Top Banner
8/21/12 1 Lecture 16.75– Heat Pumps, AC Pete Schwartz Cal Poly Physics Heat Pump, Opera-ng Principles Overall transfer of heat from cold to warm (against the macro temperature gradient) At each point in the system, heat flow is from warm to cold Relies on the fact that a gas cools when it expands, and is heated when it is compressed (work is done on it), to create local temperature gradients contrary to the macro gradient You can MOVE a lot more than one Joule with one Joule of energy, depending on the temperature difference you have to move it across Q high = W net + Q low HOT (reactor) COLD (Ocean) Work or Electricity Q H Q C Heat Engines η = W Q H = Q H Q C Q H η < T H T C T H Q high = W net + Q low Work or Electricity COP = Q H W = Q H Q H Q C COP < T H T H T C Refrigerator Air Conditioner (Freezer, Summer House) (Hot Outside World) Heat Pump (Cold Outside) (Winter House) COP = Q C W = Q C Q H Q C COP < T C T H T C HOT COLD Q H Q C COP (Coefficient of Performance) >>1, depends Often more than 5, and decrease with larger ΔT From your reading on Wikipedia 1 2 3 4 Freezer http://www.truehvac.com Changing the direction of flow will turn the A/C into a heater T condenser T evaporator T indoor T outdoor Apparent T lift Real T lift ΔT H ΔT L If T condenser = 40°C T outdoor = 30°C T indoor = 16°C T evaporator = 6°C, then Apparent Carnot COP = 20.6 Real Carnot COP= 8.5 Actual COP= 5.53 if machine efficiency = 0.65 Heat Flow Heat Flow Optimize Actual efficiency by minimizing total temperature drop (Real T lift) Freezer House Compressor Hot Coils Cold Coils Heat Pump to cool house (Freezer)
5

Lecture 16.75– Heat Pumps, AC HeatPump,%Operang%Principles ...

Jan 28, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 16.75– Heat Pumps, AC HeatPump,%Operang%Principles ...

8/21/12

1

Lecture 16.75– Heat Pumps, AC Pete Schwartz Cal Poly Physics

Heat  Pump,  Opera-ng  Principles  •  Overall  transfer  of  heat  from  cold  to  warm  (against  the  macro  temperature  gradient)  

•  At  each  point  in  the  system,  heat  flow  is  from  warm  to  cold  

•  Relies  on  the  fact  that  a  gas  cools  when  it  expands,  and  is  heated  when  it  is  compressed  (work  is  done  on  it),  to  create  local  temperature  gradients  contrary  to  the  macro-­‐gradient  

•  You  can  MOVE  a  lot  more  than  one  Joule  with  one  Joule  of  energy,  depending  on  the  temperature  difference  you  have  to  move  it  across  

Qhigh = Wnet + Qlow

HOT (reactor)

COLD (Ocean)

Work or Electricity

QH

QC

Heat Engines

η =WQH

=QH −QC

QH

η <TH −TCTH

Qhigh = Wnet + Qlow

Work or Electricity

COP =QH

W=

QH

QH −QC

COP <TH

TH −TC

Refrigerator Air Conditioner

(Freezer, Summer House)

(Hot Outside World)

Heat Pump

(Cold Outside)

(Winter House)

COP =QC

W=

QC

QH −QC

COP <TC

TH −TC

HOT

COLD

QH

QC

COP (Coefficient of Performance) >>1, depends Often more than 5, and decrease with larger ΔT

From your reading on Wikipedia

1

2 3

4

Freezer  

http://www.truehvac.com

Changing the direction of flow will turn the A/C into a heater

Tcondenser

Tevaporator

Tindoor

Toutdoor

Apparent T lift

Real T lift

ΔTH

ΔTL

If Tcondenser= 40°C Toutdoor= 30°C Tindoor= 16°C Tevaporator = 6°C, then Apparent Carnot COP = 20.6 Real Carnot COP= 8.5 Actual COP= 5.53 if machine efficiency = 0.65

Heat Flow

Heat Flow

Optimize Actual efficiency by minimizing total temperature drop (Real T lift)

Freezer

House

Compressor

Hot Coils

Cold Coils

Heat Pump to cool house (Freezer)

Page 2: Lecture 16.75– Heat Pumps, AC HeatPump,%Operang%Principles ...

8/21/12

2

Thus,  to  reduce  heat  pump  energy  use,  •  Distribute  heat  at  the  lowest  possible  temperature  (e.g.,  at  30°C  instead  of  60°C  –  using  radiant  floor  hea-ng  or  radiant  ceiling)  

•  Distribute  coldness  at  the  warmest  possible  temperature  (e.g.,  at  20°C  instead  of  6°C  –  using  chilled  ceiling  or  chilled  floor  slab)  

•  Minimize  ΔTH  and  ΔTL  by    -­‐  minimizing  the  required  heat  flows  (which  must  balance  heat  loss  or  heat  gain)  

   -­‐  using  as  large  a  radiator  surface  as  possible  

http://www.truehvac.com

Geothermal Reservoirs: very high COP for winter heating.

Climate master. Geothermal heat pump systems

Geothermal Heat Pumps Energy  Required  to  Move  Air  or  Water  through  Ducts  or  Pipes  

•  Power  imparted  to  fluid      Pfluid=ΔP  x  Flow  

•    Electric  power  required                    Pelectric  =  (ΔP  x  Q)/(η)        but  ΔP  α  Flow2  for  turbulent  flow,  so                      Pfluid  α  Flow3    

Radiant  ceiling  cooling  As  it  turns  out,  ven-la-on  air  flow  

requirements  can  be  reduced  by  a  factor  of  two  by  using  displacement  ven1la1on  

rather  than  ceiling-­‐based  mixing  ven-la-on,  while  improving  air  quality  and  reducing  total  hea-ng  loads  on  the  

chillers  

Page 3: Lecture 16.75– Heat Pumps, AC HeatPump,%Operang%Principles ...

8/21/12

3

Energy  required  to  deliver  heat  by  circula-ng  warm  water  vs  warm  air  

•  Rate  of  heat  supply  to  a  room  is  equal  to  the  rate  of  heat  loss  from  the  circula-ng  air  or  water,  which  is  given  by        QH=ρcpQ  (Tsupply-­‐Treturn)  =  ρcpQ  ΔT  

•  The  ra-o  of  energy  supplied  to  move  the  fluid  to  heat  delivered  is  given  by        ΔP/  ρcp  ΔT  

•    Given  the  large  ρ  and  cp  for  water  compared  to  air,  and  given  typical  ΔPs  and  ΔTs,  moving  heat  with  water  requires  less  energy  than  with  moving  air  (by  a  factor  of  25).  

Thus,  to  minimize  the  energy  use  in  supplying  and  delivering  heat/coldness  and  fresh  air  

•  Separate  hea-ng/cooling  and  ven-la-on  func-ons  •  Use  chilled  water  at  the  warmest  possible  T  for  cooling  (best:  20°C)  

•  Use  hot  water  for  hea-ng  at  the  coolest  possible  temperature  (best:  30°C)  

•  Circulate  only  the  amount  of  air  required  for  ven-la-on  purposes  using  displacement  ven-la-on  

In  many  systems,  

•  Several  -mes  more  air  is  circulated  than  is  needed  for  ven-la-on  alone,  so  as  to  provide  adequate  cooling  through  airflow  alone  

•  In  “efficient”  systems,  80%  of  the  air  might  be  recirculated  and  mixed  with  20%  fresh  outside  air  on  each  circuit,  rather  than  replacing  and  having  to  cool  and  dehumidify  100%  outside  air  

•  However,  80%  of  the  internal  heat  gains  picked  up  by  the  air  will  have  to  be  removed  by  the  chillers  

In  a  Dedicated  Outdoor  Air  Supply  system  (100%  outside  airflow  but  only  what  is  needed  for  ven-la-on)  with  displacement  ven-la-on,  

•  Heat  gains  from  the  ceiling  (from  ligh-ng)  or  heat  rising  to  the  ceiling  is  directly  vented  to  the  outside  –  reducing  the  cooling  load  on  the  chillers  by  up  to  one  third  

•  Ven-la-on  rates  can  be  reduced  to  near  zero  when  the  building  is  not  occupied  (because  ven-la-on  is  not  used  for  temperature  control)  –  can  save  20-­‐30%  in  total  hea-ng+cooling+ven-la-on  energy  use  

Another  advantage  of  using  chilled  ceilings  for  cooling  is  that  the  required  chilled-­‐water  temperature  (18-­‐20°C)  is  

cool  enough  that  it  can  olen  be  supplied  through  evapora-ve  cooling  

using  the  chiller  cooling  tower  AIR IN

CLOSED-CIRCUITHEAT-EXCHANGE COIL

HEAT AND HUMIDIFIED AIR OUT

DRIFTELIMINATORS

EXTERNAL WATER

HOTWATER

CLOSEDCIRCUIT

COLDWATER

AIR IN

AIRWATER

PUMP

Evapora:ve  Cooling:  Electricity  is  only  used  to  circulate  air  and  water  

Page 4: Lecture 16.75– Heat Pumps, AC HeatPump,%Operang%Principles ...

8/21/12

4

Solar  Energy  in  Buildings  

•  Passive  solar  hea-ng  •  Passive  ven-la-on  •  Ac-ve  solar  thermal  collectors,  used  for            –  domes-c  hot  water          -­‐  space  hea-ng          -­‐desiccant  dehumidifica-on  systems  •  PV  panels  

To  maximize  passive  solar  hea-ng  requires  

•  Aoen-on  to  building  form  and  orienta-on  •  Use  of  high-­‐performance  windows  •  Use  of  thermal  mass  to  avoid  overhea-ng  by  day  and  to  release  stored  heat  by  night  

•  High  levels  of  insula-on  to  retain  heat  that  is  released  from  thermal  mass  at  night  

Solar  Chimney  to  induce  ven-la-on,  Building  Research  Establishment,  Garston,  UK  

Savings  and  Costs  •  With  nothing  fancy  and  without  requiring  detailed  

computer  simula-ons,  this  approach  will  frequently  give  a  50%  savings  in  annual  energy  use  compared  to  current  prac-ce  

•  Use  of  computer  simula1on  models  run  by  simula-on  experts  to  fully  op-mize  the  design  of  the  building  and  mechanical  systems  and  use  of  more  advanced  designs  can  push  the  savings  to  60-­‐70%  

•  Savings  can  be  pushed  to  75-­‐80%  with  enlightened  occupant  behaviour  

•  Buildings  achieving  such  high  energy  savings  some-mes  cost  no  more  than  conven-onal  buildings,  due  to  the  downsizing  of  mechanical  equipment,  and  are  superior  in  other  respects  

•  Some-mes  saving  more  energy  costs  less  

Amory Lovins, Rocky Mountain Institute (Efficiency)

Increased Efficiency

Pro

ject

Cos

ts

Energy savings > Cost of insulation

Diminishing Returns as energy savings are less

Marginal Energy Savings < Marginal Cost of Insulation

Reduce cost by downsizing or eliminating heater or AC

Qhigh = Wnet + Qlow

HOT (reactor)

COLD (Ocean)

Work or Electricity

QH

QC

Heat Engines

η =WQH

=QH −QC

QH

η <TH −TCTH

Qhigh = Wnet + Qlow

Work or Electricity

COP =QH

W=

QH

QH −QC

COP <TH

TH −TC

Refrigerator Air Conditioner

(Freezer, Summer House)

(Hot Outside World)

Heat Pump

(Cold Outside)

(Winter House)

COP =QC

W=

QC

QH −QC

COP <TC

TH −TC

HOT

COLD

QH

QC

COP (Coefficient of Performance) >>1, depends Often more than 5, and decrease with larger ΔT

Page 5: Lecture 16.75– Heat Pumps, AC HeatPump,%Operang%Principles ...

8/21/12

5

http://www.scientificamerican.com/