Top Banner
Introduction to correlated materials, DFT DMFT DFT +DMFT DFT , DMFT , DFT +DMFT , etc. Gabriel Kotliar Gabriel Kotliar Rutgers University New Trends in Computational Approaches for Many Body Systems Body Systems. Quebec May 30 2011
60

Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Jul 31, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Introduction tocorrelated materials, 

DFT DMFT DFT +DMFTDFT,  DMFT, DFT +DMFT, etc.  

Gabriel KotliarGabriel KotliarRutgers University

New Trends in Computational Approaches for Many Body SystemsBody Systems.  

Quebec  May 30  2011

Page 2: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Conceptual Basis of the LDA+DMFTh d h h d hmethod has not changed much.

Talked based on early lecture notes G Kotliar andTalked based on early lecture notes.  G. Kotliar and S. Savrasov in New Theoretical  Approaches to Strongly Correlated G Systems, A. M. Tsvelik Ed. g y y ,

2001 Kluwer Academic Publishers. 259‐301 . cond‐mat/0208241 

• Dramatic Progress in Implementation g phas resulted in major advances in the physics of strong correlations. 

Page 3: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Formal introductionFormal introductionto effective actions for electronic 

structure. 

Page 4: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Spectral density functional. Effective action construction.e.g Fukuda et.al

[ ] [ ( ) ]F J S JAZ e d d e y yy y+- + - += = ò

et.al

Z e d d ey y= = ò[ ]F J A a

Jdd

=< >=Jd

[ ] [ [ ] ] [ ]a F J a aJ aG = -

Page 5: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

0 intS S Sl= +0 int

J J Jl= + +0 1J J Jl= + +

[ ]aG = 0G1l+ G +[ ]a+DG0 0 0[ ]F J aJ-

DG G Ghartree xcDG=G +G

Page 6: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

1

int

0

[ ] ( , ( , ))a d S J al l lDG = < >ò0

In practice we need good approximations to the exchangeIn practice we need good approximations to  the exchange correlation, in DFT LDA. In spectral density functional theory, DMFT.   Review: Kotliar et.al. Rev. Mod. Phys. 78, 865 (2006) 

dDGFd0[ ]J a

addDG

=00

[ ]F J aJdd

=ad0Jd

Kohn Sham equations

Page 7: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Remarks:E t f ti l f b bl A• Exact functionals of an observable A,

• In practice approx are needed[ ]exact aG

[ ] [ ]mft exacta aG G• Many a’s many theories.   • Introduction of a reference system. Separation  into y p“free part” and exchange+ correlation. •Formal expression for the correlation  part of the exact  functional as a coupling constant integration. •Good approximate functionals obtained by approximating the xc part [ small parameter dapproximating the xc part. [ small parameter d helps!]• While the construction aims to calculate <A>=a,While the construction aims to calculate  A a, other quantities, e.g. correlation functions,  emerge as a byproduct [bands, correlation functions…... ]

Page 8: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Crucial Role of the constraining fieldDifferent reference systems [ e g

0 [ ]J aDifferent reference systems [ e.g. band limit or atomic limit ] define different constraining fields. 

Diff t f ti l ( lf f ti l• Different functionals (self energy functional, BK functional, Harris Foulkes functional, etc )  

[ ] [ ] [ ] [ ]J J JG G G G0 0[ ], [ , ], [ , ], [ ]a a J a J JG G G G

Page 9: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Density functional        and Kohn Sham f t

[ ]

reference system

2 / 2 ( ) KS kj kj kjV r y e y- + =2( ) ( ) | ( ) |f yå

( ') Er drò

2( ) ( ) | ( ) |kj

kj kjr f rr e y=å( )( )[ ( )] ( ) ' [ ]

| ' | ( )xc

KS extErV r r V r dr

r r rdr

r rdr

= + +-ò

•Kohn Sham spectra, proved to be an excellent starting point for doing perturbation theory in g p g p y

screened Coulomb interactions GW.

Page 10: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

LDA+DMFT unifies physics and hchemistry

• Treat both band physics and atomic physics.• Hubbard bands and  Quasiparticle bands.• Combine Model Hamiltonians insights with realistic b d t t f l t i lband structure of complex materials.

• Makes many body theory system specific, analysis of chemical trends.chemical trends.

• Simplest approach merging previous success stories. • XC : [ ] [ , ]uniformgas locatom f dc atomfGr r- -DG +DG -DG

• Allows the solution of many  intersting problems.• Many improvements are possible.

f f

Page 11: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Why  can we even  contemplate now the possibility of material design (in weakly correlated electron systems)? 

Success   based on having a good  reference system d ib h l h i / i l

“Standard Model” of solids developed in the

to describe the  relevant physics / materials.  

Standard Model  of solids developed  in the twentieth century. Reference System:Freel t i i di t ti l

W k ll( f kl l t d

electrons in a periodic potential. 

Works well( for very weakly correlatedmaterials), e.g. simple metals and insulators

6

Page 12: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Band Theory.  Fermi Liquid Theory (Landau 1957). 

Density Functional Theory (Hohenberg Kohn Sham 1964)

2 / 2 ( )[ ]V r r y e y + = Reference Frame for / 2 ( )[ ] KS kj kj kjV r r y e y- + = Weakly Correlated Systems.

( ) *( ) ( )kj kjr r rr y y= åExcellent binding energies and structures /Starting point for perturbation theoryGW (Hedin) in the screened Coulomb interactions

0( ) ( ) ( )

kjkj kje

r y y<å

+ [ - ]KSV10KSG1G

M. VanSchilfgaarde Phys. Rev. Lett. 93, 126406 (2004)

[ ]KS0KS

Many other properties can be computed, structure , transport, optics, phonons, etc…

7

Page 13: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

•The  “standard model” fails for strongly  correlated electron materials.• Results in “big things”. Metal to insulator transitions,  heavy fermion behavior,  high y gtemperature superconductivity, colossal magnetoresistance, giant thermolectricity …………..•The Kohn Sham system cannot  possibly describe spectroscopic properties of correlated materials, because these  retain atomic physics aspects (Motness, e.g. multiplets, transfer or spectral weight, high Tc’s,  ) which are not perturbative•NEEDED: a new reference system to describe correlated materials. 

8

Page 14: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Strongly correlated materials do “big” thingsCompetition of localization and itineracyCompetition of localization and itineracy.

• Huge volume collapses in lanthanides and actindies, eg. CeHuge volume collapses in lanthanides and actindies, eg.  Ce, Pu,  …….

• Metal insulator transitions as a function of pressure an composition in transition metal oxides VO2 V2O3composition in transition metal oxides, VO2 V2O3

• Quasiparticles with large masses m* =1000 mel in Ce and U based heavy fermions.y

• Colossal Magnetoresistance in La1‐xSrxMnO3• High Temperature Superconductivity. 150 K  Ca2Ba2Cu3HgO8.

• Large thermoelectric response in NaxCo2O4 • 50K superconductivity in SmO1‐xFxFeAs50K  superconductivity in SmO1 xFxFeAs • Many others……

55

Page 15: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation
Page 16: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

DYNAMICAL MEAN FIELD THEORY :View solid  as collection of  atoms  or  clusters in a self consistent medium [ Quantum Impurity  Model ] A. Georges and G. Kotliar PRB 45,6479 (1992)A reference frame for thinking  about and computing the properties of correlated materialsproperties of correlated materialsFormulated as a first principles approach. DFT+DMFT[V. Anisimov A. Poteryaev M. Korotin A. Anokhin and G. Kotliar.

Exact in  infinite dimensions  Metzner and Vollhardt PRL 62, 

Anisimov A. Poteryaev M. Korotin A. Anokhin and G. Kotliar.J Phys. Cond. Mat 35, 7359 (1997).  

How can we tell if and when a local approach  is OK ?Cluster DMFT Studies CDMFT kotliar et al Phys Rev Lett

324 (1989)  Kinetic energy ~ onsite repulsion  

Cluster DMFT Studies.  CDMFT kotliar et. al. Phys. Rev. Lett. 87, 186401 (2001). DCA M Hettler et. al. Phys. Rev. B 58, 7475 (1998)( )Compare  experiments with  multiple theoretical and experimental  spectroscopies. 

9

Page 17: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Functional formulation. Chitra and Kotliar (2001), Ambladah et. al. (1999) ( )

Savrasov and Kotliarcond‐matt0308053 (2003).

1 †1 ( ) ( ') ( ') ( ) ( ) ( )V if f f y y-+ +ò ò ò1 †( ) ( , ') ( ') ( ) ( ) ( ) 2

Cx V x x x i x x xf f f y y-+ +ò ò ò

†( ') ( ')G R Ry r y r=-< > ( ') ( ) ( ') ( )R R R R Wf r f r f r f r< >-< >< >=Ir>=|R, >1 1 1 1

01 1[ ] [ ] [ ] [ ]C hG W TrLnG Tr G G G TrLnW Tr V W W E G W

[ ] [ 0 0]G W G W G W

0[ , ] [ ] [ ] [ , ]2 2 C hartreeG W TrLnG Tr G G G TrLnW Tr V W W E G W

D bl l i Gl d Wl

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

[ , ] [ , , 0, 0]EDMFT loc loc nonloc nonlocG W G W G W Double loop in Gloc and Wloc

Page 18: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Two paths for ab‐initio calculation pof electronic structure of strongly 

correlated materialscorrelated materials

Crystal structure +Atomic positions

Model Hamiltonian

Correlation Functions Total Energies etc.

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERSMean field  ideas can be used in both cases. 

Page 19: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Model HamiltoniansModel Hamiltonians

• Tight binding form.• Eliminate   the “irrelevant” high energy  degrees of freedom 

• Add effective Coulomb interaction termsAdd effective Coulomb interaction terms

Page 20: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

One Band Hubbard modelOne Band Hubbard model

† †( )( )t c c c c U n n , ,

( )( )ij ij i j j i i ii j i

t c c c c U n n

U/t

Doping or chemical potential

Frustration (t’/t)

T temperatureMott transition as a function of doping, pressure temperature etc.

Page 21: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Extension to clusters. Cellular DMFT. C‐DMFT.  G. Kotliar,S.Y. Savrasov G Palsson and G Biroli Phys Rev Lett 87 186401 (2001)Savrasov, G. Palsson and G. Biroli, Phys. Rev. Lett. 87, 186401 (2001)

tˆ(K) i th h i d i th tˆ(K) is the hopping expressed in the superlattice notations.

•Other cluster extensions (DCA, nested cluster schemes, PCMDFT ), causality issues, O. Parcollet, G. Biroli and GK ), y , ,

cond-matt 0307587 (2003)

Page 22: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Dynamical Mean Field Theory. Cavity Construction.A. Georges and G. Kotliar PRB 45, 6479 (1992).

,ij i j i

i j i

J S S h S- -å å† †( )( )t c c c c U n n

† † † † †Anderson Imp 0 0 0 0 0 0 0( +c.c). H c A A A c c UcV c c c † †

, ,

( )( )ij ij i j j i i ii j i

t c c c c U n n

p 0 0 0 0, , ,

*V VA(A())

0 0 0

( )[( ) ( '' ] '))( ) (o o o oc c U n nb b b

s st tt m d t t tt D¶

+ - - +¶

-ò ò ò( ) V Va a

a a

ww e

D =-å

(( ))

77

Page 23: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

latt ( , 1 G [ ]( ) [( ) ]

)[ ]n imp

nn

ik ii

ktw m

ww+ + -S

DD

=

( )wDA(A()) Solving A for given bath, is not easy Impurity solvers; See other lectures i h l O S O OG SSS

[ ]ijij

jm mJth hb= +å 1( )[ ]( )

( )[ ]imp n

n n ni i iG iw

w w wD +DD

-S -

in school, LOTS OF PROGRESSS

( )[ ]imp n

1latt( )[ ] ( ) G ( , )n nni i it k kw w m w --S D - + =

latt( ) G ([ [)] ] ,imp n nk

G i i kw wD D=å 88

Page 24: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation
Page 25: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

LDA+DMFT V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar J Phys Cond Mat 35 7359 (1997)Kotliar,  J. Phys. Cond. Mat. 35, 7359 (1997).

A Lichtenstein and M. Katsnelson PRB 57, 6884 (1988).

• The light, SP  (or SPD) electrons are extended, well described by LDA .The heavy, D (or F) electrons are localized treat by DMFT.

• LDA Kohn Sham Hamiltonian already contains an average interaction of the  heavy electrons, subtract this out by shifting the heavy level (double counting term)out  by shifting the heavy level (double counting term) 

Kinetic energy is provided by the Kohn Sham Hamiltonian (sometimes after downfolding ). The U matrix can be estimated from first principles of viewedmatrix can be estimated from first principles of viewed as parameters.  Solve resulting model using DMFT. 

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

Page 26: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Many Groups are Active in this Area. Implemented in all sorts of basis setsp

Very incomplete list. 

LAPW

KKR

Plane waves

Plane waves

LAPW

Page 27: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Many Moving Parts…. Basis set, impurity solvers available, techniques for doing k sums, etc…techniques for doing k sums,  etc…

Still main question is choice of projector.  Clear description of the issues in  a well tested dataset:

Page 28: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

LDA+DMFT V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar J Phys Cond Mat 35 7359 (1997)Kotliar,  J. Phys. Cond. Mat. 35, 7359 (1997).

A Lichtenstein and M. Katsnelson PRB 57, 6884 (1988).

• The light, SP  (or SPD) electrons are extended, well described by LDA .The heavy, D (or F) electrons are localized treat by DMFT.

• LDA Kohn Sham Hamiltonian already contains an average interaction of the  heavy electrons, subtract this out by shifting the heavy level (double counting term)out  by shifting the heavy level (double counting term) 

Kinetic energy is provided by the Kohn Sham Hamiltonian (sometimes after downfolding ). The U matrix can be estimated from first principles of viewedmatrix can be estimated from first principles of viewed as parameters.  Solve resulting model using DMFT. 

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

Page 29: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

1( )G k i

LDA+DMFT. V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin and G. Kotliar, J. Phys. Cond. Mat. 35, 7359 (1997).

( , )( ) ( )

G k ii t k i

Spectra=‐ Im G(k,)

0 0æ ö0 00 ff

æ ö÷ç ÷S ç ÷ç ÷ç Sè ø

abcdU U, ,[ ] [ ]

( )[ ] [ ]

spd sps spd fH k H kt k

H k H kæ ö÷ç ÷ç ÷ç ÷ç

,[ ] [ ]f spd ffH k H kç ÷çè ø

| 0 ,| , | , | | ...JLSJM g> > > > >| 0 ,| , | , | | ...JLSJM g> > > > >

Determine energy and   andDetermine energy and   and self consistently  from  self consistently  from  extremizingextremizing a a functional  functional  ChitraChitra and and KotliarKotliar (2001) . (2001) . SavrasovSavrasov and and KotliarKotliar (2001)   Full self (2001)   Full self ( )( ) ( )( )consistent implementation consistent implementation 

1212,[ ] [ , ]dft lda dmf loct G Ur r+G ¾¾ G

Page 30: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

LDA+DMFT Self-Consistency loop

2| ( ) | ( )k xc k LMTOV H ka ac r c- + = E

G0 GImpuritySolver

S.C.C.

U

0( ) ( ) ir T G r r i e wr w+å

DMFT

0i +åTHE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

( ) ( , , )i

r T G r r i ew

r w= å 0( , , )H Hi

H Hi

n T G r r i e w

w

w+

= å

Page 31: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

LDA+DMFT Self-Consistency loop

2| ( ) | ( )k xc k LMTOV H ka ac r c- + = E

G0 GImpuritySolver

S.C.C.

U

0( ) ( ) ir T G r r i e wr w+å

DMFT

0i +åTHE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

( ) ( , , )i

r T G r r i ew

r w= å 0( , , )H Hi

H Hi

n T G r r i e w

w

w+

= å

Page 32: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

LDA+DMFT functional[ ( ) G V ( ) ]

2 *lo g [ / 2 ( ) ( ) ]R R Rn K ST r i V r ra b baw c c- + - - S -

åò

KS ab [ ( ) G V ( ) ]LDA DMFT a br r

( ) ( ) ( ) ( )

1 ( ) ( ')( ) ( ) ' [ ]2 | ' |

n

K S n ni

L D Ae x t x c

V r r d r T r i G i

r rV r r d r d r d r E

w

r w w

r rr r

- S +

+ + +

åò

ò ò2 | ' |

[ ]R

e x t x c

D CR

r r

G ba

-

F - F

ò òå

Sum of local 2PI graphs with local U matrix and local G

1[ ] ( 1)2DC G Un nF = - ( )0( ) i

ababi

n T G i ew

w+

= å

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

Based on work with Chitra and Savrasov

Page 33: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Embedding   ˆ HHS S

ˆ LL LH

HL HH

H HH

H Hé ùê ú= ê úë û

22

11

0 0 0ˆ 0 0HH

HH

é ù é ùSê ú ê úS = S=ê ú ê úS Së û ë û

1ˆ ˆˆ ˆ( ) ( ) ˆ ˆˆ ˆ( ) ( )n k ni O H k E iO k

w w- - -S S

HL HHH Hë û110 0 HHS Së û ë û

I i ( ) ( )( ) ( )n k n

n k ni O H k E iw w- - -S

I t ti BZ1ˆ ( )lG iw =å

Inversion

0 0G G

é ùê ú=

Integrating over  BZ

Truncation

( ) ˆ ˆˆ ˆ( ) ( )loc n

n k nk

G ii O H k E i

ww w

=- - -Så

0loc HH

HH

G GG

ê ú= ê úë û

1 1

Truncation

1 10 ( ) ( )HH HHn nG i G iw w- -= +S

Page 34: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

LDA+DMFT depends on the choice of projector Central Concepts Embeddingprojector. Central Concepts. Embedding 

and Truncation.  P j i• Projection or Truncation E

• Embedding

LDA+DMFT is in principle Basis Set INDEPENDENT if h b i i d hif the basis set is  good enough.BUT it depends on the choice of projector P. And different basis sets go with different projectors….

Page 35: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation
Page 36: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

What is U in a solid ? Kutepov HauleWhat is U in a solid ?  Kutepov HauleSavrasov Kotliar

Page 37: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation
Page 38: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Double CountingDouble Counting 

Page 39: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Comments on LDA+DMFTComments on LDA+DMFT• Static limit of the LDA+DMFT functional , with = HF

reduces to LDA+U• Removes inconsistencies  and shortcomings of this 

approach DMFT retain correlations effects inapproach. DMFT retain correlations effects  in the absence of orbital ordering.

• Only in the orbitally ordered Hartree Fock limit, the Greens y y ,function of the heavy electrons is  fully coherent

• Gives the local spectra and the total energy simultaneously, treating QP and H bands on the same footing. 

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

Page 40: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Functional formulation. Chitra and Kotliar (2001), Ambladah et. al. (1999) Savrasov and(2001), Ambladah et. al. (1999) Savrasov and 

Kotliarcond‐matt0308053 (2003).

1 †1 ( ) ( ') ( ') ( ) ( ) ( )V if f f y y-+ +ò ò ò1 †( ) ( , ') ( ') ( ) ( ) ( ) 2

Cx V x x x i x x xf f f y y-+ +ò ò ò

†( ') ( ')G R Ry r y r=-< > ( ') ( ) ( ') ( )R R R R Wf r f r f r f r< >-< >< >=Ir>=|R, >1 1 1 1

01 1[ ] [ ] [ ] [ ]C hG W TrLnG Tr G G G TrLnW Tr V W W E G W

[ ] [ 0 0]G W G W G W

0[ , ] [ ] [ ] [ , ]2 2 C hartreeG W TrLnG Tr G G G TrLnW Tr V W W E G W

D bl l i Gl d Wl

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

[ , ] [ , , 0, 0]EDMFT loc loc nonloc nonlocG W G W G W Double loop in Gloc and Wloc

Page 41: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Diagrams: PT in W and G. 1 11 1 1 1

01 1[ , ] [ ] [ ] [ , ]2 2 C hartreeG W TrLnG Tr G G G TrLnW Tr V W W E G W

Introduce projector GlocWlWloc

Page 42: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Many Body Perturbation  Theory in G and W. 

Order in Perturbation Theory

Order in PTn=1

Basis set i

l=1

n=2

size. DMFT

r site CDMFTl=2

r=1

r=2

GWl=lmax

r=2

GW+ first vertex correction 

Range of the clusters

Page 43: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Outline for my (hopefully pedagogical) lectures. •• 2]Intuitive Derivation of Dynamical Mean Field   Theory in model hamiltonian [Ease the reading ofTheory in model hamiltonian [Ease the reading of RMP] A. Georges G.Kotliar, W.Krauth & M.RozenbergRev Mod Phys 68 (1996) 13  Light reading   G Kotliary ( ) g gand D Vollhardt Physics Today 57, 53‐59 (2004)

• Intuitive Derivation of LDA+DMFT • 1] Formal Derivations using functionals. [ Ease the reading of  RMP ]

• Some motivating examples. • Next Lecture: Practical Implementation in ab‐init by Bernard Amadon. 

Page 44: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Functional formulation. Chitra and Kotliar (2001), Ambladah et. al. (1999) Savrasov and(2001), Ambladah et. al. (1999) Savrasov and 

Kotliarcond‐matt0308053 (2003).

1 †1 ( ) ( ') ( ') ( ) ( ) ( )V if f f y y-+ +ò ò ò1 †( ) ( , ') ( ') ( ) ( ) ( ) 2

Cx V x x x i x x xf f f y y-+ +ò ò ò

†( ') ( ')G R Ry r y r=-< > ( ') ( ) ( ') ( )R R R R Wf r f r f r f r< >-< >< >=Ir>=|R, >1 1 1 1

01 1[ ] [ ] [ ] [ ]C hG W TrLnG Tr G G G TrLnW Tr V W W E G W

[ ] [ 0 0]G W G W G W

0[ , ] [ ] [ ] [ , ]2 2 C hartreeG W TrLnG Tr G G G TrLnW Tr V W W E G W

D bl l i Gl d Wl

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

[ , ] [ , , 0, 0]EDMFT loc loc nonloc nonlocG W G W G W Double loop in Gloc and Wloc

Page 45: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

EDMFT loop G. Kotliar and S. Savrasov in New Theoretical  Approaches to Strongly Correlated G Systems, A. M. Tsvelik Ed. 2001 Kluwer Academic Publishers. 259‐301 . cond‐mat/0208241 S. Y. Savrasov, G. Kotliar, Phys. Rev. B 69, 245101 (2004) 

Input: ,M PSpectral Density Functional Theory withinLocal Dynamical MeanFieldApproximation

Input: ,M PSpectral Density Functional Theory withinLocal Dynamical Mean Field Approximation

/ , , y , ( )

1 10 lG G M

1( )loc

k

GH k

M

Local Dynamical Mean Field Approximation

,loc locG W 1 10 locG G M

1( )

1

lock

GH k

M

y pp

01 1

0

loc

loc

G

W

G MV P

1

1( )loc

q C

Wv q

P

1 10 locW V P

1

1( )loc

q C

Wv q

P

G VM P0 0G V,,intM P

Local Impurity Model

Output: Self-Consistent Solution

0 0G V,,intM PLocal Impurity Model

Output: Self-Consistent Solution

•Full implementation in the context of a a one orbital model. P Sun and G. KotliarPhys. Rev. B 66, 85120 (2002).

•After finishing the loop treat the graphs involving Gnonloc Wnonloc in perturbation theory. P.Sun and GK  PRL (2004).  Related work, Biermann  Aersetiwan and Georges  PRL 90,086402 (2003) . 

Page 46: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

An Aside (K. Haule lectures)…… Hybrids

Page 47: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Rare earth oxides  and sulfides  are   studied because of its t l ti ti d i t ll f i dl i tcatalytic properties and as enviromentally friendly pigments. 

Page 48: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Schematic DOS of R2O3

La O

Ce 4f

Schematic DOS of R2O3

La2O3

O 2p

Ce 5dpd gap

Ce2O3 Mott gap Upper Hubbard  

Position of the f band in

pd gapf band 

Position of the f band in any static mean field theory  when symmetry is not broken 

Hybrid + DFT Good agreement with experiments without adjusting parameters. Suggestion  alpha  in the hybrid x  Vc =U . Edc, substract exchange contribution in hybrid only. 

Page 49: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Example: rare earth sesquioxides. Ce2O3

Hybrid + DFT Good agreement with experimentsHybrid + DFT Good agreement with experiments without adjusting parameters. Suggestion  alpha  in the hybrid x  Vc =U . Edc, substract exchange contribution in hybrid only. 

Page 50: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Comparisons of the methods G0W0 [LDA+U]Phys. Rev. Lett. 102, 126403 (2009)

H,Jiang, R. Gomez‐Abal, P Rinke, M. Scheffler

Page 51: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Discovery of superconductivity in Fe l 7layers.  7

Predictive power of  realistic DMFT and its extensions. .

Hosono et.a.., Tokyo, JACS (2008)

Address Predictive power of state of the art methods 

Page 52: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Iron Pnictides:  correlation stregnth ? 

• LDA calculation.  D. J Singh and M.H. Du Phys. Rev. Lett. 100, 237003 (2008), I. Mazin, M. Johannes  and collaborators. Itinerant magnets.   

• LDA should be corrected by long wavelength fluctuations effects.  LDA overestimate of moment due to proximity to quantum critical point.  Include fluctuating twin and antiphase domain boundaries.   

• Haule K, Shim J H and Kotliar G  Phys. Rev. Lett. 100, 226402 (2008).         Parent compounds correlated  multiorbital   bad semi‐metals”       U< Uc2, m*/m~3‐5).  small  crystal –fields.  

• Band theory should be supplemented by  local correlations to capture local quantum fluctuations. LDA+DMFT +extensions correlations are implemented via F0 F2 F4 applied to a set of orbitals (projector) 

l d f f d b h h• Localized point of view,   magnetic    frustration. Q.Si  and E.Abrahams Phys. Rev. Lett. 101, 076401. (2008). 

• Extension of the t‐J model to S=2 multiorbital situation.Different views suggest different theoretical approaches Different reference systems to thinkDifferent views suggest different theoretical approaches.  Different reference systems to think about and compute the properties of materials. Which one is more accurate  ? 

11

Page 53: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Early DMFT predictionsEarly DMFT predictionsy py p

Generic values of U , 4 ev, and J =.9 ev , orbital built on a 4 ev window 14

Unconventional SCPhonon Tc<1K

Importance of correlationsImportance of correlationsMass enhancement 3‐5

Small X‐field splittings

Page 54: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Hunds metals not doped Mott insulators , Strength of correlations are due to   Fe Hunds rule J not to Hubbard U. K. Haule and G. Kotliar cond‐mat  arXiv:0805.0722New Journal of Physics 11 (2009) 025021

U=5ev

1515

LDA valueOrbital blocking. In d6 configuration exponential amplification is regulated by x‐'.Kondo k kH J d d c cab a b a bs s+ +=å p p g y

fields. Very different than oxides. , 'k ka bå

J J

J Jab

d

=

=

1JN

KNJ

T e r

r

-

-

=

Work by other DMFT groups Liebsch andJ Jab abd= JKT e r= Work by other DMFT groups. Liebsch and 

Ishida,  Aichorn et. al.P. Hansman …. Sangiovanni and Held Phys. Rev. Lett. 104, 197002 (2010)  

Page 55: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

pnictide/chalcogenide 17

Are these a new class of  strongly correlated electron systems ?

K Fe Se

Ishida Nasai and HOsonJ. Phys. Soc. Jpn. 78

Paglione and Greene Nature Physics 6, 645(2010)

K1‐xFe2‐2xSe2 (2009) 062001

Page 56: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Hunds metals not doped Mott insulators , Strength of correlations are due to   Fe Hunds rule J not to Hubbard U. K. Haule and G. Kotliar cond‐mat  arXiv:0805.0722New Journal of Physics 11 (2009) 025021

U=5ev

1818

LDA value

N ki d f l l d lNew kind of strongly correlated electron system. Coherence Incoherence Crossover. as a function fof temperature.  

Beyond the localize vs itinerant dichotomy. 

Page 57: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Freq. dep. U matrix  applied to localized  Fe d orbital, (12 i d ) W ll t i d b F0 F2 F4(12 ev window) Well parametrized by F0 F2 F4

After the constrained RPA 

But with the self consistent  GW input andinput and  adopting a local perspective Kutepov et. al. 

F0 4:9 eV F2 6:4 eV and F4 4:3 eV nc 6 2F0 = 4:9 eV, F2 = 6:4 eV and F4 = 4:3 eV., nc=6.2

19

Page 58: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

M. Moment & Optics by LDA+DMFT 22

Z. Yin, Khaule , G Kotliar, Nature Physics (2011).Exp moment: 0.87 µB

LDA+DMFT moment: 0.9 LDA 

moment 2µB 

Correct plasma ωp:DMFT  ~ 1.6eVExp      ~ 1.6eVLDA     ~ 2.6eV

3 peak structure beyond SDWbeyond SDW 

Experiment: W. Z. Hu, et al, PRL 101, 257005 (2008).Nakajima, M. et al. Phys. Rev. B 81, 104528 (2010).

Page 59: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

Anisotropy of the conductivity d dpredicted.

Z. Yin K. Haule and GK Nature Physics 7, 294‐297 (2011)

Experiment:M. Nakajima, …,S Uchida, PNAS 108, 12238 (2011) DiGiorgi EPL (2011)

23

Page 60: Introduction to correlated materials, DFT, DMFT DFT +DMFT · of electronic structure of strongly correlated materials Crystal structure +Atomic positions Model Hamiltonian Correlation

THE ENDTHE ENDThanks for your attention!!!!!Thanks for your attention!!!!!

Hope it raised your interest and you want toHope it raised your interest and you want to contribute  so that we can have a predictive theory of correlated materials in the very nearof correlated materials in the very near future……….

Interested in positions,   contact me at 

[email protected]