Top Banner
NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC LCWS Paris 20 April 2004
27

IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Jan 14, 2016

Download

Documents

Garret

IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC. LCWS Paris 20 April 2004. SiD Forward Masking, Calorimetry & Tracking 2004-04-15. SD0. QF1. Q0. LowZ. BeamPipe. LUMOM. QD1. QD2. Support Tube. ECAL. HCAL. EndCap_Muon. PacMan. Crossing Angle. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

NLC - The Next Linear Collider Project

IR Geometries & Constraints on Forward

DetectorsTom Markiewicz

SLACLCWS Paris

20 April 2004

Page 2: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 2 4 6 8 10

SiD Forward Masking, Calorimetry & Tracking 2004-04-15

LowZ

BeamPipe

SD0

QD1 QD2

QF1

LUMOM

Q0

PacManEndCap_Muon

Support TubeECAL

HCAL

Page 3: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Crossing Angle

• Warm LC requires non-zero crossing angle• Cold LC can choose zero or non-zero angle• Minimum angle set by:

– Need to avoid parasitic collisions and beam-beam induced jitter (20 mrad)

– Need enough transverse space for QD0 magnet, given

• L* (a semi-free parameter) (3.51m)• Exit aperture at LUM (1.2cm2.0cm1.5cm)• QD0 bore size (1.0 cm)• Design choice that exit beam goes outside of QD0

• Maximum angle set by– Estimated performance () of Crab Cavities on

either side of IP that rotate bunches (~40 mrad)– Beam optics effects:

• growth due to SR in QD0 goes as (BsL*)5/2

Page 4: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Multi-bunch interaction increases static beam offsets if c

too smallOffset Amplification Factor for L=3m vs. Crossing Angle

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200

Bunch #

y/y0

5 mrad

10 mrad

15 mrad

20 mrad

25 mrad

30 mrad

Approx. becomes invalid

K.Yokoya,P.Chen SLAC-PUB-4653,

1988

20 mrad

Page 5: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

NLC Final Doublet Quad SpecsGradient “easy”; L* & Lum ap define

space

Magnet

Aperture Gradient

Rmax if REC

Radial Space

Z_ip Length

QD0 1.0 cm 141.6 T/m

5.3cm 7.0cm-RLUM

3.51 m 2.2m

QF1 1.0 cm 80.2 T/m

2.7cm >7.81cm

7.81 m 2.0 m

TRC (2002) 500 GeV Lattice

Magnet

Aperture Gradient

Rmax if REC

Radial Space

Z_ip Length

QD0 1.0 cm 144 T/m

5.5cm 5.8cm 3.81 m 2.0m

QF1 1.0 cm 36.4 T/m

2.2cm >7.81cm

7.76 m 4.0 m

Snowmass 2001 500 GeV Lattice

Increased LUM aperture decreasing available

space

Page 6: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

SC MagnetIf rin=10mm, rout=57mm seemed

easy

Page 7: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

L*=Distance from IP to QD0

• A parameter that can be varied within a range for either design– r_vxd, z, length, aperture, gradient of QD0, QF1 all enter

• Motivations for larger L*– Move QD0 outside the detector to stable ground– Move LUMON further back if pair backsplash a problem

• Note: L* of EXTRACTION LINE now 6m– Its z position variable as well– Especially valuable as it receives biggest hit from 4 GeV

pairs

L* Optimization P.Raimondi

~2001

L*

R_v

xd

L_QD0

G_Q

D0

L*

L_QD0

Page 8: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Exit Aperture at LUMBeam Pipe Radius at IP

• Same issues for warm vs. cold choice• Design requirement that ALL Synchrotron

Radiation Leaves IP– Collimation system design & performance– Magnitude and distribution of non-gaussian beam halo– Level of aggression in setting collimators and resultant

• beam jitter amplification due to collimator wakefields• muon production

– Level of conservatism• Worst beam conditions that system must safely handle

• The larger the exit, the less the adverse effects of e+e- pairs– Less albido from splattered e+e- pairs when high Z LUM

is at a larger radius than the low Z albido absorber– Largest radiation-dosed area follows high energy exiting

pairs

Page 9: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

At SLD/SLC SR WAS THE PROBLEM

SR Fans from Halo in Final Focus

VXD

M4

MASiC

M3

LUMON

M2

MASiC

M3

LUMON

M2

M4

CDC

CDC

Beam pipe

Synchrotron Swath

X=450 rad

Y=270 rad

Photons need a minimum of TWO bounces to hit a detector

Page 10: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

SR at Warm/Cold LC

(IP) x’ < 570 rad = 19 x 30.3 rad y’ < 1420 rad = 52 x 27.3 rad

(LUM) x’ < 520 rad = 17 x 30.3 rad Y’ < 1120 rad = 41 x 27.3 rad

x y

X=30.3 rad

Y=27.3 rad

Design Criteria: NO Photons hit beampipe at IP or LUM

Page 11: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

NLC Collimation System Designed to Make Detector Free of Machine

Backgrounds

E=250 GeV

N=1.4E12

0.1% Halo distributed as 1/X and 1/Y for 6<Ax<16x and 24<Ay<73y with p/p=0.01 gaussian distributed

Last Lost e- 500m from IP

TRC Collimator Study

Page 12: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

SR at IP due to Haloat DESIGN collimator settings

X (cm)

Y

X (cm)

Log10(E) (GeV)

Quad

Bend

.3 Ne-

<E>=4.8 MeVQuad

Bend

1cm Beampipe

Page 13: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

SR at z=3.15m due to Haloat DESIGN collimator settings

X (cm)

Y

1cm Beampipe

1.2cm

Set Low Z Mask aperture at 1.2cm

Page 14: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Study Non-Optimal Running Conditions

Open Collimators x2 & Broaden Halo x2 so that 10-5 of beam is lost on SR Dump at IP

300m x 250m

6x<Ax<16x

24y<Ay<73y

600m x 500m

12x<Ax<32x

48y<Ay<146y

Design

X-Y Halo at Spoiler #3

+250m

-250m

-300m +300m

+500m

-500m

-600m +600m

Page 15: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

SR at IP in “1000x worst case” Study

SR distribution ~2x wider in y at IP with direct hits unless BP >1.25cm

1cm Beampipe

Page 16: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Max Radius of SR @ z=-3.5, 0, 3.0 & 5.0 m

Nominal Collimator Gaps &

2x Nominal Collimator Gaps, 2x

QD0

1.00

IP1.05

QDF

1.35

QD0

1.00

QDF

1.75

IP1.25LU

M1.15

LUM

1.50

Page 17: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Max R of SR @ z=-3.5, 0, 3.0 & 5.0 m

2x Nominal Collimator Gaps, 2x

QD0

QDF

1.75

IP1.25

LUM

1.50

2x Nominal Collimator Gaps, 1x

Point: If collimators ever open, regardless of halo level you will need larger apertures for safety

SAME

Page 18: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Increase in Minimum Aperture vs. zas Collimator Gap Doubled

y = 0.0888x + 1.2876

y = 0.0384x + 1.0943

00.20.40.60.8

11.21.41.61.8

2

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5

Page 19: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

SR Photon Energy at IP with x2 Gaps assuming x2

825 TeV per beam at 1E-3 Halo rate

12.5 TeV per beam at r > 1.0 cm

at 1E-3 Halo rate

Comparison: e+e- pairs200 TeV per bunch ~ TeV at r > 1.0 cm

Page 20: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Collimator Wakefields

NLC spoiler is tapered to reduce wake-fields

Ab~0.7 (NLC w/Octupoles) Amp~1.22Ab~1.3 (NLC w/o Octupoles) Amp~1.64Ab~3 (TESLA TDR)

Jitter amplification in y-plane (due to y’) is (1+ A

)0.5 times

Jitter amplification in y-plane (due to y’) is (1+ A

)0.5 times

1) Effect scales as 1/Energy 2) NLC allows 25% of emittance dilution due to this effect

3) A ~ N / ( z1/2 gap3/2 ) or

to keep A constant increase as energy decreases

4) Nominal Lum at nominal E at risk if amplification too big

3/2VX

1/2z

*

2*

β Rσβγ

LNA

Jitter Amplification from Collimator Wakefields may put Luminosity at Risk if Collimator Gaps too small

Page 21: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

If LUM Aperture 1cm2cmHit Density r>3cm improves

L1 & L2 of VXD UnchangedImprovements for outer detectors

Albido from pairs making hits in VXD

Page 22: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

40 mrad Pair-Lum-Mon at 3.15m with 1.0/1.5cm entrance/exit

apertures

2cm radius

12.6cm radius

1cm radius

SiDLum-PairMon @

z=3.15m

Page 23: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Pairs Hammer LUMON to r~6cmHalf the radius of the 40mrad

detectorNOT an efficient design

NLC 500 e+e- Pair R_max

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.000 1.000 2.000 3.000 4.000 5.000

z (m)

r (m

)

6 Tesla

5 Tesla

4 Tesla

3 Tesla

+5cm

+7cm

-5cm-7cm

+14cm

-14cm

Page 24: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Pair Energy Flow per Bunch(e+e-, 20mrad X, SC Magnets)

Detector GeV mW %

QDF1-A 74909.1 276.4902 37.58%

Escape 57783.6 213.2797 28.99%

LUMON 26265.8 96.94732 13.18%

QDF1-B 11457.8 42.29085 5.75%

QDF1-C 11113.7 41.02083 5.58%

PACMAN 10342.7 38.17509 5.19%

M2 2983.87 11.01347 1.50%

QD0 2059.58 7.601915 1.03%

LOWZ 1286.89 4.749903 0.65%

SD0 555.73 2.051204 0.28%

QF1 364.764 1.346347 0.18%

M1 166.624 0.615011 0.08%

Endcap MUON 40.964 0.151198 0.02%

Instr. Mask 0.466 0.00172 0.00%

S.S. Beampipe 0.271 0.001 0.00%

Be Beampipe 0.196 0.000723 0.00%

Endcap EM 0.164 0.000605 0.00%

Endcap HAD 0.146 0.000539 0.00%

Barrel EM 0.117 0.000432 0.00%

VXD 0.08 0.000295 0.00%

TOTAL 199333 735.7383 100.00%

Detector GeV mW %

QDF1-A 74909.1 276.4902 37.58%

S.S. Beampipe 14136.6 52.17827 18.87%

S.S. BP cooling 10457.6 38.5991 13.96%

S.S. Coil support 15281.3 56.40346 20.40%

Inner Coil 14939.7 55.14262 19.94%

G10 support 1249.34 4.611309 1.67%

Inner Liq. He 80.796 0.298219 0.11%

G10 Liq. He 271.492 1.002079 0.36%

S.S. Coil support 6307.23 23.28003 8.42%

Outer Coil 7275.19 26.85278 9.71%

G10 support 819.179 3.023596 1.09%

Outer Liq. He 36.84 0.135977 0.05%

G10 Liq. He 125.983 0.465004 0.17%

S.S. support 1563.19 5.76975 2.09%

Heat shield 376.997 1.391499 0.50%

Cryostat shell 1987.66 7.336473 2.65%

QDF1-A Detail

Page 25: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Maximum Dose Rate at QDF1 in MRad/107 sec

Field sweeps

e+e- pairs UP

and DOWN

QDF1 2cm aperture

Max. DOSE rate ~100 MRad/year

QDF1 examined in 7.5° , 2 cm z cells;maximum dose plotted

Page 26: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

6

4

2

0

-2

-4

Y (

cm)

-6 -4 -2 0 2 4X (cm)

78

76

72

70

68

68

64

62

60 58

56

54

52

50

48

46

44

44

42

42

40 4

0

38 3

8

36

36

34

34

32

32

30

30

28 2

8

26

26

24

24

22

20

18

16

14

12

10 8

6

4

2

2

Max. DOSE Rate in LUMON and LOW-Z

4

2

0

-2

Y (

cm)

-4 -3 -2 -1 0 1 2X (cm)

29

28 27

26 25

23

22

21 20

19

18

17

16

15

14 13

12

11

10

9 8

8

7

6 5 4

4

3

3 2

1

1 1

1

LUMON LOW-Z MASK

Max. DOSE rate ~70 Mrad/yearMax. DOSE rate ~30 Mrad/year

Page 27: IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC

Tom Markiewicz

NLC - The Next Linear Collider Project

Conclusions

• Have not really spoken to – fact that crossing angle opens up the extraction line & its

instrumentation – constraints due to detector access and final quadrupole support

• I have urged that a small loss of acceptance in the <25 mrad region– Allows for more freedom in extracting damaging SR and e+e- pairs – is a reasonable price to pay for clean extraction

• “Hold the line” on VXD radius as long as possible• Acceptance “hole” is physically small & in a very ugly area of

detector• Pair/lumon detector region should be minimized from 40 to ~25 mrad

• There is still freedom to optimize L*, theta, L* extraction• From the “Detector survival point of view” crossing angle is only as

important as aperture: 70Mrad/year damage• Extraction quad magnet heating and radiation dose issues more a

function of aperture than crossing angle• Need to understand if 7 mrad JLC crossing angle is OK from jitter• Need to understand is there really is an issue to “crab” ±10 deg.

– If so, IR2, promised by Spec. document, is in trouble