Top Banner

of 28

Mans Part2

Feb 24, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/24/2019 Mans Part2

    1/28

    Prof. M.N. SABRY 1

    ThermodynamicsPart 2: Applications

    Psychrometry Equilibrium Thermochemistry

  • 7/24/2019 Mans Part2

    2/28

    Prof. M.N. SABRY 2

    Ch. 1: Special mixture: Air Water vapor

  • 7/24/2019 Mans Part2

    3/28

    Prof. M.N. SABRY 3

    Psychrometry

    Problem considered

    Problem considered

    A perfect mixture of perfect gases: Each component : Perfect Gas

    A small quantity of matter may change phase

    (Gas Liquid ou Gas Solid)

    Simplified Model

    Simplified Model

    gaseous phase is homogeneous and composed of 2 perfect gases

    vapor is at low pressure

    Treated is a perfect gas, even when close to saturation

    Liquid and solid phases are void of dissolved gases

  • 7/24/2019 Mans Part2

    4/28

    Prof. M.N. SABRY 4

    State of vap.In mixtureT

    s

    Pvap_sat

    Pvap

    T s Diagramme forCondensable material

    Definitions

    Absolute (Specific) HumidityAbsolute (Specific) Humidity

    = mvap/ ma mvap mass of vapour

    mamass of other gases

    = (Pvap V / Rvap T)/ (PaV / RaT) = (vap/a) (Pvap/ Pa)

    (For air and water:= 0.622 Pvap/ Pair )

    Relative HumidityRelative Humidity

    = Pvap/ Pvap_sat

    ( For air and water: = Pair/ (0.622 Pvap_sat (T))

    Pvap_sat(T ) Saturation pressureAt mixture temperature

    Max Quantity of vapor when: = = = =100% 13

    Dew

    point2

    Add vapor at Tconst. Until state 3 (reaches 100%)

    Starting from state 1, we can : Cool at constPuntil state 2 (reaches 100%)

    (beyond points 2 or 3: condensation)

  • 7/24/2019 Mans Part2

    5/28

    Prof. M.N. SABRY 5

    Adiabatic Saturation

    f

    1 2Air entering

    < 1Air leaving

    = 1

    1st Law1st Law

    T1 : Temperature of state 1 (dry bulb)

    T2 : Temperature of state 2 (wet bulb)

    maha1+ mv1hv1 + mwhf2= maha2+ mv2hvsat2

    mw = mv2- mv1

    ha1+ 1 (hv1 - hf2) = ha2+ 2hfg2

    But

    T wet bulb T dry bulb

    Evaporationof water

  • 7/24/2019 Mans Part2

    6/28

    Prof. M.N. SABRY 6

    Psychometric Chart

    T

    = 1

    = Const < 1(obtained by dividingOrdinates proportionally)

    h Tot. = Constwet bulb = Const

    Obtained from: = 1 = Pair/ (0.622 Pvap_sat (T))

  • 7/24/2019 Mans Part2

    7/28

    Prof. M.N. SABRY 7

    Air conditionning processes

    1

    22

    =(2-1)

    (2- 1)

    Humidification

    Drying

    Cooling Heating

    Cooling and Dehumidification

    Dew point

  • 7/24/2019 Mans Part2

    8/28

    Prof. M.N. SABRY 8

    ThermodynamicsCh2 : Thermodynamic Equilibrium

    For Single Component

    Equilibrium and thermodynamic potentials

  • 7/24/2019 Mans Part2

    9/28

    Prof. M.N. SABRY 9

    Equilibrium of an Isolated System

    Since isolated: dS/dt = dSirrev/dt 0

    At equilibrium: dS/dt = 0 S = max

    dS = dSa+ dSb= (dUa+PadVa)/Ta+ (dUb+PbdVb)/Tb

    But: dUa= - dUb; dVa= - dVb

    dS = 0 (1/Ta - 1/Tb) dUa+ (Pa/Ta- Pb/Tb) dVb=0

    Ta= Tb; Pa= Pb

    Q = m = 0:

    At equilibrium:

    Consider an isolated systemComposed of 2 sub-systems (a, b)

    exchanging Heat & WorkSub

    System

    a

    SubSystem

    b

    An isolated

    system

    . .In general for a control mass : TdS/dt = Q + TdSirrev/dt

    .dSirrev/dt 0

    Exchange of:-Heat- Work

    Single component

  • 7/24/2019 Mans Part2

    10/28

    Prof. M.N. SABRY 10

    Equilibrium depends on constraints

    Tamb = 300 KPamb = 0.1 M PaP = 2 M Pa

    T = 300 K T = 500 K

    P = 0.1 M Pa

    (exchanging only heat ) (exchange only work)

    SystemA SystmB

    Ambient

    Both systems are in equilibrium with ambient,But final equilibrium depends on constraints

  • 7/24/2019 Mans Part2

    11/28

    Prof. M.N. SABRY 11

    Thermodynamic Potentials

    Entropie variation has allowed the study of equilibrium of an isolated system :

    T dS = dU + PdV

    (isolated: dU total= 0; dV total= 0 dS = 0at equilibrium)

    For other constraints, we need other potentials

    Gibbs Formula

    dU = T dS PdV

    dH = dU + d(VP)

    Define:

    Gibbs Free Energy : G = H TS

    dG = -SdT + VdP

    Helmholtz Free Energy : A = U TS

    dA = -SdT PdV

    dH = TdS + VdP

  • 7/24/2019 Mans Part2

    12/28

    Prof. M.N. SABRY 12

    Variation of potentials

    P V

    T S

    A G U H

    PropertiesRelated to work

    PropertiesRelated to Heat

    To be used ifT, Vconst.

    To be used ifT, Pconst. etc.

    For a control masse atP, Tconstant :

    TdS/dt = Q + TdSirrev/dt.

    Tconst.

    Pconst.

    d(TS)/dt dH/dt

    dG/dt = TdSirrev/dt 0

    At equilibrium : dG/dt = 0

    G = min. (if P,T const.)

    Also, if V, Tconst. :Q TdS/dt = dA/dt = TdSirrev/dt 0

    .

    At equilibrium : dA/dt = 0

    A = min. (if V,T const.)

    Also,at equilibrium:

    U = min. (if S,V const.)

    H = min. (ifS,P const.)

  • 7/24/2019 Mans Part2

    13/28

    Prof. M.N. SABRY 13

    Phase Equilibrium (single component)

    Let us study the transition : Liquid vapor atP = const. T = const.

    During the transition : Uvap Uliq = Q + W

    If transition in equilibrium :

    Uvap Uliq = T(Svap Sliq) P(Vvap Vliq)

    Q=T(Svap Sliq)W = P (V

    vap

    Vliq

    )

    Gvap = Gliq

    Another approch (standard) for the study of equilibrium:

    Equilibrium at T&Pconst. implies:

    dGmix = 0

    dGmix = Gliq dmliq + Gvap dmvap

    Molecules will cross the interface in both directions.At equilibrium: same number crosses in each direction.

    dmliq = - dmvapBut Gvap = Gliq0 = (Gliq Gvap) dmliq

  • 7/24/2019 Mans Part2

    14/28

    Prof. M.N. SABRY 14

    Clausius-Clapeyron Relation

    If the pressure changes by dP , and temperature by dTto restore equilibrium :

    dGvap = dGliq

    d(Gvap Gliq) = 0 = (Vvap Vliq) dP (Svap Sliq) dT

    dP / dT = (Svap Sliq)/ (Vvap Vliq)

    dP / dT = (Hvap Hliq)/ T (Vvap Vliq) Clausius Clapeyron Relation

    Variation ofP wrt Talong saturation line Latent Heathfg

  • 7/24/2019 Mans Part2

    15/28

    Prof. M.N. SABRY 15

    Maxwell Relations

    Since G, A, H and U are state variables

    Hence, dG, dA, dH and dU are total differentials

    dU = T dS PdVdG = SdT + VdP dA = SdT PdV dH = TdS + VdP

    STGP =

    PT TVPS =

    PT TVPS =

    VPGT =

    STAV

    =

    VT TPVS =

    VT TPVS =

    PVAT =

    TSHP=

    PS SVPT =

    PS SVPT =

    VPHS =

    TSUV =

    VS SPVT =

    VS SPVT =

    PVUS =

    Maxw1 Maxw2 Maxw3 Maxw4

    Maxwell Relations

    Starting frommesurable properties (P,V,T)

    Get Non - mesurableproperties (S,H,G)

  • 7/24/2019 Mans Part2

    16/28

    Prof. M.N. SABRY 16

    Enthalpy of a real gas

    v+=TT

    PsTPh

    PT TPs = v

    ( ) ( ) ( ) += P

    PdPTTThTPh

    0*, vv( ) ( ) ( ) +=

    P

    PdPTTThTPh

    0*, vv

    T

    PWe can easily measure:

    vvvv=V/m = f(P,T)

    h* (T) = h|P0(T) By calorimetry :h* =

    vvvv =

    h (P,T)= ?

    h* (T)=

    m h*(T1

    ).

    m h*(T2

    ).

    Q.

    To geth(P,T) :

    h (P,T)= [h(P,T) h*(T)] + h*(T)

    P

    TdPPh0

    But, the potentielh : dh = dH/m = Tds + vvvv dP

    =0 for an ideal gas

    But (Maxw1) :

    Gibbs Formula

  • 7/24/2019 Mans Part2

    17/28

    Prof. M.N. SABRY 17

    Entropy of a real gas

    T

    P

    h* =

    vvvv, h =

    s (P,T)= ?

    s* (T)=

    s* = Gibbs Formula

    To get entropys* @P 0:

    Tds = dh vvvv dP

    = T

    T

    Tdhs 0

    )(**

    PT TPs = v

    ( ) ( ) = P

    PdPTTsTPs

    0*, v( ) ( ) =

    P

    PdPTTsTPs

    0*, v

    To gets(P,T) :

    s (P,T)= [s(P,T) s*(T)] + s*(T)

    P

    TdPPs0

    N.B.: knowing vvvv, h andsas a function ofP and Twe can get :

    But (Maxw1) :

    u = h Pvvvv = g = h Ts= a = u Ts=

  • 7/24/2019 Mans Part2

    18/28

    Prof. M.N. SABRY 18

    Constructing thermodynamic tables

    Starting from:

    vvvv = f(P,T)

    h* (T) = h|P=c(T)

    P = f(T)

    For each phase

    For each phase transition

    We can calculate for each phase:

    ( ) ( ) ( ) += P

    c PdPTTThTPh vv*,( ) ( ) ( ) +=

    P

    c PdPTTThTPh vv*, =

    TTref T

    Tdhs )(** = TTref T

    Tdhs )(** ( ) ( ) = P

    c PdPTTsTPs v*,( ) ( ) =

    Pc P

    dPTTsTPs v*,

    u = h Pv = g = h Ts= a = u Ts=

    We can calculate for each phase transition:

    h = T vvvv dP / dT Clausius Clapeyron Relation

    s = h / T u =h Pvvvv g =h Ts =0 a = Pvvvv

  • 7/24/2019 Mans Part2

    19/28

    Prof. M.N. SABRY 19

    ThermodynamicsCh. 3: Thermochemistry

  • 7/24/2019 Mans Part2

    20/28

    Prof. M.N. SABRY 20

    Thermochemistry

    Sources of energy : 38%

    23%

    24%

    7%7%1%

    Petrol

    Gaz Naturel

    Charbon

    Hydraulique

    Nucleaire

    Nouvelle

    Types of fuel:

    Combustion offossil fuel: 85%

    Solid

    Liquid

    Gaseous

    Essentially coal C, rural & urban wastes

    Essentially petrol, mixtures of hydrocarbons CnHm (octane=C8H18)

    Essentially natural gas, methane CH4 , hydrogen H2

    Water electrolysisbiomass

    Apply to all chemical reactions,Concentrate on combustion

  • 7/24/2019 Mans Part2

    21/28

    Prof. M.N. SABRY 21

    Stoichiometric Mixture

    If air quantity is just sufficient for COMPLETE combustion

    CnHm + aO2 + bN2 cCO2 + dH2O + bN2

    air

    Reactants Products

    We neglect rare gases in air (Argon 1%, )

    We neglect formation of nitrogen oxides (except at very high temperature)

    Nitrogen exists because it is heated

    Rich mixture: air < stoichiometric: incomplete combustion but fast, high T

    Poor mixture: air > stoichiometric: complete combustion, T moderate

    Stoichiometric mixture

    N.B.Composition by volume: 79% N

    2, 21% O

    2

  • 7/24/2019 Mans Part2

    22/28

    Prof. M.N. SABRY 22

    Mass balance

    If stoichiometric:

    CnHm + aO2 + bN2 cCO2 + dH2O + bN2

    air

    Reactants Products

    Equality of C atoms: n = c

    Equality of H atoms: m = d/2Equality of O atoms: 2a = 2c + d

    Composition of air: b = 79/21 a = 3.76 a

    Example :

    C8H18+ 12.5O2 + 12.5*3.76N2 8CO2 +9H2O + 12.5*3.76N2

    (Air to Fuel Ratio AFR):Mass of air / kg fuel

    Mass of fuel: 8*12 + 18*1 = 114Mass of air : 12.5 (16*2 + 3.76*14*2)= 1382

    Soichiometric AFR for C8H18= 1382 / 114 = 12.123

  • 7/24/2019 Mans Part2

    23/28

    Prof. M.N. SABRY 23

    Heat (enthalpy) of formation

    For a chemical reaction :

    1 kmol of C

    1 kmol of O2

    1 kmol of CO2Entering at NPT

    Leaving at NPT

    NPT:T = 25 + 273 K

    P = 0.1 MPaReaction

    C + O2 CO2

    Q (produced) = 393.522 MJ

    It is important to fix the reference (i.e. level 0) of uandh.To define u, h

    Rules:

    by convention, enthalpy of an element (C, O2, N2, ) is 0 at TPN enthalpy of a chemical compound at NPT is:

    Enthalpy (or heat) of formation : hfo(in J/kmol) hf

    o(in J/kg)

    Heat received during formation reaction

    hfoofCO2 = -393.522 MJ/kmol hf

    oofCO2 = -32.794 MJ/kg

  • 7/24/2019 Mans Part2

    24/28

    Prof. M.N. SABRY 24

    Applying 1st Law

    ( ) ( ) ( )[ ]ssinininin PEKEumdt

    dPEKEhmPEKEhmWQ ++=++++++ &&&& ( ) ( ) ( )[ ]ssinininin PEKEum

    dt

    dPEKEhmPEKEhmWQ ++=++++++ &&&&

    +=Ri iTPNiinifiinin hhhmhm ,,

    0

    ,&&

    +=Ri iTPNiinifiinin hhhmhm ,,

    0

    ,&&

    where

    += Pj jTPNjoutjfioutout hhhmhm ,,0

    ,&& += Pj jTPNjoutjfioutout hhhmhm ,,

    0

    ,&&

    R =ReactantsP =Products

    Definitions

    Adiabatic Flame Temperature

    Temperature of products of adiabatic combustion at P const, reactants at NPT

    Higher calorific value

    Heat produced if reactants et products at NPT, with liquid H2O in products

    Lower calorific value

    Heat produced if reactants et products at NPT, with vapor H2O in products

    Reference Delta

  • 7/24/2019 Mans Part2

    25/28

    Prof. M.N. SABRY 25

    Third Law of thermodynamics

    To fix the reference ofs

    Entropy of a perfect crystal at T = 0is 0

    3rd Law:3rd Law:

  • 7/24/2019 Mans Part2

    26/28

    Prof. M.N. SABRY 26

    Equilibrium Many components

    Let us mix reactantsA & Band products C & D.at arbitrary proportions

    At equilibrium, the number of molespresent for all components:

    chemical reaction isreversible& stoichiometric

    AA + BB C C + DD

    The degree of advance of a reaction: Stoichiomtricnumber of moles

    nA, nB, nC, nD = ?nA, nB, nC, nD = ?

    dnA = A d

    dnB= Bd

    dnC = C d

    dnD= Dd

    0000 = (= (= (= ( A gA B gB+C gC + D gD) d

    dG|T,P= gA dnA + gBdnB+ gC dnC + gDdnD= 0

  • 7/24/2019 Mans Part2

    27/28

    Prof. M.N. SABRY 27

    Chemical Potential

    U = U (S, V, n1, n2, ) ni: Numbre of moles of componant i

    dU = (U/S|V,ni) dS + (U/V|S,ni) dV + i(U/ni|S,V,nj) dnidU = (U/S|V,ni) dS + (U/V|S,ni) dV + i(U/ni|S,V,nj) dni

    If dni=0 T -Pi: Chemical Potential

    1 componant Work of changing volume only

    2 Degrees of Freedom.dU = TdS PdV (Gibbs Formula)

    i.e. U=f(S,V)

    For many componants :

    For a system with:

    In general dU = TdS PdV + iidni

    Also: dH = d(U+PV) = TdS + VdP + iidni

    dA = d(U-TS) = -SdT - PdV + iidni

    dG = d(H-TS) = -SdT + VdP + iidniijij

    ijij

    nPTinVTi

    nPSinVSii

    n

    G

    n

    A

    n

    H

    n

    U

    =

    =

    =

    =

    ,,,,

    ,,,,

    ijij

    ijij

    nPTinVTi

    nPSinVSii

    n

    G

    n

    A

    n

    H

    n

    U

    =

    =

    =

    =

    ,,,,

    ,,,,

  • 7/24/2019 Mans Part2

    28/28

    Prof. M.N. SABRY 28

    Chemical Equilibrium

    d gA|T= RT dln PA

    gA= gA|Po+ RT ln (aA)

    0000 = (= (= (= ( A GA BGB+C GC + D GD) d

    0000 = (= (= (= ( AgA0BgB

    0+CgC0+ DgD

    0)

    ++++R (((( A lnaA BlnaB+C lnaC + D lnaD)

    Put: G0

    Put: ln K = G0/RT

    For an ideal gas: aA = yAP/P0

    BADC

    BA

    DC

    P

    P

    yy

    yyK

    BA

    DC

    +

    =

    0

    BADC

    BA

    DC

    P

    P

    yy

    yyK

    BA

    DC

    +

    =

    0

    For constant T, ideal gas:

    d gA|T= dhA - Tds A