Top Banner
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions, Structure and Warping Kenneth Wood St Andrews
26

Kenneth Wood St Andrews

Feb 01, 2016

Download

Documents

Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions, Structure and Warping. Kenneth Wood St Andrews. Radiation Transfer + Hydrodynamics. RT Models:Barbara Whitney, Jon Bjorkman, Christina Walker, Mark O’Sullivan Dust Theory:Mike Wolff - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Kenneth Wood St Andrews

Monte Carlo Radiation Transfer in Protoplanetary Disks:

Disk-Planet Interactions, Structure and Warping

Kenneth Wood

St Andrews

Page 2: Kenneth Wood St Andrews

Radiation Transfer + Hydrodynamics

RT Models: Barbara Whitney, Jon Bjorkman, Christina Walker, Mark O’Sullivan

Dust Theory: Mike Wolff

SPH Models: Ken Rice, Mike Truss, Ian Bonnell

Observations: Charlie Lada, Ed Churchwell, Glenn Schneider, Angela Cotera, Keivan Stassun

Page 3: Kenneth Wood St Andrews

Monte Carlo Development History• Scattered light disks & envelopes (1992)• 3D geometry & illumination (1996)

• Dust radiative equilibrium (2001)• Monte Carlo for disk surface +

diffusion for interior (2002)

• Density grids from SPH simulations (2002)• Spatial variation of dust opacity (2003)• Self consistent vertical hydrostatic equilibrium (2003)

1992: Predictions 1996: HST data

GM Aur: 4AU gap, disk-planet interaction

Page 4: Kenneth Wood St Andrews

Disk Structure Calculations

• Above used parameterized disks: power laws for (r), h(r)

• Disk theory: reduce model parameter space• Irradiated accretion disks: ~ r -1, h ~ r 1.25

(D’Alessio, Calvet, & collaborators)• New Monte Carlo: iterate for disk structure

(Walker et al. 2004)• Model disks around GM Aur and AA Tau

Page 5: Kenneth Wood St Andrews

Disk-Planet Interactions: Gap Clearing

Papaloizou, Lin, Bodenheimer, Lubow,

Artymowicz, Nelson, D’Angelo, Kley, …

Simulation from Ken Rice & Phil Armitage

• Observational signatures: images, SEDs?

Page 6: Kenneth Wood St Andrews

Protoplanetary Disks• Need high resolution imaging: ALMA

• Gap clearing simulation images:

700m 700m ALMA simulation

Wolf et al. 2002

Page 7: Kenneth Wood St Andrews

Inner Gaps from SED Modeling

• Remove inner disk material: remove near-IR excess emission

Rin = 7R*

Rin = 4 AU

GM Aur

Page 8: Kenneth Wood St Andrews

GM Aur: Disk/Planet Interaction?

• NICMOS coronagraph

• Scattered light modeling:

• Mdisk ~ 0.04 M; Rdisk ~ 300 AU; i ~ 50

Schneider et al. 2003

1200 AU

Page 9: Kenneth Wood St Andrews

GM Aur: Disk/Planet Interaction?

• No near-IR excess

• SED model requires 4AU gap: planet?

Page 10: Kenneth Wood St Andrews

GM Aur: Disk/Planet Interaction?

• 3D SPH calculation from Ken Rice

• Planet at 2.5AU clears inner 4AU in ~2000 yr

Rice et al. 2003

Page 11: Kenneth Wood St Andrews

GM Aur: Disk/Planet Interaction?

• 3D SPH calculation from Ken Rice

• Planet at 2.5AU clears inner 4AU in ~2000 yr

Rice et al. 2003

Page 12: Kenneth Wood St Andrews

GM Aur: Disk/Planet Interaction?

• Spitzer SED can discriminate planet mass

• Centroid shifting ~ 0.1mas: Keck, SIM?

Rice et al. 2003

Mp = 2MJ Mp = 50MJ

Page 13: Kenneth Wood St Andrews

GM Aur: Disk/Planet Interaction?

• Spitzer SED can discriminate planet mass

• Centroid shifting ~ 0.1mas: Keck, SIM?

Rice et al. 2003 Calvet et al. 2002

GM Aur TW Hya

Page 14: Kenneth Wood St Andrews

AA Tau: Large and Small Scale Disk Structure

• Photopolarimetry (Bouvier, Menard, et al.)P ~ 8.4 days, V ~ 1 mag, (B-V) ~ 0Star eclipsed by warp in inner disk

• SED model to get disk structure

• Warped disk model for photopolarimetry

• SPH: tilted dipole warps disk

Page 15: Kenneth Wood St Andrews

AA Tau SED Modeling

• T = 4000 K, R = 2R, M = 0.5M

• M = 2e-9 M/yr, Rd = 200 AU, i = 70

O’Sullivan et al. (2004)

Page 16: Kenneth Wood St Andrews

Analytic Disk Warp

• AA Tau: P ~ 8.4 days

• Warp at r ~ 0.07 AU, amplitude ~ 0.02 AU

O’Sullivan et al. (2004)

Page 17: Kenneth Wood St Andrews

Photopolarimetry Simulation

V

P (%)

PA

V ~ 1 magP ~ 0.3%

O’Sullivan et al. (2004)

Page 18: Kenneth Wood St Andrews

SPH Simulation

• Inclined dipole field: include magnetic force in SPH code (NOT MHD!)

• Need B = 2 kG, at latitude = 65 (see also Terquem & Papaloizou)

Page 19: Kenneth Wood St Andrews

Summary & Future Research• Monte Carlo: self-consistent disk structure calculations• GM Aur: Disk-planet interaction, need Spitzer SEDs• AA Tau: SED model for disk structure

Warped disk for photopolarimetrySPH: dipole B = 2 kG, at latitude = 65

• Coding: Radiation pressureInclude gas opacity

Transiently heated grains• Goal: merge radiation transfer & hydro• Codes now available at:

http://gemelli.spacescience.org/~bwhitney/codes

Page 20: Kenneth Wood St Andrews

Disk Dust: Grain Growth

ISMDisk dust

Dust Size Distribution:Power law + exponential decayGrain Sizes in excess of 50mGrayer opacity, Sub-mm slope ~ 1/

Fits HH30, GM Aur, AA Tau

Beckwith & Sargent (1991): sub-mm continuum SEDs: ~ 1/

m506.05.3

/exp~)(

c

qc

p

aqp

aaaan

Page 21: Kenneth Wood St Andrews

Estimating Rin from SEDs

• Hot inner edge emits in IR • Include inner edge emission when estimating Rin

6 AU 20 AU 300 AU

T

1/5

GM Aur

Page 22: Kenneth Wood St Andrews

Monte Carlo, Rin = 4 AU, i = 0 - 50CG97, Rin = 0.1 AUCG97, Rin = 4 AU

Vertical Hydrostatic Equilibrium

GM Aur

Page 23: Kenneth Wood St Andrews

• MC models include inner edge emission

• Other models without inner edge emission

• No 10m excess MC:Rin > 10 AU CG:Rin ~ 2.5 AU

Monte CarloCG97KH87ALS87

Estimating Rin from SEDs

Page 24: Kenneth Wood St Andrews

Disk Structure

Walker et al. (2004)

Page 25: Kenneth Wood St Andrews

D’Alessio: i = 60MC: i = 63MC: i= 60

SEDs

Walker et al. (2004)

Page 26: Kenneth Wood St Andrews

Comparison Summary

• MC: Disk slightly hotter at large radiiSlightly more emission in 20-200m

• Differences: Radiation pressureDust opacityTreatment of upper layersNon-isotropic scatteringRadial transport in outer disk