Top Banner
PDVSA N° TITULO REV. FECHA DESCRIPCION PAG. REV. APROB. APROB. APROB. FECHA APROB. FECHA VOLUMEN 4–II E PDVSA, 1983 90619.1.091 PUESTA A TIERRA Y PROTECCION CONTRA SOBRETENSIONES ORIGINAL Alexis Arévalo Jesús E. Rojas DIC. 98 DIC. 98 GUIA DE INGENIERIA DIC. 98 Y. K. 0 39 A. A. J. E. R. MANUAL DE INGENIERIA DE DISEÑO ESPECIALISTAS PDVSA
40

MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

Apr 12, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

PDVSA N° TITULO

REV. FECHA DESCRIPCION PAG. REV. APROB. APROB.

APROB. FECHAAPROB.FECHA

VOLUMEN 4–II

� PDVSA, 1983

90619.1.091 PUESTA A TIERRA Y PROTECCION CONTRASOBRETENSIONES

ORIGINAL

Alexis Arévalo Jesús E. RojasDIC. 98 DIC. 98

GUIA DE INGENIERIA

DIC. 98 Y. K.0 39 A. A. J. E. R.

MANUAL DE INGENIERIA DE DISEÑO

ESPECIALISTAS

�����

Page 2: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 1

Menú Principal Indice manual Indice volumen Indice norma

�����

Indice1 OBJETIVO 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 ALCANCE 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 REFERENCIAS 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 COVENIN – Comisión Venezolana de Normas Industriales 3. . . . . . . . . . . 3.2 IEEE – Institute of Electrical and Electronics Engineers, Inc 3. . . . . . . . . . . 3.3 ANSI – American National Standards Institute 4. . . . . . . . . . . . . . . . . . . . . . 3.4 NFPA – National Fire Protection Association 4. . . . . . . . . . . . . . . . . . . . . . . . 3.5 API – American Petroleum Institute 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 PUESTA A TIERRA DEL NEUTRO 4. . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 PUESTA A TIERRA DE ENCERRAMIENTOS 5. . . . . . . . . . . . . . . . . . 5.1 Canalizaciones 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 PUESTA A TIERRA DE CABLES 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Puesta a Tierra de Cables Monopolares 6. . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 PUESTA A TIERRA DE EQUIPOS 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Equipos Principales de Distribución 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 CONDUCTORES PARA PUESTA A TIERRA 9. . . . . . . . . . . . . . . . . . 8.1 Conductores para Conexión del Electrodo de Puesta a Tierra 9. . . . . . . . . 8.2 Conductores para Puesta a Tierra de los Equipos 9. . . . . . . . . . . . . . . . . . .

9 PUENTES DE UNIÓN 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 SISTEMA DE ELECTRODOS DE PUESTA A TIERRA 12. . . . . . . . . . . 10.1 Resistencia del Sistema de Electrodos de Puesta de Tierra 13. . . . . . . . . . .

11 PUESTA A TIERRA DE SUBESTACIONES 14. . . . . . . . . . . . . . . . . . . . 11.1 Calibre de los Conductores de Puesta a Tierra 15. . . . . . . . . . . . . . . . . . . . . 11.2 Instalación de los Conductores de Puesta a Tierra 16. . . . . . . . . . . . . . . . . . 11.3 Conductores para la Conexión del Neutro 18. . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Aislamiento y Protección del Conductor para la Conexión del Neutro 18. .

12 PUESTA A TIERRA DE LÍNEAS DE TRANSMISIÓN Y DISTRIBUCIÓN 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 PUESTA A TIERRA CONTRA SOBRETENSIONES TRANSITORIAS DEORIGEN EXTERNO E INTERNO 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1 Puesta a Tierra Contra Descargas Atmosféricas Directas 22. . . . . . . . . . . . .

14 PUESTA A TIERRA CONTRA ELECTRICIDAD ESTÁTICA 23. . . . . . 14.1 Puentes de Unión en Camiones y Carros Cisterna y Estaciones de

Carga (Llenaderos) 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 3: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 2

Menú Principal Indice manual Indice volumen Indice norma

�����

14.2 Puentes de Unión en Muelles de Carga en Terminales Marinos 25. . . . . . .

15 PUESTA A TIERRA DE COMPUTADORES 26. . . . . . . . . . . . . . . . . . . .

16 PUESTA A TIERRA DE INSTRUMENTACIÓN 27. . . . . . . . . . . . . . . . . .

17 RESISTENCIA PARA PUESTA A TIERRA DEL NEUTRO 35. . . . . . . 17.1 Resumen de Requerimientos Adicionales 35. . . . . . . . . . . . . . . . . . . . . . . . . . 17.2 Materiales 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 Diseño 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 BIBLIOGRAFIA 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 4: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 3

Menú Principal Indice manual Indice volumen Indice norma

�����

1 OBJETIVOLa puesta a tierra tiene por objeto:

a. Minimizar las sobretensiones transitorias.

b. Suministrar corriente de falla para operar las protecciones.

c. Proteger a las personas.

d. Establecer un punto común de referencia.

Un buen sistema de puesta a tierra debe:

a. Limitar a valores definidos la tensión a tierra de todo el sistema eléctrico(Puesta a tierra del sistema).

b. Poner a tierra y unir los encerramientos metálicos y estructuras de soporteque pueden ser tocados por las personas (Puesta a tierra del equipo).

c. Proteger contra las sobretensiones inducidas.

d. Proteger contra las descargas atmosféricas directas

e. Proteger contra la electricidad estática proveniente de la fricción.

f. Suministrar un sistema de referencia para los equipos electrónicos.

2 ALCANCEEsta Guía cubre los requerimientos mínimos necesarios para el diseño de lapuesta a tierra de las instalaciones eléctricas en PDVSA.

3 REFERENCIASLa última edición de las siguientes normas o códigos deben ser consultadassegún se indique en esta guía.

3.1 COVENIN – Comisión Venezolana de Normas Industriales200 Código Eléctrico Nacional552 Disposiciones sobre Puesta a Tierra y Puentes de Unión en

Instalaciones en Areas Peligrosas.

3.2 IEEE – Institute of Electrical and Electronics Engineers, Inc32 Standard Requirements, Terminology Test Procedure for Neutral

Grounding Devices.80 Guide for Safety in AC Substación Grounding.81 Guide for Measuring Earth Resistivity, Ground Impedance, and

Earth Surface Potentials of a Ground System.

Page 5: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 4

Menú Principal Indice manual Indice volumen Indice norma

�����

665 Standard for Generating Station Grounding.142 Recommended Practice for Grounding of Industrial and

Commercial Power Systems.1100 Recommended Practice Powering and Grounding Sensitive

Electronic Equipment.

3.3 ANSI – American National Standards InstituteC2 National Electrical Safety Code.

3.4 NFPA – National Fire Protection Association78 Lightning Protection Code.30 Flammable and Combustible Liquids Code.321 Standard on Basic Classification of Flammable and Combustible

Liquids.325M Fire Hazard Properties of Flammable Liquids, Gases and Volatile

Solids.

3.5 API – American Petroleum InstituteRP 2003 Protección Against Ignitions Arising out of Static, Lightining, and

Stray Currents.

4 PUESTA A TIERRA DEL NEUTROEl método de puesta a tierra de los neutros de los sistemas industriales depotencia, dependerá de la tensión de operación según lo siguiente:

a. Hasta 1 000 V – Puesta a tierra efectiva.

b. Entre 1 000 V y 34 500 V – Puesta a tierra con baja resistencia.

c. Sobre 34 500 V – Puesta a tierra efectiva.

Cuando existan cargas monofásicas, la puesta a tierra será efectiva.

El método en el caso de las líneas de distribución, subtransmisión y transmisión,externas a las plantas, será puesta a tierra efectiva, independientemente de latensión de operación.

En los sistemas de distribución, subtransmisión y transmisión, se prefiere lapuesta a tierra efectiva por dos razones básicas: bajo costo y facilidad paradetectar la falla. Dado que estas líneas son generalmente largas, la magnitud dela corriente de falla a tierra es baja y la colocación de dispositivos limitadores decorriente en el neutro dificultaría su detección. Esto seria peligroso para laspersonas que se encuentran en el área de acción.

En sistemas industriales, las líneas son cortas y la magnitud de la corriente defalla es alta. En estos casos, es conveniente limitar la corriente de falla a tierraa fin de proteger a las personas y los equipos.

Page 6: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 5

Menú Principal Indice manual Indice volumen Indice norma

�����

Cuando sea vital la continuidad de servicio, se podrá utilizar el método de altaresistencia, el cual tiene los beneficios de los sistemas aislados sin los problemasde sobretensiones transitorias causados por éstos.

Cuando se requiera continuidad de servicio en un proceso crítico, el neutro podráponerse a tierra a través de alta resistencia, pero sólo en sistemas con tensionesentre 480 V y 15 000 V y sin cargas monofásicas. En este caso, deben instalarsedetectores de falla a tierra.En el caso de generadores locales de 600 V o menos, podrá utilizarse el métodode baja reactancia.A pesar de que el método de baja reactancia no es muy utilizado, podráemplearse en los generadores de baja tensión a fin de reducir la corriente de fallaa tierra a un valor inferior a la trifásica. Esto permitirá proteger a los devanados.El valor de cortocircuito suministrado por el fabricante del generador se refierea la capacidad de falla trifásica apernada (Este término significa que no hayresistencia en la falla como por ej., la resistencia del arco)Cuando se requiera alimentar cargas monofásicas de 120/240 V y se dispongade transformadores monofásicos o bancos trifásicos sin neutro pero con tomacentral accesible, podrá utilizarse el método del punto medio de la fase.En instalaciones nuevas, el método de puesta a tierra efectiva es más ventajosoa un costo igual o menor. El método del punto medio de la fase no debe utilizarseen tensiones superiores a 240 V.

5 PUESTA A TIERRA DE ENCERRAMIENTOS5.1 Canalizaciones

La puesta a tierra de las canalizaciones metálicas se regirá por lo indicado en elCódigo Eléctrico Nacional,Parte D, Secciones 250–32 y 250–33 y los siguientespárrafos.

5.1.1 Las canalizaciones metálicas para conductores o cables, tales como tuberías ybandejas, se conectarán a tierra en el extremo de alimentación mediante laconexión a la barra de tierra del tablero de potencia o centro de control, cuandose use este tipo de equipos; o mediante conexión a los encerramientos del equipoconectados a tierra. En el extremo de la carga, las canalizaciones metálicas seránconectadas a las cubiertas de los equipos alimentados.

5.1.2 Se asegurará la continuidad eléctrica entre los extremos de las canalizacionesmetálicas de conductores y cables. No se usarán tramos o accesorios nometálicos en canalizaciones metálicas.

6 PUESTA A TIERRA DE CABLESa. Las armaduras, cubiertas y pantallas metálicas de todos los cables se

conectarán entre sí y a tierra en el extremo de alimentación, mediante

Page 7: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 6

Menú Principal Indice manual Indice volumen Indice norma

�����

conexión a la barra de tierra del tablero de potencia o centro de control,cuando se usen estos tipos de equipos; o mediante conexión a losencerramientos metálicos del equipo conectados a tierra, cuando se usentableros.

b. Las armaduras y cubiertas metálicas de los cables multipolares seconectarán entre sí y a tierra según se detalla seguidamente:

– Conectados entre sí y a tierra en cada extremo del cable.– Conectados entre sí en cada empalme y conectados a través de cada

empalme de tal manera que haya continuidad entre los tramos de cable.– Conectados entre sí y al encerramiento metálico del equipo en su extremo

de carga.

c. Las pantallas metálicas individuales de los cables multipolares se pondrána tierra en cada extremo y se unirán a la armadura y cubierta metálica delcable (en caso de existir). Cuando sea práctico, las pantallas metálicasindividuales de cables que tengan varios empalmes, también se pondrán atierra en cada empalme y se unirán a la armadura y cubierta metálica (encaso de existir).

6.1 Puesta a Tierra de Cables MonopolaresLos métodos de puentes de unión y puesta a tierra para cables monopolares quetengan armadura, cubierta o pantalla metálica serán especificados para el usoconsiderado a fin de evitar niveles de tensión peligrosos en la cubierta o lapantalla, o temperatura excesiva causada por la corriente que circula por ellas encaso de estar conectadas a tierra. Generalmente, la armadura, cubierta y pantallade los cables monopolares menores de 500 kcmil (253 mm2), que tengan las tresfases en el mismo ducto pueden unirse y ponerse a tierra de la misma manerautilizada para cables multipolares. La armadura, cubierta y pantalla de cables demayor calibre pueden requerir un punto único de puesta a tierra con empalmesaislantes entre las secciones puestas a tierra.

Cuando se instalen cables con pantalla metálica, ésta debe ser puesta a tierraefectivamente. Si los conductores tienen pantallas individuales, éstas deben serpuestas a tierra en cada empalme y conectarse a través de cada empalme paraasegurar la continuidad de la pantalla de un cable a otro. Cuando los conductoresde puesta a tierra forman parte de la estructura del cable, deben conectarse conla pantalla en ambos extremos. Para una operación efectiva y segura, la pantalladebe conectarse en cada extremo del cable y en cada empalme. Cuando seutilicen cables monopolares en circuitos cortos o con corrientes bajas, puedenponerse a tierra en un solo punto. En este caso debe incluirse un conductor deretorno de tierra y asegurar que la tensión entre la armadura, pantalla o cubiertay tierra, en el otro extremo del cable, no supere 100V. Debe evitarse la puesta atierra de las armaduras, pantallas o cubiertas a tierra en ambos extremos cuando

Page 8: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 7

Menú Principal Indice manual Indice volumen Indice norma

�����

los circuitos son largos o muy cargados, debido a las altas pérdidas y la reducciónen la capacidad amperimétrica del conductor de fase. En estos casos esrecomendable la conexión Kirke–Searing, sobre todo cuando los cables estándirectamente enterrados pues es muy sencillo realizar la transposición.

Si bien el criterio para determinar la longitud máxima de un circuito puesto a tierraen un solo punto debe ser la tensión máxima aceptable por el usuario, la tablasiguiente puede usarse como referencia:

Calibre conductor Un cable por tubo Tres cables por tubo

(AWG o kcmil) (metros) (metros)

1/0 440 1490

4/0 320 1060

350 245 780

500 210 660

750 180 540

1000 170 –

2000 125 –

Estas longitudes aplican cuando la frecuencia es de 60 Hz. Existen condicionesbajo las cuales se puede incrementar la longitud máxima permisible, comocuando los cables no están cargados a su máxima capacidad. Si el cable estápuesto a tierra en la mitad de su longitud, ésta se puede duplicar.

7 PUESTA A TIERRA DE EQUIPOS

7.1 Las partes metálicas no conductoras de los equipos eléctricos fijos, los noeléctricos, y los conectados mediante enchufe y cordón, serán puestos a tierracuando sea requerido por el Código Eléctrico Nacional, Parte E, Secciones250–42, 250–43, 250–44, 250–45 y 250–155.

7.1.1 Cuando se requiera poner a tierra las partes metálicas no conductoras de losequipos fijos, se hará como se indica en la Sección 250–57 del Código EléctricoNacional.

7.1.2 Cuando se requiera poner a tierra las partes metálicas no conductoras de losequipos conectados mediante cordón y enchufe, se hará como se indica en laSección 250–59 del Código Eléctrico Nacional.

7.2 Equipos Principales de DistribuciónLas estructuras de los tableros de potencia blindados, de los de encerramientometálico, de los centros de control y de los centros de potencia alternos (llamados

Page 9: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 8

Menú Principal Indice manual Indice volumen Indice norma

�����

“turnaround power centers” utilizados cuando los principales están enmantenimiento) se pondrán a tierra mediante dos conexiones separadas quesalgan desde sus barras de tierra a puntos de tierra cercanos. Losencerramientos metálicos de los dispositivos individuales en los tableros seunirán a la estructura de los mismos. Las conexiones a tierra de equipos ensubestaciones con neutros conectados a tierra, se interconectarán con laconexión a tierra del neutro de la subestación.

7.2.1 Los encerramientos metálicos de equipos fijos que operen a una tensión de líneade 600 voltios máximo, se consideran puestos a tierra mediante su conductor depuesta a tierra del equipo (Ver Sección 8), no requiriendo conexión a tierraadicional, siempre que dichos equipos sean alimentados desde sistemasefectivamente puestos a tierra.

7.2.2 Los encerramientos metálicos de equipos fijos que operen a una tensión de líneasuperior a 600 V, se pondrán a tierra mediante su conductor de puesta a tierra delequipo y una conexión suplementaria a través de un punto de puesta a tierraubicado en las cercanías del equipo. No se utilizará el suelo como el únicoconductor de puesta a tierra del equipo.

7.3 Las carcazas de los equipos fijos rotativos (motores y generadores) y estáticos(transformadores) que operen a más de 600 V, tendrán una conexión directa alelectrodo de puesta a tierra. Esta conexión puede hacerse al acero estructuralo a jabalinas. Esta reforzará al conductor de puesta a tierra dando protecciónadicional contra descargas atmosféricas e igualando los potenciales en el áreadonde se encuentra el equipo. Esto se traduce en mayor seguridad para laspersonas. El CEN no permite que se utilice el suelo como único camino de retornopara la corriente de falla.

7.4 Los encerramientos metálicos de equipos portátiles se conectarán a unconductor de tierra ubicado dentro del mismo cable que los conductores de faseque alimenten al equipo, según se describe seguidamente:

– El conductor de tierra será del mismo tamaño que el conductor de línea.– El conductor de tierra se conectará al encerramiento mediante contactos

separados en el enchufe de alimentación y en el tomacorriente, y se conectaráa la cubierta del enchufe.

– El enchufe y el tomacorriente serán polarizados y dispuestos en tal forma quela conexión a tierra se active de primero y se desconecte de último.

7.5 Los encerramientos metálicos tales como: cercas, separaciones o pisos deparrilla ubicados alrededor de equipos que operan a una tensión mayor a 600 Vse conectarán a tierra mediante conexiones a puntos cercanos.

Ver CEN Sección 250–155.

Page 10: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 9

Menú Principal Indice manual Indice volumen Indice norma

�����

Las cercas y pisos de parrilla metálicos que encierran o limitan el espacio debajode edificaciones de subestaciones elevadas se conectarán a tierra medianteconexiones a puntos cercanos

8 CONDUCTORES PARA PUESTA A TIERRALos conductores para la conexión del electrodo de puesta a tierra y para la puestaa tierra de los equipos se regirán por las Partes F, J, K, L y M del Artículo 250 delCódigo Eléctrico Nacional.

8.1 Conductores para Conexión del Electrodo de Puesta a TierraLos conductores para la conexión del electrodo de puesta a tierra se regirán porlas secciones 250–23, 250–26(b), 250–53, 250–91(a), 250–92(a)(b), 250–93,250–94, 250–112, 250–113, 250–115, 250–117, 250–125, y 250–150 del CódigoEléctrico Nacional.

Las secciones mencionadas del CEN establecen los materiales, determinacióndel calibre, métodos de instalación, conexiones, protección mecánica y otrosrequerimientos aplicables a los conductores para la conexión del electrodo depuesta a tierra. El calibre del conductor para sistemas de corriente alterna seestablece en la tabla 250–94 la cual se basa en el calibre del mayor conductorde fase o en el calibre equivalente cuando hay conductores en paralelo.

8.2 Conductores para Puesta a Tierra de los Equipos

8.2.1 Los conductores para la puesta a tierra de los equipos se regirán por lasSecciones 250–26(a), 250–50, 250–51, 250–91(b), 250–95. 250–99, 250–113,250–114, 250–118, 250–119, 250–125, 250–150, 250–153(d), 250–154(b) y250–155 del Código Eléctrico Nacional y los párrafos siguientes.

8.2.2 En caso de usarse centros de control o tableros de potencia, el extremo desuministro de los conductores de puesta a tierra de los equipos, se conectará ala barra de puesta a tierra respectiva.

8.2.3 El extremo de la carga de los conductores de puesta a tierra de los equipos seconectará a una barra de puesta a tierra, cuando exista, o al encerramientometálico del equipo servido por el circuito.

Debe asegurarse la existencia de un puente de unión entre las partes metálicasno conductoras del equipo, las cuales pudieran energizarse en caso de falla, yel conductor de puesta a tierra del equipo.

8.2.4 El conductor de puesta a tierra del equipo será al menos uno de los indicados enla Sección 250–91(b) del Código Eléctrico Nacional o uno o más de los siguientes:

a. Tubería metálica eléctrica, armaduras y pantallas de cables armados encircuitos de longitud máxima de 45 m (150 pies) y protegidos por

Page 11: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 10

Menú Principal Indice manual Indice volumen Indice norma

�����

dispositivos de sobrecorriente que tengan una capacidad nominal máximade 20 amperios.

b. Pantallas de cables armados usados en circuitos protegidos por relés detierra siempre que la pantalla sea capaz de conducir la corriente máxima defalla a tierra sin causar daños al cable o a la pantalla, durante el tiempopermitido por el relé de respaldo de respuesta mas lenta.

c. Cubiertas metálicas de ductos de barras, cuando la longitud del ducto noexceda de 7,5 m (25 pies).

8.2.5 Los conductores de puesta a tierra colocados dentro de cables ensambladospueden ser desnudos y serán del mismo material y trenzado que los conductoresde fase.

8.2.6 La impedancia combinada del conductor de puesta a tierra y de los conductoresde fase del circuito será lo suficientemente baja para asegurar el funcionamientodel dispositivo de protección de sobrecorriente en un tiempo que no exceda ellímite térmico de los conductores, debido a una falla a tierra en el extremo decarga del circuito.

8.2.7 En circuitos de tomacorriente, la impedancia del cordón portátil enchufable seincluirá en la impedancia combinada para verificar el funcionamiento deldispositivo de protección. Se asumirá una longitud máxima del cordón portátil de30 m (100 pies).

NOTAS:

a. La impedancia de un circuito cuya longitud ha sido determinada por loslímites de caída de tensión, en operación normal, es generalmentesuficientemente baja para cumplir estos requerimientos, cuando el circuitoestá protegido mediante relés de falla a tierra.

b. La impedancia del circuito puede ser demasiado alta para asegurar unfuncionamiento adecuado de los dispositivos de protección desobrecorriente en caso de fallas a tierra, cuando se dispone de protecciónde fase únicamente (no protegidos por relés de falla a tierra).

Debe asegurarse que el tiempo de despeje de la falla no exceda el límite térmicodel aislamiento del conductor de puesta a tierra y de los conductores de fase quese encuentran en contacto con él. Al excederse el límite térmico puede dañarseel aislamiento de cualquiera de los conductores y hasta fundirse el conductor depuesta a tierra del equipo implicando esto que no se despeje la falla y creandouna condición de peligro para las personas.

Los fabricantes de conductores publican curvas que muestran el límite térmicode los mismos basándose en la ecuación

(I/A)2 x t = 0,0297 x log (T2 + 234/T1 + 234)

Page 12: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 11

Menú Principal Indice manual Indice volumen Indice norma

�����

donde:

I = corriente de cortocircuito, Amperes;

A = sección transversal del conductor, mils circulares;

t = tiempo de duración de falla, segundos;

T2= Temperatura máxima de operación durante la falla sin daño, grados Celsius;

T1= Temperatura máxima de operación en condiciones normales, gradosCelsius;

234= Temperatura absoluta inferida del cobre.

Estas curvas, o la ecuación de base, deben utilizarse junto a las curvas deoperación de los dispositivos de protección (fusibles, interruptores, relés) paraasegurar que el tiempo de operación de estos últimos, para una determinadacorriente de falla, es inferior al tiempo soportado por el conductor (coordinación).

La tabla 250–95 del Código Eléctrico Nacional establece el calibre mínimo delconductor de puesta a tierra de las canalizaciones y equipos en función del valornominal o ajuste del dispositivo de protección contra sobrecorriente. Sin embargoes preferible el uso de las curvas, como se indicó anteriormente, pues el calibrerecomendado en el CEN no garantiza que no se dañe el aislamiento.

8.2.8 Cuando se utilice conductor desnudo para la puesta a tierra, el calibre sedeterminará como se indica en el párrafo 11.1 de esta guía.

8.2.9 En caso de utilizar la tubería metálica rígida como conductor de puesta a tierradel equipo, la distancia del circuito desde el neutro de la fuente al equipoalimentado por éste no excederá los valores dados en las Tablas 1 ó 2. Lasdistancias indicadas en estas tablas no consideran la caída de tensión enoperación normal, la cual será verificada.

8.2.10 Cuando se utilice tubería metálica flexible, se cumplirá con la Sección 250–91(b)del Código Eléctrico Nacional.

Debe ponerse especial atención a las excepciones 1 y 2.

8.2.11 El conductor de puesta a tierra del equipo en sistemas de tuberías metálicas ono metálicas se instalará conjuntamente con los conductores de fase, dentro dela misma tubería. El conductor de puesta a tierra será aislado cuando no formeparte del ensamblaje de los conductores de fase. El conductor de puesta a tierradel equipo es obligatorio cuando se utilicen tuberías no metálicas. No esobligatorio cuando se utilicen tuberías metálicas rígidas pero pueden usarse paraaumentar la longitud máxima del circuito. (Ver la Nota 2 de la Tabla 1).

8.2.12 Los alambres o cables utilizados como conductor de puesta a tierra del equipoen sistemas de cables directamente enterrados o instalados en la superficie, se

Page 13: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 12

Menú Principal Indice manual Indice volumen Indice norma

�����

colocarán junto a los cables de fase. El conductor de puesta a tierra puede serdesnudo.

8.2.13 La longitud del circuito desde el neutro de la fuente hasta el equipo alimentado,no excederá de los valores dados en la Tabla 3, para circuitos que tengan elconductor de puesta a tierra dentro del arreglo del cable, en tubería no metálicao en tubería metálica eléctrica(EMT).

8.2.14 En caso de que el conductor de puesta a tierra del equipo esté ubicado fuera delarreglo del cable, las distancias máximas dadas en la Tabla 3 deberánmodificarse de acuerdo a la Nota 3 de dicha Tabla y el factor de corrección deseparación seleccionado en la Tabla 4.

8.2.15 Uno o mas conductores pueden servir como conductor de puesta a tierra delequipo en un grupo de circuitos en un sistema de cables directamente enterrados.En tal caso, se cumplirá con lo siguiente:

a. El conductor principal de puesta a tierra se tenderá en la misma zanja quelos conductores de fase.

b. Se prefiere que se hagan derivaciones a partir del conductor principal depuesta a tierra para conectar los equipos. Como alternativa, puede hacerseun lazo con el conductor principal el cual se irá conectando a los equipos.

c. El conductor principal de puesta a tierra y las derivaciones, debenmantenerse lo mas cerca posible de los conductores de fase.

9 PUENTES DE UNIÓN

9.1 Se colocarán puentes de unión, donde se requieran, para garantizar lacontinuidad eléctrica y la capacidad de los circuitos de puesta a tierra paraconducir de manera segura las corrientes de falla.

9.2 Los puentes de unión se regirán según lo indicado en el Código EléctricoNacional, Parte G. En áreas peligrosas se regirán según lo indicado en la NormaCOVENIN 552 “Disposiciones Sobre Puesta a Tierra y Puentes de Unión enInstalaciones en Areas Peligrosas” (Especialmente en la Industria Petrolera).

10 SISTEMA DE ELECTRODOS DE PUESTA A TIERRALa resistencia a tierra del sistema de puesta a tierra será, como máximo, laespecificada en la Sección 10.1 durante todo el año, considerando los cambiosen las condiciones del suelo.

El sistema de electrodos de puesta a tierra se regirá según lo indicado en elCódigo Eléctrico Nacional Parte H y los párrafos siguientes.

Page 14: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 13

Menú Principal Indice manual Indice volumen Indice norma

�����

Los conductores enterrados que sirvan como sistema de tierra tendrán unalongitud mínima de 6,1 m (20 pies).

En caso de instalación permanente y cuando se ubiquen a distancia razonabledel equipo o estructura a ser conectada a tierra, los objetos metálicos grandesenterrados que estén en estrecho contacto con el terreno, tales como camisasde pilotes o estructuras metálicas de edificaciones, unidos mediante puentes,pueden usarse como electrodos de puesta a tierra.

Los electrodos artificiales de puesta a tierra fabricados con barras o tubosmetálicos hincados, cumplirán con las siguientes condiciones:

a. Serán de acero con recubrimiento de cobre equivalentes a “Copperweld” ytendrán un diámetro mínimo de 16 mm (5/8 pulg.).

b. Se enterrarán un mínimo de 2,44 m (8 pies) y su ubicación se identificarámediante un testigo.

c. Los topes de cada barra se conectarán a un punto accesible de conexióno a un pozo de prueba, mediante un conductor de tierra. El punto deconexión puede ubicarse en la estructura permanente cercana, a fin de quesirva como punto de enlace para otros conductores de tierra. En los puntosde enlace, los conductores que vienen de las barras se identificaránmediante bandas metálicas anticorrosivas a objeto de facilitar su remociónen caso de pruebas.

d. El uso de pozos de prueba es recomendado en áreas donde no existanestructuras o equipos cercanos o donde se requieran para fines de pruebas.

e. El conductor de puesta a tierra se conectará a la barra mediante soldaduray a los puntos de enlace mediante conectores apernados.

f. Tanto el tope de la barra como su conexión soldada al conductor de puestaa tierra estarán enterrados.

g. Cuando se conecte más de un electrodo artificial a un sistema de tierra, loselectrodos estarán separados a un mínimo de 1,83 m (6 pies).

En general, las barras de puesta a tierra deberán ubicarse cada 30 maproximadamente, incrementando o disminuyendo este espaciamientodependiendo del número de conexiones de cada caso.

10.1 Resistencia del Sistema de Electrodos de Puesta de Tierra

10.1.1 El sistema de electrodos de puesta a tierra tendrá la resistencia a tierra máximaindicada a continuación:

a. Cuando se utilice el método de puesta a tierra efectiva y las cargas seanmonofásicas 120/240 V (oficinas, talleres, plantas industriales pequeñas):15 Ohm.

Page 15: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 14

Menú Principal Indice manual Indice volumen Indice norma

�����

b. Cuando se utilice el método de puesta a tierra efectiva y la mayoría de lascargas sean monofásicas 120/208/240 V en un sistema trifásico (oficinas,talleres, plantas industriales medianas): 5 Ohm.

c. Cuando se utilice el método de puesta a tierra efectiva y la mayoría de lascargas sean trifásicas (talleres grandes, plantas industriales grandes): 1Ohm.

d. Cuando se utilice el método de puesta a tierra con alta impedancia: 15 Ohm.

e. Cuando se utilice el método de puesta a tierra con baja impedancia: 2 Ohm.

f. En instalaciones de pararrayos y descargadores de sobretensiones: 1 Ohm.

La magnitud que debe tener la resistencia del electrodo de puesta a tierramantiene una relación inversa a la corriente de falla a tierra disponible. Mientrasmayor sea la corriente de falla a tierra, menor debe ser la resistencia. Por ello esimportante conocer las características de la instalación y disponer de los cálculosde cortocircuito. En algunas ocasiones es difícil obtener valores bajos deresistencia. Usualmente es aceptable la gama 1–5 Ohm para todos los casos.

10.1.2 En los sistemas puestos a tierra a través de impedancia, los valores dados en elpárrafo 10.1.1 aplican a la resistencia de la tierra y no incluye el elemento deimpedancia.

Cuando se construyan electrodos artificiales, puede calcularse la resistencia depuesta a tierra mediante las fórmulas desarrolladas por H. B. Dwight y publicadasen el trabajo “Calculation of Resistance to Ground”, AIEE Transactions, vol. 55,Dic. 1936. Estas fórmulas están disponibles en la Práctica Recomendada IEEEStd. 142–1991 (Libro verde), Capítulo 4.

Una vez construido el electrodo de puesta a tierra la resistencia debe medirse,mediante uno de los métodos disponibles, a fin de verificar que el valor sea igualo inferior al indicado en el párrafo 10.1.1. Se recomienda el método de la caídade potencial.

A fin de disminuir el error, debe asegurarse que no existan tuberías u otros objetosde metal en la dirección en la cual se efectúa la medición.

La resistividad de la tierra puede medirse utilizando el método de Wenner o delos cuatro electrodos.

11 PUESTA A TIERRA DE SUBESTACIONESLa puesta a tierra de subestaciones se regirá por lo indicado en la normaANSI/IEEE Std. 80 “IEEE Guide for Safety in AC Substation Grounding”, IEEEStd. 81 “IEEE Guide for Measuring Earth Resistivity, Ground Impedance, andEarth Surface Potentials of a Ground System”, IEEE Std. 665 “IEEE Standard forGenerating Station Grounding” en su edición mas reciente y los párrafossiguientes.

Page 16: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 15

Menú Principal Indice manual Indice volumen Indice norma

�����

Las altas magnitudes de corriente que circulan por el suelo en las subestacionesbajo condiciones de falla, crean gradientes de potencial que pudieran sermortales para las personas y animales. Para disminuir el riesgo, se construyenmallas de tierra que controlan estos gradientes. A fin de diseñar estas mallas yevaluar el riesgo de choque eléctrico se utilizan las normas mencionadas. Sinembargo, con el objeto de aumentar la seguridad y disminuir los costos deconstrucción, es preferible utilizar un programa de computación avanzado a finde modelar la malla y optimizar su diseño.

11.1 Calibre de los Conductores de Puesta a TierraLos conductores para puentes de unión y puesta a tierra serán de cobre desnudo,trenzado, dureza media.

El calibre de los conductores de puesta a tierra limitará la temperatura alcanzadapor éstos, cuando transporten la corriente máxima de falla a tierra por el tiempopermitido por el relé de respaldo de respuesta más lenta, a lo siguiente:

a. Para conductores con aislamiento, a la temperatura transitoria sin dañar elaislamiento.

Ver Sección 8 de esta Guía.

b. Para conductores desnudos: a 250�C si las conexiones al cable estánhechas con conectores de presión y 450�C si las conexiones son soldadas.

Para conductores de cobre de dureza media y una temperaturaambiente de 40�C el calibre requerido se calcula mediante la expresión:

A � I x Kf tc�

Donde:

A = Sección transversal del conductor, Kcmil.

I = corriente eficaz de falla, amperios.

tc = tiempo de duración de la corriente de falla, segundos

Kf = 0,01177 para temperatura máxima de 250�C.

Kf = 0,00927 para temperatura máxima de 450�C.

Cada uno de los elementos del sistema de puesta a tierra, incluyendo losconductores de la propia malla, las conexiones y las barras deberán diseñarsede tal manera que:

a. Las uniones eléctricas no se fundan o deterioren en las condiciones másdesfavorables de magnitud y duración de la corriente de falla a la cualqueden expuestas.

b. Los elementos sean mecánicamente resistentes en alto grado,especialmente en aquellos lugares en que queden expuestos a un dañofísico.

Page 17: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 16

Menú Principal Indice manual Indice volumen Indice norma

�����

c. Tengan suficiente conductividad para que no contribuyan apreciablementea producir diferencias de potencial locales.

La ecuación de Sverak permite seleccionar el conductor de cobre para evitar lafusión. La expresión indicada anteriormente es una simplificación de la ecuaciónde Sverak para ciertos materiales. Ver norma ANSI/IEEE 80, Sección 9; y, J.G.Sverak “Sizing of ground conductors against fusing”, IEEE Transactions on PowerApparatus and Systems, Vol. PAS–100, Nº 1, Enero 1981 y Nº 3, Marzo 1981.

El calibre mínimo del conductor para la malla y para la conexión de los equiposserá 2/0 AWG (33,6 mm2).

El calibre del conductor podrá aumentarse por encima del mínimo para:

a. Garantizar una resistencia mecánica adecuada.

b. Soportar los esfuerzos térmicos causados por corrientes de falla a tierra.

Se escoge el calibre mínimo 2/0 AWG por razones mecánicas, ya queeléctricamente pueden usarse conductores hasta calibre 2 AWG.

Se utiliza cobre por su mejor conductividad, tanto eléctrica como térmica y, sobretodo por ser resistente a la corrosión debido a que es catódico respecto a otrosmateriales que pudieran estar enterrados cerca de él.

11.2 Instalación de los Conductores de Puesta a TierraLa profundidad mínima de instalación de los conductores de puesta a tierra seráde 450 mm (18 pulg.). La profundidad en patios de transformadores o estacionescuya superficie esté cubierta con piedra, será de 300 mm (12 pulg.) debajo de lapiedra, como mínimo.

En las zonas donde los conductores de puesta a tierra crucen por debajo delíneas de ferrocarril, carreteras principales, asfaltadas o pavimentadas enconcreto, los mismos se instalarán en tuberías metálicas rígidas o bancadas,según sea requerido por el sistema de canalización.

Cuando el conductor de puesta a tierra se instale en tuberías de hierro u otrosmateriales magnéticos, se conectará a la tubería en ambos extremos para evitarla inducción sobre ésta.

En las zonas donde los conductores de conexión a tierra crucen carreterassecundarias no pavimentadas, la profundidad de instalación, el diseño de lacubierta protectora o ambos evitarán al cable o a la cubierta, daños causados porcargas pesadas tales como grúas móviles o vehículos para transporte deequipos. En estos casos se usará un factor de seguridad de 1,5 para las cargastotales y la profundidad de instalación no será menor de 0,5 m.

Los conductores de puesta a tierra se protegerán, en los puntos de salida a lasuperficie, como se describe seguidamente:

Page 18: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 17

Menú Principal Indice manual Indice volumen Indice norma

�����

a. Todos los conductores, exceptuando los usados para protección contradescargas atmosféricas y puesta a tierra de pararrayos, se protegeránmediante tubería metálica rígida en sus puntos de salida a la superficie. Eluso de manguitos rígidos, no metálicos, de paredes gruesas, es unaalternativa aceptable para la protección de cables de puesta a tierra. Losconductores para protección contra descargas atmosféricas y de puesta atierra para pararrayos se protegerán mediante manguitos no metálicos.

b. Los manguitos no metálicos serán tubos rígidos, de paredes gruesas, dePVC o polietileno de alta densidad.

c. Los manguitos se extenderán, como mínimo, 150 mm (6 pulg.) y 250 mm(10 pulg.) por debajo y por encima de la superficie del terreno,respectivamente.

d. Los manguitos metálicos y los de PVC, serán embutidos en concreto de 75mm (3 pulg.) de espesor.

e. El recubrimiento de concreto saldrá 150 mm (6 pulg.) sobre la superficie delterreno.

f. El uso de manguitos no es necesario dentro de patios de transformadoreso debajo de subestaciones elevadas.

Las conexiones de conductores a estructuras y equipos se harán a la vista y deacuerdo a lo indicado a continuación:

a. Los tramos de conductores entre puntos a la vista no tendrán empalmes.

b. Los conductores entre puntos a la vista y los electrodos de puesta a tierrao puntos de derivación en conductores comunes de retorno de tierra, seráncontinuos sin empalmes.

c. Los empalmes en conductores enterrados se harán mediante conectoresde presión especiales o mediante soldadura exotérmica.

d. No se permitirá el uso de conectores apernados u otro tipo de conectoresmecánicos, en conductores enterrados.

e. Los empalmes o derivaciones en conductores enterrados, serán tambiénenterrados.

En equipos, las conexiones de conductores que sean desconectadosperiódicamente para mantenimiento se harán con conectores apernados. Otrasconexiones se harán con conectores a presión o mediante soldadura.

Las conexiones soldadas se harán por un procedimiento de soldaduraequivalente a “Cadwell o Thermoweld”.

Page 19: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 18

Menú Principal Indice manual Indice volumen Indice norma

�����

11.3 Conductores para la Conexión del NeutroLos conductores de puesta a tierra usados en los neutros de transformadores depotencia o de generadores tendrán una sección transversal mínima equivalenteal calibre 2 AWG (33,6 mm2).En sistemas efectivamente puestos a tierra, el conductor de puesta a tierra secanalizará según se indica a continuación:

a. En caso de que la conexión del neutro a tierra sea hecha en untransformador o generador, o al neutro de un transformador de corrienteadyacente, el conductor se canalizará usando la trayectoria más corta atierra.

b. En caso de que la conexión a tierra del neutro sea hecha en el tablero depotencia del transformador o generador, se canalizará el conductor de tierravía la barra de tierra del tablero. Todas las conexiones en la ruta de puestaa tierra entre el neutro y la tierra externa serán accesibles para inspecciónvisual.

c. En sistemas de iluminación puestos a tierra que tengan transformadores ytableros de iluminación individuales; la conexión a tierra del neutro se haráen el tablero de iluminación asociado al transformador. Se canalizará elconductor de puesta a tierra a través de la barra de tierra del tablero.

En sistemas puestos a tierra a través de impedancia, ésta se ubicará tan cercadel neutro como sea práctico. El conductor de puesta a tierra se canalizará desdela impedancia a la tierra usando la trayectoria más corta.

11.4 Aislamiento y Protección del Conductor para la Conexión del NeutroCuando el conductor del neutro pase por dentro de los equipos eléctricos ensistemas efectivamente puestos a tierra, el mismo estará aislado para la tensiónde fase, como mínimo. Específicamente, ésto aplica a lo siguiente:

a. Cableado desde la cajera terminal del transformador o generador o delencerramiento del transformador de corriente al punto de puesta a tierra deltransformador o del generador.

b. Cableado desde el neutro del transformador o generador a la barra delneutro o a la barra de puesta a tierra del tablero.

c. Cableado desde la barra del neutro del tablero a la barra de puesta a tierradel tablero.

En sistemas puestos a tierra a través de impedancia, la conexión entre el neutroy la impedancia estará aislada para la tensión de fase como mínimo.

Las tuberías de protección de los conductores de neutro, serán del tipo nometálico o de aluminio rígido. Las no metálicas serán de paredes gruesas, dePVC rígido o de polietileno de alta densidad.

Page 20: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 19

Menú Principal Indice manual Indice volumen Indice norma

�����

Los electrodos de puesta a tierra en subestaciones y plantas de generación seinterconectarán mediante conductores. En el caso de que los conductores depuesta a tierra sean usados en reemplazo de los electrodos, todos losconductores se interconectarán.

12 PUESTA A TIERRA DE LÍNEAS DE TRANSMISIÓN YDISTRIBUCIÓN

La puesta a tierra de las líneas de transmisión y distribución se regirá por loindicado en la norma ANSI C2 “National Electrical Safety Code”, Sección 9, ensu edición más reciente.

El NESC especifica los métodos adecuados para la puesta a tierra de circuitosy equipos eléctricos (neutros, carcazas de transformadores, tableros y motores,tubería conduit, etc.) cuando dicha puesta a tierra se requiera. Cubre losrequisitos de seguridad para las instalaciones comprendidas entre las plantaseléctricas y también las centrales telefónicas y los puntos en los cuales se haceentrega de estos servicios a los usuarios y complementa al Código EléctricoNacional el cual cubre las reglas de seguridad para las instalaciones eléctricasdespués del punto de entrega a los usuarios.

Page 21: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 20

Menú Principal Indice manual Indice volumen Indice norma

�����

13 PUESTA A TIERRA CONTRA SOBRETENSIONESTRANSITORIAS DE ORIGEN EXTERNO E INTERNO

Los sistemas de potencia sujetos a sobretensiones transitorias causadas pordescargas atmosféricas (origen externo) o maniobras (origen interno), seprotegerán contra los efectos de la sobretensión.

La protección contra sobretensiones cumplirá con los siguientes requisitos:

a. La protección contra las sobretensiones causadas por descargasatmosféricas consistirá de descargadores de sobretensiones y en caso deser necesario, de condensadores para sobretensiones.

b. La protección contra las sobretensiones causadas por maniobrasconsistirá, preferiblemente, en el uso de dispositivos de interrupción de untipo que no genere sobretensiones peligrosas, bajo las condiciones deservicio. La protección indicada en el párrafo (a) anterior es aceptable.

Las sobretensiones de origen interno (maniobras) se hacen importantes a partirde los 230 kV. A nivel de distribución, pueden ser importantes cuando se utilizaninterruptores de vacío a pesar de que la tecnología actual ha logrado controlarsatisfactoriamente los cortes de corriente antes de pasar por cero.

Cuando existan líneas aéreas que terminen en tableros de potencia a laintemperie, la ubicación de los descargadores de sobretensiones se seleccionarápara proteger los interruptores y transformadores de medición en la condición deinterruptores abiertos.

Cuando el interruptor se encuentra abierto, la onda viajera encuentra un circuitoabierto por lo cual la onda de tensión se duplica. Esto impone un esfuerzo enormesobre los equipos, pudiendo fallar el aislamiento o producirse arcos a tierra. Estefenómeno debe ser considerado al seleccionar la ubicación y especificar losdescargadores de sobretensiones.

Cuando se requiere proteger a los motores contra las sobretensionestransmitidas a través de los transformadores, es preferible colocar una proteccióncomún en la barra del centro de control de motores en lugar de disponer de undescargador de sobretensiones en cada motor.

Las conexiones a tierra de los descargadores de sobretensiones tendrán unaresistencia máxima de 5 Ohms. Los electrodos para conexión a tierra de losdescargadores de sobretensiones consistirán de una malla de tierra o deelectrodos artificiales de tierra o de ambos sistemas.

Los terminales de puesta a tierra de los descargadores de sobretensionesusados para la protección de transformadores, que estén instalados a menos de1,80 m del transformador; se conectarán mediante un conductor de tierra (o una

Page 22: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 21

Menú Principal Indice manual Indice volumen Indice norma

�����

barra equivalente) al conector del tanque del transformador instalado con estafinalidad. La conexión entre el descargador de sobretensiones y el tanque deberáser lo más corta y recta posible.

Los conductores de puesta a tierra no se conectarán a los radiadores o tapas deltransformador.

Las conexiones a tierra de los descargadores de sobretensiones entransformadores secos que tengan encerramiento metálico se harán medianteconductores colocados en la trayectoria más directa posible al punto de conexióna tierra del transformador.

Los terminales de puesta a tierra de los descargadores de sobretensionesinstalados en el punto de unión de cables y líneas aéreas desnudas o aisladas,se conectarán a tierra según se indica a continuación:

a. Las pantallas metálicas de cables multipolares y las pantallas metálicas decables monopolares, se conectarán al conductor de tierra del descargadorde sobretensiones.

b. Las pantallas metálicas con conexión a tierra en un solo punto, de cablesmonopolares, se conectarán a los terminales de tierra del descargador desobretensiones y éste se conectará a tierra mediante un explosómetro.

c. Las tuberías metálicas se conectarán al conductor de tierra del descargadorde sobretensiones.

d. Para aquellos casos no considerados en los párrafos (a), (b) o (c)anteriores, se conectará un conductor de retorno de tierra, colocado dentrode los cables multipolares sin armadura metálica, al conductor de tierra deldescargador de sobretensiones; o

e. Alternativamente, se conectará un conductor de retorno de tierra, colocadodentro del ducto no metálico que contenga cables sin armadura metálica,al conductor de tierra del descargador de sobretensiones.

f. Los conductores de puesta a tierra se instalarán con la trayectoria más cortay recta posible, desde el terminal de tierra del descargador de sobretensionesal electrodo de puesta a tierra.

g. Los conductores de puesta a tierra instalados en postes de madera seaislarán, desde los terminales del descargador de sobretensiones hasta suconexión bajo tierra, mediante chaquetas a prueba de intemperie o moldesde madera de puesta a tierra.

La interconexión entre los descargadores de sobretensiones en el primario de untransformador de distribución y el neutro puesto a tierra del secundario, se regirápor lo indicado en la Sección 9, Regla 97C de la norma ANSI C2 “NationalElectrical Safety Code”.

Page 23: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 22

Menú Principal Indice manual Indice volumen Indice norma

�����

13.1 Puesta a Tierra Contra Descargas Atmosféricas DirectasLa protección contra descargas atmosféricas directas se regirá según lo indicadoen la norma ANSI/NFPA 78 “Lightning Protection Code”, la PrácticaRecomendada API–RP–2003 “Protection Against Ignitions Arising out of Static,Lightning, and Stray Currents”, Sección 6, en su edición mas reciente y lospárrafos siguientes.

Cualquier estructura ubicada dentro de una zona protegida puede considerarseadecuadamente resguardada contra rayos de manera que no será necesariodarle protección adicional.

Las estructuras importantes que no estén ubicadas dentro de una zona protegida(no resguardadas o cubiertas) se protegerán contra daños causados por rayos.Las estructuras siguientes se consideran importantes:

a. Estructuras normalmente ocupadas por personal.

b. Estructuras que contengan cantidades apreciables de materialescombustibles e inflamables.

c. Estructuras las cuales en caso de resultar dañadas pueden causar pérdidasmayores ya sea en la estructura misma o por su efecto en otrasinstalaciones.

Las estructuras importantes no ubicadas dentro de una zona protegida seprotegerán como se indica a continuación:ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ESTRUCTURAÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

METODO DE PROTECCION CONTRA DESCARGAS

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

a. Estructuras Metálicas: Incluye tanques de almacenamiento,esferas de almacenamiento desustancias inflamables, recipientes yedificios con estructura metálica orecubrimiento metálico.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

La puesta a tierra se hará en dos puntos,en extremos opuestos, como mínimo.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

b. Estructuras No Metálicas:Incluye edificios con estructuras orecubrimientos no metálicos.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Según ANSI/NFPA 78 o una normanacional equivalente.

Puentes de Unión en Estructuras Metálicas:

a. Tanques de Techo Flotante: Los puentes de unión entre el techo y la paredserán suministrados por el fabricante del tanque en aquellos tipos de diseñoque lo necesiten.

b. Edificaciones: Las partes metálicas que formen el techo y las estructurasprincipales se interconcectarán entre sí.

c. Elementos o cuerpos metálicos de tamaño considerable ubicados dentro deestructuras metálicas y a menos de 2 m (6 pies) de la armazón o techo de

Page 24: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 23

Menú Principal Indice manual Indice volumen Indice norma

�����

la estructura: el elemento metálico se conectará a la estructura si estaconexión no es inherente.

Los cables de conexión entre estructuras metálicas y electrodos de puesta atierra, se colocarán en la trayectoria más recta y corta posible. En lo posible, semantendrá una separación de 600 mm (2 pies), aproximadamente, entre loselectrodos artificiales de tierra y las fundaciones de concreto o ladrillo.

Las torres, estructuras de acero, recipientes que contengan líquidos inflamablesincluyendo tanques, se conectarán a tierra.

Los puentes o estructuras soporte de tuberías se conectarán a tierra a intervalosmáximos de 40 m.

La conexión a tierra se hará con electrodos artificiales de tierra. La resistenciamáxima a tierra será de 15 ohms.

Las bombas accionadas eléctricamente y colocadas en una base metálica comúncon sus motores, no necesitan ponerse a tierra si el motor lo está de maneraadecuada. No debe considerarse que la unión de los ejes del motor y la bombaproporciona continuidad eléctrica cuando la base no es común.

14 PUESTA A TIERRA CONTRA ELECTRICIDAD ESTÁTICALa puesta a tierra contra electricidad estática se regirá según lo indicado en laPráctica Recomendada API–RP–2003, “Recommended Practice for ProtectionAgainst Ignitions Arising out of Static, Ligthning, and Stray Currents”, la normaCOVENIN 552 “Disposiciones Sobre Puesta a Tierra y Puentes de Unión enInstalaciones en Areas Peligrosas (Especialmente en la Industria Petrolera)”, ensu edición mas reciente, y los párrafos a continuación.

Los puentes de unión hechos para disipación de cargas estáticas tendrán unaresistencia máxima de un (1) megaohm.

14.1 Puentes de Unión en Camiones y Carros Cisterna y Estaciones deCarga (Llenaderos)

14.1.1 Los puentes de unión son necesarios únicamente cuando se cumplan todas lascondiciones de carga siguientes:

a. La carga se hace a través de domos abiertos o dentro de barriles o cilindrosabiertos u otros recipientes metálicos similares.

b. El producto cargado: (1) tiene un punto de inflamación en copa cerrada de55�C (130�F) o menor; (2) es manejado a temperaturas de 8�C (15�F) porencima de su punto de inflamación o (3) es cargado dentro del tanque deun camión o carro que haya almacenado previamente un material cuyopunto de inflamación en copa cerrada sea inferior a 55�C (130�F).

Page 25: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 24

Menú Principal Indice manual Indice volumen Indice norma

�����

c. El producto es clasificado como acumulador de cargas estáticas.

14.1.2 No se requieren puentes de unión alrededor de juntas metálicas flexibles o juntasbatientes o cuando las condiciones de carga sean las siguientes:

a. Si la carga al tanque se hace a través de un sistema cerrado.

b. Si el llenado del recipiente se hace a través de un sistema cerrado, o si elpico de llenado está en contacto eléctrico con él y permanecerá en estacondición durante la operación de llenado.

14.1.3 Los conductores de conexión para camiones cisternas, cuando se requieran, secolocarán en cada posición de carga o descarga, según se describeseguidamente:

a. Un extremo del conductor será conectado directa y permanentemente alpico de llenado o a otros puntos que estén metálicamente conectados alpico de llenado (ya sea inherentemente conectado o mediante conexióneléctrica).

b. Un gancho (caimán) del tipo usado para baterías (o equivalente) seconectará al otro extremo del conductor. El conductor será losuficientemente largo para permitir fijar el gancho al camión en un punto decontacto metálico en el tanque que esté siendo cargado o descargado.

c. El conductor será de cobre trenzado, calibre 6 AWG (13,3 mm2). El mismotendrá una chaqueta para protección mecánica.

14.1.4 Los puentes de unión de los carros cisterna, cuando se requieran, se harán comose detalla seguidamente:

a. Se colocarán juntas de aislamiento en los rieles a fin de aislar el carrilprincipal de la sección sobre la que se posicionarán los carros durante lasoperaciones de llenado y descarga. Estas juntas tienen por objetivo elaislamiento de corrientes parásitas causadas por los sistemas deseñalización o potencia ubicados sobre el carril principal.

b. La ubicación de las juntas será tal que no puedan “puentearse” por carrosen espera que no están cargando o descargando.

c. Se proveerán puentes de unión en todas las juntas de rieles en la seccióndel carril sobre la que se posicionarán los carros durante la carga ydescarga.

d. Se puentearán ambos rieles del carril sobre el que se posicionarán carrosdurante la carga o descarga, a la estructura de acero del llenadero. En casode que las tuberías de carga y descarga no estén inherentementepuenteadas entre sí, éstas se conectarán a la estructura de acero delllenadero.

Page 26: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 25

Menú Principal Indice manual Indice volumen Indice norma

�����

14.1.5 Los puentes de unión del recipiente o tanque de almacenamiento, cuando serequieran, mantendrán el pico de llenado y el tanque al mismo potencial eléctrico,para prevenir la electricidad estática en el área de mezclas inflamables. Elpuenteado será como sigue:

a. En caso de que el pico de llenado no pueda estar o permanecer en contactoeléctrico con el tanque, este último se apoyará sobre una placa metálicamientras se esté llenando. La placa estará conectada al tubo dealimentación.

b. En caso de que el pico de llenado este conectado inherentemente al tubode alimentación, como en el caso de usar mangueras o tuberías metálicas,no se requiere conexionado adicional al indicado en el párrafo (a) anterior.

c. En caso de que el pico de llenado no esté conectado inherentemente al tubode alimentación, como en el caso de usar mangueras o tubos no–metálicos,se proveerá una conexión adicional entre el pico y la tubería dealimentación.

d. Todas las partes metálicas del conjunto de llenado formarán una trayectoriaeléctricamente contínua, aguas abajo del punto de puenteado del tubo dealimentación.

14.2 Puentes de Unión en Muelles de Carga en Terminales MarinosNo se requieren puentes de unión entre tanqueros o gabarras y el terminal omuelle.

Se requiere el uso de bridas aislantes para el aislamiento eléctrico entre lastuberías ubicadas a bordo del tanquero o gabarra y las ubicadas en el muelle, enlos casos siguientes:

a. En terminales marinos con protección catódica.

b. Cuando se utilicen brazos de carga o mangueras de carga eléctricamenteoperadas.

c. Cuando se carguen o descarguen productos cuyos puntos de inflamaciónen copa cerrada sea igual o menor a 55�C (130�F), o que sean manejadosa temperaturas de 8�C (15�F) o mayores de su punto de inflamación.

Las características de los materiales inflamables se encuentran en las normasNFPA Nº 30 “Flammable and Combustible Liquids Code”, NFPA Nº 321“Standard on Basic Classification of Flammable and Combustible Liquids” y NFPANº 325M “Fire Hazard Properties of Flammable Liquids, Gases and VolatileSolids”.

Puede obtenerse información adicional sobre puesta a tierra contra electricidadestática en la Práctica Recomendada IEEE Std. 142 “IEEE Recommended

Page 27: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 26

Menú Principal Indice manual Indice volumen Indice norma

�����

Practice for Grounding of Industrial and Commercial Power Systems” (libroverde), Capítulo 3.

15 PUESTA A TIERRA DE COMPUTADORESLos métodos de puesta a tierra de equipos y dispositivos para computadores ypara instrumentación cumplirán con los requerimientos específicos de cadaequipo en particular y con el Código Eléctrico Nacional.

El sistema de puesta a tierra de los equipos cumplirá con lo siguiente:

a. Suministrar un camino de baja impedancia a la corriente de falla a fin de queoperen las protecciones de sobrecorriente.

b. Limitar las tensiones de toque para disminuir el riesgo de choque eléctricoa las personas.

c. Suministrar una referencia constante de potencial.

d. Poner a tierra las carcazas metálicas utilizadas como apantallamiento enequipos sensibles.

Para evitar que el ruido eléctrico afecte a los computadores, se requieren dossistemas de puesta a tierra. El primero, corresponde al sistema de potencia quealimenta al computador y debe cumplir con el Código Eléctrico Nacional. Elsegundo, corresponde a un sistema de referencia de potencial.

Los computadores, controladores de proceso, procesadores de datos y equiposelectrónicos en general, requieren un sistema de puesta a tierra expresamentediseñado. Sin embargo, este sistema de puesta a tierra nunca debe estarseparado del correspondiente al sistema de potencia, pues ésto violaríadisposiciones del Código Eléctrico Nacional.

La referencia de potencial de los computadores se logrará mediante una Red deReferencia de Señales (RRS) a la cual se conectarán todos los gabinetes de losequipos. Esta red establecerá una superficie equipotencial para señales de bajacorriente y alta frecuencia.

Además de la RRS, se dispondrá de un punto común de puesta a tierra al cualse conectarán los gabinetes de los equipos y la propia RRS de manera radial.Esta conexión es adicional y simultánea a la indicada en el párrafo anterior.

El punto común de puesta a tierra se conectará mediante un solo enlace al mismoelectrodo de puesta a tierra al cual se conecta el neutro de la fuente de poder AC(Ver Fig. 1).

Cuando la fuente de poder sea un sistema derivado como un transformador deaislamiento, una fuente de potencia ininterrumpida (UPS) o un conjuntomotor–generador, el punto común de puesta a tierra se conectará al electrodo depuesta a tierra de este sistema derivado (Ver Fig. 2).

Page 28: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 27

Menú Principal Indice manual Indice volumen Indice norma

�����

Puede obtenerse información adicional sobre puesta a tierra de computadoresen las Prácticas Recomendadas IEEE Std. 142 “IEEE Recommended Practice forGrounding of Industrial and Commercial Power Systems” (libro verde), Capítulo5, y Std. 1100 “IEEE Recommended Practice for Powering and GroundingSensitive Electronic Equipment” (libro esmeralda).

16 PUESTA A TIERRA DE INSTRUMENTACIÓNLa puesta a tierra para referencia de señales de los equipos de instrumentaciónse hará con una conexión a tierra en un solo punto. Esto puede lograrse usandobarras colectoras aisladas conectadas a un electrodo de puesta a tierra ubicadolocalmente. Este electrodo local es entonces conectado al electrodo de puestaa tierra del sistema de potencia. Habrá una sola conexión entre la barracolectora aislada y cada instrumento (Ver Fig. 3).

La conexión entre las barras colectoras de tierra aisladas y el electrodo de puestaa tierra local se hará mediante dos cables calibre 1/0 AWG o mayor. Dichos cablesserán de cobre trenzado, cubierto con aislamiento de PVC, coloreado en verde.

Los neutros de los secundarios de los transformadores de potencia o de lostransformadores de las fuentes de potencia ininterrumpida (UPS), que alimententableros de instrumentos, se conectarán a las barras colectoras de tierra aisladas(Ver Fig. 2).

Cuando se usen cables apantallados en las termocuplas, las pantallas seconectarán a tierra como sigue:

a. Para juntas de termocuplas conectadas a tierra: en el cabezal de lastermocuplas.

b. Para juntas de termocuplas no conectadas a tierra: en la barra colectoraaislada del gabinete de control de las termocuplas.

Cuando se usen cables apantallados para señales, la pantalla se conectará a lasbarras aisladas de tierra del panel de alimentación de potencia.

Page 29: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 28

Menú Principal Indice manual Indice volumen Indice norma

�����

TABLA 1. LONGITUDES MAXIMAS (METROS) PARA CIRCUITOS TRIFASICOS,CONDUCTORES DE COBRE COLOCADOS EN TUBERIAS RIGIDAS DE ACERO

GALVANIZADO PARA SISTEMAS EFECTIVAMENTE PUESTOS A TIERRA DE 480VOLTIOS, 50 Y 60 HZ. (2) (3) (4)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ø TUB.

(mm)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

FACTORDE

AJUSTE DEL

DISPARO(1)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VALOR NOMINAL DEL DISPOSITIVO DE PROTECCION DE SOBRECORRIENTE DEL CIRCUITO. (AMPERIOS).

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

15ÁÁÁÁ

20ÁÁÁÁ

30 ÁÁÁÁ

40ÁÁÁÁ

50ÁÁÁÁÁÁ

70ÁÁÁÁ

90ÁÁÁÁ

100ÁÁÁÁÁÁ

125ÁÁÁÁ

150ÁÁÁÁÁÁ

175ÁÁÁÁ

200ÁÁÁÁ

225ÁÁÁÁÁÁ

250ÁÁÁÁ

300ÁÁÁÁÁÁ

350ÁÁÁÁ

400ÁÁÁÁ

450ÁÁÁÁÁÁ

500ÁÁÁÁ

550ÁÁÁÁÁÁ

600

ÁÁÁÁÁÁÁÁÁ

20ÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁ

220

270

385

ÁÁÁÁÁÁ

160

230

290

ÁÁÁÁÁÁ

120

180

230

ÁÁÁÁÁÁ

85

140

205

ÁÁÁÁÁÁ

70

120

160

ÁÁÁÁÁÁÁÁÁ

50

80

120

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

25

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

260

375

475

ÁÁÁÁÁÁÁÁ

190

290

375

ÁÁÁÁÁÁÁÁ

140

230

330

ÁÁÁÁÁÁÁÁ

115

190

260

ÁÁÁÁÁÁÁÁÁÁÁÁ

85

130

200

ÁÁÁÁÁÁÁÁ

65

105

155

ÁÁÁÁÁÁÁÁ

60

100

135

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

32ÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

255

415

600

ÁÁÁÁÁÁ

215

335

480

ÁÁÁÁÁÁÁÁÁ

160

245

360

ÁÁÁÁÁÁ

130

200

270

ÁÁÁÁÁÁ

115

180

255

ÁÁÁÁÁÁÁÁÁ

105

150

215

ÁÁÁÁÁÁ

90

130

180

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

40

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

215

335

505

ÁÁÁÁÁÁÁÁ

180

270

395

ÁÁÁÁÁÁÁÁ

165

240

360

ÁÁÁÁÁÁÁÁÁÁÁÁ

135

205

290

ÁÁÁÁÁÁÁÁ

120

180

245

ÁÁÁÁÁÁÁÁÁÁÁÁ

110

155

215

ÁÁÁÁÁÁÁÁ

100

140

190

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

50ÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

185

260

370

ÁÁÁÁÁÁÁÁÁ

160

230

300

ÁÁÁÁÁÁ

135

200

260

ÁÁÁÁÁÁÁÁÁ

125

175

240

ÁÁÁÁÁÁ

115

160

215

ÁÁÁÁÁÁ

105

150

200

ÁÁÁÁÁÁÁÁÁ

100

135

185

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

65

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

135

195

265

ÁÁÁÁÁÁÁÁ

130

175

235

ÁÁÁÁÁÁÁÁ

120

160

215

ÁÁÁÁÁÁÁÁÁÁÁÁ

115

150

200

ÁÁÁÁÁÁÁÁ

100

135

175

ÁÁÁÁÁÁÁÁÁÁÁÁ

90

125

160

ÁÁÁÁÁÁÁÁ

80

115

145

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

80ÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

145

200

260

ÁÁÁÁÁÁ

130

175

240

ÁÁÁÁÁÁÁÁÁ

115

160

210

ÁÁÁÁÁÁ

105

145

190

ÁÁÁÁÁÁ

100

140

175

ÁÁÁÁÁÁÁÁÁ

95

130

165

ÁÁÁÁÁÁ

90

120

155

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

100

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

A

B

C

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

115

160

210

ÁÁÁÁÁÁÁÁ

105

150

190

ÁÁÁÁÁÁÁÁÁÁÁÁ

105

135

180

ÁÁÁÁÁÁÁÁ

100

130

170

ÁÁÁÁÁÁÁÁÁÁÁÁ

100

120

160

NOTAS TABLA 1

1. Seleccione la distancia opuesta al factor de ajuste del disparo que mejor se adapte a lacaracterística tiempo–corriente de la protección de sobrecorriente, tal como se describe másadelante.

a. El factor A es para interruptores que operan en menos de dos segundos con un ajuste de diez(10) veces su capacidad. Se utiliza para los interruptores de caja moldeada no ajustables y losajustados en fábrica.

b. El factor B es para interruptores que operan en menos de dos segundos con ajuste de seis vecessu capacidad. En general puede ser usado con la mayoría de los fusibles. Además se usa coninterruptores de disparo ajustable.

Page 30: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 29

Menú Principal Indice manual Indice volumen Indice norma

�����

c. El factor C es para interruptores que operan en menos de dos segundos con ajuste de 4 vecessu capacidad. Se usa con interruptores ajustados en el campo.

2. Cuando en la tubería se coloca un conductor de puesta a tierra, las distancias seleccionadaspueden ser incrementadas en los porcentajes siguientes:

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Diámetro de la tubería (mm.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

% de incrementoÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

20 y 25 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

10ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

32, 40 y 50 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

30ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

65, 80 y 100 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

603. Para otras tensiones, multiplique la distancia seleccionada por el siguiente factor:

(Tensión Nominal de Fase – 40)/237

4. Las distancias están basadas en los datos del trabajo: “Determination of ground fault current oncommon alternating current grounded neutral systems in standard steel or aluminum conduit”.AIEE transactions, Paper 60–12 applications and industry, May 1960.

Page 31: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 30

Menú Principal Indice manual Indice volumen Indice norma

�����

TABLA 2. LONGITUDES MAXIMAS (METROS) PARA CIRCUITOS TRIFASICOS,CONDUCTORES DE COBRE COLOCADOS EN TUBERIAS RIGIDAS DE ALUMINIO

PARA SISTEMAS EFECTIVAMENTE PUESTOS A TIERRA DE 480 VOLTIOS, 50 Y 60 HZ. (1) (3) (4)

ÁÁÁÁÁÁÁÁÁÁÁÁ

ØTUB.(mm)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CALIBRECOND.LINEA(mm2)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VALOR NOMINAL DEL DISPOSITIVO DE PROTECCION DE SOBRECORRIENTE DEL CIRCUITO. (AMPERIOS). (2)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ

15ÁÁÁÁ

20ÁÁÁÁÁÁ

30ÁÁÁÁ

40ÁÁÁÁÁÁ

50ÁÁÁÁ

70ÁÁÁÁ

90ÁÁÁÁÁÁ

100ÁÁÁÁ

125ÁÁÁÁÁÁ

150ÁÁÁÁ

175ÁÁÁÁÁÁ

200ÁÁÁÁ

225ÁÁÁÁ

250ÁÁÁÁÁÁ

300ÁÁÁÁ

350ÁÁÁÁÁÁ

400ÁÁÁÁ

450ÁÁÁÁ

500ÁÁÁÁÁÁ

550ÁÁÁÁ

600

ÁÁÁÁÁÁÁÁÁ

20

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3,3

5,3

8,4

ÁÁÁÁÁÁ

275

435

670

ÁÁÁÁÁÁ

205

325

505

ÁÁÁÁÁÁÁÁÁ

135

215

335

ÁÁÁÁÁÁ

105

160

255

ÁÁÁÁÁÁÁÁÁ

80

130

200

ÁÁÁÁÁÁ

60

90

145

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

25

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5,3

8,4

13,3

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

325

510

760

ÁÁÁÁÁÁÁÁÁÁÁÁ

215

340

510

ÁÁÁÁÁÁÁÁ

165

255

380

ÁÁÁÁÁÁÁÁÁÁÁÁ

130

205

305

ÁÁÁÁÁÁÁÁ

95

145

220

ÁÁÁÁÁÁÁÁ

75

115

170

ÁÁÁÁÁÁÁÁÁÁÁÁ

65

105

150

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

32

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

13,3

21,2

33,6

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

385

580

855

ÁÁÁÁÁÁÁÁÁ

305

465

670

ÁÁÁÁÁÁ

215

330

480

ÁÁÁÁÁÁ

170

255

370

ÁÁÁÁÁÁÁÁÁ

150

230

335

ÁÁÁÁÁÁ

120

185

270

ÁÁÁÁÁÁÁÁÁ

100

155

225

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

40

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

21,2

33,6

42,4

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

330

490

590

ÁÁÁÁÁÁÁÁ

255

375

455

ÁÁÁÁÁÁÁÁÁÁÁÁ

230

340

410

ÁÁÁÁÁÁÁÁ

185

275

330

ÁÁÁÁÁÁÁÁÁÁÁÁ

155

230

275

ÁÁÁÁÁÁÁÁ

130

195

235

ÁÁÁÁÁÁÁÁÁÁÁÁ

115

170

205

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

50

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

53,5

67,4

85,0

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

495

590

1280

ÁÁÁÁÁÁÁÁ

395

470

860

ÁÁÁÁÁÁÁÁÁÁÁÁ

330

395

720

ÁÁÁÁÁÁÁÁ

130

195

235

ÁÁÁÁÁÁÁÁÁÁÁÁ

245

290

540

ÁÁÁÁÁÁÁÁ

220

260

480

ÁÁÁÁÁÁÁÁ

200

235

430

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

65

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

107

127

152

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

490

545

595

ÁÁÁÁÁÁÁÁÁ

430

475

525

ÁÁÁÁÁÁ

380

425

465

ÁÁÁÁÁÁ

345

380

415

ÁÁÁÁÁÁÁÁÁ

285

315

345

ÁÁÁÁÁÁ

245

270

300

ÁÁÁÁÁÁÁÁÁ

215

240

260

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

80

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

152

203

253

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

450

525

590

ÁÁÁÁÁÁÁÁÁÁÁÁ

375

440

490

ÁÁÁÁÁÁÁÁ

325

375

420

ÁÁÁÁÁÁÁÁÁÁÁÁ

285

330

370

ÁÁÁÁÁÁÁÁ

250

290

325

ÁÁÁÁÁÁÁÁ

225

260

295

ÁÁÁÁÁÁÁÁÁÁÁÁ

205

240

270

ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ

100

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

203

304

380

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

345

430

465

ÁÁÁÁÁÁÁÁ

310

380

410

ÁÁÁÁÁÁÁÁ

275

345

370

ÁÁÁÁÁÁÁÁÁÁÁÁ

255

315

335

ÁÁÁÁÁÁÁÁ

230

285

310

NOTAS TABLA 2

1. Las distancias mostradas son para circuitos protegidos con interruptores que operan en menosde dos (2) segundos con un ajuste de diez (10) veces su capacidad. Dichas distancias puedenser incrementadas para interruptores que operen en menos de dos (2) segundos con ajustesmenores a diez (10). Para encontrar estas distancias, multiplique el valor de esta tabla por diez(10) y divida entre el ajuste del interruptor.

2. Vea la nota (1) de la Tabla 1 para las características típicas de los ajustes de disparo.

3. Para otras tensiones multiplique las distancias seleccionadas por el siguiente factor:

(Tensión Nominal de Fase – 40)/237

4. Igual al de la Tabla 1.

Page 32: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 31

Menú Principal Indice manual Indice volumen Indice norma

�����

TABLA 3. LONGITUDES MAXIMAS (METROS) PARA CIRCUITOS TRIFASICOS,CONDUCTORES DE COBRE, CONDUCTOR DE PUESTA A TIERRA DEL EQUIPO

DENTRO DEL CABLE, TUBERIA NO METALICA O EMT PARA SISTEMASEFECTIVAMENTE PUESTOS A TIERRA DE 480 VOLTIOS, 50 Y 60 HERTZ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CALIBRECONDUCTOR

(mm2)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

COND. DERETORNODE TIERRACALIBREEN (mm2)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VALOR NOMINAL DEL DISPOSITIVO DE PROTECCION DESOBRECORRIENTE DEL CIRCUITO (AMPERIOS).

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

15ÁÁÁÁ

20ÁÁÁÁ

30ÁÁÁÁÁÁ

40ÁÁÁÁ

50ÁÁÁÁÁÁ

70 ÁÁÁÁ

90ÁÁÁÁ

100ÁÁÁÁÁÁ

125ÁÁÁÁÁÁ

150ÁÁÁÁ

175ÁÁÁÁ

200ÁÁÁÁÁÁ

225ÁÁÁÁ

250ÁÁÁÁÁÁ

300ÁÁÁÁ

350ÁÁÁÁ

400ÁÁÁÁÁÁ

450ÁÁÁÁ

500ÁÁÁÁ

550ÁÁÁÁÁÁ

600

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3,3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

3,3

13,333,6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

145

230

260

ÁÁÁÁÁÁÁÁÁÁ

105

170

195

ÁÁÁÁÁÁÁÁÁÁ

70

110

130

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

55

85

95

ÁÁÁÁÁÁÁÁÁÁ

40

65

75

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

30

50

55

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5,3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

5,3

13,333,6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

170

245

290

ÁÁÁÁÁÁÁÁÁÁ

110

160

195

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

85

120

145

ÁÁÁÁÁÁÁÁÁÁ

65

95

115

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

50

70

85

ÁÁÁÁÁÁÁÁÁÁ

35

55

65

ÁÁÁÁÁÁÁÁÁÁ

35

50

60

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8,4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8,4

13,333,6

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

135

165

215

ÁÁÁÁÁÁÁÁ

110

135

175

ÁÁÁÁÁÁÁÁÁÁÁÁ

80

95

125

ÁÁÁÁÁÁÁÁ

60

75

95

ÁÁÁÁÁÁÁÁ

55

65

90

ÁÁÁÁÁÁÁÁÁÁÁÁ

40

50

70

ÁÁÁÁÁÁÁÁÁÁÁÁ

35

45

60

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

13,3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

8,4

13,333,6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

135

170

245

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

95

120

175

ÁÁÁÁÁÁÁÁÁÁ

75

95

135

ÁÁÁÁÁÁÁÁÁÁ

65

85

120

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

55

65

95

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

45

60

80

ÁÁÁÁÁÁÁÁÁÁ

35

50

70

ÁÁÁÁÁÁÁÁÁÁ

35

40

60

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

21,2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

13,3

21,233,6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

150

190

235

ÁÁÁÁÁÁÁÁÁÁ

115

150

180

ÁÁÁÁÁÁÁÁÁÁ

105

135

165

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

85

105

130

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

70

90

110

ÁÁÁÁÁÁÁÁÁÁ

60

75

95

ÁÁÁÁÁÁÁÁÁÁ

50

65

80

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

45

60

75

ÁÁÁÁÁÁÁÁÁÁ

40

55

65

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

33,6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

13,3

21,233,6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

135

180

235

ÁÁÁÁÁÁÁÁÁÁ

120

165

215

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

95

145

170

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

80

120

145

ÁÁÁÁÁÁÁÁÁÁ

70

105

120

ÁÁÁÁÁÁÁÁÁÁ

60

90

105

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

55

80

95

ÁÁÁÁÁÁÁÁÁÁ

50

75

85

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

40

60

70

ÁÁÁÁÁÁÁÁÁÁ

35

50

60

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Page 33: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 32

Menú Principal Indice manual Indice volumen Indice norma

�����

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

VALOR NOMINAL DEL DISPOSITIVO DE PROTECCION DESOBRECORRIENTE DEL CIRCUITO (AMPERIOS).

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

COND. DERETORNODE TIERRACALIBREEN (mm2)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CALIBRECONDUCTOR

(mm2)

ÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ

15ÁÁÁÁ

20ÁÁÁÁ

30ÁÁÁÁÁÁ

40ÁÁÁÁ

50ÁÁÁÁÁÁ

70 ÁÁÁÁ

90ÁÁÁÁ

100ÁÁÁÁÁÁ

125ÁÁÁÁÁÁ

150ÁÁÁÁ

175ÁÁÁÁ

200ÁÁÁÁÁÁ

225ÁÁÁÁ

250ÁÁÁÁÁÁ

300ÁÁÁÁ

350ÁÁÁÁ

400ÁÁÁÁÁÁ

450ÁÁÁÁ

500ÁÁÁÁ

550ÁÁÁÁÁÁ

600

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

53,5

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

13,3

21,233,6

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

170

215

235

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

135

150

170

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

110

130

145

ÁÁÁÁÁÁÁÁÁÁ

95

110

120

ÁÁÁÁÁÁÁÁÁÁ

85

95

105

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

75

85

95

ÁÁÁÁÁÁÁÁÁÁ

65

75

85

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

60

65

70

ÁÁÁÁÁÁÁÁÁÁ

50

55

60

ÁÁÁÁÁÁÁÁÁÁ

45

50

55

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

35

45

50

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

67,4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

21,2

33,653,5

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

165

230

305

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

135

190

250

ÁÁÁÁÁÁÁÁÁÁ

115

160

215

ÁÁÁÁÁÁÁÁÁÁ

105

145

190

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

90

130

165

ÁÁÁÁÁÁÁÁÁÁ

80

110

150

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

65

95

130

ÁÁÁÁÁÁÁÁÁÁ

60

80

110

ÁÁÁÁÁÁÁÁÁÁ

52

70

95

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

45

65

85

ÁÁÁÁÁÁÁÁÁÁ

40

60

75

ÁÁÁÁÁÁÁÁÁÁ

35

50

70

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

107

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

21,2

33,653,5

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

150

220

305

ÁÁÁÁÁÁÁÁÁÁ

130

185

260

ÁÁÁÁÁÁÁÁÁÁ

115

165

230

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

100

145

205

ÁÁÁÁÁÁÁÁÁÁ

90

130

183

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

75

110

150

ÁÁÁÁÁÁÁÁÁÁ

65

95

130

ÁÁÁÁÁÁÁÁÁÁ

55

80

115

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

50

75

100

ÁÁÁÁÁÁÁÁÁÁ

45

65

90

ÁÁÁÁÁÁÁÁÁÁ

40

60

80

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

35

55

75

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

127

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

21,2

33,653,5

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

115

180

240

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

105

150

210

ÁÁÁÁÁÁÁÁÁÁ

90

135

190

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

75

110

160

ÁÁÁÁÁÁÁÁÁÁ

65

100

135

ÁÁÁÁÁÁÁÁÁÁ

60

85

120

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

50

75

105

ÁÁÁÁÁÁÁÁÁÁ

45

65

95

ÁÁÁÁÁÁÁÁÁÁ

45

60

90

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

40

60

80

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

177

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

33,6

53,567,4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

145

210

250

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

120

175

207

ÁÁÁÁÁÁÁÁÁÁ

104

150

175

ÁÁÁÁÁÁÁÁÁÁ

88

130

155

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

80

115

135

ÁÁÁÁÁÁÁÁÁÁ

75

105

125

ÁÁÁÁÁÁÁÁÁÁ

65

95

115

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

60

90

105

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

253

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

33,6

53,567,4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

105

160

195

ÁÁÁÁÁÁÁÁÁÁ

95

140

170

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

85

125

150

ÁÁÁÁÁÁÁÁÁÁ

75

115

135

ÁÁÁÁÁÁÁÁÁÁ

70

105

125

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

65

95

115

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

304

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

33,6

53,567,4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

95

145

175

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

85

130

160

ÁÁÁÁÁÁÁÁÁÁ

75

115

140

ÁÁÁÁÁÁÁÁÁÁ

70

105

130

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

65

100

120

NOTAS TABLA 3

1. Las distancias mostradas son para circuitos protegidos con interruptores que operan en menosde dos (2) segundos con un ajuste de diez (10) veces su capacidad. Dichas distancias puedenser incrementadas para interruptores que operen en menos de dos (2) segundos con ajustesmenores a veinte (20). Para encontrar estas distancias, multiplique el valor de esta tabla por diez(10)y divida entre el ajuste del interruptor.

2. Vea la nota (1) de la Tabla 1 para las características típicas de los ajustes de disparo.

Page 34: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 33

Menú Principal Indice manual Indice volumen Indice norma

�����

3. Para circuitos con conductores 21,2 mm2 y mayores en zanjas y que utilizan conductor de retornode tierra que no forma parte del cable use las distancias de la tabla multiplicadas por un factor decorrección por espaciamiento sacado de la Tabla 4.

4. Igual a la Nota 3 de la Tabla 2.

Page 35: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 34

Menú Principal Indice manual Indice volumen Indice norma

�����

TABLA 4. FACTORES DE CORRECCION POR ESPACIAMIENTO PARA SER USADOSCON LA TABLA 3. PARA CIRCUITOS CON CONDUCTOR DE PUESTA TIERRA DEL EQUIPO FUERA DEL CABLE

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CONDUCTOR CALIBRE AWG /kcmil

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CONDUCT. DEPUESTA A TIERRA

DEL EQUIPOCALIB.

AWG / kcmil

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DISTANCIA ENTRE CONDUCTORES(cm)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ15

ÁÁÁÁÁÁÁÁ30

ÁÁÁÁÁÁÁÁÁÁ90

ÁÁÁÁÁÁÁÁ180ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6

42

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,96

0,940,91

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,95

0,920,88

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,93

0,890,84

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,91

0,860,82ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6

42

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,96

0,920,86

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,94

0,890,84

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,91

0,860,78

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,89

0,830,75

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1/0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6

42

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,94

0,900,84

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,93

0,860,80

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,90

0,820,73

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,88

0,800,69

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2/0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4

21/0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,90

0,830,75

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,86

0,770,67

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,81

0,700,59

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,77

0,660,55

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4/0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4

21/0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,90

0,810,70

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,85

0,740,62

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,79

0,660,53

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,75

0,620,49

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

250

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2

1/02/0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,89

0,800,64

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,84

0,730,60

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,81

0,680,54

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,76

0,620,49

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

350

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2

1/02/0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,80

0,680,61

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,73

0,590,52

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,67

0,530,47

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,61

0,470,41

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

500

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2

1/02/0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,81

0,670,61

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,73

0,580,51

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,67

0,520,45

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,61

0,460,39

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

600

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2

1/02/0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,82

0,690,62

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,72

0,570,49

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,67

0,510,44

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0,60

0,440,38

Page 36: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 35

Menú Principal Indice manual Indice volumen Indice norma

�����

EQUIVALENTES ACEPTABLES SISTEMA INTERNACIONAL (SI)ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

CALIBRE CONDUCTOR ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

LONGITUDÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

AWG O kcmilÁÁÁÁÁÁÁÁÁÁ

mm2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

AWG O kcmilÁÁÁÁÁÁÁÁÁÁ

mm2 ÁÁÁÁÁÁÁÁÁÁ

Pulg.ÁÁÁÁÁÁÁÁÁÁ

mmÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

6ÁÁÁÁÁÁÁÁÁÁ

13,3ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

250ÁÁÁÁÁÁÁÁÁÁ

127ÁÁÁÁÁÁÁÁÁÁ

6ÁÁÁÁÁÁÁÁÁÁ

150ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

4ÁÁÁÁÁÁÁÁÁÁ

21,2ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

350ÁÁÁÁÁÁÁÁÁÁ

177ÁÁÁÁÁÁÁÁÁÁ

12ÁÁÁÁÁÁÁÁÁÁ

300ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2ÁÁÁÁÁÁÁÁÁÁ

33,6ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

500ÁÁÁÁÁÁÁÁÁÁ

253ÁÁÁÁÁÁÁÁÁÁ

36ÁÁÁÁÁÁÁÁÁÁ

900ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

1/0ÁÁÁÁÁÁÁÁÁÁ

53,5ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

600ÁÁÁÁÁÁÁÁÁÁ

304ÁÁÁÁÁÁÁÁÁÁ

72ÁÁÁÁÁÁÁÁÁÁ

1800ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ2/0

ÁÁÁÁÁÁÁÁÁÁ67,4

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ4/0ÁÁÁÁÁÁÁÁÁÁ107

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ

17 RESISTENCIA PARA PUESTA A TIERRA DEL NEUTRO

17.1 Resumen de Requerimientos AdicionalesLa norma IEEE No. 32 (Neutral Grounding Devices) se usará para la selecciónde la resistencia de puesta a tierra del neutro.

17.2 MaterialesLas resistencias serán construidas de acero con contenido de cromo de por lomenos 12%.

17.3 DiseñoLas resistencias serán adecuadas para instalación a la intemperie.

Las resistencias serán capaces de transportar la corriente máxima de falla a tierradel sistema sin exceder su aumento nominal de temperatura para un período detiempo a ser especificado, pero no menor a 3 segundos. El período de tiempoespecificado será el mayor entre 3 segundos y 5 veces la respuesta del relé defalla a tierra más lento, correspondiente al 80% de la corriente nominal (inicial)del resistor.

Es necesario que las resistencias tengan un encerramiento protector puesto atierra. No son aceptables aquellos diseños que requieran aislamiento a tierra delencerramiento.

El encerramiento para las resistencias será apropiado para el tipo de exposiciónambiental especificado. Las aberturas superiores y laterales de losencerramientos no serán mayores de 38 mm. (1,5 pulgadas) de ancho.

18 BIBLIOGRAFIAL. Lourido, “Efecto de las Conexiones de Cubiertas Metálicas de Cables en elDiseño Óptimo de Circuitos Subterráneos”, Trabajo de Grado, Universidad deCarabobo, Marzo 1996 (Ver Fig. 4).

Page 37: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

1 2 3

45

71,2,3 Equipos electrónicos

4 Punto común de puesta a tierra

5 Transformador de alimentación C.A.

6 Electrodo de puesta a tierra del sistema de potencia

7 Red de referencia de señales (RRS)

6

A

NB

C

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 36

Menú Principal Indice manual Indice volumen Indice norma

�����

Fig 1. PUESTA A TIERRA DE COMPUTADORES

Page 38: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

5

6

A

NB

C 4

1 2 3

7

1,2,3 Equipos de instrumentación4 Barra colectora de puesta a tierra para referencia de señales

(aislada)5 Transformador del UPS6 Electrodo de puesta a tierra del sistema de potencia7 Electrodo de puesta a tierra de instrumentación (local)

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 37

Menú Principal Indice manual Indice volumen Indice norma

�����

Fig 2. PUESTA A TIERRA DE INSTRUMENTACIONALIMENTACION CON UPS

Page 39: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 38

Menú Principal Indice manual Indice volumen Indice norma

�����

Fig 3. PUESTA A TIERRA DE INSTRUMENTACION

5

6

A

NB

C

4

1 2 3

7

1,2,3 Equipos de instrumentación

4 Barra colectora de puesta a tierra para referencia de señales

(aislada)

5 Transformador de alimentación C.A.

6 Electrodo de puesta a tierra del sistema de potencia

7 Electrodo de puesta a tierra de instrumentación (local)

Page 40: MANUAL DE INGENIERIA DE DISEÑO · pdvsa n° titulo rev. fecha descripcion pag. rev. aprob. aprob. aprob. fecha aprob. fecha volumen 4–ii pdvsa, 1983 90619.1.091 puesta a tierra

ARMADURA, CUBIERTA Y PANTALLA PUESTAS A TIERRA EN UN EXTREMO

ARMADURA, CUBIERTA Y PANTALLA PUESTAS A TIERRA EN AMBOS EXTREMOS

ARMADURA, CUBIERTA Y PANTALLA PUESTAS A TIERRA EN UN EXTREMOY CORTOCIRCUITADAS EN EL OTRO EXTREMO

REVISION FECHA

GUIA DE INGENIERIA

PUESTA A TIERRA Y PROTECCIONCONTRA SOBRETENSIONES DIC.980

PDVSA 90619.1.091

Página 39

Menú Principal Indice manual Indice volumen Indice norma

�����

Fig 4. CONEXION KIRKE–SEARING