Top Banner
Limits and Continuity •Definition •Evaluation of Limits •Continuit y imits Involving Infinity
41

Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Limits and Continuity

•Definition

•Evaluation of Limits

•Continuity

•Limits Involving Infinity

Page 2: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Limit

We say that the limit of ( ) as approaches is and writef x x a L

lim ( ) x a

f x L

if the values of ( ) approach as approaches . f x L x a

a

L( )y f x

Page 3: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Limits, Graphs, and Calculators

21

11. a) Use table of values to guess the value of lim

1x

x

x

2

1b) Use your calculator to draw the graph ( )

1

xf x

x

and confirm your guess in a)

2. Find the following limits

0

sina) lim by considering the values

x

x

x

1, 0.5, 0.1, 0.05, 0.001. x Thus the limit is 1. sin

Confirm this by ploting the graph of ( ) x

f xx

Graph 1

Graph 2

Page 4: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

0

b) limsin by considering the values x x

1 1 1(i) 1, , , 10 100 1000x

2 2 2(ii) 1, , , 3 103 1003x

This shows the limit does not exist.

Confrim this by ploting the graph of ( ) sin f x x

Graph 3

Page 5: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

c) Find2

3 if 2lim ( ) where ( )

1 if 2x

x xf x f x

x

-2

62 2

lim ( ) = lim 3x x

f x x

Note: f (-2) = 1

is not involved

23 lim

3( 2) 6x

x

Page 6: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

2

2

4( 4)a. lim

2x

x

x

0

1, if 0b. lim ( ), where ( )

1, if 0x

xg x g x

x

20

1c. lim ( ), where f ( )

xf x x

x

0

1 1d. lim

x

x

x

Answer : 16

Answer : no limit

Answer : no limit

Answer : 1/2

3) Use your calculator to evaluate the limits

Page 7: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

The Definition of Limit-

lim ( ) We say if and only if x a

f x L

given a positive number , there exists a positive such that

if 0 | | , then | ( ) | . x a f x L

( )y f x a

LL

L

a a

Page 8: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

such that for all in ( , ), x a a a

then we can find a (small) interval ( , )a a

( ) is in ( , ).f x L L

This means that if we are given a

small interval ( , ) centered at , L L L

Page 9: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Examples2

1. Show that lim(3 4) 10.x

x

Let 0 be given. We need to find a 0 such that if | - 2 | ,x then | (3 4) 10 | .x

But | (3 4) 10 | | 3 6 | 3 | 2 |x x x

if | 2 |3

x

So we choose .3

1

12. Show that lim 1.

x x

Let 0 be given. We need to find a 0 such that 1if | 1| , then | 1| .x x

1 11But | 1| | | | 1| . x

xx x x

What do we do with the

x?

Page 10: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

1 31If we decide | 1| , then . 2 22x x

1And so <2.

x

1/2

11Thus | 1| | 1| 2 | 1| . x xx x

1 Now we choose min , .

3 2

1 3/2

Page 11: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

The right-hand limit of f (x), as x approaches a, equals L

written:

if we can make the value f (x) arbitrarily close to L by taking x to be sufficiently close to the right of a.

lim ( )x a

f x L

a

L( )y f x

One-Sided Limit

One-Sided Limits

Page 12: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

The left-hand limit of f (x), as x approaches a, equals M

written:

if we can make the value f (x) arbitrarily close to L by taking x to be sufficiently close to the left of a.

lim ( )x a

f x M

a

M

( )y f x

Page 13: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

2 if 3( )

2 if 3

x xf x

x x

1. Given

3lim ( )x

f x

3 3lim ( ) lim 2 6x x

f x x

2

3 3lim ( ) lim 9x x

f x x

Find

Find 3

lim ( )x

f x

Examples

Examples of One-Sided Limit

Page 14: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

1, if 02. Let ( )

1, if 0.

x xf x

x x

Find the limits:

0lim( 1)x

x

0 1 1 0

a) lim ( )x

f x

0b) lim ( )

xf x

0lim( 1)x

x

0 1 1

1c) lim ( )

xf x

1lim( 1)x

x

1 1 2

1d) lim ( )

xf x

1lim( 1)x

x

1 1 2

More Examples

Page 15: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

lim ( ) if and only if lim ( ) and lim ( ) .x a x a x a

f x L f x L f x L

For the function

1 1 1lim ( ) 2 because lim ( ) 2 and lim ( ) 2.x x x

f x f x f x

But

0 0 0lim ( ) does not exist because lim ( ) 1 and lim ( ) 1.x x x

f x f x f x

1, if 0( )

1, if 0.

x xf x

x x

This theorem is used to show a limit does not exist.

A Theorem

Page 16: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Limit Theorems

If is any number, lim ( ) and lim ( ) , thenx a x a

c f x L g x M

a) lim ( ) ( )x a

f x g x L M

b) lim ( ) ( ) x a

f x g x L M

c) lim ( ) ( )x a

f x g x L M

( )d) lim , ( 0)( )x a

f x L Mg x M

e) lim ( )x a

c f x c L

f) lim ( ) n n

x af x L

g) lim x a

c c

h) lim x a

x a

i) lim n n

x ax a

j) lim ( ) , ( 0)

x af x L L

Page 17: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Examples Using Limit RuleEx. 2

3lim 1x

x

2

3 3lim lim1x x

x

23 3

2

lim lim1

3 1 10

x xx

Ex.1

2 1lim

3 5x

x

x

1

1

lim 2 1

lim 3 5x

x

x

x

1 1

1 1

2lim lim1

3lim lim5x x

x x

x

x

2 1 1

3 5 8

Page 18: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

More Examples

3 31. Suppose lim ( ) 4 and lim ( ) 2. Find

x xf x g x

3

a) lim ( ) ( ) x

f x g x

3 3 lim ( ) lim ( )

x xf x g x

4 ( 2) 2

3

b) lim ( ) ( ) x

f x g x

3 3 lim ( ) lim ( )

x xf x g x

4 ( 2) 6

3

2 ( ) ( )c) lim

( ) ( )x

f x g x

f x g x

3 3

3 3

lim 2 ( ) lim ( )

lim ( ) lim ( )x x

x x

f x g x

f x g x

2 4 ( 2) 5

4 ( 2) 4

Page 19: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Indeterminate forms occur when substitution in the limit results in 0/0. In such cases either factor or rationalize the expressions.

Ex.25

5lim

25x

x

x

Notice form0

0

5

5lim

5 5x

x

x x

Factor and cancel common factors

5

1 1lim

5 10x x

Indeterminate Forms

Page 20: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

9

3a) lim

9x

x

x

9

( 3)

( 3)

( 3) = lim

( 9)x

x

x

x

x

9

9 lim

( 9)( 3)x

x

x x

9

1 1 lim

63x x

2

2 3 2

4b) lim

2x

x

x x

2 2

(2 )(2 )= lim

(2 )x

x x

x x

2 2

2 = lim

x

x

x

2

2 ( 2) 41

( 2) 4

More Examples

Page 21: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

The Squeezing TheoremIf ( ) ( ) ( ) when is near , and if f x g x h x x a

, then lim ( ) lim ( )x a x a

f x h x L

lim ( ) x a

g x L

2

0 Show that liExampl m 0e: .

xx sin x

0

Note that we cannot use product rule because limx

sin x

DNE! But 1 sin 1 x 2 2 2and so sin . x x xx

2 2

0 0Since lim lim( ) 0,

x xx x

we use the Squeezing Theorem to conclude

2

0lim 0.x

x sin x

See Graph

Page 22: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Continuity

A function f is continuous at the point x = a if the following are true:

) ( ) is definedi f a) lim ( ) exists

x aii f x

a

f(a)

Page 23: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

A function f is continuous at the point x = a if the following are true:

) ( ) is definedi f a) lim ( ) exists

x aii f x

) lim ( ) ( )x a

iii f x f a

a

f(a)

Page 24: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

At which value(s) of x is the given function discontinuous?

1. ( ) 2f x x 2

92. ( )

3

xg x

x

Continuous everywhere

Continuous everywhere except at 3x

( 3) is undefinedg

lim( 2) 2 x a

x a

and so lim ( ) ( )x a

f x f a

-4 -2 2 4

-2

2

4

6

-6 -4 -2 2 4

-10

-8

-6

-4

-2

2

4

Examples

Page 25: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

2, if 13. ( )

1, if 1

x xh x

x

1lim ( )x

h x

and

Thus h is not cont. at x=1.

11

lim ( )x

h x

3

h is continuous everywhere else

1, if 04. ( )

1, if 0

xF x

x

0lim ( )x

F x

1 and

0lim ( )x

F x

1

Thus F is not cont. at 0.x

F is continuous everywhere else

-2 2 4

-3

-2

-1

1

2

3

4

5

-10 -5 5 10

-3

-2

-1

1

2

3

Page 26: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Continuous Functions

A polynomial function y = P(x) is continuous at every point x.

A rational function is continuous at every point x in its domain.

( )( ) ( )p xR x q x

If f and g are continuous at x = a, then

, , and ( ) 0 are continuous

at

ff g fg g ag

x a

Page 27: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Intermediate Value Theorem

If f is a continuous function on a closed interval [a, b] and L is any number between f (a) and f (b), then there is at least one number c in [a, b] such that f(c) = L.

( )y f x

a b

f (a)

f (b)

L

c

f (c) =

Page 28: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Example

2Given ( ) 3 2 5,

Show that ( ) 0 has a solution on 1,2 .

f x x x

f x

(1) 4 0

(2) 3 0

f

f

f (x) is continuous (polynomial) and since f (1) < 0 and f (2) > 0, by the Intermediate Value Theorem there exists a c on [1, 2] such that f (c) = 0.

Page 29: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Limits at Infinity

For all n > 0,1 1

lim lim 0n nx xx x

provided that is defined.1nx

Ex.2

2

3 5 1lim

2 4x

x x

x

2

2

5 13lim

2 4x

x x

x

3 0 0 3

0 4 4

Divide by 2x

2

2

5 1lim 3 lim lim

2lim lim 4

x x x

x x

x x

x

Page 30: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

More Examples

3 2

3 2

2 3 21. lim

100 1x

x x

x x x

3 2

3 3 3

3 2

3 3 3 3

2 3 2

lim100 1x

x xx x x

x x xx x x x

3

2 3

3 22

lim1 100 1

1x

x x

x x x

22

1

Page 31: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

0

2

3 2

4 5 212. lim

7 5 10 1x

x x

x x x

2

3 3 3

3 2

3 3 3 3

4 5 21

lim7 5 10 1x

x xx x x

x x xx x x x

2 3

2 3

4 5 21

lim5 10 1

7x

x x x

x x x

0

7

2 2 43. lim

12 31x

x x

x

2 2 4

lim12 31x

x xx x x

xx x

42

lim31

12x

xx

x

2

12

Page 32: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

24. lim 1x

x x

22

2

1 1 lim

1 1x

x x x x

x x

2 2

2

1lim

1x

x x

x x

2

1 lim

1x x x

1 1

0

Page 33: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Infinite LimitsFor all n > 0,

1

limnx a x a

1

lim if is evennx a

nx a

1

lim if is oddnx a

nx a

-8 -6 -4 -2 2

-20

-15

-10

-5

5

10

15

20

-2 2 4 6

-20

-10

10

20

30

40

More Graphs

-8 -6 -4 -2 2

-20

-15

-10

-5

5

10

15

20

Page 34: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Examples Find the limits

2

20

3 2 11. lim

2x

x x

x

2

0

2 13= lim

2x

x x

3

2

3

2 12. lim

2 6x

x

x

3

2 1= lim

2( 3)x

x

x

-8 -6 -4 -2 2

-20

20

40

Page 35: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Limit and Trig Functions

From the graph of trigs functions

( ) sin and ( ) cosf x x g x x

we conclude that they are continuous everywhere

-10 -5 5 10

-1

-0.5

0.5

1

-10 -5 5 10

-1

-0.5

0.5

1

limsin sin and lim cos cosx c x c

x c x c

Page 36: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Tangent and Secant Tangent and secant are continuous everywhere in their domain, which is the set of all real numbers

3 5 7, , , , 2 2 2 2x

-6 -4 -2 2 4 6

-30

-20

-10

10

20

30

-6 -4 -2 2 4 6

-15

-10

-5

5

10

15

tany x

secy x

Page 37: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Examples

2

a) lim secx

x

2

b) lim secx

x

32

c) lim tanx

x

3

2

d) lim tanx

x

e) lim cotx

x

32

g) lim cotx

x

32

cos 0lim 0

sin 1x

x

x

4

f) lim tanx

x

1

Page 38: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Limit and Exponential Functions

-6 -4 -2 2 4 6

-2

2

4

6

8

10

, 1xy a a

-6 -4 -2 2 4 6

-2

2

4

6

8

10 , 0 1xy a a

The above graph confirm that exponential functions are continuous everywhere.

lim x c

x ca a

Page 39: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Asymptotes

horizontal asymptotThe line is called a

of the curve ( ) if eihter

ey L

y f x

lim ( ) or lim ( ) .x x

f x L f x L

vertical asymptote The line is called a

of the curve ( ) if eihter

x c

y f x

lim ( ) or lim ( ) .x c x c

f x f x

Page 40: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

Examples

Find the asymptotes of the graphs of the functions

2

2

11. ( )

1

xf x

x

1 (i) lim ( )

xf x

Therefore the line 1

is a vertical asymptote.

x

1.(iii) lim ( )x

f x

1(ii) lim ( )

xf x

.

Therefore the line 1

is a vertical asymptote.

x

Therefore the line 1

is a horizonatl asymptote.

y

-4 -2 2 4

-10

-7.5

-5

-2.5

2.5

5

7.5

10

Page 41: Limits and Continuity Definition Evaluation of Limits Continuity Limits Involving Infinity.

2

12. ( )

1

xf x

x

21 1

1(i) lim ( ) lim

1x x

xf x

x

1 1

1 1 1= lim lim .

( 1)( 1) 1 2x x

x

x x x

Therefore the line 1

is a vertical asympNO t eT ot .

x

1(ii) lim ( ) .

xf x

Therefore the line 1

is a vertical asymptote.

x

(iii) lim ( ) 0.x

f x

Therefore the line 0

is a horizonatl asymptote.

y

-4 -2 2 4

-10

-7.5

-5

-2.5

2.5

5

7.5

10