Top Banner
Investigating chemical-microbiota interactions in zebrafish Tamara Tal, PhD U.S. EPA/ORD/NHEERL/ISTD EPA’s Computational Communities of Practice April 26, 2018 1 Image credit: Chuck Gaul, US EPA This presentation does not necessarily reflect EPA policy No conflicts of interest to disclose
40

Investigating chemical- microbiota interactions in zebrafish...Apr 26, 2018  · U.S. EPA/ORD/NHEERL/ISTD. EPA’s Computational . Communities of Practice. April 26, 2018. 1 Image

Aug 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Investigating chemical-microbiota interactions in zebrafish

    Tamara Tal, PhDU.S. EPA/ORD/NHEERL/ISTD

    EPA’s Computational Communities of Practice

    April 26, 2018

    1

    Image credit: Chuck Gaul, US EPA

    This presentation does not necessarily reflect EPA policyNo conflicts of interest to disclose

  • Outline

    • Background• Triclosan case study• Estradiol case study• BPA and BP replacements case study• Summary • Challenges

    2

  • Microbiota

    Image source: http://www.umassmed.edu/microbi

    ome/microblog1/publications/

    • Consists of all the bacteria, viruses, and fungi external to the body

    • Colonization begins at birth and continues throughout life

    • Required for development of host organs and systems

    3

  • Microbiota-gut-brain axis

    4Source: Rea et al. 2016

    • Bidirectional communication

    • Colonization status modifies neurodevelopmental events

    • Imbalances in gut microbiota composition are associated behavioral disorders

    • Microbiota has not be assessed as a modifying factor for the developmental neurotoxicity (DNT) of environmental chemicals

  • Microbiota-chemical interactions

    Adapted from: http://www.oecd.org/chemicalsafety 5

    Adverse outcomes• Cancer• Developmental

    neurotoxicity (DNT)• Immunotoxicity• Pulmonary toxicity• Reproductive toxicity

  • Microbiota-chemical interactions

    Adapted from: http://www.oecd.org/chemicalsafety 6

    Parent chemical

    • Bioactivation• Detoxification

    Microbiota

    1. Toxicokinetic hypothesis

    Adverse outcomes• Cancer• Developmental

    neurotoxicity (DNT)• Immunotoxicity• Pulmonary toxicity• Reproductive toxicity

  • Microbiota-chemical interactions

    Adapted from: http://www.oecd.org/chemicalsafety 7

    Parent chemical

    • Bioactivation• Detoxification

    Microbiota

    1. Toxicokinetic hypothesis

    2. Toxicodynamic hypothesis

    Adverse outcomes• Cancer• Developmental

    neurotoxicity (DNT)• Immunotoxicity• Pulmonary toxicity• Reproductive toxicity

    Microbiota

  • Hypothesis

    8

    Host-associated microbiota:1. Modify the toxicity of environmental chemicals via biotransformations; and/or2. Is a target of chemical exposures during sensitive windows of early

    development.

  • Zebrafish as a model system for microbiota research

    9

    • External and rapid development• Majority of genes conserved with humans• Complex resident microbiota• Control colonization status• Methods for rearing axenic (microbe-free)

    zebrafish through early development• Simple conventionalization (add microbes

    to axenic embryos)

    A. Veronii:dTomato, gift from K. Guillemin, University of Oregon

    Phelps et al. 2017, Scientific Reports

    days post fertilization (dpf)

  • Does microbiota modify the toxicokinetics or toxicodynamicsof xenobiotic exposures?

    10Phelps et al. 2017, Scientific Reports

    • CC = conventionally colonized

    • AX = Axenic or microbe-free

    • AC1 = Axenic larvae colonized on day 1

  • 11

    Microbiota & DNT: Zebrafish neurobehavioral toxicity assay

  • 12

    Developmental antibiotic exposure mimics AX hyperactivity phenotype at 10 dpf

    Phelps et al. 2017, Scientific Reports

    • AB = amphotericin B (0.25 ug/mL), kanamycin (5 ug/mL), and ampicillin (100 ug/mL)

    B.A.

    C C A C 1 A X C C + A B0

    5

    1 0

    1 5

    2 0

    2 5

    3 0

    a a

    bb

    Me

    an

    dis

    tan

    ce

    mo

    ve

    d (

    cm

    )/1

    0 m

    in d

    ark

    pe

    rio

    d

    0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

    0

    5

    1 0

    1 5

    2 0

    2 5

    3 0

    3 5 T im e , p < 0 .0 0 0 1T im e x g ro u p , p = 0 .0 0 0 1

    T im e (m in )

    Dis

    tan

    ce

    mo

    ve

    d (

    cm

    )/2

    min

    pe

    rio

    d

    C C (n = 2 4 )

    A C 1 (n = 2 4 )

    A X (n = 2 4 )

    C C + A B (n = 2 4 )

  • Examine microbiota-chemical interactions: Triclosan case study

    13Phelps et al., In preparation

  • Chemical dependent effects on host-associated microbiota begin to emerge at 6 dpf

    14

  • Chemical dependent effects on host-associated microbiota begin to emerge at 6 dpf

    15

  • Widespread changes in microbiota coalesce at 10 dpf

    16

  • Triclosan exposure changes relative family-level taxonomy

    17

  • Triclosan exposure changes relative family-level taxonomy

    18

  • 19

    No status-dependent differences in parent tissue dose observed at 6 dpf

  • 20

    Colonized zebrafish contain higher concentrations of triclosan at 10 dpf

  • 21

    Do triclosan resistant microbes biotransformtriclosan?

    A.

    B.

  • Microbial colonization changes 78 features ≥ 2 fold

    22

    A. B.

  • 23

    Colonized larvae contain higher concentrations of parent triclosan by NTA

    A. B.

  • Link microbiota to phenotype: 17-β estradiol (E2) case study

    24Catron et al., In preparation

  • Exogenous E2 exposure does not affect microbial community structure

    25

    A. B.

  • E2 exposures triggers behavioral hypoactivity in colonized zebrafish

    26

    0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

    0

    5

    1 0

    1 5

    2 0

    2 5

    3 00 .1 % D M S O (n = 2 3 )

    0 .0 5 µM E 2 (n = 2 4 )

    0 .1 4 µM E 2 (n = 2 4 )

    0 .4 µM E 2 (n = 2 3 )

    1 .2 µM E 2 (n = 2 2 )

    3 .5 µM E 2 (n = 2 4 )

    T im e (m in )

    Dis

    tan

    ce m

    ove

    d (

    cm)

    /2

    min

    ep

    och

    C o n c e n t ra t io n * p h a s e , p = 0 .0 8 3 1

    C o n c e n t ra t io n * p h a s e * t im e , p = 0 .0 0 0 3

    0

    5

    1 0

    1 5

    2 0

    2 5

    3 0

    E 2 (µM)

    Me

    an

    dis

    tan

    ce m

    ove

    d (

    cm)

    /1

    0 m

    inu

    te e

    po

    ch

    0 .1%

    DM

    S O 0 .0 5

    0 .1 4 0 .

    41 .

    23 .

    5

    a a abb c b c

    c

    a abab ab

    b b

    L ig h t , p < 0 .0 0 0 1 D a rk , p = 0 .0 1 1 0

    E 2 (µM)0 .

    1% D

    MS O 0 .

    0 50 .

    1 4 0 .4

    1 .2

    3 .5

    A. B.

  • Link microbiota to phenotype: 17-β estradiol case study

    27

  • Link microbiota to phenotype: 17-β estradiol case study

    28

  • Microbe-free zebrafish contain higher concentrations of parent compound

    29

    00 .

    41 .

    2 00 .

    41 .

    2 00 .

    41 .

    2

    0

    1

    2

    3

    4

    N o m in a l w a te rb o rn e E 2 c o n c e n tra tio n (µM )

    Tis

    sue

    co

    nce

    ntr

    atio

    n(p

    mo

    le E

    2/la

    rva

    )

    C C (n = 4 )

    A C 1 (n = 4 )

    A X (n = 4 ,2 ,5 )

    a a

    c

    b cb

    b

    S ta tu s , p < 0 .0 0 0 1D o se , p < 0 .0 0 0 1S ta tu s *d o se , p < 0 .0 0 0 1

    b

    d

    a

  • 30

    Examine chemical-dependent changes in microbial communities: Bisphenol A (BPA) and BPA replacement compounds case study

    Bisphenol A (BPA)

    Bisphenol B (BPB)

    Bisphenol S (BPS)

    Bisphenol F (BPF)

    Bisphenol AF (BPAF)

    Catron et al., Under revision

  • 31

  • BPS, BPA, or BPF exposure disrupted global microbial community structure

    NMDS Axis 1

    NM

    DS

    Axis

    2

    32

  • 33

  • Family level taxonomy

    34

  • Predicted microbial functions by linear discriminant analysis (PICRUSt)

    Recreated from: http://www.genome.jp/kegg-bin/show_pathway?map00363; Kanehisa et al. 2000

    35

  • Differential chemical effects: Host developmental toxicity vs. microbiota disruption

    36

    A. B.

  • Summary

    37

    1. We developed an experimental system to test whether microbiota affects the kinetics and/or dynamics of xenobiotic exposures

    2. Axenic zebrafish are hyperactive3. Antibiotic exposure phenocopies hyperactivity in colonized zebrafish4. Triclosan resistant taxa increase host parent tissue dose and

    perform a sulfation reaction5. Exogenous E2 exposure triggers hypoactivity in the light period in

    colonized zebrafish, possibly via a bioactivation event6. Inverse relationship between host toxicity and microbiota disruption

  • Microbiota-triclosan interaction take home

    38

    Parent chemical

    1. Toxicokinetic hypothesis

    2. Toxicodynamic hypothesis

    TOXICOKINETIC• Biotransformation; triclosan: Phelps et al. In preparation.• Biotransformation; estradiol (E2): Catron et al. In

    preparation.

    TOXICODYNAMIC• Antibiotics: Phelps et al. Scientific Reports. 2017.• Bisphenol compounds: Catron et al. Submitted.

  • Outstanding questions

    • Do chemical-induced compositional changes affect other aspects of development or predispose the organism to future insults?

    • Do microbiota-mediated biotransformations broadly affect chemical toxicity?

    39

  • Acknowledgements

    40

    U.S. EPA• Emily Anneken (NERL)• Doris Betancourt (NERL)• Nichole Brinkman (NERL)• Scott Keely (NERL)• James McCord (NERL)• Judy Schmid (NHEERL)• Jon Sobus (NERL)• Mark Strynar (NERL)• Adam Swank (NHEERL)• Leah Wehmas (NHEERL)• Charles Wood (NHEERL)• U.S. EPA Zebrafish Facility (Kim Howell, Joan

    Hedge, Ned Collins)

    Tal lab • Tara Catron (ORISE)• Shaza Gaballah (ORISE)• Allison Kvasnicka (Meredith College)• Drake Phelps (ORISE)

    Funding • U.S. EPA Office of Research and

    Development• Pathfinder Innovation Project Award

    Investigating chemical-microbiota interactions in zebrafishOutlineMicrobiotaMicrobiota-gut-brain axisMicrobiota-chemical interactionsMicrobiota-chemical interactionsMicrobiota-chemical interactionsHypothesisZebrafish as a model system for microbiota researchDoes microbiota modify the toxicokinetics or toxicodynamics of xenobiotic exposures?Microbiota & DNT: Zebrafish neurobehavioral toxicity assayDevelopmental antibiotic exposure mimics AX hyperactivity phenotype at 10 dpfExamine microbiota-chemical interactions: Triclosan case studyChemical dependent effects on host-associated microbiota begin to emerge at 6 dpfChemical dependent effects on host-associated microbiota begin to emerge at 6 dpfWidespread changes in microbiota coalesce at 10 dpfTriclosan exposure changes relative family-level taxonomyTriclosan exposure changes relative family-level taxonomyNo status-dependent differences in parent tissue dose observed at 6 dpfColonized zebrafish contain higher concentrations of triclosan at 10 dpfDo triclosan resistant microbes biotransform triclosan?Microbial colonization changes 78 features ≥ 2 foldColonized larvae contain higher concentrations of parent triclosan by NTALink microbiota to phenotype: 17-β estradiol (E2) case studyExogenous E2 exposure does not affect microbial community structureE2 exposures triggers behavioral hypoactivity in colonized zebrafishLink microbiota to phenotype: 17-β estradiol case studyLink microbiota to phenotype: 17-β estradiol case studyMicrobe-free zebrafish contain higher concentrations of parent compoundExamine chemical-dependent changes in microbial communities: Bisphenol A (BPA) and BPA replacement compounds case studySlide Number 31BPS, BPA, or BPF exposure disrupted global microbial community structureSlide Number 33Family level taxonomyPredicted microbial functions by linear discriminant analysis (PICRUSt)Differential chemical effects: Host developmental toxicity vs. microbiota disruptionSummaryMicrobiota-triclosan interaction take homeOutstanding questionsAcknowledgements