Top Banner
Introduction Key approximation An analogue of DIR The smile flattens Cumulant generating function Examples Implied volatility at long maturities Michael Tehranchi Statistical Laboratory University of Cambridge Vienna, 10 February 2009 Michael Tehranchi Implied volatility at long maturities
29

Implied volatility at long maturities

Jan 04, 2017

Download

Documents

ngokhanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Implied volatility at long maturities

Michael Tehranchi

Statistical LaboratoryUniversity of Cambridge

Vienna, 10 February 2009

Michael Tehranchi Implied volatility at long maturities

Page 2: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

The Black–Scholes formula

Black–Scholes: The price of a European call option with strike Kand maturity T

Ct(K ,T ) = StΦ(d+)− Ke−r(T−t)Φ(d−)

I St underlying stock price (no dividends)

I r risk-free yield

I d± =log(St/K

)σ√

T − t+( r

σ± σ

2

)√T − t,

I Φ(x) =

∫ x

−∞

e−t2/2

√2π

dt

Michael Tehranchi Implied volatility at long maturities

Page 3: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

The Black–Scholes formula

I σ is the volatility of the underlying stock

I Unlike other parameters, not directly observed

σ2 =1

TVar(log ST )

I Liquid options priced by market already

I Options often quoted in terms of implied volatility

Michael Tehranchi Implied volatility at long maturities

Page 4: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

The Black–Scholes formula

The assumptions

I No arbitrage (existence of martingale measure)

I Calls of all maturities and strikes liquidly traded

I Zero interest rate

Let (St)t≥0 be a non-negative local martingale.

Price of European call option with strike K and maturity T

Ct(K ,T ) = St − E[ST ∧ K |Ft ]

Michael Tehranchi Implied volatility at long maturities

Page 5: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

The Black–Scholes formula

Warning:

E[(ST − K )+|Ft ] = E[ST − ST ∧ K |Ft ]

≤ St − E[ST ∧ K |Ft ]

= Ct(T ,K )

with equality if and only if S is a true martingale.

Michael Tehranchi Implied volatility at long maturities

Page 6: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

The Black–Scholes formula

Black–Scholes call price function

BS(k, v) = Φ

(− k√

v+

√v

2

)− ekΦ

(− k√

v−√

v

2

)

DefinitionThe random variable Σt(k, τ) is defined on {St > 0} by

E[St+τ

St∧ ek

∣∣Ft

]= 1− BS

(k, τ Σt(k, τ)

2)

Michael Tehranchi Implied volatility at long maturities

Page 7: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

The Black–Scholes formula

Assumption: P(St > 0) > 0 all t ≥ 0, but St → 0 almost surely.Equivalently:

I There exists a k ∈ R such that τΣ(k, τ)2 ↑ ∞I τΣ(k, τ)2 ↑ ∞ for all k ∈ R.

I C (K ,T ) ↑ S0 for all K > 0.

I There exists a K > 0 such that C (K ,T ) ↑ S0

Michael Tehranchi Implied volatility at long maturities

Page 8: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

With no loss, let S0 = 1.

Theorem

τΣ(k, τ)2 = −8 log E(Sτ ∧ ek)| − 4 log[− log E(Sτ ∧ ek)]+4k − 4 log π + ε(k, τ)

where

sup−M≤k≤M

|ε(k, τ)|+ sup−M≤k1<k2≤M

|ε(k2, τ)− ε(k1, τ)|k2 − k1

→ 0

for all M > 0.

Michael Tehranchi Implied volatility at long maturities

Page 9: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Corollary

supk∈[−M,M]

∣∣∣∣ τΣ(k, τ)2

−8 log E(Sτ ∧ 1)− 1

∣∣∣∣→ 0

as τ ↑ ∞ for all M > 0.

Michael Tehranchi Implied volatility at long maturities

Page 10: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Towards Ross’s conjecture

Long implied volatility can never fall

Theorem (Rogers–T 2008)

For any k1, k2 ∈ R we have

lim supτ↑∞

Σt(k1, τ)− Σs(k2, τ) ≥ 0

for t ≥ s ≥ 0. There exist examples for which the inequality isstrict.

Michael Tehranchi Implied volatility at long maturities

Page 11: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Towards Ross’s conjecture

Theorem (Dybvig–Ingersoll–Ross 1996)

Let ft(τ) be the instantaneous forward interest rate with long rate

lim supτ↑∞

ft(τ) = `t .

Then`s ≤ `t

for 0 ≤ s ≤ t.

See Hubalek–Klein–Teichmann (2002) for a nice proof.

Michael Tehranchi Implied volatility at long maturities

Page 12: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Towards Ross’s conjecture

Theorem (Rogers–T. 2008)

SupposeΣt(k, τ) = Σ0(k, τ) + ξt

for some process (ξt)t≥0.

I Then ξt ≥ 0.

I If log E(S1/2s ) + log E(S

1/2t ) ≤ log E(S

1/2s+t), then ξt = 0.

Michael Tehranchi Implied volatility at long maturities

Page 13: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Towards Ross’s conjecture

Theorem (Balland 2002)

If ξt = 0 for all t ≥ 0 then log S has independent, stationaryincrements.

Michael Tehranchi Implied volatility at long maturities

Page 14: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Corollary

Let Q be the measure locally equivalent to P with densitydQtdPt

= St . Then

∂kτΣ(k, τ)2 = 4

(Q(Sτ < ek)− ekP(Sτ ≥ ek)

Q(Sτ < ek) + ekP(Sτ ≥ ek)

)+ ε′(k, τ)

if the distribution of Sτ continuous at ek . In particular,

lim supτ↑∞

supk∈[−M,M]

∣∣∣∣ ∂∂kτΣ(k, τ)2

∣∣∣∣ ≤ 4

Michael Tehranchi Implied volatility at long maturities

Page 15: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

For comparison:

I∂

∂kΣ(k, τ)2 <

4

τfor all k ≥ 0

I∂

∂kΣ(k, τ)2 > −4

τfor all k ≤ 0

I∂

∂kΣ(k, τ)2 <

2

τfor all k ≥ k+(τ), for some k+

I∂

∂kΣ(k, τ)2 ≥ −2

τfor all k ≤ k−(τ) for some k−

Gatheral (1999), Carr–Wu (2003), Lee (2004), Benhaim–Friz(2008), Rogers–T. (2008).

Michael Tehranchi Implied volatility at long maturities

Page 16: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

Motivation:S ∧ 1 ≤ Sp

for all 0 ≤ p ≤ 1 and S ≥ 0, implies

lim infτ↑∞

τΣ(k, τ)2

−8 inf0≤p≤1 log E(Spτ )≥ 1.

Michael Tehranchi Implied volatility at long maturities

Page 17: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

Letψt(p) = log E(Sp

t 1{St>0}).

Properties of ψt

I ψt(0) = log P(St > 0) ≤ 0, ψt(1) = log E(St) ≤ 0

I finite-valued on (0, 1) ⇒ real-analytic

I convex

Michael Tehranchi Implied volatility at long maturities

Page 18: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

Intuition: For many models

1

tψt(p) → ψ(p)

Let p∗ be the minimizer of ψ. Three cases

I 0 < p∗ < 1

I p∗ = 0 or p∗ = 1

I p∗ < 0 or p∗ > 1

Michael Tehranchi Implied volatility at long maturities

Page 19: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

Assumption: There exists a 0 < p∗ < 1 and a positive increasingfunction C with C (τ) ↑ ∞ such that

ψτ

(p∗ + i

θ

C (τ)

)− ψτ (p

∗) → −θ2/2

as τ ↑ ∞ for all real θ

Michael Tehranchi Implied volatility at long maturities

Page 20: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

Theorem

supk∈[−M,M]

∣∣∣∣ τΣ(k, τ)2

−8ψτ (p∗)− 1

∣∣∣∣→ 0

Proof: Cramer’s large deviation principle.

See Lewis (2000), Jacquier (2007)

Michael Tehranchi Implied volatility at long maturities

Page 21: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

φτ (θ) =1√2π

exp

[ψτ

(p∗ + i

θ

C (τ)

)− ψτ (p

∗)

].

TheoremIf ∫ ∞

−∞

|φτ (θ)|1 + θ2/C (τ)2

dθ → 1

then

τΣ(k, τ)2 = −8ψτ (p∗)+4k(2p∗−1)+8 log

(C (τ)p∗(1− p∗)√

−ψτ (p∗)/2

)+δ(k, τ)

where supk∈[−M,M] |δ(k, τ)| → 0 as τ ↑ ∞ for each M > 0.

Michael Tehranchi Implied volatility at long maturities

Page 22: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

Assumption: There exists a p∗ ∈ {0, 1} and a positive increasingfunction C with C (τ) ↑ ∞ such that

ψτ

(p∗ + i

θ

C (τ)

)− ψτ (p

∗) → −θ2/2

as τ ↑ ∞ for all real θ

Michael Tehranchi Implied volatility at long maturities

Page 23: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

TheoremIf p∗ = 1 then

τΣ(k, τ)2 = −8ψτ (1)− 4 log[−ψτ (1)] + 4k − 4 log(π/4) + δ(k, τ),

and if p∗ = 0, then

τΣ(k, τ)2 = −8ψτ (0)− 4 log[−ψτ (0)]− 4k − 4 log(π/4) + δ(k, τ)

where supk∈[−M,M] |δ(k, τ)| → 0 for all M > 0.

Michael Tehranchi Implied volatility at long maturities

Page 24: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

Assumption: There exists a p∗ such that either

1. p∗ > 1 and ψτ (p∗)− ψτ (1) → −∞, or

2. p∗ < 0 and ψτ (p∗)− ψτ (0) → −∞.

Michael Tehranchi Implied volatility at long maturities

Page 25: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Regular caseBorderline casesIrregular cases

TheoremIf p∗ > 1 then

τΣ(τ, k)2 = −8ψτ (1)− 4 log[−ψτ (1)] + 4k − 4 log π + δ(k, τ),

and if p∗ < 0 then

τΣ(τ, k)2 = −8ψτ (0)− 4 log[−ψτ (0)]− 4k − 4 log π + δ(k, τ),

where supk∈[−M,M] |δ(k, τ)| → 0 for all M > 0.

Michael Tehranchi Implied volatility at long maturities

Page 26: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Example: Independent, stationary increments

1

tψt(p) = ψ1(p)

If

infq 6=0

<ψ1(p∗ + iq)− ψ1(p

∗)

q2 ∧ 1< 0,

where < denotes the real part of a complex number, then the fullasymptotic formula holds.

Michael Tehranchi Implied volatility at long maturities

Page 27: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Example: Binomial model. Suppose Sτ+1 = ξτ+1Sτ whereP(ξτ = eb) = 1

eb+1= 1− P(ξτ = e−b) so

ψ1(p) = log

(cosh[b(p − 1/2)]

cosh(b/2)

).

Integrability fails:

τΣ(k, τ)2 = 8τ log cosh(b/2) + 4 log

(b2F (k, τ)2

8 log cosh(c/2)

)+ δ(k, τ)

where

F (k) =∑n∈Z

(−1)nτ cos(knπ/b)

1 + 4n2π2/b26≡ 1.

Michael Tehranchi Implied volatility at long maturities

Page 28: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Example: Affine models. Lewis (2000), Jacquier (2007),Keller-Ressel (2008)

Michael Tehranchi Implied volatility at long maturities

Page 29: Implied volatility at long maturities

IntroductionKey approximation

An analogue of DIRThe smile flattens

Cumulant generating functionExamples

Example: CEV model.

dSt = S2t dWt .

Note

E(St) = 2Φ

(1√t

)− 1,

Irregular case with p∗ > 1

τΣ(k, τ)2 = 4 log τ − 4 log log τ + 4k + δ(k, τ).

Michael Tehranchi Implied volatility at long maturities