle,hadhadhisway.Onseveraloccasionsinthelateeighteenthcentury,hesuggestedthat the lakeshouldbedrainedfor farmlandandtheclayfromthelakebedusedformakingbricks.Luckily,hisideaswererejectedbytheCarniolanAssembly(Janša-Zorn,1984).

It was the Swiss-born physician Arnold Rikli that helped Bled attain worldwideacclaim by building and developing a spa, and introducing a special treatmentregime.RikliworkedatBledmorethanfiftyyears (1854-1916),andthenumberofvisitorsincreaseddramaticallywhennearbyraillineswereopened(Janša-Zorn,1984).

Although Bled has been settled for more than one thousand years, it was esta-blishedasatownin1960,whenfivevillages,whichspreadaroundthelakeandareseparatedbyseveralgeomorphosites(morainesandhills,CastleHill(599m)amongthem),wereunited.Duetothefastgrowthofthecity,manyinterestingabioticandbioticnaturalfeatureswerecoveredorlost(e.g.wetlands,morainesandterraces).

Fig.5 Bled,aworld-renownedtouristcentrewithauniquemixtureofnaturalandcultural elements and a large number of geomorphosites (photo: BojanErhartic).

Geoheritage.indb 57 22.06.10 15:28

Page 65: Mapping Geoheritage

- 58 - Bojan Erharti

5.2Methodology

Todate, investigationscarriedoutongeomorphosites inSloveniahavebeenlimitedand have mostly focused on identification and classification. This article presentssome first attempts to map geoheritage. The use of Geographical InformationSystems(GIS) isacquiringever-increasing importancebecausetheyallowusefulela-borations, continuous updating of data, and easy interaction with the final user(Carton et al., 2005). This study uses geomorphologic mapping to analyse abioticnaturalvaluesinasmallbutdiverseandinterestingtouristareainthefoothillsoftheAlps. The abiotic components of nature are essential to identify the qualities of aspaceintermsoftourismresources.

ThemethodusedissomewhatdifferentfromthoserecommendedbyItaliangeomor-phologists (Castaldini et al., 2005) because the first step was not performed: thecreationofa“classical”geomorphologicalmap.ThedatabaseoftheEnvironmentalAgency of the Republic of Slovenia was used as a basis. All biotic features wereexcluded,andonly theabiotic valuable featureswereanalysed.Themap of abiotic natural features can be seen in figure 6. We focused mainly on the accuracy andreliabilityofthedatafromtheinstitute’sdatabase.Therefore,spatialinformationwasgathered from orthophoto images and fieldwork in order to accurately locate andassessgeomorphosites.Aftermakingadatabase (compilationandevaluationofaninventory),amap of geomorphosites (Fig.7)wascreatedandcomparedtothemapofabioticnaturalfeatures.

Fig.6 Mapofabioticvaluablenaturalfeatures.

Geoheritage.indb 58 22.06.10 15:28

Page 66: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 59 -

Fig.7 Mapofgeomorphosites.

5.3Discussion

Onlarge-scalemaps,geomorphositesarebestshownbymeansofthemoreor lesstraditional symbolsused indetailedgeomorphologicalmaps (Fig.7).Only the sym-bols showing the form or set of forms making up a geomorphosite are depicted,whereasalltheotherelementsofthelandscapeareomitted.Thetopographicbasisand its scale were selected on the basis of the goals of the documents and thedimensionsoflandformsthatarerepresented(Cartonetal.,2005).Furthermore,onthislarge-scalegeomorphositemap(Fig.7)eachgeomorphositehasbeennumberedprogressivelyandreferencedinthecorrespondingtable(notshowninfigure7).

Aim of the map

Although Carton et al. (2005) proposed a distinction between two categories ofmaps depending on the user (maps for specialists and maps for non-specialists), itwasdecidedtocreatea general overview map (Fig.7)withoutfurtherinterpretationpurposes.Theaimwasonlytosynthesizethedistributionofdifferentparametersthatwereassessed.Thismapdoesnothavespecifically-definedfinalusers,butisinfactastrong visual communication tool because it reveals distribution patterns that aremuchmoredifficulttoidentifyfromthewrittentextofaninventorycard(Coratza&Regolini-Bissig,2009).

Thegeomorphositemapgivesageneraloverviewoftheabioticcomponentsofthemost important touristdestination in theSlovenianAlpsandmay representabasisforfurtherworktolocalauthorities.Userscanalsobeotherspecialistsornon-specia-

Geoheritage.indb 59 22.06.10 15:28

Page 67: Mapping Geoheritage

- 60 - Bojan Erharti

lists,butthisisnota(geo)touristmapinthestrictsensebecauseitdoesnotcontaintourist information.Somepractical information (e.g.directions,parking,paths,andviewpoint) is an essential part of geotourist maps. However, as Bissig (2008) said,orientationandtouristinformationisthemap’ssecondaryfunction.Itsprimaryfunc-tionisthecommunicationofspatiallyrelevantthemesandprocessesthatcontributetotheformationofageomorphositeorageomorphologicallandscape.Anessentialpartof themorphogenesisexplanationof thecase studyarea isunderstanding themovementoftheretreatingBohinjglacierattheendofPleistoceneera(Šifrer,1969,1992).

Content of the map

QuiteobvioushillsorarcsofterminalmorainescanbeseeninandaroundBled.Theyconsistofthreesuccessivestagesoftheretreatingglacier.AttheedgesoftheSavaRiver terraces, smaller and larger parts of older moraines occur on the surface insomeplaces. Thosepartshavenotbeenproclaimedvaluablenatural features (theyarenotshowninfigure6asgeomorphologicalheritage).Evenso,theywereevalua-tedveryhighlyduetotheiroutstandingscientificandeducationalvalue.Thus,theywererecognisedasgeomorphosites(Fig.7).

Incontrast,thefossilsite(ageologicalnaturalvalue)wasexcludedfromthegeomor-phositemapfortworeasons:becauseitisdifficulttofindthefossilsite,anditwouldbe problematic to promote paleontological heritage because uncontrolled exploita-tioncould leadtodevastationofthesite.Some layersofrocktypes (limestoneanddolomite)wereputonthegeomorphositemapinstead,sotheusercouldeasilyseeandunderstandthedifferencebetweentypesofbedrock.

Design choices

Digital geomorphosite mapping has many advantages. The scale problem is lessimportantbecauseGISallowthereductionoramplificationratiotobeautomaticallyobtained. The most important map components to be discussed are backgroundmaps,symbols,andalegend.

Thegeomorphositemapusedsomegeomorphological symbols,althoughCartonetal.(2005)didnotrecommendthem.Mapsfornon-specialistsaredesignedtobeeasi-lyunderstoodwhileremaininganeffectivemeansofconveyingscientificinformation.

In order to attain this goal, the 1:25’000 topographic maps were used as abackground(1:50’000isalsouseful)becausetheyareknowntoandsometimesusedby tourists,especiallyhikers.The topographicalbackgroundalsogivesuserspreciselocations,helpingthemorientthemselves.Thus,mostuserscanpresumablyinterpretthem.Asimplifiedtopographicmapwasnotusedasabase,butthetransparencyofthebackgroundwasincreased.Atopographicbasiswasalsousedinordertoempha-

Geoheritage.indb 60 22.06.10 15:28

Page 68: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 61 -

sizetheconnectionbetweengeomorphologicalheritageandsettlement.Theimpactof urbanisationon thenatural heritage is clearly visible aswell as the influenceofgeoheritageonthepatternofsettlement.Thus,itcanbeusefulforspatialplanningandconservationneeds.

Visualelementshighlightfeaturesonamap.Colourscanbeusedintwoways:accor-ding to the description of various types of landforms (Fridl, 1999) and processes(karst,glacial,hydrological, structural),oraccording to the importanceofa specificelement.Thesecondapproachwaschosen inthiscasestudy. Itenabledtheuseofmoreintensecoloursfortheprominentlandscapefeatures(e.g.morainesandstruc-turalforms).Thelakeandtheislandarethemostimportantdistinctivefeatures,andsotheirsymbolswereplacedatthetopofthe legend.

Because Slovenia (part ofYugoslaviauntil 1991)has aquite long traditionofgeo-morphological mapping, some symbols proposed by Natek (1983) were used (e.g.terracesandstructuralescarpments).Whenageomorphositeispunctiformorlinear,itiseasytochoosewhichformswillberepresentedandwhattheirrelative symbols willbe.Itis,however,moredifficulttochoosethelandscapeelementswhenitisanareal (polygon) type of geomorphosite (Carton et al., 2005). The most importantquestion ishowtopresentmegaforms (e.g.U-shapedvalleysorglacier-carvedhills)as well as some mesoscale (e.g. erratic boulders) or even microscale forms on thesame geomorphosite map. At the international level, at present there are a greatvarietyofgeomorphologicallegends,whichdifferfromoneanotherintheircontent,adoptedsymbolism,andscalerepresentationbecauseasingle,universallyrecognisedlegendhasnotyetbeenimplemented(Gustavssonetal.,2006,Coratza&Regolini-Bissig,2009). Internationalguidelinesforestablishingacommonmappingstandardareneededandshouldbediscussedinthenearfuture.

6. ConclusionThemappingofgeomorphosites isan important tool for territorialmanagementaswellasaneffectivemeansofcommunicationandspreadingknowledge,especiallytoraise awareness among the general public. A geomorphosite map can be used topreparedevelopmentplansatboththenationalandlocallevels.Managersofprotec-tedareasmayuseinformationfromthemapforestablishingguidelinesandamana-gement plan, monitoring, directing tourism development, and promoting the ever-changingabioticnature.

Growingsensitivitytonumerousfeaturesoftheenvironmenthas ledgeomorpholo-giststotackletheproblemofin-depthstudy,preservation,andappraisalofgeomor-phologicalheritage.Thereisagrowingawarenessoftheimportanceofgeomorpho-logicalvaluesconcerningnotonlythescientificknowledgeofaterritorybutalsoitsenvironmentalmanagementandproductionactivities.Thescientificaspecthasoftenaddedgreatervaluetotheappraisalofareaswithastrongattractionfortourists.

Geoheritage.indb 61 22.06.10 15:28

Page 69: Mapping Geoheritage

- 62 - Bojan Erharti

ReferencesAgencija Republike Slovenije za okolje /TheEnvironmentalAgencyoftheRepublicofSlovenia.

http://www.arso.gov.si/(retrieved15.1.2009).

BergincM.(2007).Sistem varstva narave v Sloveniji,Ljubljana,Ministrstvozaokoljeinprostor.

BissigG.(2008).Mappinggeomorphositesforinterpretativepurpose:experiencesfromenviron-

mentalandheritage interpretation. InWorkshop Mapping Geoheritage,Lausanne,

CD-ROM.

Carton A., Coratza P., Marchetti M. (2005). Guidelines for geomorphological sites mapping:

examplesfromItaly,Geomorphologie: relief, processus, environnement,3,209-218.

CastaldiniD.,ValdatiJ.,IliesD.C.,ChiriacC.(2005).Geo-touristmapofthenaturalreserveof

SalsediNirano(ModenaApennines,northernItaly),Il Quaternario,18(1),245-255.

Coratza P., Regolini-Bissig G. (2009). Methods for mapping geomorphosites. In Reynard E.,

CoratzaP.,Regolini-BissigG.(Eds).Geomorphosites,München,PfeilVerlag,89-103.

ErharticB.(2009).TeraseJeruzalemskihgorickotkrajinskavrednota/TheterracesofJeruzalemske

goriceasavaluablelandscapefeature.InKikecT.(Ed.).Pomurje, Trajnostni regionalni

razvoj ob reki Muri,ZvezageografovSlovenije,328-340.

Fridl J. (1999). Metodologija tematske kartografije Nacionalnega atlasa Slovenije, Geografija

Slovenije, 2, Ljubljana,ZRCPublishing.

GosarA.,JersicM.(1999). Slovenia: the tourist guide,Ljubljana,Mladinskaknjiga.

GrayM.(2004). Geodiversity, valuing and conserving abiotic nature,London,Wiley.

GustavssonM.,KolstrupE.,SeijmonsbergenA.C.(2006).Anewsymbol-and-GISbaseddetailed

geomorphologicalmappingsystem:renewalofascientificdisciplineforunderstand-

inglandscapedevelopment,Geomorphology,77,90-111.

Janša-ZornO.(1984).Zgodovinablejskegaturizmaodzacetkovdoleta1941, Kronika,32(2-3),

182-196.

Natek K. (1983). Metoda izdelave in uporabnost splošne geomorfološke karte: magistrska

naloga, Ljubljana,Filozofskafakuleta.

Natura 2000.http://www.natura2000.gov.si/(retrieved16.3.2009).

Lampic B., Mrak I. (2007). Nature conservation in Slovenia, In Vysoudil M. (Ed.). Sustainable

environmental research,PalackyUniversityOlomouc,26-32.

OroženAdamicM.(2004).Slovenia: a geographical overview,Ljubljana,ZRCPublishing.

Panizza M. (2001). Geomorphosites: concepts, methods and examples of geomorphological

survey,Chinese Science Bulletin,46,4-6.

PanizzaM.(2003).Karstlandformsasgeomorphosites,Dela,20,19-26.

Pereira P., Pereira D., Caetano Alves M. I. (2007). Geomorphosite assessment in Montesinho

NaturalPark(Portugal), Geographica Helvetica,62(3),159-168.

Rodriguez M. L. (2008). Mapping geoheritage and geotourism. A contribute based on the

Portuguese Limestone massifs example. In Workshop Mapping Geoheritage,

Lausanne,CD-ROM.

Serrano E., Gonzales-Trueba J. J. (2005). Assessment of geomorphosites in natural protected

areas:thePicosdeEuropaNationalPark(Spain),Geomorphologie: relief, processus,

environnement, 3,197-208.

Geoheritage.indb 62 22.06.10 15:28

Page 70: Mapping Geoheritage

Conserving geoheritage in Slovenia through geomorphosite mapping - 63 -

SerranoE.,Ruiz-FlanoP. (2007).Geodiversity.Atheoreticalandappliedconcept,Geographica

Helvetica, 62(3),140-147.

Statistical Yearbook of the Republic of Slovenia 2008 / Statistical Office of the Republic of

Slovenia.http://www.stat.si/letopis/(retrieved17.2.2009).

ŠifrerM.(1969).KvartarnirazvojterasnaGorenjskem/ThequarternarydevelopmentofDobrave

inUpperCarniola(Gerenjska)Slovenia,Acta Geographica,11,101-220.

Šifrer M. (1992). Geomorfološki razvoj Blejsko–Radovljiške kotline in Dobrav v kvartarju,

Radovljiški zbornik, 1992,6-14.

ValvasorJ.V.(1689). Die Ehre des Herzogthums Krain,Laibach-Nürnberg.

Zakon o ohranjanju narave /NatureConservationAct,Uradni listRepublikeSlovenije96/2004

(OfficialGazetteoftheRepublicofSlovenia96/2004),Ljubljana.

Geoheritage.indb 63 22.06.10 15:28

Page 71: Mapping Geoheritage

Geoheritage.indb 64 22.06.10 15:28

Page 72: Mapping Geoheritage

Bringinggeoheritageunderwater:methodological

approachestoevaluationandmapping

AlessioRovere,MatteoVacchi,ValerianoParravicini,CarlaMorri,CarloNikeBianchi,

MarcoFirpo

DipartimentoperloStudiodelTerritorioedellesueRisorse

UniversitàdegliStudidiGenova

CorsoEuropa26

I-Genova

E-Mail:[email protected]

In Regolini-BissigG., Reynard E. (Eds) (2010). Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.65-80.

Geoheritage.indb 65 22.06.10 15:28

Page 73: Mapping Geoheritage

Geoheritage.indb 66 22.06.10 15:28

Page 74: Mapping Geoheritage

Bringing geoheritage underwater: methodological approaches to evaluation and mapping - 67 -

1. Introduction

Thevalorisationofthenaturalheritage(hereintendedasthecomplexofbioticandabioticelementsofnatureworthyofconservation)assumedagrowingimportanceinthe last years, leading to place biodiversity and geodiversity concepts side by side(Brilha,2002).This in turnchannelledefforts toprotectnotonlybiotopes,butalsotheassociatedphysical landscapeorenvironmentthroughtheidentificationofgeo-sites or geomorphosites (Panizza & Piacente, 1993; Panizza, 2001; Reynard, 2004,2005). In the field of abiotic heritage evaluation, various methods have been pro-posed for the recognition of scientific and additional values of relevant geologicaland geomorphological sites (Panizza, 2001; Coratza & Giusti, 2005; Pereira et al.,2007;Reynardetal.,2007;Serrano&RuizFlaño,2007;Zouros,2007).Naturalheri-tage studies cover most types of environments, from mountain and subterraneanareas to plains and coasts. Nevertheless, while many approaches to valorisation ofnaturalheritageare reportedforemergedshorelines (e.g.Carobene&Firpo,2005;Zouros,2007), researchoncoastal submergedareas (Orrù&Ulzega,1988;Orrùetal.,2005)still lackscommonschemesandapproacheswhencomparedwithstudiesdealingwithmarineecologicalresources(Bianchi,2007andreferencetherein).

Inspiredfromamethodologicalapproachdeveloped inFrancefor theevaluationofterrestrialnaturalspacesintheframeworkoftheEUHabitatDirective(Bardatetal.,1997), the Regional Activity Centre for Specially Protected Areas RAC SPA (UNEP)(Relini,2000)obtainedevaluationindexesfor148ecologicalunits(biocenoses,asso-ciations or facies), which correspond to the main marine habitats of theMediterraneanSea.Thecombinationofthesecriterialedtotherealisation,inthelastdecade, ofmarine territorial cartographies in some Italianprotected areas (Bianchi,2007, and references therein). From these experiences, Bianchi (2007) defined“marinenaturalemergences”asspecies,habitatsorlandformsofhighconservationinterest,achievingtheresultofaterritorialcartographydisplayingthesethreetypolo-gies of marine natural emergences. Applying this approach, Rovere et al. (2007a)arguedthat“addingtheabioticvalues to thebioticonesappearsof importance intheevaluationofthenaturalheritage”,butpointedoutthediscrepancybetweenthedefinitionofbiologicalandecologicalvaluesandtheabioticones,theformerbeingcodified,thelatterlackingcommonevaluationschemes.

The development of underwater abiotic heritage assessment approaches demandsforagreatereffortwithrespecttotheterrestrialenvironment(e.g.costsofboatsandSCUBAequipment)andfacesseverallimits,suchaslogisticsoffieldactivity(timeanddepthlimitationsfordiving)andadverseenvironmentalconditions(e.g.scarcevisibili-tyduetoreducedwatertransparency).Theselimitsareflankedbytheconceptualdif-ficulty,foradministratorsandpolicymanagers,toconceivethemarineenvironmentas“territory” (Bianchi,2007),as itsperception is lowwithrespect to theterrestrialenvironmentandthetoolsforitsmanagementarenotalwaysdefined.Duetotheseconsiderations, evaluation of scientific and additional values of abiotic heritage

Geoheritage.indb 67 22.06.10 15:28

Page 75: Mapping Geoheritage

- 68 - A. Rovere et al.

should be coupled with the evaluation of the inherent accessibility to users of theunderwater natural heritage due to the aquatic medium itself (need of swimmingskillsordivinglicensestoaccesssites).

Approaches to the valorisation of the underwater abiotic heritage should be deve-lopedusingseveraldistinctbutinterrelatedkindsofinputs.Firstly,directandindirectsurveys, together with published information, provide the baseline maps to imple-menttheconceptualframeworkfortheevaluationoftheabioticheritage.Secondly,aconceptualframework,comprisingofthecategoriesandcriteriatoassignvaluestothe landforms inside a given area, has to be developed and applied. Merging thebaselinedataandtheconceptualframeworkintogeoreferenceddatabaseswillallowmaps of the abiotic heritage to be obtained. Thirdly, accessibility values must beconsidered,astheyrepresentthepotentialuseoftheheritagevalues,andaccessibili-tymapsneed,therefore,tobeproduced.Finally,theabioticheritagemapsshouldbeintegratedwithotherinformation,suchasecologicalandsocio-economicalvaluesorenvironmentaldegradationandriskassessmentinordertoobtainacompleteterrito-rialcartography,whichisthebaseforthemanagementofthenaturalheritageasawhole(Bianchi,2007).

Inthisstudy,weproposeamethodologicalapproachthatintegratestheinputsmen-tionedabove. Inparticular, thedirect surveying techniquesand the conceptual fra-meworkfortheevaluationoftheabioticmarineheritagetogetherwithitsaccessibili-tytousewillbeappliedtoacasestudyinthe Isola di Bergeggi,arecentlyestablishedMarineProtectedArea(MPA)inLiguria(Italy).

2. StudyareaTheMPAIsola di Bergeggi(Fig.1),locatedinthecentralpartoftheLigurianSea(NWMediterranean),ischaracterisedbythealternationofsandyandrockycoastlines,thelatterbeingcomposedofTriassicdolomiticlimestonesofthe“Brianzonese”domain(“Dolomie di S. Pietro dei Monti”). The presence of calcareous cliffs in the areaallowedtheformationofkarstfeatures,amongwhichthebestknownistheGrotta Marina,acaveofkarstoriginwhoseshapehasbeensubsequentlymodifiedbyseaingressions during the Late Quaternary period (Bianchi et al., 1988; Carobene &Firpo, 2004). According to the morphobathymetric and sedimentological map pro-ducedbyRovereetal.(2007b),theunderwatercoastalpartofthestudyareaischa-racterised by submerged cliffs cut by tidal notches and abrasion platforms, and ofsand,pebbleand rockfalldepositsat their foot; thedeeperpartof the continentalshelf (ranging from ca. 10 to more than 80  m depth) is mostly characterised byseagrassmeadows,loosesedimentsanddeepcliffsandrockyoutcrops.

Geoheritage.indb 68 22.06.10 15:28

Page 76: Mapping Geoheritage

Bringing geoheritage underwater: methodological approaches to evaluation and mapping - 69 -

Fig.1 Locationofthestudyareawithdirectandindirectsurveys.

Geoheritage.indb 69 22.06.10 15:28

Page 77: Mapping Geoheritage

- 70 - A. Rovere et al.

3. Methods

Assessment of the underwater abiotic heritage was carried out using both indirectanddirect surveys (Fig.1). Indirect surveysconsist in remotesensing techniques formappingmarinebottoms (aerial photography, satellite imagesandacoustic recordsfromsidescan,singleormultibeamsonars). Ingeneral, these techniqueshavetheadvantageofmappinglargerareasthandirectsurveys,allowingustoobtaingeorefe-renced data at landscape scale useful for providing the cartographical basis fordetailed mapping. Indirect surveys made in the study area included echo sounding(pointsorlines),aswellasdatafromsidescansonarsonogramsandaerialandpho-tographs (Diviacco & Coppo, 2006). Nevertheless, in coastal marine environments,implementationofindirectsurveyswithdirectonesisneededbecauseofsomecriticalissues dealing mainly with the interpretation and ground-truthing of aerial imagesandgeophysical surveys andwith theneed fordetail.Depth transects,underwaterpaths and punctual surveys were, therefore, carried out using scuba diving tech-niques (Bianchietal.,2004).Depth transectsconsistofmarked linespositionedonthebottom,alongwhich the topography, relevantmorphologiesand typesof sedi-mentsaremeasured.Underwaterpathsaresimilartotransects,exceptthattheyaredone without reference lines and the distances are estimated with Personal DivingSonar(PDS)andcompassnavigation.Underwaterpathsarethesimplesttypeofpoly-gonalsurvey,amethodthatprovedtobeefficientinmappingsubmergedshoalsandcaves(Colantoni,2007).

Inordertoevaluateabioticheritageandaccessibility,thestudyareawasdividedintoterritorialunits (hereaftercalledTU),definedaspartsof the territory that: i) shouldgiveasufficientlydetailedterritorialinformation;ii)canbecomparedfromthepointofviewofthevalueandfunctionthattheyhaveintheframeworkofenvironmentalevaluation;iii)canbeeasilyanduniformlyrepresentedinaGIS,allowingthebuildingof relational databases to extract information for territorial management (Bianchi,2007).TheseunitsaretypicallysubmultiplesoftheUTMgrid,andcanhavevariousdimensionsaccording toboth the scaleofbaselinemapsand theobjectivesof thestudy(ingeneral,mapsforenvironmentaldecisionsrequirehigherscalesthanthosefor environmental planning). In this study, the dimension of the TUs was set to100 × 100 mduetothehighdetail(1:2000)ofthebaselinemaps:themorphobathy-metricandsedimentologicalmap(Rovereetal.,2007b),themarinebiocenosemap(Parravicinietal.,2007a),andthemarineemergencemap(Parravicinietal.,2007b).

TheTotalAbioticHeritagevalues(hereafterreferredtoasTAH)weredividedintotwocategories:scientificandadditional(Reynardetal.,2007).Scientificvaluesarerefer-redtoasthesumofthegeomorphologicalsignificancesthataprocessor landformmayassumeintermsoffoursubcategories: integrity (INT),representativeness (REP),rarity (RAR)andpaleogeographicvalue (PAL).Additional values refer to theaspectsthathavea linkwithaprocessor landform,butthatcannotbedirectlyascribedtothefieldofgeomorphologicalsciences.Thesubcategoriesidentifiedforthesevalues

Geoheritage.indb 70 22.06.10 15:28

Page 78: Mapping Geoheritage

Bringing geoheritage underwater: methodological approaches to evaluation and mapping - 71 -

are: cultural (CULT), ecological (ECOL), economic (ECON) and aesthetical (AEST).These subcategories were described and adopted in terrestrial environments byReynardetal.(2007).

TheTAHvaluesofeachTUwereassignedasfollows(Tab. 1,2):

• foreachsubcategory,ascorewasassignedtoeachlandform,rangingfrom1to5;

• additionalandscientificvalueswereobtainedforeachlandformave-ragingthescoresoftherelativesubcategories(Tab.1,2);

• theTAHvalueofalandformwasobtainedaveragingthescoresofitsadditionalandscientificvalues;

• thevaluesatTUlevelwereobtainedbyaveragingtherelativevaluesofthelandformscontainedintheTU(Fig. 2);

• theTAHvaluesatTUlevelwerere-classifiedintofiveclasses,whichwererepresentedintothematicmapsasdifferentcoloursoftheTUs(Fig.3);

• the accessibility of a TU was similarly scored in five classes (Tab.  3)rangingfrom1(highaccessibility)to5(lowaccessibility). IntheTUswheremorethanonevalueofaccessibilitywaseligible,itwasdecidedto retain the lower accessibility value allowing for the use of thehigherabioticheritagevalue(seeFig. 2foranexample).

Subcategory description / Criteria for the evaluation 1 2 3 4 5

SCIENTIFIC VALUES

Integrity (INT): state of conservation of a given landform

Bad conserva-tion due to both natural and human causes

Bad conserva-tion due to human causes

Damage can occur in some parts of the landform but landscape integrity is pre-served

Good conser-vation due to human inter-vention

Good conser-vation due to natural condi-tions

Representativeness (REP): exemplarity of a given landform

No exemplarity Bad example of process or landform

Fair example of process or landform

Good example of process or landform

Reference site (in scientific literature) for the description of a process or landform

Rareness (RAR): rareness of a given landform at national, international or global level

Common or rare only at local scale

Rare at region-al scale

Rare at nation-al scale

Rare at inter-national (e.g. continental) scale

Rare at global scale (e.g. few examples worldwide)

Paleogeographical (PAL): importance of a given landform in defining proc-esses or environments that have characterised the Earth history

No paleogeo-graphic value

Scarce paleo-geographic significance

Good repre-sentation of a paleoprocess

Good repre-sentation of a paleoenviron-ment

Good repre-sentation of a paleoprocess and a paleo-environment

Tab.1 Descriptionofsubcategoriesandcriteriafortheevaluationofscientificvalues.

Geoheritage.indb 71 22.06.10 15:28

Page 79: Mapping Geoheritage

- 72 - A. Rovere et al.

Subcategory description / Criteria for the evaluation

1 2 3 4 5

ADDITIONAL VALUES

Cultural (CULT): cultural values in a site (according to Pereira et al., 2007)

Without cul-tural features

Cultural fea-tures with no connection to landforms

Immaterial cultural fea-tures related to landforms (e.g. legends)

Material cul-tural features related to landforms

Anthropic landform with high cultural relevance

Ecological (ECOL): importance of a habitat for the national or regional natural heritage, as defined by document UNEP (OCA)/MED WG 149/5 Rev.1 (Relini, 2000)

Scarce eco-logical value

Intermediate ecological value

High ecologi-cal value

Economical (ECON): assessment (e.g. number of visitors, benefits) of the products generated by the landform.

No economi-cal value

Scarce eco-nomical value

Economical values related mainly to biological heritage

Economical values related mainly to abi-otic heritage

Economical values related to natural (biotic and abiotic) herit-age

Aesthetical (AEST): the value of the landform in terms of emotional impact on users, par-tially following and adapting the scheme proposed by Reynard et al., 2007

Where Ec is the aesthetic relevance of an habitat (as defined by document UNEP (OCA)/MED WG 149/5 Rev.1: Relini, 2000); Int the integrity derived from the INT subcategory; Ver the contribution of the landform to the verticality of the landscape; Str the presence of three-dimensional structures in the landform. Each value is assigned a score from 1 to 5, so the AEST subcategory can vary between 0 and 5. The AEST score was divided into 5 classes according to the results of the AEST index: 1: 0-1 2: 1-2 3: 2-3 4: 3-4 5: 4-5

Tab.2 Description of subcategories and criteria for the evaluation of additionalvalues.

Description Accessibility

Accessible from the coast, snorkelling 1

Accessible with snorkelling, need of a boat 2

Accessible with scuba diving I level 3

Accessible with scuba diving II level 4

Accessible with technical diving or speleo diving 5

Tab.3 Description of the criteria for the evaluation of accessibility of territorialparcels.

TheevaluationoftheTAHwasmadenotonlyonthedatasourcederivedfromthebaselinemap(Rovereetal.,2007b),butalsoonthefieldnotestakenduringdirectsurveys, in order to obtain a greater detail. As an example, in some zones of thestudyareaduringfieldmapping,astronghumanimpactduetodatemusselharves-tingwasrecordedonbothcliffsanddepositsattheclifffoot(Parravicinietal.,2006;Rovereetal.,2009),butitwasnotincludedinbaselinemaps.Theuseoffieldnotesduring theevaluation led toa reductionof the integrityof thesezones,andhencetheTAHvalueoftherelatedTUs.

Geoheritage.indb 72 22.06.10 15:28

Page 80: Mapping Geoheritage

Bringing geoheritage underwater: methodological approaches to evaluation and mapping - 73 -

Fig.2 Exampleofscoringprocedureofaterritorialunit.

Geoheritage.indb 73 22.06.10 15:28

Page 81: Mapping Geoheritage

- 74 - A. Rovere et al.

Fig.

3

Left

:ac

cess

ibili

tym

ap;

Righ

t:t

otal

abi

otic

her

itage

val

ues

(mea

nof

sci

entif

ica

nda

dditi

onal

val

ues)

.

Geoheritage.indb 74 22.06.10 15:28

Page 82: Mapping Geoheritage

Bringing geoheritage underwater: methodological approaches to evaluation and mapping - 75 -

4. Resultsanddiscussion

Thisstudyproducedtwomainordersof results.The firstone is representedby therefinementofthemethodologicalapproach,whichwasadaptedinpartfromsimilarterrestrialstudiesdealingwiththevalorisationandconservationofgeomorphosites,and in part from parallel approaches for the evaluation of ecological values. Thesecondorder isrepresentedbythedirect implicationsforthevalorisation,conserva-tion,and,finally,managementoftheMPAIsola di Bergeggi.

4.1Methodologicalapproach

Although indirectsurveytechniqueswereessential fortherealisationofacartogra-phicbasis(e.g.bathymetry,limitsofPosidonia oceanica meadows),datafromdirectsurveys proved invaluable to obtain the details for the comprehension and spatialrepresentationofthemorphologies.Theavailability,duringtheevaluationprocedure,of thedatasetobtained fromdirect surveysalsohelped inassigningvalues toeachlandform.Ingeneral,thisconsiderationsuggeststhatdirectsurveysmustbeplannednotonlywiththetypicalaimsofageomorphologicalsurvey(e.g.descriptionofland-forms,processes)butalsotakingintoaccounttheirsuccessiveusefortheTAHeva-luation,andshould,therefore,includedata,whichusuallyarenotsurveyed(e.g.theintegrityandtheculturalvaluesassociatedtoalandform).

AmajorproblemwiththeevaluationofTAHissubjectivity,whichcanalsoaffectthechoiceof thenumberand typologyof subcategories. In fact,while thedistinction incategoriesthatcanbeascribedtothe“scientific”and“additional”onesadoptedhereiswellestablishedinliterature,differentauthorsproposevarioussupplementarysubca-tegories to theonesadopted in this study (e.g.Zouros,2007and reference therein).ThisisakeypointintheevaluationofTAH,andcanbesolvedusingthreeapproaches.Thefirstisabottom-upapproach,whereanexpertboardisaskedtodeterminesubca-tegories and criteria, based on the comparison of many specific study cases. Thesecondisatop-downapproach,whereanexpertboardisaskedtodetermine,apriori,which are the subcategories and criteria to give to each landform in a hypotheticalcondition, independently from local contexts, and then test the definitions in studycases. The third is ano-uniformityapproach, implying that it is simply impossible (ortoodifficultandtime-consuming)tochooseacommonevaluationschemefortheeva-luation of abiotic heritage in the marine environment and, even if the division intocategoriesof“scientific”and“additional”valuesismaintained,thechoiceandevalua-tionofsubcategoriesshouldbedonefollowingsite-dependentconsiderations.

Noneof theseapproaches canbeconsideredas thebest,but theyare intertwinedand could represent three different steps in the evaluation of TAH. In fact, studiesusingno-uniformityapproaches indifferentenvironmentsmayprovide thebase forbottom-upchoiceofsubcategoriesandcriteria,whichshouldnecessarilyberevised,implementedandgeneralisedbyexpertboards,inatop-downperspectiveinorderto

Geoheritage.indb 75 22.06.10 15:28

Page 83: Mapping Geoheritage

- 76 - A. Rovere et al.

enhanceandimprovefurtherstudiesdealingwithTAHandthecomparisonbetweendifferentareas.

Anothersourceofsubjectivityresidesinhowtheshiftfromlandform-leveltoTU-levelvaluesisrealised,asyetadvancedbyBianchi(2007)duringthecompilationofecolo-gical territorial cartography. Threemainmethods canbe identified, eachwith theirownprosandcons(Tab.4):nonecanbeconsideredasthebestinabsoluteterms.Inthis study, thevalueof theTUwascalculatedbyaveraging thevaluesof the land-formscontainedinit(thirdmethodinTab. 4).Theconfrontationoftheconcordance/discordanceofvaluesobtainedwiththesethreemethodswouldbeparticularlyhelp-fulinthechoiceofthecorrectmethodology.

Method Pros Cons

The value of the parcel corresponds to

the sum of the values of the landforms

contained in it

It takes into account the value of geo-

diversity

Many low-value landforms are not

equivalent to a single high-value one

The value of the parcel corresponds to

the maximum value of the landforms

contained in it

Landforms with high values are put in

evidence

It does not take into account geodi-

versity

The value of the parcel corresponds to

the mean of the values of the landforms

contained in it

Many landforms of low value give a low

value of the TU as a result

Averaging low values with high values

produces mediocrity

Tab.4 Threemainmethods,whichcanbeused for thepassage from landform-levelvaluestothoseatTUlevel,withtheirrespectiveprosandcons.

4.2Managementimplications

Inthestudyarea,almost80%oftheTUsarelocatedinthedeepercontinentalshelf(Fig. 3)andhavelowvaluesofTAH(classes1and2)andaccessibility(classes4and5)(Fig. 4a,b);exceptionstothispatternoccurintheSSWpart,characterisedbyawidesubmergedcliffand several rockyoutcrops ranging from50 toalmost90 mdepth(Fig. 3).Coastalterritorialunitsusuallyhavehighaccessibility,exceptionmadefortheSEpartoftheBergeggiIslandandtheBergeggiMarineCave(Fig. 3).

ThecomparisonofTAHandaccessibilityvalues(Fig.5)suggeststhreepossiblescena-riosoftouristuseofTUshavingintermediateorhigh(class≥3)TAHvalues:i)7%oftheseTUscanbeusedforthedevelopmentofsnorkellingtrails(Fig.5,squareA);ii)5% is suitable tobeused for thedevelopmentofunderwater trails forbothexpe-riencedandfirst-leveldivers(Fig.5,squareB);iii)11%oftheseTUsaresuitabletobeusedassitesfortechnicaldiving(Fig.5,squareC).

The comparison between classes of values of scientific subcategories (Fig.  4c) showsthatasignificantpercentageoftheTUshavehigh(classes4and5)valuesofINT,RAR,PALandREPsubcategories.Fortheadditionalvalues(Fig. 4d),19%and14%oftheTUs

Geoheritage.indb 76 22.06.10 15:28

Page 84: Mapping Geoheritage

Bringing geoheritage underwater: methodological approaches to evaluation and mapping - 77 -

have high values of respectively ECON and AEST subcategories. Scores of additionalvalues show the absenceof cultural features but point out thepresenceof TUswithhighecologicalimportance,suggestingtheopportunityofdevelopingfurthermultidisci-plinarystudiesfocusingonthelinksbetweenabioticandbioticvaluesinthisarea.

Fig. 4 Histogramsrepresentingthefrequencydistribution(%)ofthescoresoftheterritorialunitsaccordingto:a)totalabioticheritage(TAH);b)accessibility;c)subcategoriesofscientificvalues;d)subcategoriesofadditionalvalues.

Geoheritage.indb 77 22.06.10 15:28

Page 85: Mapping Geoheritage

- 78 - A. Rovere et al.

Fig. 5 Bubble diagram representing the values of Accessibility vs Total AbioticHeritage(TAH).Thediameterofthebubblesrepresentsthepercentageofterritorialunitswiththeassociatedvalues.ThesquaresrepresentTUs,whichcanbeusedfor:A) thedevelopmentofsnorkellingtrails;B) thedevelop-mentofunderwatertrailsforbothexperiencedandfirst-leveldivers;C)sitefortechnicaldiving.

The study area is characterisedby a significantnumberof TUswithhigh scientific,additional,orbothvalueslocatedmainlyinthecoastalpart,whichisthemostacces-siblefortouristuse.Inparticular,theTUscharacterisedbyhighaestheticalvalueswillallowforauseofthemarinenaturalheritagebasedonthesimpleperceptionofthesubmergedseascape.Hence,aestheticalvaluesmayactasa“flag”forthescientificvaluesofthearea,shiftingunderwatertourismfromanunawareandmerelyrecrea-tional use of the sea to the conscious use rooted in the knowledge of the marinenaturalheritage.This twofoldpossibilityofvalorising thenaturalheritage, togetherwiththestatusofMPA,enhancestheeconomicalvaluesoftheTUswithhighscienti-ficandadditionalvaluesinsidetheBergeggiarea.

5. ConclusionWhatlessonscanbelearntfromthisstudyforthefutureapplicationsofmethodolo-gicalapproachestomappingandevaluationoftheabioticheritageunderwater?Theadoptionofdirect fieldtechniquesallowedusto include, intheplanningofunder-

Geoheritage.indb 78 22.06.10 15:28

Page 86: Mapping Geoheritage

Bringing geoheritage underwater: methodological approaches to evaluation and mapping - 79 -

watergeomorphologicalsurveys,theassessmentofvaluesrelatedtothesubmergedabioticheritage.Acommonmethodologicalapproachisneededtodefinewhicharethe subcategories and the criteria to adopt for the evaluation of abiotic heritagevalues.Thisisacriticalpointandeachofthesolutionsdiscussed(top-down,bottom-uporno-uniformity)havetheirownprosandcons,but,inallcases,wouldbeeffec-tive in reducing the subjectivity of the evaluation. At present, studies on differentenvironmentswithdifferent subcategories and criteria arebeing carriedout, provi-ding the“no-uniformitybase”,butaneffort shouldbedone in thenear future togeneralisetheresultsofthesestudiesandtoadoptcommonschemesfortheevalua-tionof TAH.Oncea commonevaluation scheme is chosenandadopted, commoncriteriawillbenecessarytoshiftfromtheassignmentofvaluesat landformleveltothatatTUlevel(sum,maximum,mean).Themethodologydevelopedandappliedinthisstudyrepresentsthefirstattempttoface,andtrytosolve,theseissues.

Inperspective,themethodologicalapproachproposedinthisstudyprovedtobeeffi-cientinprovidingindicationsfortheassessmentandevaluationofthemarineabioticheritage.Onceintegratedwithinputfromotherdisciplines(suchasbiologyandeco-logy),thepropervalorisationoftheabioticcomponentswillconcurtodefineacom-pleteconceptualframeworktobeadoptedforthemanagementofunderwaternatu-ralheritageasawhole.

ReferencesBardat J., Bensettiti F., Hindermeyer X. (1997). Approche méthodologique de l’évaluation

d’espaces naturels: exemple de l’application de la directive habitats en France,

Ecologie,28(1),45-59.

BianchiC.N.(2007).Dallacartografiabionomicaallacartografiaterritoriale,ovverodallacono-

scenzaallagestionedelleareemarineprotette,Biologia Marina Mediterranea,14(2),

22-51.

BianchiC.N.,CevascoM.G.,DiviaccoG.,MorriC.(1988).Primirisultatidiunaricercaecologica

sullagrottamarinadiBergeggi(Savona),Bollettino dei Musei e degli Istituti Biologici

dell’Università di Genova,52,267-293.

BianchiC.N.,ArdizzoneG.D.,BelluscioA.,ColantoniP.,DiviaccoG.,MorriC.,TunesiL.(2004).

Benthiccartography,Biologia Marina Mediterranea,11(1),347-370.

Brilha J. (2002).Geoconservation andprotectedareas,Environmental Conservation, 29, 273-

276.

CarobeneL.,FirpoM.(2004).TyrrhenianlevelsintheseacaveofBergeggi(Liguria,Italy),32nd

International Geological Conference,Florence,Abstractvolume.

Carobene L., Firpo M. (2005). Conservazione e valorizzazione dei geositi costieri in Liguria:

l’esempio del tratto di costa tra Varazze e Cogoleto. In Terranova R., Brandolini

P., Firpo M. (Eds), La valorizzazione dello spazio fisico come via alla salvaguardia

ambientale,Bologna,PatrònEditore,87-102.

Colantoni, P. (2007). L’immersione scientifica. Tecniche di indagine subacquea, Imola, La

Mandragora.

Geoheritage.indb 79 22.06.10 15:28

Page 87: Mapping Geoheritage

- 80 - A. Rovere et al.

CoratzaP.,GiustiC.(2005).Methodologicalproposalfortheassessmentofthescientificquality

ofgeomorphosites,Il Quaternario,18(1),307-313.

DiviaccoG.,CoppoS.(2006).Atlante degli habitat marini della Liguria,Genova,RegioneLiguria.

Orrù P., Ulzega A. (1988). Rilevamento geomorfologico costiero e sottomarino applicato alla

definizionedelle risorseambientali (GolfodiOrosei, Sardegnaorientale),Memorie

della Società Geologica Italiana,37,123-131.

OrrùP.,PanizzaV.,UlzegaA.(2005).Submergedgeomorphositesinthemarineprotectedareas

ofSardinia(Italy):assessmentandimprovement,Il Quaternario,18(1),167-174.

PanizzaM.(2001).Geomorphosites:concepts,methodsandexampleofgeomorphologicalsur-

vey,Chinese Science Bulletin,46,4-6.

PanizzaM.,PiacenteS.(1993).Geomorphologicalassetevaluation,Zeitschrift für Geomorphologie

N.F.,87,13-18.

ParraviciniV.,RovereA.,DonatoM.,MorriC.,BianchiC.N.(2006).Amethodtomeasurethree-

dimensionalsubstratumrugosityforecologicalstudies:anexamplefromthedate-

mussel fishery desertification in the north-western Mediterranean, Journal of the

Marine Biological Association of the U.K.,86,5103/1-2.

ParraviciniV.,MontefalconeM., LasagnaR.,RovereA.,MorriC.,BianchiC.N. (2007a).Carta

delle biocenosi marine,ComunediBergeggi(SV).

ParraviciniV.,RovereA.,FirpoM.,MorriC.,BianchiC.N.(2007b).Carta delle emergenze marine,

ComunediBergeggi(SV).

PereiraP.,PereiraD.,CaetanoAlvesM.I.(2007).GeomorphositeassessmentintheMontesinho

NaturalPark(Portugal),Geographica Helvetica,62,159-168.

ReliniG.(2000).NuovicontributiperlaconservazionedellabiodiversitàmarinainMediterraneo,

Biologia Marina Mediterranea,7(3),173-211.

Reynard E. (2004). Geosites. In Goudie A. (Ed.). Encyclopedia of geomorphology, London,

Routledge,440.

ReynardE.(2005).Geomorphologicalsites,publicpoliciesandpropertyrights.Conceptualisation

andexamplesfromSwitzerland,Il Quaternario,18(1),321-330.

ReynardE.,FontanaG.,KozlikL.,ScapozzaC.(2007).Amethodforassessing“scientific”and

“additionalvalues”ofgeomorphosites,Geographica Helvetica,62,148-158.

RovereA.,ParraviciniV.,FirpoM.,MorriC.,AlbertelliG.,BianchiC.N.(2007a).Emergenzenatu-

ralistichedell’AreaMarinaProtettadiBergeggi(SV):integrazionediaspettibiologici,

ecologiciegeomorfologici,Biologia Marina Mediterranea,14(2),20-21.

Rovere A., Firpo M., Parravicini V., Morri C., Bianchi C.N. (2007b). Carta morfobatimetrica e

sedimentologica,ComunediBergeggi(SV).

RovereA.,BellatiS.,ParraviciniV., FirpoM.,MorriC.,BianchiC.N. (2009).Abioticandbiotic

linkswork twoways:effectson thedepositat thecliff foot inducedbymechani-

calactionofdatemusselharvesting(Lithophaga lithophaga),Estuaries and Coasts,

32(2),333-339.

SerranoE.,RuizFlañoP. (2007).Geodiversity.Atheoreticalandappliedconcept,Geographica

Helvetica,62,140-147.

ZourosN. (2007).Geomorphositeassessmentandmanagement inprotectedareasofGreece.

The caseof the Lesvos island coastal geomorphosites, Geographica Helvetica, 62,

169-180.

Geoheritage.indb 80 22.06.10 15:28

Page 88: Mapping Geoheritage

Dendrogeomorphologicalinvestigationsforassessing

ecologicalandeducationalvalueofglacialgeomorpho-

sites.TwoexamplesfromtheItalianAlps

ManuelaPelfini,ValentinaGaravaglia,

IreneBollati

DipartimentodiScienzedellaTerra“A.Desio”

UniversitàdegliStudidiMilano

ViaMangiagalli34

I-20133Milano

E-Mail:[email protected]

In Regolini-BissigG., Reynard E. (Eds) (2010). Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.81-95.

Geoheritage.indb 81 22.06.10 15:28

Page 89: Mapping Geoheritage

Geoheritage.indb 82 22.06.10 15:28

Page 90: Mapping Geoheritage

Dendrogeomorphological investigations and glacial geomorphosites - 83 -

1. Introduction

One of the main goals of recent research carried out on geomorphosites is theirvalorisation in the frame of sustainable tourism and educational applications.Nowadays,manyalpinegeomorphositesarebecomingtheobjectofeducationaltripsthanks to their educational values related to spectacular landscapes (Garavaglia &Pelfini,submitted).Amongthese,theglacialgeomorphositesarebecomingofgreatinterest as representative of the mountain environment response to the globalwarming.Moreover,theyhighlighttheinteractionsamongtheassessmentvalueslikerarity,representativenessandintegrity(Grandgirard,1999;Pelfini&Smiraglia,2003;Reynardetal.,2007).Someglaciersareverymeaningfulasthemostrepresentativeof the various typologies (e.g. valleyglacier,debris coveredglacieretc.)butothers,withoutany integrity,areuniquebecause theyare the lastglacial remainswithinaparticularsite.ThisisthecaseoftheCalderoneglacierintheItalianApennines,themostsouthernEuropeanglacierandtheonlyonestillexisting,evenifdebriscoveredandbrokenintotwoiceaprons(Peccietal.,2008).

The glacier geomorphosites are highly representative for the study of climate history(Reynard&Panizza,2005),respondinginthiswaytoeducationalgoals.Moreover,theirecologicalvalue,representedamongothersbysupraglacialandproglacialvegetation,isconsidered extremely useful for studies on glacier dynamics and reconstructions ofglacialfluctuations,addingvaluesforeducationalapproachesoncemore.

Evenifgreatattentionispaidinassessinggeomorphositevalues,inordertopromoteandprotectthem,insufficientattentionhasbeenpaidto“geomorphosite”topicsineducationalprogramsandonly recentlypedagogical trails for education inphysicalgeography through geomorphosite observation have been proposed (Garavaglia &Pelfini,2008).

Thiswork tries todemonstrate the importanceof theecological value through thetreevegetationasanaturalarchiveofdata.Dendrochronologycanbeconsideredavery precious method not only to reconstruct geomorphological events, and so toincreasethevalueofthescientificattribute(Grandgirard,1999),butalsotohighlighttheecologicalvalenceofparticularandsensiblegeomorphositeslikeglaciers.Infactlivingtreesandstumpscontributetoreconstructingglacierhistoryandtheirpresentdynamics, and may represent also an important instrument for educationalapplications.Theaimofthispaperisalsotodiscussthemeaningofecologicalvalueassessedusingtreevegetation.

The results obtained in two localities of the Italian Alps (Solda Valley in Ortles-CevedaleGroup,CentralAlps,andVenyValley, in theMontBlancMassif,WesternAlps)(Fig.1)aresummarisedandusedtodiscusstheecologicalvalueanditsrelatededucationalimportance.

Geoheritage.indb 83 22.06.10 15:28

Page 91: Mapping Geoheritage

- 84 - M. Pelfini et al.

Fig.1 Twopanoramicviewsofthestudiedareas:1)Marletglaciers intheSoldaValley(Ortles-CevedaleGroup,CentralItalianAlps)and2)Miageglacierinthe Veny Valley (Western Italian Alps). Photos by V. Garavaglia and M.Bozzoni.

2. Glacialgeomorphosites

Thepossibilityof includingglaciersand relatedmorphologies in thegeomorphositeframework,andconsequentlyinnaturalandculturalheritage,wasdemonstratedbyPelfini&Smiraglia(2003).Glacierscanbedefinedasgeomorphositesonthebasisofscientific knowledge of natural assets, of natural laws that regulate their evolution

2

1

12

1

2

Geoheritage.indb 84 22.06.10 15:28

Page 92: Mapping Geoheritage

Dendrogeomorphological investigations and glacial geomorphosites - 85 -

and of their value relating to human perception. Glaciers represent beautifullandforms and frequently they are the goal of many hiking trails. Nevertheless,climatic changes in progress have led to profound changes of high-mountainenvironments, due to the rapid and intense shrinkage of the glacial masses(Oerlemans & Fortuin, 1992). The attributes and values that can be considered toidentifythesefeaturesasgeomorphositesallowtheglaciersystemtobeconsiderednotonlyasanassemblageoflandscapeelementsbutalsoasasensiblesystemandasignificantexampleofgeodiversitythroughtheirwidevariety(Smiraglia,2001).

Thecultural attributeofglaciersbeginswiththeevolutionofthehumanspeciesandits development, strictly related to glacier fluctuations, as Similaum man’s history,around 5000 yr B.P., suggests (Mohen & Eluère, 1997). Populations living inmountain environments were influenced by glaciers in their history, behaviour, art,legends, etc. Other examples in the Alps can be carried out from the relationshipbetween glacier environments and the First World War events (Pelfini & Smiraglia,2003). The economic attribute is represented mainly by hydroelectric energy andtourism.Glaciermeltwaterrepresentsanimportantresourceforhydroelectricpower:manyreservoirsinAostaValleyandValtellinawererealisedusinghollowsandglacierbasins. In the Alps, glacial scenarios represent the natural support for tourismdevelopment: from few visitors about two centuries ago, to a hundred thousandeach summer, at the present day, in areas like Mont Blanc and Monte Rosa. Theincreasing number of mountain huts and their enlargement (Smiraglia & Diolaiuti,2002)underlineadevelopmentofmountainfrequentation.Moreover,someglaciershave been used for summer skiing even if only very few of them are still workingtoday due to glacier shrinkage and other economic causes. The scenic attribute isobvious; the beauty of glacier sites remains one of the main aims of touristfrequentation. The scientific attribute is well documented by all the parameterssuggestedbyPanizza(2001).Glaciersarewellwidespread;theyarecharacterisedbyawidevarietyoftypes(geodiversity)andbydynamicity,the latterhighlightingtheirrole as climatic indicators. Glaciers are very sensitive indicators of climate changes(glacier as model of evolution),withshort responsetime (except forpolarglaciers).The exemplarity ofaglacier isdirectlyrelatedtothisvalence: infact ifaglacier isagoodmodelofevolution,ithasalsoagreatexemplarity.

For example, the Forni glacier was proposed as a representative glacialgeomorphosite (Pelfini & Gobbi, 2005) and the glaciological trail “Sentiero Glaciologico del Centenario al Ghiacciaio dei Forni”,ontheLombardysideofOrtles-Cevedale Group, was opened in order to visit a geomorphosite of naturalistic,cultural andhistorical interest (Smiraglia, 1995).Nevertheless, as a consequenceofthe glacier tongue rapid shrinkage and of the instability phenomena, a new routewas recent ly imposed, evidencing poss ible r isk increase for users.Paleogeomorphological evidencesinglacialsystemsarealsopaleoclimaticsourcesofinformation.Moraine ridgesallow thepositions reachedduringglacieradvances tobe identified, to calculate volumes, past glacial thickness, equilibrium line altitude

Geoheritage.indb 85 22.06.10 15:28

Page 93: Mapping Geoheritage

- 86 - M. Pelfini et al.

fluctuationsetc.,andconsequentlytheyconsenttoobtainpaleoclimaticinformation.Glaciersareimportantalsoasecological support:lifeoutpostslikealgaeandinsects(glacial flea) (Michler, 1980; Panizza, 2001) are strictly dependent on the glaciertongueconservation.ThiswasalsorecognisedbyBarthlottetal.(1996),tobeoneoftheincentivestogeodiversityassessment.OntheForniglacier,theincreasingdebriscoverage on the snout allows species of arthropods to live on ice, becomingbiological indicatorsofclimatechanges (Pelfini&Gobbi2005).Wheredebris layersbecomethicker,vegetationcancolonisetheglacialsurfaceandalsomorestabletreescangrow,asontheMiageglacier(Pelfinietal.,2007).

Asmentionedbefore, the ecological value is includedamong the additional values(and not in the scientific one), when related to geotourism or integrated culturallandscapescontexts.Severalcasestudiesproposedifferentapproachestoecologicalvalue assessment in relation to different geomorphological situations: Pereira et al.(2008)includetheecologicalvalueamongtheadditionalones,quantifyingitonthebasis of the relationship between geomorphosites and biological features (Tab. 1);Zouros (2007) proposes to assess the aesthetic and the ecological valuescontemporarily(casestudiesfromGreece).Forthekarstenvironment,theecologicalvalue has been linked to the economic, touristic and heritage status by Héritier(2006); in this case the“heritage value” concept synthesises the recognised valuesbasing on a mathematic evaluation or a synthetic analysis. González Trueba &Serrano Cañadas (2008) suggest two different approaches: i) to determine thescientific or intrinsic value, based on geomorphic topics and allowing a moreobjective and systematic knowledge of the site, and ii) to define the “cultural oradded value”, based on the consideration of cultural and environmental elementsaffecting and enriching the intrinsic value. They use the ecological criteria as thestartingpointforthegeomorphositeassessment.

Inthepresentwork,theecologicalvalue isunderlinedasacomponentofboththescientific (glacier fluctuation reconstruction) and additional (promotion andeducation)values.

Ecological value

0 Without relation to biological features

0,38 Occurrence of interesting fauna and/or flora

0,75 One of the best places to observe interesting fauna and/or flora

1,12 Geomorphological features are important for ecosystem(s)

1,50 Geomorphological features are crucial for the ecosystem(s)

Table1 Numerical assessment of thegeomorphosite indicator of ecological value(fromPereiraetal.,2008).

Geoheritage.indb 86 22.06.10 15:28

Page 94: Mapping Geoheritage

Dendrogeomorphological investigations and glacial geomorphosites - 87 -

3. Casestudies:theMarletglaciersandtheMiageglacier

Twoexamplesarepresented inorder tounderline the importanceof theecologicalvaluefortheEarthandclimatehistoryandforaneducationalapproach.

The first case is represented by the Marlet glaciers (Ortles Cevedale Group). The“Ghiacciaio Alto del Marlet” is a debris-covered glacier fed mainly by avalanchesfromtheOrtlespeak(3905 ma.s.l.)andshowsaverysteepanduneventopography.The“GhiacciaioBassodelMarlet”movesdown-valleyfromtheOrtlesnortherncrestandpresentsahalfdebris-coveredtongue.ThetwoMarletglaciersdepositedhugemoraines ridges, principally built during the Little Ice Age and characterised byvegetationcoverage.Amongthem,asmallmorainesystemispresent;itiscolonisedbywelldevelopedvegetation consistingofgrasses, shrubs, living treesand stumps(principallyLarix deciduaMill. and Pinus cembra L.) (Fig. 2).Adendrochronologicalanalysis was carried out on living trees and stumps, using maximum tree cambialages to obtain a minimum age for the surfaces and to reconstruct recent glacierevolution.Itisasimplesituation,appositelyselectedforeducationalapplications.

Fig.2 GeomorphologicalsketchoftheMarletglaciers (Central ItalianAlps).Themoraineamphitheatre,studiedusingdendrogeomorphologicalmethods,isrepresented(lettersA,B,C,Dmarkthefourmoraineridges)inthedashedcircle.PhotobyV.Garavaglia.

ThesecondcaseisrepresentedbytheMiageglacierintheMontBlancMassif(Fig.3),the most representative debris covered glacier in the Italian Alps with a forestvegetation growing on its debris layer (Pelfini et al., 2007) (Fig. 4). Here therelationshipbetweenglacieractivityandtreedynamicsiscomplexandrepresentsanimportantsupporttoglaciologicalinvestigations.

Bedrock

Debris coverage

Moraine

Glacial tongue

Kilometers

Geoheritage.indb 87 22.06.10 15:28

Page 95: Mapping Geoheritage

- 88 - M. Pelfini et al.

Fig.3 Asketchof theMiageglacier front.Thedashedcircles showthesamplingareaschosenforthedendrogeomorphologicalsurvey.LettersA,B,Cindicatethethreegroups,sampledtodateglaciermovements;lettersG,SandTarethegroupsofundisturbedtreesusedtobuildthereferencechronologies.

Fig.4 SupraglacialtreecoverontheMiageglacier.Europeanlarchescolonisede-briscoverageandreact totheglaciermovementsproducinggrowthano-malies inannual ringspermittingaprecisedatingof surfacemovements.PhotosbyM.Bozzoni.

205020

00

1950

1900

1850

2000

2100

2250

1800

2000

2000

1750

1750

2000

2250

2250500 m0

Lac deCombal

Torrent du Miage

Doire du Val Veny

A

B

T

S G

Lac duMiage

Lac du Jardin

du Miage

JARDINDU MIAGE C

MIAGE GLACIER

Geoheritage.indb 88 22.06.10 15:28

Page 96: Mapping Geoheritage

Dendrogeomorphological investigations and glacial geomorphosites - 89 -

3.1Dendrochronologicalsamplingandanalysis

All the samples were collected and prepared according to the traditional methods(for details see Schweingruber, 1988). For the analysis, the cambial age of eachsamplewasdeterminedby counting thenumberof annual rings.Missing rings, insamples without pith, were estimated according to Jozsa (1988) and Villalba &Veblen(1997).Tree-ringwidthwasmeasuredpreciseto0.01mm,usingtheLINTABsystemandTSAPsoftware(Rinn,1996)andthroughimageanalysistechnique,withthe WinDENDRO software (Regent Instrument Inc., 2001). The crossdating of thedendrochronological series was performed using COFECHA (statistical analysis) andTSAPsoftware(visualanalysis).

All the dendrochronological curves were averaged in an indexed chronology. ThestandardisationwasrealisedthroughtheARTSANsoftware(Holmes,1994).Adoubleprocess of standardisation was chosen to eliminate the growth trend (Cook &Kairiukstis,1990):asthefirststep,anegativeexponentialoralinearregressionwasapplied,thenacubic smoothing spline,withawavelengthof100 yrandavarianceconservationof50 %,wasperformed.

Near the Marlet glaciers, 29 European larches were sampled to establish theminimumageofolder andwell-vegetatedones.Amean tree-ring chronologywascreated from 12 living trees and, successively, 13 samples from stumps werecrossdated using local references and other chronologies available at theInternationalTree-RingDataBank(ITRDB;Grissino-Mayer&Fritts,1997).

On theMiageglacier,52European larcheswere sampledon the lowerpartof thetongue.Threereferencechronologies,basedonundisturbedlarchesgrowingoutsidethe glacier, were constructed for a comparison with the tree-ring data from thesupraglacial trees. They were used to identify growth anomalies induced in thesupraglacialtreesbytheglaciersurfacemovements.Inordertoidentifythetemporaldistribution of the growth disturbances in the supraglacial trees, two mainapproaches were adopted: i) a tree-ring growth series analysis performed on ring-widthmeasurements (looking forpointeryearsandabruptgrowthchanges)and ii)skeleton plots made by a visual assessment of the samples (event years) (for acompletedescriptionofthemethods,seePelfinietal.,2007).

3.2DendrogeomorphologicalresultsontheMarletglaciers

Dendrochronological results evidence how tree rings allow different ages to beattributed to the moraine systems (relative dating) and, indirectly, to identify anancientglacieradvancingphasedrawingaglaciershapecompletelydifferenttotheLittle IceAgeone.Moreover, thedifficulties inabsolutedating revealanotuniqueadvancingphase.Infactmorainedispositionsuggestsanageprogressivelyincreasingdown-valley(fromAtoDinFig.2).Thecambialageandthereconstructedrealtreeagesrepresentaminimumagebecauseerrorsmighthaveaffecteddatingprocedure

Geoheritage.indb 89 22.06.10 15:28

Page 97: Mapping Geoheritage

- 90 - M. Pelfini et al.

(Heikkinen, 1994). The mean larch chronology, that covers the period 1396-2004,was used for crossdating samples from dead trees, alive between 1411 and 1947.Thegerminationperiodwascertainlyolder,alsobecausesomesamplesfromstumpsweredecayedintheir innerpart.So,onthebasisoftheaddedrings,weestimatedthatonmorainesB,CandD(Fig.5)sometreegerminationscouldbedatedalmosttothe14thcentury:about1430onmoraineA,1320onmoraineB,1370ontheConeand1300ontheDone(Fig.5).Theobtainedagesdonotfollowanageincreasetrenddown-valley.Themoraines’minimumagesareprobablyunderestimated;inanycasemorainedepositions seem tobeattributable toaperiodbefore1300, for themost external one (D), and before 1430, for the inner one (A) (unpublished data).This couldbe amoraine systembuilt duringadvancingphasesbefore the Little IceAgeor in its earlier phases, asobserved inother areas (Grove, 1988; Pelfini et al.,2002),evenifitisnotpossibletoestablishhowmanyyearsbefore.Inanycase,thecolonisation seems tohave takenplace in a small time interval (about130  yr); theadvancingphaseswereprobablyquitecloseintime.

TheMarlet glacier site is easily accessible for users and attributes and valences areeasily observable in a restricted area. The presence of clean and debris coveredglaciersinthevalleyrevealsthechangeshappeninginglacialenvironments,whilethemorainesystemsandtherelativeforestvegetationallowthepaleoenvironmentalandpaleoclimaticvaluestobeassessed.Inthiscase,thevegetationroleinassessingtheecological value and the dendrochronological investigations’ role in improving thescientificvaluearehighlighted,confirmingthepossibilityofadidacticapplication.

Fig.5 The Marlet moraine amphitheatre. The letters indicate the four moraineridges;theblacknumbersrepresentthemaximumageoftheoldestsam-pled trees obtained by tree rings counting; the grey numbers show themaximumageof theoldest sampled trees,estimatedon thebasisof thesamplingheightanddistancetothepith.PhotobyV.Garavaglia.

AB C

D

15081428

14281418

14111367

13961304

Geoheritage.indb 90 22.06.10 15:29

Page 98: Mapping Geoheritage

Dendrogeomorphological investigations and glacial geomorphosites - 91 -

3.3DendroglaciologicalresultsontheMiageglacier

On the Miage glacier, an evaluation of tree coverage represented the first step toassessing the ecological value related to the uniqueness of this supraglacialvegetation; nevertheless dendroglaciological analysis highlights the importance ofgrowth anomalies to analyse glacier geomorphosite evolution and their presentdynamics.Thetreecolonisationdependsonthedebristhicknessandontheglacierstability; in factonly themain lobesare colonisedby trees, especially the southernone (Larix decidua Mill. and Picea abies Karst.). Morphological situations such ashollows, depressions or niches, facilitate the tree growth. Trees and tree ringmorphologies (e.g. respectively deformed, twisted trunks, eccentric rings andcompressionwood)documentindetailtheverticalandlateraltilting,theiceslidingdown-valley, the transmission of kinematic waves, glacio-karst phenomena, anddebriscoverinstability.Thegrowthdisturbancesarewellrecordedintree-ringwidth,characteristics, morphology and other indicators. The latter were identified anddated,confirmingthepassageofakinematicwave(alsodocumentedthroughaerialphotographs and glaciological investigations) and adding a great detail about thekinematic wave arrival and its different intensity in the two lobes. The growthdisturbancesignalsmainlyoccurredsincethemiddleof1980sonthesouthernlobeandduringthebeginningof1990sonthenorthernone,withadelayofaboutfiveyears(Fig.6)(fordetails,seePelfinietal.2007).

The tree ability to record glacier movements is controlled by the glacier surfacevelocityandbytheevolutionoficecliffs(backwastinganddownwasting)thatleadtothe roots’exposure,near the icecliffedges,and the final fallof trees towards theescarpment.

The dendrochronological investigations on the Miage glacier highlight the widescientificvalueofthemostimportantItaliandebris-coveredglacier,ageomorphositewithavegetationalcomponentimprovingitsecologicalvalue.Thedatingofthetreereactionstotheglaciermovementshighlightsthelinkbetweenbiologicalandglacialcomponents and its importance in studies both on glacier dynamics and onvalorisationofglaciergeomorphosites.

Geoheritage.indb 91 22.06.10 15:29

Page 99: Mapping Geoheritage

- 92 - M. Pelfini et al.

Group A

0

1

2

3

1960

1964

1968

1972

1976

1980

1984

1988

1992

1996

2000

even

tyea

rs

02

468

1012

sample

depth

Group B

0

2

4

6

8

1960

1964

1968

1972

1976

1980

1984

1988

1992

1996

2000

even

tyea

rs

0

10

20

30

40

50

sample

depth

compression wood n. of trees

Northern lobe

Southern lobe

200 m

19631973

198319932003

a

Group B

0

2

4

6

896

0

964

1968

1972

1976

1980

1 984

1 988

992

996

2000

even

tyea

rs

0

10

20

30

40

50 sample

depth

positive abrupt growth change negative abrupt growth changevery wide/narrow ring - missing ring resin duct - eccentricity variation n. of trees

Group A

0

1

2

3

1960

1964

1968

1972

1976

1980

1984

1988

1992

1996

2000

even

tyea

rs

02

468

1012 sam

pledepth

1 1 1 1 1

b

Fig.6 ReconstructedpositionofthetwooldestsampledtreesontheMiagegla-cier every10  years assumingamean velocityof10 ma–1 (Diolaiuti et al.,2005).Thecompressionwood(a)andothergrowthanomalies(b)identifiedbyskeletonplotsofsupraglacialtreesonthenorthern(groupAinFig.4)andsouthern(groupBinFig.4)lobes,arerepresentedinthefourgraphsadaptedfromPelfinietal.,2007.

4. Conclusions

Generally the ecological value is represented by the element of rarity like thepresenceofexclusiveanimalsorvegetationcomponents.

Asmentionedbefore,recentlytherigorandobjectivitythatcharacterisethescientificvalue assessment, compared to the more intuitiveness of the cultural and addedones,havebeenhighlighted.On theplacementof theecological valueasa fourthscientificvalenceoramongtheadditionalvaluesdependsonthemeaninggiventoit(e.g. Panizza, 2001; Pralong, 2005). In the specific case of this paper, ifdendroglaciological analyses are consideredasprecise technicalmethodologies, theecologicalvaluethattheyrepresentshouldbeassessedamongthescientificvalences.

In the case of the Marlet glaciers (as in many other study cases in the Alpineenvironment, e.g. McCarthy & Luckmann, 1993; Luckmann, 1998), thedendrochronologicaldatingofsmallmoraineamphitheatresallowedustoassesstheimportanceoftreevegetationinreconstructingglacierhistoryand,asaconsequence,toimprovethegeomorphositescientificattribute.Thesimplicityofthemorphologicalsituations better relates to the didactical applications. Images of cores can beproposedtostudentsinordertohelpthemtoreconstructlandscapechangesandto

Geoheritage.indb 92 22.06.10 15:29

Page 100: Mapping Geoheritage

Dendrogeomorphological investigations and glacial geomorphosites - 93 -

approach dating methods without the necessity of dedicated instruments. Thedifferent morphologic characteristics of moraines and their dating allowed us tointroducetheconceptofglacierfluctuationintheeducationalapplications.

In the Miage debris covered glacier, the presence of widespread supraglacialvegetation reinforces the rarity concept and improves the glacier ecological value.Thedendroglaciologicalanalysisallowstheassessmentoftheimportanceoftreesinanalysingthepresentglacierdynamicsand,asaconsequence, tocontribute to thescientific evaluation of a geomorphosite. Moreover, in this case, trees represent apreciousinstrumenttoinvestigateglacierdynamicsandcontributealsotoimprovingthegeomorphosite valence.At the same time, thegood accessibility to theMiageand Marlet glaciers represents a possibility of spreading the glacial geomorphositeknowledgetoawidepublic,fromhikerstoscholarusers.Inboththestudiedareas,theuseofdendrochronologyallowedustoincreasetheknowledgeontheecologicalandeducationalvalues.Byinsertingtheseapplicationsineducationaltrails,itmaybepossible to popularise scientific results generally discussed only in academicenvironments, transmitting the notions of climate change impact, valorisation andconservationofgeomorphosites.

Acknowledgments

TheauthorsthanktheStelvioNationalParkandRegioneValled’Aostaforauthorisingthe studies. Moreover, thanks to M. Santilli for the collaboration during the fieldworkinSoldaValley.

ReferencesBarthlottW.,LauerW.,PlackeA.(1996).Globaldistributionofspeciesdiversityinvascularplants:

towardsaworldmapofphytodiversity,Erdkunde,50(4),317-327.

CookE.R.,KairiukstisL.A. (1990).Methods of dendrochronology. Applications in the environ-

mental sciences,Dordrecht,Kluwer and International Institute forApplied System

Analysis.

DiolaiutiG.,KirkbrideM.P., SmiragliaC., BennD.I.,D’AgataC.,Nicholson L. (2005).Calving

processesand lakeevolutionatMiageGlacier,MontBlanc, ItalianAlps,Annals of

Glaciology,40(1),207-214.

Garavaglia V., Pelfini M. (2008). Thematic mountain trails and dendrochronological fieldwork

foradidacticapproach related toglacierhistory,glaciergeomorphositesand tree

responsetoglobalchange,EGU General Assembly 2008,Vienna,13-18April.

GaravagliaV.,PelfiniM.,submitted.Glacialgeomorphositesandrelatedlandforms:aproposal

foradendrogeomorphologicalapproachandeducationaltrails,Geoheritage.

González Trueba J.J., Serrano Cañadas E. (2008). Geomorphological heritage assessment in

naturalprotectedareas.ApplicationinthePicosdeEuropaNationalPark,Boletín de

la A.G.E.,47,397-399.

Geoheritage.indb 93 22.06.10 15:29

Page 101: Mapping Geoheritage

- 94 - M. Pelfini et al.

GrandgirardV.(1999).L’évaluationdesgéotopes,Geologia Insubrica,4(1),59-66.

Grissino-Mayer H.D., Fritts H.C. (1997). The international tree-ring data bank: an enhanced

globaldatabaseservingtheglobalscientificcommunity,The Holocene,7,235-238.

GroveJ.M.(1988).The Little Ice Age,Methuen,CambridgeUniversityPress.

HeikkinenO.(1994).Usingdendrochronologyforthedatingoflandsurfaces,InBeckC.(Ed.).

Dating in Exposed and Surface Context, Albuquerque, University of New Mexico,

213-235.

HéritierS.(2006).Phénomèneskarstiquesettourismedanslesparcsnationauxdel’Ouestcana-

dien:lamiseenvaleurprogressived’unpatrimoinenaturel,Karstologia,47,33-48.

Holmes R.L. (1994). Dendrochronology program library. Users manual, University of Arizona,

LaboratoryofTree-RingResearch.

ITRDB, IGBP PAGES/World Data Center for Paleoclimatology, NOAA/NGDC Paleoclimatology

Program,Boulder,CO,USA.http://www.ngdc.noaa.gov/paleo/ftp-treering.html.

Jozsa,L.A.(1988).Incrementcoresamplingtechniquesforhighqualitycores,Forintek Canada

Inc.,SpecialPublication,30,1-26.

LuckmanB.H.(1998).DendroglaciologiedanslesRocheusesduCanada,Géographie physique

et Quatemaire,52,137-149.

McCarthy,D.P.,LuckmanB.H.(1993).Estimatingecesisfortree-ringdatingofmoraines:acom-

parativestudyfromtheCanadianCordillera,Arctic and Alpine Research,25,63-68.

MichlerG. (1980).Vitaaimarginidelghiacciaio, InBachmannR.C. (Ed.).Ghiacciai delle Alpi,

Bologna,Zanichelli,42-52.

MohenJ.P.,EluèreS. (1997).L’hommedeglacedans lesAlpes ilya5000ans, InMohenJ.P.,

Eluère,S.(Eds),Dossier d’archéologie,224,Digione,Faton,80-83.

Oerlemans,J.,Fortuin,J.P.F.(1992).Sensitivityofglaciersandsmallicecapstogreenhousewarm-

ing,Science,258,115-117.

Panizza, M. (2001). Geomorphosites: concepts, methods and examples of geomorphological

surveys,Chinese Science Bulletin,46,4-6.

Pecci M., D’Agata C., Smiraglia C. (2008). Ghiacciaio del Calderone (Appennines, Italy): the

mass balance of a shrinking Mediterranean glacier, Geografia Fisica e Dinamica

Quaternaria,31(1),55-62.

PelfiniM.,DiolaiutiG.,SmiragliaC.(2002).IghiacciaidellaValSissone(Valtellina,AlpiRetiche)

elalorostoriaolocenica,Il Quaternario,15(1),3-9.

PelfiniM.,GobbiM. (2005).Theecological valueofForniGlacierasapossiblenewgeomor-Theecological valueofForniGlacierasapossiblenewgeomor-

phosite: new data from arthropods communities, Geografia Fisica e Dinamica

Quaternaria,28,211-217.

PelfiniM.,SantilliM.,LeonelliG.,BozzoniM.(2007).Investigatingsurfacemovementsofdebris-

covered Miage glacier, Western Italian Alps, using dendroglaciological analysis,

Journal of Glaciology,53,141-152.

Pelfini M., Smiraglia C. (2003). I ghiacciai, un bene geomorfologico in rapida evoluzione,

Bollettino della Società Geografica Italiana,serie11,8,521-544.

Geoheritage.indb 94 22.06.10 15:29

Page 102: Mapping Geoheritage

Dendrogeomorphological investigations and glacial geomorphosites - 95 -

Pereira P., PereiraD.,CaetanoAlves,M. I. (2008).Geomorphosite assessment inMontesinho

NaturalPark(Portugal),Boletín de la A.G.E.,47,397-399.

PralongJ.P.(2005).Amethodforassessingtouristpotentialanduseofgeomorphologicalsites,

Géomorphologie: relief, processus, environment,3,189-19.

RegentInstruments(2001).WinDendro 2001,RegentInstruments,Quebec.

ReynardE.,FontanaG.,KozlikL.,ScapozzaC.(2007).Amethodforassessing“scientific”and

“additionalvalues”ofgeomorphosites, Geografica Helvetica,62(3),148-158.

ReynardE.,PanizzaM.(2005).Geomorphosites:definition,assessmentandmapping.Anintro-

duction,Géomorphologie: relief, processus, environnement,3,177-180.

RinnF.(1996).TSAP. Time series analysis and presentation.Version3.0referencemanual.

SchweingruberF.H. (1988).Tree rings: basic and application of dendrochronology,Dordrecht,

Kluwer.

Smiraglia C. (1995). Il Ghiacciaio dei Forni in Valfurva. Sentiero Glaciologico del Centenario,

Sondrio,Lyasis.

Smiraglia C. (2001). Ghiacciai: da oggetti del paesaggio a sistemi sensibili. In Smiraglia C.,

Diolaiuti G. (Eds). Ghiacciai e aree protette, Atti del Convegno Internazionale di

Sondrio,1997,Sondrio,CentroDocumentazioneAreeProtette,113-125.

Smiraglia C., Diolaiuti G. (2002). L’aumento dei pericoli in alta montagna, In Caverli L., Da

PolenzaA.,SalvatoriF.,SmiragliaC.(Eds).Montagne d’Italia,Novara,DeAgostini,

185-193.

VillalbaR.,VeblenT.T.(1997). Improvingestimatesoftotaltreeagesbasedonincrementcore

samples,Ecoscience,4,534-542.

ZourosN. (2007).Geomorphositeassessmentandmanagement inprotectedareasofGreece.

The case of the Lesvos Island – coastal geomorphosites, Geographica Helvetica,

62(3),169-180.

Geoheritage.indb 95 22.06.10 15:29

Page 103: Mapping Geoheritage

Geoheritage.indb 96 22.06.10 15:29

Page 104: Mapping Geoheritage

GISandgeomaticsapplicationfortheevaluationand

exploitationofPiemontegeomorphosites

MarcoGiardino

DepartmentofEarthSciences

UniversityofTorino

ViaValpergaCaluso35

I-10125Torino

E-Mail:[email protected]

LucaGhiraldi,PaolaCoratza,MauroMarchetti

DepartmentofEarthSciences

UniversityofModenaandReggioEmilia,LargoSanEufemia19

I-41100Modena

E-Mail:[email protected]

InRegolini-BissigG., Reynard E. (Eds) (2010). Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.97-113.

Geoheritage.indb 97 22.06.10 15:29

Page 105: Mapping Geoheritage

Geoheritage.indb 98 22.06.10 15:29

Page 106: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 99 -

1. Introduction

Landscapeisacomplexcombinationoflandformsandprocessesinconstantchange.TheseformsandprocessesareimportantevidenceoftheEarth’shistoryandenableus to understand the evolution of our world (Avanzini et al., 2005).Geomorphological heritage may refer to a collection of sites of geomorphologicalinterest defined as geomorphosites (Panizza, 2001). In this paper, the term“geomorphosites” is used to refer to geomorphological landforms, which areimportantfortheknowledgeofEarthhistoryandcharacterisedbyscientific,cultural/historical,aestheticandsocialvaluesonthebasisofhumanperceptionandappraisal(Panizza&Piacente,1993;Panizza,2001).

AmongItalianregions,thePiemonte(Piedmont)isnoteworthybecauseofitsvarietyof environments and, similarly to other regions, it has started an activity ofacknowledging,describingandmakingsites,whichbearwitnessoftheEarthhistory,available for people. In the past few years, several attempts to investigate thegeologicalheritageof thePiemonteregionwerecarriedout.Thefirststepwasthepublication of the “Carta geomorfologica degli elementi di interesse paesaggistico del Parco Nazionale del Gran Paradiso”(Giardino&Mortara,2001).Subsequently,aremarkable impulse was given by the publication of two books for the generalpopulationontheappraisalofgeomorphositesinTurinProvince(Giardino&Mortara,2004).Attheendof2004,thecooperationbetweenthemanagingAuthorityofAstiProvince Natural Parks and the Department of Earth Science of Turin University,allowedtheinventoryof219geositeslocatedintheAstiProvinceandtheTurinhills(VariousAuthors,2004).

This paper describes the steps followed to evaluate and appraise thegeomorphologicalheritagelocatedinthesouthernPiemonteplain(CuneoProvince)by means of assessment procedures, GIS (Geographic Information System) andgeomatics instruments. It suggests programs of appraisal and popularisation bymeans of GIS and geomatics applications, in order to translate the complex Earthsystemwith simple language,allowingaknowledgeableapproachnotonly for thepersons involved in the field of geosciences, but also for a general public andconsultantsinvolvedineducationalactivities.

2. Geographicalandgeomorphologicaloutlineofthe

studyareaThe study area is located in north-western Italy, in the Cuneo province (PiemonteRegion,Fig. 1).Tothesouth,theareaextendsasfarasthetownofBeneVagienna;itencloses theStura areaof theDemonteRiver to thewest, theTanaroRiver to theeast; and to the north, the area extends as far as the urban centres of Bra andPocapaglia.

Geoheritage.indb 99 22.06.10 15:29

Page 107: Mapping Geoheritage

- 100 - Luca Ghiraldi et al.

Fromthegeomorphologicalviewpoint,theareacanbedividedintotwosectors.Thefirstoneischaracterisedbyriverterracesstandingoutasislandsfromtheplain.ThemorphogenesisoftheselandformsisduebothtoPleistoceneclimatechangesandtothe NNE diversion of the drainage system, triggered by neo-tectonic activity. Theterraces consist of Pleistocene deposits; they gradually join with the main plainsurfacetothewest;inotherplacestheyareabruptlyconnectedtothepresentvalleyfloors of the Tanaro and the Stura area of the Demonte rivers. To the east, thePleistoceneplateauxaregrading toHolocene terraces suspendedabove theTanaroriverbed.AsaconsequenceofthecaptureoftheTanaroRiver,thewholeterracesarecutbystreamsthatdugdeepgorgesintheirdistalsector,wheremarinedepositsofthePiemonteTertiaryBasincropout(Costamagna,2005).

The second sector is located in the north-eastern part of the study area. It ischaracterisedbyacomplexsetofnarrowanddeepvalleysduetoretrogressiverivererosion,whichisaconsequenceoftheTanaroNNEdiversion.Thiskindofprocesses,at present no longer active, created badlands and dramatic landforms, locally wellknownwiththenameof“RocchediPocapaglia”.

3. AssessingthegeomorphologicalheritageIn order to identify natural assets in a geomorphologically and scenicallyheterogeneous and complex region such as the one previously described, theinventoryofthegeomorphositeswascarriedoutbytheEarthScienceDepartmentofTurinUniversity,basedonaclearlydefinedmethodologicalprocess.Thefirststagesofthe process were the study of both scientific and popular bibliographies, archivestudiesandanalysisofspecialisedmaps.Thesecondphasewasadetailedsurveythatresultedintheexplorationofthoseareasconsideredthemostrepresentativeforthegeodiversity of the territory. In the whole area, ten geomorphosites of differentcontentsandinterestswereidentified,andeightofthemwereselectedfollowingthemethodologyproposedby Reynard et al. (2007). They all showahigh educationalvalue,allowingtheunderstandingofthegeomorphologicalevolutionarystagesandthemorphodynamicprocessesaffectingthisterritory.

Geoheritage.indb 100 22.06.10 15:29

Page 108: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 101 -

Fig.1 Geomorphologicaloutlineofthestudyareaandgeomorphositesidentified.25VallerelittaTanaro;209MonteCapriolo;13AlveodelTanaro;130GoladiCherasco;15ForradelMondalavia;16AveodelloStura;17AltopianidiBenevagienna;143RoccadiBenevagienna.

AllinformationwascollectedusingdescriptionformsandmapsloadedintoapocketPC(Fig.2).

ThedescriptionformholdsallthefieldsrequestedbytheItalianNationalGeologicalSurvey(managedby ISPRA)and, inaddition, it includesadditionalsectionsallowingthe assessment of geomorphosites from scientific, aesthetic, accessibility, historical,cultural and ecological points of view. An experimental section was addedconcerningthemaingeomorphologicalhazardsrelatedtogeomorphosites(Table1).

Part one of the card deals with the collection of general data including location,description,essential features (formsanddimension,property,planning restrictions,soil use, lithology, chronostratigraphy,geomorphic age). Part twoof the carddealswithparametersfortheassessmentofthescientificvalue:

• rareness(rarityofthesite);• integrity(stateofconservationofthesite);• representativeness(siteexemplarityandeducationalvalue);• paleogeographicvalue(importanceofthesitetotracingthegeomor-

phologicalevolutionarystagesofthestudyarea).

Geoheritage.indb 101 22.06.10 15:29

Page 109: Mapping Geoheritage

- 102 - Luca Ghiraldi et al.

Fig.2a Descriptionformusedduringtheinventory.

Geoheritage.indb 102 22.06.10 15:29

Page 110: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 103 -

Fig.2b PocketPCwithmaps.

Partthreeofthecarddealswithparametersfortheassessmentofaestheticvalue:

• visibility;• viewpoints.

Partfourofthecarddealswithparametersfortheassessmentofaccessibilityvalue:

• bestwaytoaccessthesite;• roadconditions;• distance(potential)tobecoveredonfootanddifficultyofthepath;

distancefromfacilities(hotels,restaurant,shops,etc.).

Part five and six of the card deal with parameters for the ecological and cultural-historicalvalues:accordingtoReynardetal.(2007),theecologicalsectiontakesintoaccount the importance of geomorphosites for the development of a particularecosystemorthepresenceofparticularfaunaandvegetation,whereasthecultural-historicalonetakesintoaccountseveralsub-criteriadealingwithimportantreligious,historicalandliteraryaspectsorpopularlegends.

The lastpartdealswiththepossiblehazardsrelativetotheuseofgeomorphosites,which,accordingtoPanizza&Menella(2007),maybeseenasdynamiccomponentsoftheenvironment.Thissectioncontainsinformationabout:spatialcharacteristicsofthearea,potentialfrequencyofthephenomenon,andadescriptionofthehazards,alsoconsideringpossiblebadweatherconditions.

It is possible to assign aquantitative value to the sections from2 to6 inorder toobtain a table with a score for each geomorphosite, divided into scientific and

Geoheritage.indb 103 22.06.10 15:29

Page 111: Mapping Geoheritage

- 104 - Luca Ghiraldi et al.

additionalvalues (Tables2a,2b).Therearefivepossiblevalues,expressed inpart1,with0reflectingnovalueand1averyhighvalue.AccordingtoReynardetal.(2007),the results from the scientific assessment and the mean of the results from theadditionalvaluesarenotcombinedinordertounderlinethedifferentqualitiesofthetwo value sets. Geomorphosites with a low score in the scientific and additionalvalues, or a low score in the scientific value and amedium score in the additionalvaluehavebeendiscarded(Table2c).

Parts Criteria

1. General and descriptive data

Location, description, essential features

2. Scientific value Rareness, integrity, representativeness, paleogeographical value

3. Aesthetic value Visibility, view points

4. Accessibility valueBest method of access, road condition, path difficulty, distance to cover from facilities

5. Ecological value Particular ecosystem or importance for fauna and vegetation

6. Cultural-historical value

Religious, historical, literary or popular legend

7. Geomorphological hazards

Spatial characteristics, potential frequency, bad weather conditions

Tab.1 Partsofthedescriptionforms,includingcriteriausedforevaluation.

Integrity RarenessRepresentati-

venessPaleogeogra-phical value

Scientific value

Rocche di Poca-paglia

1 1 0,75 1 0,94

Valle Relitta Fiume Tanaro

0,75 0,25 1 1 0,75

Alveo del Tanaro a Cherasco

0,5 0,5 0,5 0,5 0,5

Monte Capriolo 0,75 1 1 1 0,94

Gola di Cherasco 1 0,25 0,75 1 0,75

Alveo dello Stura 0,5 0,75 0,25 0,75 0,63

Rocche di Salmour 0,75 0,25 0,25 0,25 0,38

Altopiani di Bene-vagienna

1 0,75 1 1 0,94

Rocca di Beneva-gienna

0,5 0,5 0,25 0,25 0,38

Forra del Rio Mon-dalavia

0,75 1 0,75 1 0,88

Tab.2a Geomorphositeassessmentconcerningthescientificvalue.

Geoheritage.indb 104 22.06.10 15:29

Page 112: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 105 -

Aestheticvalue Accessibility value

Ecological value

Cultural-historical value

Additional value

Rocche di Pocapaglia

1 0,5 1 1 0,88

Valle Relitta Fiume Tanaro

0,25 1 0,25 0 0,38

Alveo del Tanaro 0,75 0,75 0,5 0 0,5

Monte Capriolo 0,25 1 0,25 0,75 0,56

Gola di Cherasco

0,75 0,75 0,75 0,75 0,75

Alveo dello Stura

0,75 0,5 0,5 0 0,44

Rocche di Salmour

0,5 0,75 0,5 0,5 0,56

Altopiani di Benevagienna

0,75 1 0,5 0,75 0,75

Rocca di Bebevagienna

0,25 1 0,25 0,75 0,56

Forra del Rio Mondalavia

0,5 0,75 0,25 0,75 0,56

Tab.2b Geomorphositeassessmentconcerningtheaesthetic,accessibility,ecologi-calandcultural-historicalvalues.

Scientific value Additional value

Rocche di Pocapaglia 0,94 0,88

Altopiani di Benevagienna 0,94 0,75

Monte Capriolo 0,94 0,56

Forra del Rio Mondalavia 0,88 0,56

Gola di Cherasco 0,75 0,75

Valle Relitta Fiume Tanaro 0,75 0,38

Alveo dello Stura 0,63 0,44

Alveo del Tanaro 0,5 0,5

Rocche di Salmour 0,38 0,56

Rocca di Bebnevagienna 0,38 0,56

Tab.2c Thegeomorphositesfinalranking.Thelasttwositeshavebeendiscarted.

Data from bibliographic research, field survey and assessment results were storedusing the relational database MySQL Community edition released under GeneralPublic License (GNU) (http://www.mysql.com) in order to reduce the costs ofcomputerprogramme royalties. This structure consists of related tables,which alsoinclude fields that can be used to store binary data (images and multi-mediacontents).Furthermore,all informationwasorganised inamethodicalway inorder

Geoheritage.indb 105 22.06.10 15:29

Page 113: Mapping Geoheritage

- 106 - Luca Ghiraldi et al.

toeliminaterepetitionsandqueries,andmakinginformationretrievingmucheasier.Theoperationwas implemented fromthewebwithan interfacewrittenusingPHPscriptinglanguage,whichhasfullsupportforcommunicatingwithMySQLdatabases(Fig.3a,3b).

Fig.3a GraphicinterfaceofMySQLDB.

Fig.3b WebInterfacetonavigateMySQLDB.

Geoheritage.indb 106 22.06.10 15:29

Page 114: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 107 -

4. Mappingissues

DatastoredinthedatabasecreatedthebasisforbuildingaGeographicInformationSystem (GIS) for geomorphosites, which allowed us to relate and combine variouslayer information with georeferenced data in order to produce thematic mapscombining geological and geomorphological characters and other elements of theterritory. Loadingdifferent layers andmanaging thematdifferent scales ispossibleusingzoomandpanprocedures.Furthermore,withquerytools it iseasytoretrievegeoreferenced “objects” on the map and to access the attributes associated withthem.

Theaimofthisprojectwastodevelopausefulinformationtool,easytoaccessandsuitable for people interested in the geomorphological assets for educational ortourist purposes. For this reason, it was very important to angle towards anapplication usable by the general public but at the same time preserving scientificrigour. Following the methodology developed by the University of Modena andReggio Emilia (Castaldini et al., 2005a, 2005b; Bertacchini et al., 2007), ageomorphologicalmapwascreatedcombiningaterrainsurveywiththedevelopmentof DEM (Digital Elevation Model) with a 7  m resolution and an orthomosaic with70 cmresolutionfromaphotogrammetricstereoscopicmodel(Fig.4).Attheendoftheprocess,thegeomorphologicalmapwassimplifiedleavingonlytheelementsthatcanbeeasilyobservedandrecognisedbythegeneralpublicwithintheareaaffectedbythepresenceofgeomorphosites.

Geographical data were organised in two different groups in order to provide acomplete and exhaustive frame where basic information and geomorphologicalentitiesarelocated.Thefirstgroupincludescolour-shadedreliefbackgroundderivedfrom DEM raster cartographies, topographic maps and vector files providinginformationaboutcharacteristic featuresoftheterritory (utilityservices,networkofinfrastructuresandtouristandcultural-historicalfeatures).Thesecondgroupincludesdifferentlayers,symbolisingthemaingeomorphologicalfeatures:geotouristitinerary,pointsofvieworinterest,andtouristinformation.

UsingaGISsoftware,thescaleproblemislessimportantifcomparedwithtraditionalmaps but, in accordance with Carton et al. (2005), the accuracy of representationdependsonthescaleatwhich thedatawasmapped. Inourcase,geomorphositeswere representedbydotsonmapsof1:100,000 scaleor less,whilst in large-scalemaps they were represented by means of linear, point-like or polygongeomorphologicalsymbolsdividedintodifferentlayers(Fig.5a,5b).

Geoheritage.indb 107 22.06.10 15:29

Page 115: Mapping Geoheritage

- 108 - Luca Ghiraldi et al.

Fig.4 HillshadederivedfromDEMandorthomosaicobtainedfromphotogrammetricsteroscopicmodel.

Geoheritage.indb 108 22.06.10 15:29

Page 116: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 109 -

Thecardsassociatedwitheachgeomorphositeincludefourmainsections:

• inthefirstsection,ageneraloutlineofthegeositegivesadescriptionofthegeomorphologicalfeaturesinrelationtotheirformationprocesses;

• thesecondonecontainsasetofpictures,stratigraphicsections,3Dviewsandtextsusefultounderstandthemorphogenesisofthegeo-siteandtorelateitwiththegeneralevolutionofthewholeterritory;

• inthethirdsection,possiblehazardswerereported,informingusersonpotentialdangersrelatedtotheuseofthegeomorphosite;

• inthelastsection,curiosities,popularlegends,culturalorecologicalnotes concerning thegeomorphosite and its relationswith the sur-roundingenvironmentandlocaltraditionswerereported.

Starting fromtheGISproject,and inorder topromote theknowledgeandappraisaloftheselectedgeomorphosites,aWeb-GISapplicationwas thendevelopedby integratingGISandRDBMS (RelationalDatabaseManagementSystem). Itallows information tobesharedamongawide rangeofusers.Geographicdatawas implemented inaWeb-GISbased on MapServer (http://www.mapserver.org) and P.Mapper (http://www.pmapper.net).MapserverisanopensourceplatformdevelopedbytheUniversityofMinnesota.Forthisproject, theMS4Wpackagewas installed,designedtoperformafull installationofApache,PHP,MapServerCGIandMapScript.

Fig.5a Geomorphositesinthestudyarearepresentedwithdotsat1:100,000scale.

Geoheritage.indb 109 22.06.10 15:29

Page 117: Mapping Geoheritage

- 110 - Luca Ghiraldi et al.

Fig.5b Portionofthestudyareaat1:35,000scale.Geomorphositesarerepresen-ted with a point-like symbol and with conventional geomorphologicalsymbols.

P.Mapper is a framework, developed by DM Solutions, intended to offer broadfunctionality and multiple configurations in order to facilitate the set-up of aMapServer application based on PHP/MapScript. PHP scripting language has full

Geoheritage.indb 110 22.06.10 15:29

Page 118: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 111 -

support for communicating with the MySQL database and it allows objectsrepresentedintheWeb-GISapplicationwithMySQLdatabase,andviceversa,tobelinkedtogether.

Fig.6 Web-GISapplicationbasedonGISproject.ClickingonahyperlinkmakesitpossibletogobacktotheinformationstoredinWebServerincludedintheMySQLDatabase.

5. ConclusionUndoubtedly, the publication process on the Internet has shown the chance oftranslating the complex Earth system into simple language by means of a sharedapplicationprovidinguserswithacomplete instrumentforafreeon-lineuseandaknowledgeable approach. Compared with traditional maps, Web-GIS applicationspresentseveraladvantages:

• theyarecheaper ifdevelopedwithOpenSourcesoftwareand lesstime-intensivetoproduce;

• theyareeasiertobedistributedtoawideaudienceandeasiertobeupdatedandmaintained;

• they allow interactivepossibilities (e.g. the ability to change scales

Geoheritage.indb 111 22.06.10 15:29

Page 119: Mapping Geoheritage

- 112 - Luca Ghiraldi et al.

and turn layers on/off) and connections to related information bymeansofhyperlinks.

Although it is tempting to think that Internet-based maps are preferable to papermapsineveryway,thisiscertainlynotthecase.Themostobviousdisadvantagesare:

• theyrequirehighband-widthaccesstotheInternet;• theyarevulnerabletoserverandnetworkproblems;• theyneedacertainfamiliaritywithGISapplication.

The project described in this paper is still in progress and is open to futureimprovements, both for data increasing or updating and new system functionimplementation.Theprojectwas carriedout in cooperationwith territorial facilitiessuchas localnaturalhistorymuseums,sincetheirexperienceisabsolutelynecessarytoobtaingoodresultsinastrategyofspreadingscientificknowledgerelativetothegeologicalandmorphologicalevolutionoftheterritoryofthePiemonteRegion.

Acknowledgements

The study was carried out with the cooperation of GeoSITLab (Earth ScienceDepartment,UniversityofTurin),ModenaandReggioEmiliaUniversity(EarthScienceDepartment)andTurinNaturalScienceMuseum(MRSN).

ReferencesAvanziniM.,CartonA.,SeppiR.,TomasoniR.(2005).GeomorphositesinTrentino:afirstcensus,

Il Quaternario,18(1),63-78.

BertacchiniM.,BenitoA.,CastaldiniD.(2007).Cartageo-archeo-turisticadelterritoriodiOtricoli

(Terni,Umbria),Proceedings of the 3rd National Conference of the Italian Association

Geology and Tourism,Bologna1-3March2007,213-220.

Carton A., Coratza P., Marchetti M. (2005). Guidelines for geomorphological sites mapping:

examplesfromItaly,Géomorphologie: relief, processus, environment,3,209-218.

CastaldiniD.,Valdati J., IliesD.C. (2005a).Thecontributionofgeomorphologicalmapping to

environmental tourism in protected areas: examples from Apennines of Modena

(northernItaly),Revista de Geomorfologie,7,91-106.

CastaldiniD.,ValdatiJ.,IliesD.C.,ChiriacC.(2005b).GeotouristicmapoftheNaturalReserveof

SalsediNirano(ModenaApennines,northernItaly),Il Quaternario,18(1),245-255.

CostamagnaA.(2005).AgeomorphositesinventoryincentralPiemonte(NWItaly):firstresults,

Il Quaternario,18(1),23-37.

GiardinoM.,MortaraG.(2001).Cartageomorfologicadeglielementidiinteressepaesaggistico

del Parco Nazionale del Gran Paradiso, Revue Valdotaine d’Histoire Naturelle, 53,

5-20.

GiardinoM.,MortaraG.(2004).I geositi nel paesaggio della Provincia di Torino,Pubblicazione

delServizioDifesadelSuolodellaProvinciadiTorino.

Geoheritage.indb 112 22.06.10 15:29

Page 120: Mapping Geoheritage

the evaluation and exploitation of Piemonte geomorphosites - 113 -

Panizza M. (2001). Geomorphosites: concepts, methods, and example of geomorphological

survey,Chinese Science Bulletin,46,4-6.

PanizzaM.,PiacenteS.(1993).Geomorphologicalassetevaluation,Zeitschrift für Geomorphologie

N.F,87,13-18.

PanizzaV.,MennellaM.(2007).Assessinggeomorphositesusedforrockclimbing.Theexample

ofMonteleoneRoccaDoria(Sardinia,Italy),Geographica Helvetica,62(3),181-191.

ReynardE.,FontanaG.,KozlikL.,ScapozzaC.(2007).Amethodforassessing“scientific”and

“additionalvalues”ofgeomorphosites,Geographica Helvetica,62(3),148-158.

Various Authors (2004). Censimento dei geositi del settore regionale Collina di Torino e

Monferrato,RegionePiemonte,QuadernoScientifico,5.

Webreferenceshttp://www.mapserver.org

http://www.mysql.com

http://www.pmapper.net

Geoheritage.indb 113 22.06.10 15:29

Page 121: Mapping Geoheritage

Geoheritage.indb 114 22.06.10 15:29

Page 122: Mapping Geoheritage

CreationandtestofamobileGISapplicationtosupport

fielddatacollectionandmappingactivitiesongeomor-

phosites

MarcoGiardino,LuigiPerotti,RobertoCarletti,StefanoRusso

GeoSITlab,GISandGeomaticsLaboratory

DepartmentofEarthSciences

UniversityofTorino

ViaValpergaCaluso35

I-10125Torino

E-Mail:[email protected]

In Regolini-Bissig G., Reynard E. (Eds) (2010) Mapping Geoheritage, Lausanne, Institut de

géographie,Géovisionsn°35,pp.115-127.

Geoheritage.indb 115 22.06.10 15:29

Page 123: Mapping Geoheritage

Geoheritage.indb 116 22.06.10 15:29

Page 124: Mapping Geoheritage

A mobile GIS application - 117 -

1. Introduction

Classicalmethodsforfielddatacollectionongeologicalandgeomorphological fea-turesarebasedontheuseofrelativelysimpletools,suchaspapernotebooks,colou-redpencils,basemaps,etc.,togetherwiththepersonalskillsofresearchers.Sofar,datacollectedonthefieldhadtobeinterpreted,summarisedandredrawninordertocreatebasegeologicalandgeomorphologicalmapsand/ormoreelaboratedgeo-thematicones.

Inthelast15years,theuseofcomputersandotherelectronicdevicesforcollection,analysis and distribution of field data has had a notable development also in theEarthSciencesandtheirapplicationstoenvironmentalanalysis.Thistriggeredeffec-tive improvementsnotonly inthefieldactivities,butalso inthe laboratoryones, intermsofenhancement inbothrapidityandprecisionofdataprocessing, interpreta-tion, and representation. Still, many not-yet-resolved problems concern either theconceptual framework or the practical solutions for field data collection and theirtranspositionontomaps.

As regards geothematic applications in the study of natural heritage, in particular,theyneed to share, compareandexchangedatabetween researchersandusers inunambiguousandaccessibleways,possiblyfollowingcodifiedstandardsformappro-ductionanduser-friendlytechnologiesforcommunicationoftheresults.

Inordertofulfilltheabove-mentionedrequirements,theauthorsaimedtodevelopanew application for palm computers to support field data collection and mappingactivities on geomorphosites. This paper presents and discusses the results of thisresearch, including some considerations on the essentials in mapping activities,attributes of geological/geomorphological features and characteristics of geomaticstoolsandmethodologies.

2. MappinganddescriptionofgeomorphositesLookingforfasterandmoresuitableproceduresformappinganddescribinggeomor-phositesinthefield,asafirststep,standardsofgeomorphologicaltechniqueshavebeenconsidered.

Geomorphologicalstudiesaredevotedtocollectingand interpreting informationontheEarth’s surface forms, materials, processes and age of formations. Geomorphologicalmaps are synthetic ways of showing the above-mentioned information (Goudie, 2004)andaresuitablebothforgeodiversitystudiesandgeoheritageprotectionactivities.Assta-ted by the Working group on applied geomorphological mapping (AppGeMa) of theInternationalAssociationofGeomorphologists(IAG),geomorphologicalmapsare,infact,not only important as end products of scientific studies but also as tools for technicalapplicationsbyprofessionalsdealingwiththelandscapeandlandforms(Painetal.,2008).

Geoheritage.indb 117 22.06.10 15:29

Page 125: Mapping Geoheritage

- 118 - M. Giardino et al.

In thecaseofgeoheritage,geomorphologicalmapscanenhanceassessment,plan-ning and geomorphosite management projects. Still, standards of mapping pro-ceduresandlegendsystemsfordifferentscaleshavetobefollowed,inordertopro-vide precise and unequivocal information on distribution of landforms, soils androcks.Thus,bymeansofpropergeomorphologicalmapping,acorrectidentificationandinterpretationoffeaturescreatedbysurfaceprocessescanbeperformed,there-foreenhancingthemodellingofpastandpresentevolutionarystagesofthegeomor-phosites. This can turn out to be very useful for achieving different objectives: toassessvaluesofnaturalresources,todisseminatescientificknowledgetothegeneralpublicand/ortopreventgeomorphologicalhazardsintheexploitedareas(Embleton,1988;Panizza,1999).

Methodologies were tested in Italy for creating maps and descriptions suitable forbothscientificandeducationalpurposes(Giardinoetal.,2004;Cartonetal.,2005;Castaldinietal.,2005).Somecasestudiesevidenced the importanceof supportingterrain surveys and mapping products by 3D imagery (combination of DEMs andremotesensingimages;Bertacchinietal.2007).Someothersshowedtheimportanceof structuring geodatabases and using GIS technologies for better collection,managementandpresentationofgeositedataforgeotourismpurposes(Avanzinietal.2005;Gregori&Melelli,2005;Ghiraldietal.,thisvolume).

3. GeomaticssupportforanewmethodologySimplicity,precisionand rapidityof field survey techniquesaresome ingredients forachievingbetterresultsinthecollectionandorganisationofdataongeomorphosites.Inthisperspective,akeyfactorofferedbydigitaltechniquesisthepossibilityoforga-nisingacompletedatasetduringfieldactivities,avoidingtime-consuminglaboratoryoperations, such as copying data from paper forms and/or repeated drawing ofmaps.

Todevelopadigitalmethodologyformappinganddescribingofgeomorphosites,dif-ferentstudiesoncomputerapplicationsforfield-basedgeological/geomorphologicalactivitieswere compared, conductedbyuniversities, research centres, and technicalinstitutions(e.g.Haugerud&Thoms,1999;Walshetal.,2000;Clarkeetal.,2002).Geomaticssupporttofieldsurveyingwasalsotestedfordevelopingskillsatanedu-cationallevel(e.g.Internationalconference:“Supportingfieldworkusinginformationtechnology”,UniversityofPlymouth).Asacommonconclusionoftheabovementio-ned works, light, easy-to-handle hardware and user-friendly software have beenselected, inorder toofferaprecise,uniformstandard technologicalpath tobe fol-lowedwhencollectingandprocessingdatainthefield.

Geoheritage.indb 118 22.06.10 15:29

Page 126: Mapping Geoheritage

A mobile GIS application - 119 -

Thegeomaticsmethodologysuggestedhereconsistsintheintegrateduseofdigitalpictures and maps from different sources (topographic maps, orthorectified aerialphotographs,othertechnicalgeothematicmaps),whichbecomeeitherabaseoranoutputfordatacollectionandrepresentationofgeomorphosites,byusingdedicatedforms for geomorphological descriptions and mapping. The equipment for suchactivitiesconsistsinapocketPCbasedonWindowsCE,withdedicatedGISsoftwareandBluetoothGPSforgroundpositioning(Fig.1).Theuseofpalm/pocketPCisaninnovative solution with respect to the use of tablet PC as a field mapping toolproposedbyotherresearchteams.Juxtapositionofthetwoalternativesrevealedthatpalmcomputersaremoreconvenient tools for supporting fieldactivities,accordingtoseveralcriteria:size,weight,autonomypowerofbatteries,rapidityandsimplicityofuse,andoverallcostofinstrumentation.

Fig.1 Geomaticssupportsfordigitalmappinganddescriptionofgeomorphosites:palm/pocketPCanddigitalimagery(topographicmaps,orthorectifiedaerialphotographs,othertechnicalgeothematicmaps).

4. FunctioningofSRG2application

Lookingforfasterandmoresuitableproceduresoffieldmappinganddatacollectionongeosites,eitherforscientificresearchandtechnicalmanagement,anapplicationcalled “SRG2” (acronym for the Italian: “Supporto al Rilevamento Geologico/

Geoheritage.indb 119 22.06.10 15:29

Page 127: Mapping Geoheritage

- 120 - M. Giardino et al.

Geomorfologico”;SupporttoGeological/GeomorphologicalSurveys)wascreated,asan extension for ArcPad (GIS-ESRI for palms) developed in Visual Basic. Into theArcPadenvironment,theSRG2applicationaddsatoolbar,vectorsandtablesmadeupof several functions for a useful mapping and classification of geological andgeomorphological features (Fig. 2).ArcPad softwaregenerates vector shapefiles, oflarge use in GIS projects and of great utility in assessment and management ofgeomorphosites.

Fig.2 Left;SRG2shapefilesandtoolbar intoArcPad.Right;Listofthe16layersused in test sites.Geometries, legendandvisual representationsareavai-lableforareal,linearandpointfeatures.

Inordertocataloguefeaturesrelevanttogeomorphositesstudies(erosionalanddeposi-tionallandformsandrelateddeposits,characteristicprocessesofdifferentmorphogene-ticenvironments,lithologicalandstructuralelements,anthropicfeaturesandinfrastruc-tures,locationpointsforsamplingandpictureviews),theSRG2applicationwasstructu-redintodifferentlayers(shapefileformat)andassociated(Fig.2).

During field activities, as a first step, distinct elements are classified by geometry(points,linear,arealfeatures).Drawingelementsinthemapcanbemanuallyopera-ted,throughvisualrecognitioninthefield,orautomatically,bymeansofaGPStrac-kingoption.

Then,surveyedfeaturesareclassifiedbytypology:1)geneticenvironmentsandrela-ted processes, either endogenic or exogenic, are interpreted (“glacial”, “fluvial”,“gravity-induced”,“tectonic”,“complex”,etc.)orleftunknown;2)furtheralphanu-mericdata (morphometrical, chronological, lithological, etc.) are requested to com-

Geoheritage.indb 120 22.06.10 15:29

Page 128: Mapping Geoheritage

A mobile GIS application - 121 -

pletedescriptionandtosupport interpretations.Eachtypologyof classified elements has a dedicated list of selectable attri-butes (Fig. 3), useful both for achieving a complete scientificdescriptionofthesurveyedfeaturesandforindicatingrelevantfeaturestobeconsideredbytechnicaloperatorsinthegeomor-phological heritage, for planning and management purposes.Asanexample,byusingSRG2application,badlandareasweremapped as part of the geodiversity of the Piemonte region;theirfulldescriptionallowednotonlytheselectionoffeaturesto be protected as geomorphosites (according to assessmentmethodologies;Reynardetal.,2007),butalsopropermanage-mentofthegeomorphologicalriskrelatedtogeotourismactivi-tyinadynamicenvironment.

Fig.3 Examplesofselectableattributestosupportinter-pretationofgeomorphologicalfeatures.

Geoheritage.indb 121 22.06.10 15:29

Page 129: Mapping Geoheritage

- 122 - M. Giardino et al.

5. TestsitesinthegeoheritageoftheItalianWesternAlps

Tests for SRG2 were performed in the mountain and piedmont areas of the ItalianWesternAlps(PiemonteandValled’AostaRegions).

In theUpperSusaValley,Montgenèvrearea (along theborderbetweenFranceandItaly) field mapping activities by using SRG2 were conducted during a nationalresearchprojectdevoted togeomorphological analysis in themountainareaof theTorino2006WinterOlympicGames(Panizzaetal.2005).Landformdistributionandactivity were surveyed and compared to landuse patterns and infrastructures. TheUpperSusaValleyskiresortareaincludestheMontidellaLunaandValThurasgeo-sites (Fig. 4). Here, SRG2 supported mapping and collecting information of theintensehumanactivityandlanduseintheareaandalsoofthelong-termgravitatio-naldeformationsonmountainslopes.Detailed fieldanalysiswasbasedongeothe-maticmapsbysatellitemonitoringanddigitalaereo-photogrammetricimageproces-sing.DataconcerningtheterritoryandvegetationwereavailablefortheSRG2geoda-tabasethankstothepartnershipwiththeUpperSusaValleyForestryCommissionandthemunicipalityofCesanaTorinese.

OtherapplicationsofSRG2wereperformedintheAostaValley,intheEspaceMont-BlancareaandtheGranParadisoNationalPark.Bothactiveandrelict landformsofglacial environments were surveyed (Fig. 5). Geomorphosites of the Espace Mont-Blancareawereconsidered inorder toenhancetheprotectionofa territory rich innaturalandtouristresources.Here,theMiageglacialbasin(Mont-Blanc,Italianside)wasselectedbothforitsscientificvalueandgeomorphologicalrisks.TheMiagegla-cier is a debris covered glacier characterised by a substantial stability in the areadimension,butwithnoteworthyvolumetricvariationsinthelastdecades,relatedtoinstabilityphenomenaonthesidemoraines.Theabundantdebriscoverintheabla-tion zone is caused by the diffused gravitational instability of the surroundingrockwalls, controlled by particular morphoclimatic and morphostructural conditionsonthesouthernslopeofMont-Blanc. ItseasyaccessmakestheMiageahighlyfre-quentedtouristarea,notonlyforalpinists.Thisiswhyinthecaseofinstabilityphe-nomena theamountofpeople involvedcouldbevery large.SRG2helped to indivi-dualisesectorsofnaturalhazardsandtheirpossibleinteractionwithhumanelements(paths,tracks,alpineroadsandshelters).A3Dmodeloftheglacierwasalsocreatedfor spreading scientific informationonpremonitory signalsof the instabilitypheno-mena.

Geoheritage.indb 122 22.06.10 15:29

Page 130: Mapping Geoheritage

A mobile GIS application - 123 -

Fig.4 3D view of the Thuras Valley (a) and particular of the geomorphologicalmapobtainedusingSRG2application(b).

IntheGranParadisoNationalPark,includingthehighvalleysoftheValled’AostaandPiemonteRegionsaroundtheGranParadisoMassif (4061 m),usebybothalpinistsandtouristsoftheareahasbeenconsolidatedsincealongtime,throughthevalleyitineraries and the glacial high altitude slopes. The on-going climate change

a)

b)

Geoheritage.indb 123 22.06.10 15:29

Page 131: Mapping Geoheritage

- 124 - M. Giardino et al.

Fig.5 3DviewoftheMiageglacier(Mont-Blancmassif)andexamplesofformsdeve-lopedforArcpPadtoacquireglacial landformsandothercharacteristics,bothintheEspaceMont-BlancareaandintheGranParadisoNationalPark.

Geoheritage.indb 124 22.06.10 15:29

Page 132: Mapping Geoheritage

A mobile GIS application - 125 -

determinesrapidtransformationofthemid-highslopescharacterisedbylargefractu-redrockmassesandbytheactivationofgeomorphologicalinstabilityphenomena.

TheauthorsconductedresearchbyusingSRG2toanalysehazardsonrockwallsandglaciersinsectorsofinterestforalpineroutesand/orhikingtracks(TribolazioneandTrajoGlaciers;CogneValley;Fig.6). For the field surveys,ageomorphologicalmap(Giardinoetal.,2000)andadigitaltracknetworkrealisedbytheUniversityofTorinoresearchunitfortheParkwereused.Inaddition,avisualmonitoringoftheunstablesectorswasdevelopedbymeansofdigitalinstrumentation,incollaborationwithParkrangers. Results on thehazard and risk studieswereused as teachingmaterial forParkrangersandaspopularisedinformationforthegeneralpublic.

Inbothabove-mentionedcasestudies,SRG2testsallowedtheautomaticimportwithlegendtranspositionoffieldstructuredgeodatabasedata,resultingintheimmediatecreationofpublishablemaps.Inthisway,thefieldsurveybecameanintegralpartofacompleteandeasy-to-updateGIS,withoutotherintermediatestages.

Fig.6 3DviewoftheCogneValley(AostaValley-NWItaly)andexampleofmapdevelopedwithArcpPadtochecktrailoperabilityandtheircharacteristics.

Geoheritage.indb 125 22.06.10 15:29

Page 133: Mapping Geoheritage

- 126 - M. Giardino et al.

6.Conclusion

The experimental mobile GIS application called SRG2 (Support to Geological/Geomorphological Surveys) providesa“customised” interface to support fielddatamappingandtodescribegeomorphositesinthefield.SRG2wasaimedatsimplifyingfielddatacollectionactivities:testsweresuccessfulandalsoallowedusers,oncebackin the laboratory, toprintprocessed informationdirectly throughanautomaticgra-phicrefiningofthefield-datalegendinasimplifiedform.

Thedirectproductionofthematicmaps“inthefield”andimmediate“recording”ofdatainaspecificgeodatabaseseemtobethemostpromisingaspectsofthemethod,whichwassuccessfullyusednotonlybyresearchersbutalsobytechnicalstaffopera-tinginparksandotherterritorial institutionsinvolvedintheinventoryandmanage-ment of geomorphosites. SRG2 also allowed a “skill transfer” between researchersandoperatorstobedeveloped,basedonthepracticaluseofgeomaticstools.Sectortechniciansworkingintheterritoryfulltimeweregivenasimplifiedkeytoreadandinterpret instability processes, which will enable them to get easier surveys anddetaileddescriptionofgeomorphosites.

A similar procedure could also be easily used for teaching and/or demonstrationpurposesfortouristsandstudents.Thiscouldbeappliedinsupportingfieldactivitiesofuniversitystudents,butalsobespecificallyaddressedfortrainingalpineguidesandthetouriststhemselvesingeomorphositeknowledgeandprotection.

ReferencesAvanziniM.,CartonA.,SeppiR,TomasoniR.(2005).GeomorphositesinTrentino:afirstcensus,

Il Quaternario,18(1),63-78.

Bertacchini M., Benito A., Castaldini D. (2007). Carta geo-archeo-turistica del territorio di

Otricoli(Terni,Umbria).InProceedings of the 3rd National Conference of the Italian

Association Geology and Tourism,Bologna(Italy)1-3March2007,213-220.

Carton A., Coratza P., Marchetti M. (2005). Guidelines for geomorphological sites mapping:

examplesfromItaly,Géomorphologie: relief, processus, environnement,3,209-218.

Castaldini D., Valdati J., Ilies D.C. (2005). The contribution of geomorphological mapping to

environmental tourism in protected areas: examples from Appennines of Modena

(northernItaly),Revista de Geomorfologie,7,91-106.

ClarkeS.,GeenwaldC.,SpaldingV.(2002).Using ArcPad,ESRI.

Embleton C. (Ed.) (1988). Applied geomorphological mapping: methodology by example.

Zeitschrift für Geomorphologie,Suppl.Bd68,239p.

Giardino M., Giordan D., Mortara G. (2000). Carta geomorfologica informatizzata del Parco

Nazionale del Gran Paradiso,GISsystemandmaps,EnteParcoNazionaledelGran

Paradiso,Torino,SeaConsultingSrl.

Geoheritage.indb 126 22.06.10 15:29

Page 134: Mapping Geoheritage

A mobile GIS application - 127 -

GiardinoM.,GiordanD.,BaggioP.,MortaraG.(2004).MapoftheSangonettoValleyGeosites

(Western Alps): geological research and tourism enhancement, In Pasquarè G.,

VenturiniC.(Eds),Mapping Geology in Italy,Firenze,APAT–DipartimentodiDifesa

delSuolo,S.E.L.C.A.,325-336.

GhiraldiL.,CoratzaP.,MarchettiM.,GiardinoM.(2010).GISandgeomaticsapplicationforthe

evaluationandexploitationofPiemontegeomorphosites,thisvolume.

GoudieA.(2004).Encyclopedia of Geomorphology,London,Routledge.

GregoriL.,MelelliL.(2005).GeotourismandGeomorphosites:theG.I.S.solution,Il Quaternario,

18(1),285-292.

HaugerudR.,ThomsE.(1999).Geologic Data Assistant (GDA): an ArcPad extension for geologic

mapping,U.S.GeologicalSurveyOpen-FileReport06-450.

PainC.,ParonP.,SmithM.(2008).Appliedgeomorphologicalmapping(AppGeMa):aworking

groupoftheInternationalAssociationofGeomorphologists,Geophysical Research

Abstracts,Vol.10,EGU2008-A-05888.

Panizza M. (1999). Geomorphological assets: concepts, methods and examples of survey, In

BarettinoD.,VallejoM.,GallegoE. (Eds).Towards the balanced management and

conservation of the geological heritage in the New Millenium, Madrid, Societad

GeológicadeEspaña,125-128.

PanizzaM.,CartonA.,CoratzaP.,DiGregorioF.,GiardinoM.,NesciO.,PambianchiG.,Pelfini

M.,PiccazzoM.(2005). Ilpatrimoniogeomorfologicocomerisorsaperunturismo

sostenibile:unprogettonazionale, InProgetto Interreg IIIAALCOTRAItalia-Francia

(Alpi),Atti del ConvegnoGeologia e turismo: esperienze a confronto,Pollein(Aosta,

Italia)19novembre2005,43-48.

ReynardE.,FontanaG.,KozlikL.,ScapozzaC.(2007).Amethodforassessing“scientific”and

“additionalvalues”ofgeomorphosites,Geographica Helvetica,62(3),148-158.

WalshG.,ReddyJ.,ArmstrongT.(2000).Geologic mapping and collection of geologic structure

data with a GPS receiver and a personal digital assistance (PDA) computer, U.S.

GeologicalSurveyOpen-FileReport00-346.

Geoheritage.indb 127 22.06.10 15:29

Page 135: Mapping Geoheritage

N° 34

www.unil.ch/igul

Lawali DAMBO, (2007) : Usages de l'eau à Gaya (Niger) : entres fortes potentialités et contraintes majeures. Thèse de doctorat, 354 pages. Version couleur sur CD-ROM annexé. Christophe LAMBIEL, (2006) : Le pergélisol dans les terrains sédimentaires à forte déclivité : distribution, régime thermique et instabilités. Thèse de doctorat, 260 pages. Jean-Pierre PRALONG, (2006) : Géotourisme et utilisation des sites naturelsd'intérêt pour les sciences de la Terre : les régions de Crans-Montana-Sierre (Valais, Alpes suisses) et Chamonix-Mont-Blanc (Haute-Savoie, Alpesfrançaises). Thèse de doctorat, 224 pages.

Lawali DAMBO, Emmanuel REYNARD, (eds) (2005) : Vivre dans les milieux fragiles : Alpes et Sahel. Hommage au Professeur Jorg WInistorfer. 348 pages.

Marina MARENGO et Jean-Bernard RACINE, (avec la collaboration de C.-A. BLANC) (2005) : De l'Etat Providence à la solidarité communautaire : le monde associatif à Lausanne. (Agenda 21). Vers un nouveau projet de société locale. 242 pages.

Veronica NOSEDA, (2005) : "Violences urbaines". Une exploration au-delà des interprétations reçues. 142 pages.

Caterina GENTIZON, (2004) : Méthode d'évaluation des réserves naturelles en Suisse. Le cas de la Pierreuse et des Grangettes. Thèse de doctorat, 222 pages.

Emmanuel REYNARD, Jean-Pierre PRALONG, (eds) (2004) : Paysages géomorphologiques. Actes de colloque. 258 pages.

Patrick GILLARD, (2003) : Mendier ou mourir ? Dynamiques spatiales de l'extrême pauvreté au Niger. Thèse de doctorat, 328 pages.

Micheline COSINSCHI-MEUNIER, (2003) : Entre transparence et miroitement,la transfiguration cartographique. Pour une épistémologie ternaire de la cartographie. Thèse de doctorat, 425 pages.

N° 33

N° 32

N° 31

N° 30

N° 29

N° 28

N° 27

N° 26

N° 25

Quartier - DorignyAnthropoleCH-1015 Lausanne

Mapping Geoheritage

Géraldine Regolini-BissigEmmanuel Reynard (Eds)

Map

pin

g G

eoh

erit

age

G

éral

dine

Reg

olin

i-Bis

sig

/ Em

man

uel R

eyna

rd (E

ds)

35 35 35

Lausanne, juin 2010

Nb pages?

< C

entr

age

bloc

titr

e >

Limite textesFormat B5 : 240/170 mm