-
1
LSD-SLAM: Large-Scale Direct Monocular SLAM
Jakob Engel, Thomas Schps, Daniel CremersTechnical University
Munich
Monocular Video Camera Motion and Scene Geometry
Computer Vision GroupTechnical University of Munich
Jakob Engel
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
2
Live Operation
real-time operation on laptop (no GPU)LSD-SLAM: Large-Scale
Direct Monocular SLAMEngel, Schps, Cremers
-
3
(Some) Related Work
DTAM: Dense Tracking and Mapping in Real-Time. Newcombe,
Lovegrove, Davison; ICCV 11
MonoSLAM: Real-time single camera SLAM. Davison, Reid, Molton,
Stasse; PAMI 07
Structure from Motion Causally Integrated Over Time. Chiuso,
Favaro, Jin, Soatto; PAMI 02
SVO: Fast Semi-Direct Monocular Visual Odometry. Forster,
Pizzoli, Scaramuzza; ICRA 14
Parallel Tracking and Mapping for Small AR Workspaces. Klein,
Murray; ISMAR 07
Scalable monocular SLAM. Eade, Drummond; CVPR 06
Visual Odometry.Nistr, Naroditsky, Bergen; CVPR 04
Scale Drift-Aware Large Scale Monocular SLAM. Strasdat, Montiel,
Davison; RSS 10
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
Extract & MatchFeatures
(SIFT / SURF / BRIEF /...)
Input Images
4
Track:min. reprojection error
(point distances)
Map:est. feature-parameters
(3D points / normals)
abstract images to feature observations
Input Images
Track:min. photometric error
(intensity difference)
Map: est. per-pixel depth
(semi-dense depth map)
keep full image
LSD-SLAM: whats new?Keypoint-Based Direct (LSD-SLAM)
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
5
...and why do that?
can only use & reconstruct corners can use & reconstruct
whole imageLSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
Depth Estimation
Input Video
6
Current KF
Tracking
Overview
Add to Map
Map Optimization
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
7
Overview
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Input Video640x480 @ 30Hz
TrackingSE(3) alignment
to current KF
Depth Estimation
Current KFAdd to Map
Map Optimization
-
8
Tracking
KF image KF depth
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
8
Tracking
KF image KF depth back-warped new frame
Camera Pose in
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
8
Tracking
KF image KF depth back-warped new frame
Camera Pose in
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
( forward-compositional Lucas-Kanade)
8
Tracking
minimize using Gauss-Newton Algorithm
KF image KF depth back-warped new frame
Camera Pose in
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
9
Tracking multi-resolution (track large motions)
Huber norm instead of L2 (outliers & occlusions)
statistical normalization (respect depth- and pixel-noise)
single core timings:320x240: 5-10ms640x480: 20-30ms
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
10
Overview
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Input Video640x480 @ 30Hz
TrackingSE(3) alignment
to current KF
Depth Estimation
Current KFAdd to Map
Map Optimization
-
11
Overview
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Input Video640x480 @ 30Hz
TrackingSE(3) alignment
to current KF
Add to Map
Map Optimization
Depth Estimation
Current KF
Take KF?
Createnew KF
Refine KF
-
12
Depth Estimation
pixelwise filtering (exploit video)small-baseline large
baseline
information selectiononly do stereo if sufficientinformation
gain
edge-preserving smoothing distance-based KF selection
image inverse depth inverse depth variance
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
[Engel, Sturm, Cremers; ICCV 13]
-
13
Overview
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Input Video640x480 @ 30Hz
TrackingSE(3) alignment
to current KF
Depth Estimation
Current KF
Take KF?
Createnew KF
Refine KF
Add to Map
Map Optimization
-
14
Overview
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Input Video640x480 @ 30Hz
TrackingSE(3) alignment
to current KF
Depth Estimation
Current KF
Take KF?
Createnew KF
Refine KF
Add to Map
Map Optimization
-
15
Overview
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Input Video640x480 @ 30Hz
TrackingSE(3) alignment
to current KF
Depth Estimation
Current KF
Take KF?
Createnew KF
Refine KF
Add to MapSim(3) alignmentto all nearby KFs
Optional: FabMap for large loops
Map OptimizationSim(3) pose-graph
-
16
Global Mapping
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
with (warped point)
16
Global Mapping
Direct Tracking with scale (on Sim(3)):
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
with (warped point)
16
Global Mapping
Direct Tracking with scale (on Sim(3)):
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
with (warped point)
16
Global Mapping
Direct Tracking with scale (on Sim(3)):
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
+ GN optimization + multi-resolution + Huber norm + statistical
norm.
-
with (warped point)
16
Global Mapping
Direct Tracking with scale (on Sim(3)):
Optimize pose-graph on Sim(3)
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
+ GN optimization + multi-resolution + Huber norm + statistical
norm.
-
17
Global Mapping
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
18
Overview
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Input Video640x480 @ 30Hz
TrackingSE(3) alignment
to current KF
Depth Estimation
Current KF
Take KF?
Createnew KF
Refine KF
Add to MapSim(3) alignmentto all nearby KFs
Optional: FabMap for large loops
Map OptimizationSim(3) pose-graph
-
19
Results
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
6 minutes, 640x480@50fps: 16.000 Tracked Frames, 800 Keyframes;
11.000 Constraints; 51 Million Points
-
20
Results
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
12 minutes, 640x480@50fps:36.000 Tracked Frames, 1.000
Keyframes; 18.000 Constraints; 100 Million Points
-
21
Results
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Semi-Dense Visual Odometry for AR on a Smartphone; T. Schps, J.
Engel, D. Cremers; ISMAR 14.
-
22
Key Ingredients
Direct Tracking
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
22
Key Ingredients
Direct Tracking
Semi-Dense Stereo filter over many small-baseline frames strict
information selection
Pose-Graph on Sim(3)
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
-
23
LSD-SLAM
LSD-SLAM: Large-Scale Direct Monocular SLAMEngel, Schps,
Cremers
Large-scale direct mono-SLAM Fully direct (no keypoints /
features) Real-time even on CPU Open-source code &
data-sets
Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide
Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number
9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide
Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number
18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide
Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number
27Slide Number 28Slide Number 29Slide Number 30Slide Number 31