Top Banner
. . . . . . Section 12.1–12.2 Double Integrals over Rectangles Iterated Integrals Math 21a March 17, 2008 Announcements Office hours Tuesday, Wednesday 2–4pm SC 323 Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b . . Image: Flickr user Cobalt123
28

Lesson18 Double Integrals Over Rectangles Slides

May 18, 2015

Download

Technology

We develop double integrals for measuring volume and iterated integrals for calculating double integrals.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Section 12.1–12.2Double Integrals over Rectangles

Iterated Integrals

Math 21a

March 17, 2008

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

..Image: Flickr user Cobalt123

Page 2: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

Page 3: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Outline

Last Time

Double Integrals over RectanglesRecall the definite integralDefinite integrals in two dimensions

Iterated IntegralsPartial IntegrationFubini’s TheoremAverage value

Page 4: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Outline

Last Time

Double Integrals over RectanglesRecall the definite integralDefinite integrals in two dimensions

Iterated IntegralsPartial IntegrationFubini’s TheoremAverage value

Page 5: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Cavalieri’s methodLet f be a positive function defined on the interval [a, b]. We want tofind the area between x = a, x = b, y = 0, and y = f(x).For each positive integer n, divide up the interval into n pieces. Then

∆x =b − a

n. For each i between 1 and n, let xi be the nth step

between a and b. So

..a .b. . . . . . .

.x0 .x1 .x2 .xi .xn−1.xn

x0 = a

x1 = x0 + ∆x = a +b − a

n

x2 = x1 + ∆x = a + 2 · b − an

· · · · · ·

xi = a + i · b − an

· · · · · ·

xn = a + n · b − an

= b

Page 6: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Forming Riemann sums

We have many choices of how to approximate the area:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(

x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

In general, choose x∗i to be a point in the ith interval [xi−1, xi]. Formthe Riemann sum

Sn = f(x∗1)∆x + f(x∗2)∆x + · · · + f(x∗n)∆x

=n∑

i=1

f(x∗i )∆x

Page 7: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Forming Riemann sums

We have many choices of how to approximate the area:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(

x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

In general, choose x∗i to be a point in the ith interval [xi−1, xi]. Formthe Riemann sum

Sn = f(x∗1)∆x + f(x∗2)∆x + · · · + f(x∗n)∆x

=n∑

i=1

f(x∗i )∆x

Page 8: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

DefinitionThe definite integral of f from a to b is the limit∫ b

af(x) dx = lim

n→∞

n∑i=1

f(x∗i )∆x

(The big deal is that for continuous functions this limit is the same nomatter how you choose the x∗i ).

Page 9: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

The problem

Let R = [a, b] × [c, d] be a rectangle in the plane, f a positive functiondefined on R, and

S = { (x, y, z) | a ≤ x ≤ b, c ≤ y ≤ d, 0 ≤ z ≤ f(x, y) }

Our goal is to find the volume of S

Page 10: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

The strategy: Divide and conquer

For each m and n, divide the interval [a, b] into m subintervals ofequal width, and the interval [c, d] into n subintervals. For each i andj, form the subrectangles

Rij = [xi−1, xi] × [yj−1, yj]

Choose a sample point (x∗ij , y∗ij ) in each subrectangle and form theRiemann sum

Smn =m∑

i=1

n∑j=1

f(x∗ij , y∗ij ) ∆A

where ∆A = ∆x ∆y.

Page 11: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

DefinitionThe double integral of f over the rectangle R is∫∫

R

f(x, y) dA = limm,n→∞

m∑i=1

n∑j=1

f(x∗ij , y∗ij )∆A

(Again, for continuous f this limit is the same regardless of methodfor choosing the sample points.)

Page 12: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #1

ProblemEstimate the volume of the solid that lies below the surface z = xy andabove the rectangle [0, 6] × [0, 4] in the xy-plane using a Riemann sumwith m = 3 and n = 2. Take the sample point to be the upper rightcorner of each rectangle.

Answer288

Page 13: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #1

ProblemEstimate the volume of the solid that lies below the surface z = xy andabove the rectangle [0, 6] × [0, 4] in the xy-plane using a Riemann sumwith m = 3 and n = 2. Take the sample point to be the upper rightcorner of each rectangle.

Answer288

Page 14: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Theorem (Midpoint Rule)

∫∫R

f(x, y) dA ≈m∑

i=1

n∑j=1

f(xi, yj)∆A

where xi is the midpoint of [xi−1, xi] and yj is the midpoint of [yj−1, yj].

Page 15: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #2

ProblemUse the Midpoint Rule to evaluate the volume of the solid in Problem 1.

Answer144

Page 16: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #2

ProblemUse the Midpoint Rule to evaluate the volume of the solid in Problem 1.

Answer144

Page 17: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Outline

Last Time

Double Integrals over RectanglesRecall the definite integralDefinite integrals in two dimensions

Iterated IntegralsPartial IntegrationFubini’s TheoremAverage value

Page 18: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Partial Integration

Let f be a function on a rectangle R = [a, b] × [c, d]. Then for eachfixed x we have a number

A(x) =

∫ d

cf(x, y) dy

The is a function of x, and can be integrated itself. So we have aniterated integral∫ b

aA(x) dx =

∫ b

a

[∫ d

cf(x, y) dy

]dx

Page 19: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #3

ProblemCalculate∫ 3

1

∫ 1

0(1 + 4xy) dx dy and

∫ 1

0

∫ 3

1(1 + 4xy) dy dx.

Page 20: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Fubini’s Theorem

Double integrals look hard. Iterated integrals look easy/easier. Thegood news is:

Theorem (Fubini’s Theorem)If f is continuous on R = [a, b] × [c, d], then∫∫

R

f(x, y) dA =

∫ b

a

∫ d

cf(x, y) dy dx =

∫ d

c

∫ b

af(x, y) dx dy

This is also true if f is bounded on R, f is discontinuous only on a finitenumber of smooth curves, and the iterated integrals exist.

Page 21: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #4

ProblemEvaluate the volume of the solid in Problem 1 by computing an iteratedintegral.

Answer144

Page 22: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #4

ProblemEvaluate the volume of the solid in Problem 1 by computing an iteratedintegral.

Answer144

Page 23: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Meet the mathematician: Guido Fubini

◮ Italian, 1879–1943◮ graduated Pisa 1900◮ professor in Turin,

1908–1938◮ escaped to US and died

five years later

Page 24: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #5

ProblemCalculate ∫∫

R

xy2

x2 + 1dA

where R = [0, 1] × [−3, 3].

Answerln 512 = 9 ln 2

Page 25: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #5

ProblemCalculate ∫∫

R

xy2

x2 + 1dA

where R = [0, 1] × [−3, 3].

Answerln 512 = 9 ln 2

Page 26: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Average value

◮ One variable: If f is a function defined on [a, b], then

fave =1

b − a

∫ b

af(x) dx

◮ Two variables: If f is a function defined on a rectangle R, then

fave =1

Area(R)

∫∫R

f(x, y) dA

Page 27: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #6

ProblemFind the average value of f(x, y) = x2y over the rectangleR = [−1, 1] × [0, 5].

Answer

110

∫ 5

0

∫ 1

−1x2y dx dy =

56

Page 28: Lesson18   Double Integrals Over Rectangles Slides

. . . . . .

Worksheet #6

ProblemFind the average value of f(x, y) = x2y over the rectangleR = [−1, 1] × [0, 5].

Answer

110

∫ 5

0

∫ 1

−1x2y dx dy =

56