Top Banner
White paper Laatu. Non-thermal, in-plant microbial reduction solution for dry foods. Innovations for a better world.
12

hite paper - Bühler Group

Apr 15, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: hite paper - Bühler Group

White paper

Laatu.Non-thermal, in-plant microbial reduction solution for dry foods.

Innovations for a better world.

Page 2: hite paper - Bühler Group

2

Bühler Whitepaper. Laatu.

Content.

1. Food Safety — a global challenge 3

1.1. Food safety — a risk to public health 3

1.2. Foodrecalls—significantcommerciallosses 3

2. Dry foods as carriers of pathogenic bacteria 3

3. Conventional pathogen inactivation technologies — drawbacks 4

3.1. Steam 4

3.2. Chemicals 4

3.3. Irradiation 4

4. Laatu — a breakthrough microbial reduction solution 5

4.1. Developinganewmicrobialinactivationsolution 5

4.2. Howitworks 6

4.3. Betterpreservationofquality 7

4.4. Economicallyandenvironmentallysustainable 8

4.5. Digitalizingfoodsafetysolutions 9

5. Conclusion 9

6. References 10

Page 3: hite paper - Bühler Group

3

Bühler Whitepaper.Laatu

1. Food Safety — a global challenge

InFebruary2019theUnitedNations,WorldHealthOrganization(WHO),WorldTradeOrganizationandAfricanUnioncametogetherforthefirsttimeintheirhistorytoaddressoneofthegreatestchallengesofourtime,thethreatoffood-bornediseasesareposingtohumanhealth.

Theconferencecalledforgreatercrosssectorialcooperationandfortheprivatesectortousetheirknowledgetobetterexploitanddevelopnewtechnologiestohelpdrivedowntheburdenoffood-bornediseases.BühlerhasbeenrisingtothatchallengeandthroughthiswhitepaperweexplainthedevelopmentofthenewfoodsafetysolutionLaatu,abreakthroughmicrobialreductiontechnologyfordryfoods.

ThemeetingheldinEthiopia’scapital,AddisAbaba,hadbeencalledatapivotalmoment.Everyyearone-in-10peopleintheworldfallsillfromeatingcontaminatedfood,impactinghumanhealth,lifeexpectancyandeconomicdevelopment.Foodproducersandregulatorsarecurrentlyalsohavingtoaddressthechallengesofclimatechangealongwithprofounddemographicandlifestyleshiftstakingplaceacrosstheplanet.

Asglobaltemperaturesbecomemoreunpredictable,sothefoodsafetyrisksassociatedwiththeproduction,storageanddistributionoffoodincrease.Populationgrowthisalsoposingnewchallengesforfoodsafetystandardsaswemakethebestoftheresourceswehaveandlookforalternativeproteinsources.Agrowingglobalmiddleclassisdevelopingadesireforever-morediversefoodswhileincreasedurbanizationmeansmanyofusarerelyingonrestaurantsandready-to-eatfoodstohelpwiththetimechallengesposedbycitylife.Citiesalsocreatemorediversecommunities,resultinginincreasingnumbersofpeopledevelopingatasteforever-moreexoticand international foods.

Whereveryoulivethesefactorsarepushingupthedemandforoverseasfoods.Asdemandhasrisensothecomplexityandinterconnectivityofthefoodchainhashadtoevolve.Whatusedtobealocalfoodsafetyscarecantodayquicklybecomeofinternationalconcern.Overthepastdecadewehaveseenhowtheglobalizedfoodtradecanquicklyresultinthespreadofanoutbreak.In2011,forexample,anoutbreakofEnterohaemorrhagicEscherichiacoli(EHEC)linkedtocontaminatedfenugreeksproutsthatoriginatedinGermany

affectedeightcountriesinEuropeandNorthAmericaresultingin53deathsandsignificanteconomiclosses.1

1.1. Food safety — a risk for public health

AccordingtothemostrecentWHOfiguresontheglobalburdenoffood-bornediseaseseachyear600millionpeoplefallillaftereatingcontaminatedfoodsresultingin420,000deaths.Childrenarethemostvulnerable,with125,000ofthosedeathsbeingundertheageoffive.TheWHOalsoestimatesthatunsafefoodimpactseconomicgrowthcostinglow-and-middle-incomeeconomiesanestimated$95billioninlostproductivityeachyear.1

AccordingtotheWHOthereare31food-borneagentsthatare responsible for causing food-related illnesses. Foods containingharmfulmicroorganisms,suchasbacteria,viruses,parasitesorchemicalsubstances,cancausemorethan200differenttypesofillnessesrangingfromdiarrhoeatocancers.Themostcommonformofillnesscausedbycontaminatedfoodsarediarrhoeal,responsiblefor550millionpeoplefallingilleveryyearandleadingto230,000deaths1.

1.2. Food recalls — significant commercial losses

Foodcontaminationnotonlyimpactshumanhealthandeconomicdevelopment,butitalsocanimpactseriouslyonbusinesses.Foodrecallsareprimarilyapublichealthissue,buttheycanalsocausesignificantcommerciallosseswithmostrecallsbeingduetomicrobialcontamination.Accordingto a joint industry study by the Food Marketing Institute and theGroceryManufacturersAssociation,theaveragedirectcostofarecalltoafoodcompanyis$10m.Thisdoesnotincludecostsfrombranddamageandlostsales.Costsforlargerbrandsmaybesignificantlyhigher,basedonpreliminaryrecallcostsreportedrecentlybyfirmsaffected.2

Astheglobalpopulationgrowssowehavetomakethemostoftheresourceswehave.Thatmeanscuttingbackonwaste,especiallyduetocontamination.Itisestimatedthatathirdoffoodproducedgloballyforhumanconsumptioneveryyear—about1.3billiontons—iseitherlostorwasted3.AccordingtoBondietal(2014),anestimatedquarterofthisisbecauseofspoilagecausedbymicroorganisms.4

Page 4: hite paper - Bühler Group

4

Bühler Whitepaper. Laatu.

2. Dry foods as carriers of pathogenic bacteria

Dryfoodswithlow-wateractivity(aw)areeithernaturallylowinmoistureortheyhavebeendehydrated.Examplesofdryfoods(aw<0.85)includespices,cereals,cocoa,driedfruitsandvegetables,herbs,driedmeat,powders,pasta,peanutsandtreenuts,grains,andseeds.Spoilagecanoccurwhenrawmaterialscontainingpathogensormicroorganismsareintroduced to a food product during or after processing. Dryfoodsdonotsupportmicrobialgrowthandsoareoftenconsideredalowrisk.However,thatdoesnotmeantheyarewithoutriskandthisneedstobetakenintoconsideration.Onekeyriskisthatmicroorganismscansurvivethedryingprocesses.Whendesiccated,theirmetabolismisgreatlyreduced.However,whilegrowthdoesnotoccurindriedfoodsvegetativecellsandsporescanremainviableforseveralmonthsorevenyears.5Thismeansthatdryfoodsmaystillcarryfood-bornepathogens,suchasEscherichiacoli O157:H7orSalmonellaandsoposeasignificantrisktoconsumers.

3. Conventional pathogen inactivation technologies — drawbacksItisuptothefoodindustrytoreducerisktotheconsumerasmuchasispossible.Whenitcomestoproducersofdriedfoodstheyneedtobeawareofthemanydifferentwaysconsumersmightultimatelyusetheirproducts.

Oneexamplecouldbesprinklingherbsontosalads.Ifcontaminated,thoseherbsarebeingaddedtoawater-richfoodwithnocookingprocesstokillthepathogensandsoposeapotentialrisktoconsumerhealth.Whenconsideringthepotentialmicrobiologicalriskposedbydriedfoodsthenanypathogeninactivationprocesshastofactorinthewaytheconsumerwillultimatelyusetheproduct.

Thesuccessofamicrobialinactivationtreatmentineliminatingorreducingcontaminationandthereforepreventingfood-borneillnessesdependsonthetypeoftreatmentandprocessingthattakesplace.6Theconventionalmethodsofmicrobialinactivationandinsectdisinfestationusedfordriedfoodstodayhaveseveraldrawbacks.

3.1. Steam

Thisisathermaltreatmentduringwhichtheproductisexposedtosteamforashortperiodsothatpathogensbecomeinactiveandthetotalmicrobialloadinthefoodproduct is reduced.7Temperaturesof121°Corhigherareneededfordryfoodscontaminatedwithspore-formingbacteria.8

However,effectivedecontaminationwithsteamcanalterthesensory,nutritionalandfunctionalpropertiesindryfoodsandcausecolordegradation,decreasearomacompoundsandincreasemoisturecontent,whichcanleadtoareducedshelf-life.7Inadditioninvestmentcostscanbehighandtheprocessconsumeslargequantitiesofwater.

3.2. Chemicals

Fumigationisappliedwidelytodryfoodstoreducebacterialloadorforcompletesterilization.However,fumigationcancausecolorchangesinsomefoods,suchaspaprikaandturmeric.9Inaddition,volatilecompoundsthatareresponsibleforaromacanbereduced.10

Furthermore,severalchemicalsusedforfumigation,suchasethyleneoxide(EtO),areconsideredcarcinogenic11 and the fumigationprocessesarenoteasytoperformbecauseofthepotentialhealthhazardstoworkersandtheenvironmentalpollution risk.

Page 5: hite paper - Bühler Group

5

Bühler Whitepaper.Laatu

BecauseofthecarcinogenicpropertiesofEtO,safetystandardshaverestricteditsuseandseveralcountrieshaveevenprohibitedit.Currently,residuelevelsof50ppmareallowedintheUnitedStates.12IntheEuropeanUnion(EU)useofEtO,asafoodfumigant,hasbeenbannedsince198613 by Directive79/117/EC,becauseofconcernsaboutthepotentialtoxicriskstoworkersandconsumers.Otherchemicalsusedfordecontaminationoffoodproducts,suchaspropyleneoxideandmethylbromide,arealsoconsideredeithertoxicorcarcinogenic.14

3.3. Irradiation

Irradiationoffoodusesionizingradiationfromgamma-rays,X-raysorelectronbeams.15

� Gamma-raysareemittedcontinuouslyfrom60Co or 137Cs isotopes.

� X-raysareproducedbytheimpactofhigh-speedelectronsonametallictarget,whichdeceleratestheelectronsandemissionofelectromagneticradiation.

� Electronbeamsareproducedbyacceleratingelectrons,focusingthemintobeamsthatcanbetargetedonfoodproducts.

Unlikegamma-raysandX-rays,electronbeamshavelimitedpenetration,dependingontheenergiesoftheelectrons. Thedecontaminationoffoodswithirradiationmustbeoutsourced to food irradiation facilities16andmightnottherefore be easily accessible to food processors because of logisticsandtransportcosts.Also,becauseirradiationoffoodproducts usually takes place at the end of the processing chain,whenproductsarealreadyinready-to-sellpackaging,irradiationtreatmentcanbeusedtomaskunhygienicfoodproductionpractices,suchasinadequateGMP’s(goodmanufacturingpractices).17

Safetyandefficiencyoffoodirradiationhasbeenrecognizedbyorganizations,suchastheWHO,theFoodAgricultureOrganization(FAO),andtheInternationalAtomicEnergyAgency(IAEA).18Fromaregulatoryperspective,spicescanbetreatedwithionizingradiation.Andwhenspicesareusedasingredients,labellingisnotnecessaryintheUSAorCanada.19 TheregulatorystatusforthetechnologyanditsapplicationisunderevaluationintheEU.20IntheUSA,togetapprovalforanewsourceofradiationoritsuse,apetitionmustbesubmittedtotheFoodandDrugAdministration(FDA).21

Page 6: hite paper - Bühler Group

6

Bühler Whitepaper. Laatu.

4. Laatu — a breakthrough microbial reduction solution

4.1. Developing a new microbial inactivation solution

Thedevelopmentofalternativesolutionsformicrobialinactivationhasbeendrivenbyboththelimitationsofconventionaltechnologiesandincreasingconsumerdemandforfresh,naturalandminimallyprocessedfoods.

Novelandadvancednon-thermaltechnologieshavetheaddedadvantageofmakingfoodproductionmoresustainablebyreplacingconventionalenergyconsumingtechniquesandsocuttingproductioncostsandenergyconsumption.22

Bühlerisconstantlyworkingonpioneering,innovativeandsustainablefoodsafetysolutions.Oneaimistofindgentle,sustainableandenvironmentallyfriendlydecontaminationsolutionsforfoods,notonlytoensurefoodsafetybutalsotopreservefoodquality.

In2012Bühlerbeganastudyinresponsetothemarketandconsumerneeds.Thestudyscreened18existingphysicaltechnologiesbasedontheirsuitabilityformicrobialinactivationindryfoods,foodqualitypreservation,andscale-uppotential(Figure1).

Theresearchexploredhowpollutionpreventionandcuttingwastewateralongwithconservingnon-renewableresourcescouldsignificantlyreduceprocessingcosts.23Thesewereconsidered,togetherwithenergyconsumption,cost-efficiencyandusefulness,toassessthefullpotentialofthetechnologyforindustrialandcommercialpurposes.

Unfortunately,formostpotentialsolutionsitwastheirscalabilityandsuitabilityforindustrialapplicationthatprovedtobethelimitingfactors.Highinvestmentcosts,efficacyinprovidingsafefood,incompletecontrolofprocessvariablesandlackofregulatoryapprovalswerealsofoundtobeconstraintswhenitcametoconsideringthemasindustrial-scale solutions. Thescreeningstudyrevealedthelow-energyelectronbeamtechnologytobethemostpromisingsolutionforindustrialapplicationsandcommercialization.Consequentlyin2014,togetherwithexternalpartnersfromindustryandacademia,Bühlerbegandevelopingthelow-energyelectronbeamtreatmentprocessanditsapplicationsfordryfooddecontamination.TodayBühlerisproudtobeabletopresentLaatu—abreakthroughmicrobialreductionsolutionfordryfoods.

Figure 1.Screeningofinactivationsolutions

* Environment,HealthandSafety

Page 7: hite paper - Bühler Group

7

Bühler Whitepaper.Laatu

4.2. How it works

AttheheartofLaatuistheideaofinactivatingthepathogenicmicroorganismsonthedryfoodbydamagingtheDNAandRNAthroughexposuretoalow-levelelectronbeam.

ThebeautyofLaatuisthatitonlytakesmillisecondstosufficientlyinactivatethemicroorganisms.Eachseedishomogeneouslyexposedtolow-energyelectrons,inafreefallspace(Figure2).Theeffectanddepthofinactivationcanbecontrolledviatheenergiesoftheelectrons.

Todate,Laatuhasbeensuccessfullytestedforthreedifferenttypes of pathogens — Salmonella,E.coli,B.cereus — and fornaturalcontamination.Asanexample,Laatucanreduce5LogsofSalmonella(>99.999%)inspicesandthetechnologyisshowingpromisingresultsforsignificantlogreductioninotherdryfoodcommodities.

Akeyfeatureofdecontaminationtreatmentwithlow-energyelectronbeamisthatitcanbeconfinedtothesurface.Theabilitytocontrolthepowerofthelow-energyelectronmeansbeingabletocontrolwhetheritpenetratesthesurfaceoftheproductornot.Sincethemicroorganismscontaminatingdryfoodsresideonthefood’ssurface,theinnerpartsneednotbeexposedtothedecontaminationtreatment.24

Thelowertheelectronsenergies,thelowertheirpenetrability.Hayashietal(1998)definedelectronswithenergiesof300keVorlower,aslow-energyelectronsor“soft-electrons”.25

Low-energyelectronshavelessenergythanhigh-energyelectrons.Thisiswhytheirinteractionwithfoodmoleculesdecreasesmuchfasterandtheinactivationeffectislimitedtotheseedsurface,whereaselectronswithhighenergieswouldtravelthroughtheseedandmaydamageinternalquality.

Figure 2.TheprincipleofLaatu.Thecurtainofseedsfree-fallthroughlowenergyelectronbeamlampswhereeachseedishomogeneouslyexposedtoacloudofelectrons.Duetothelowenergiesoftheelectrons,onlysurfaceoftheseedistreated,preservingtheinternalqualityoftheseed.

Page 8: hite paper - Bühler Group

8

Bühler Whitepaper. Laatu.

4.3. Better preservation of quality

Asanon-thermaltreatment,Laatuprovidesaneffectivebutgentlesurfacedecontaminationfordryfoods.Duetotheelectrons’lowenergies,itcanpreservebothnutritionalandorganoleptic(i.e.taste,smell,appearance)propertiesofdryfoods.

Asbothanon-thermalandsurfacelimitedmethod,Laatumaximizesthequalityconservationofdryfoods,whileofferinganefficientfoodsafetysolution.Asanexample,thegerminationcapacityofmungbeanseedstreatedbylow-energyelectronbeam,wascomparedtoseedstreatedwithhigh-energyelectronbeam(10MeV).

Sincethelow-energyelectronswillnotreachtheembryooftheseed,theembryoremainsundamagedandtheseedscangerminate.Seedstreatedwithhighenergyelectronscouldnotgerminate,becausetheelectronstravelthroughtheseedanddamagetheembryo(Figure3).Also,Laatuprovidesabetterqualitypreservationoffat-richdryfoods,withoutinducinglipidoxidation.

Severalstudieshaveshownthathomogeneoustreatmentofsurfaceswithlow-energyelectronscandecontaminatedryfoodingredientswithoutdetrimentaleffects.26Also,low-energyelectronshaveexhibitedseveraladvantagesoverconventionalirradiationtechniques(i.e.gamma-raysor

high-energyelectrons(>300keV)indecontaminationofdryfoods.22Forexample,Kikuchietal.(2003)recommendedlow-energyelectronbeamtreatment,abovegamma-irradiation,forsoybeandecontamination,becauseitinducesminimumornoqualitydeterioration,sincetheelectronsdonotreachtheinternalmatrix.Also,Kicuchietal.(2003)showedthatlow-energyelectronbeamtreatmentdidnotinhibitthegerminationprocessofsoybeansandcanthereforebeusedtodecontaminateseedsforsprouting.27

4.4. Economically and environmentally sustainable

Laatucanbescaledtoindustrialrequirementstobenefitsmall,mediumandlargeoperators.Ithasasignificantlysmallerfootprintincomparisontoconventionaltechnologies(Figure4)andcanbeoperatedasastand-aloneorcontinuousprocess,whereitcanbeimplementedanywhereintheprocessingline.Togetherwithitsrecipe-basedinterface,theequipmentiseasytooperate.TimeforcleaningLaatuequipmentisreducedto30minutes,comparedtoeighthoursforcleaningsteamequipment.

Laatuisanenvironmentallyfriendlysolutionthatdoesnotusewaterorchemicals.Itusescommercialenergyasanenergysource,withoutusingradioactivesources.Itcanreduceenergyconsumptionbyupto80%incomparisontosteamandprovidesacost-efficient,affordablesolutionformicrobialreduction.

Figure 3.Mungbeanseedgerminationafter120h.(a)Untreatedseeds;low-energyelectronbeamtreatedseeds:(b)140keV;(c)200keV;and(d)High-energyelectronbeamtreatedseeds10MeV.

Page 9: hite paper - Bühler Group

9

Bühler Whitepaper.Laatu

Figure 4.SizecomparisonofLaatu.A)SteamequipmentB)ChemicalequipmentC)Laatu

A B C

4.5 Digitalizing food safety solutions.

WhenLaatuisconnectedtotheIoTplatform,BühlerInsights,itbecomesapowerfultoolforfoodsafetyauditingthatultimatelycouldbeusedasafoodcertificationtool.Itfeaturesareal-timemonitoringsystemthatcapturesprocessingparameterssuchasdates,times,andproductbatches.Theinformationisthenusedtoprovideanautomatedproductbatchreportingsystem,capableofdeliveringanaccurateandsecureaudittrailforfoodproducersandtheremainingsupply-chain.BybeingabletoaccuratelylogallfoodspassingthroughtheLaatuprocessitcanthenbecertifiedashavingbeentreated.

5. ConclusionFood safety is one of the largest challenges the global food systemfacesandthepotentialfordryfoodsofplantorigintoactascarriersofpathogenicmicroorganismsisagrowingconcern.Foodsafetyoutbreaksmayleadtoseriousillnessesandevendeaths.Theymayalsoleadtoexpensiveproductrecallsthatcouldsignificantlydamagethebrand.Foodsafetyisanessentialrequirementandsocannolongerbeconsideredacompetitiveadvantage.Foodqualityisnowthefrontlinewhenitcomestocompetitionasthisiswherethemostsignificantmarketvaluecanbeachieved.Conventionaldryfoodinactivationtechnologiesareassociatedwithseveraldrawbacks,suchasqualitydamage,safetyhazards,highcostsandrisksfortheenvironment.

Tofindanalternativesolution,Bühlerevaluated18existingphysicaltechnologiesbasedontheirsuitabilityformicrobialinactivationofdryfoods,foodqualitypreservation,andscale-uppotential.Thestudyshowedthatlow-energyelectronbeamtechnologyisthemostpromisingnon-thermalsolutionfor dry foods.

ThistechnologyiscalledLaatu,thebreakthroughnon-thermalmicrobialreductionsolutionforthedryfoodindustry.LaatusignificantlyreducesharmfulmicroorganismssuchasSalmonella,E.coliandsporesinmilliseconds.Itisharshonmicroorganismsyet,asasurfacetreatmentisgentleonfood,withbetterpreservationofnutrientsandorganolepticproperties.

Whencomparedtoconventionaltechnologies,Laatuhasasignificantlysmallerfootprintandcanbeimplementedanywhereintheprocessingline.Moreover,Laatuprovidesacost-efficientandenvironmentallyfriendlysolution.Itcanreduceenergyconsumptionbyupto80%incomparisontosteam,withoutintroducingwaterorchemicals.Italsoprovidesaspeedy,accurateandefficientaudittrailwhenlinkedwithBühlerInsightsthatcouldbeusedtoprovideproductswithfoodsafetycertification.

Today,Laatuisreadyforthespicemarketanditsimplementationforotherdryfoodmarketsisunderdevelopment.

Page 10: hite paper - Bühler Group

10

Bühler Whitepaper. Laatu.

6. References

1 WHO.WorldHealthOrganization.(2017)FoodSafety. http://www.who.int/news-room/fact-sheets/detail/food-safety(Accessedon22.06.2018)

2 FoodSafetyMagazine.(2012)Recall:Foodindustry’sbiggestthreattoprofitability. https://www.foodsafetymagazine.com/signature-series/recall-the-food-industrys-biggest-threat-to-profitability/ (Accessedon14.06.2018) 3 FAO.FoodandAgricultureOrganization.(2018)SAVEFOOD:GlobalInitiativeonFoodLossandWasteReduction http://www.fao.org/save-food/resources/keyfindings/en/(Accessedon10.06.2018)

4 Bondi,M.,Messi,P.,Halami,P.M.,Papadopoulou,C.,&deNiederhausernS.(2014)EmergingMicrobialConcernsin FoodSafetyandNewControlMeasures.BioMedResearchInternational,ArticleID251512, https://doi.org/10.1155/2014/251512.

5 Beuchat,L.R.,Komitopoulou,E.,Beckers,H.,Betts,R.P.,Bourdichon,F.,Fanning,S.,Joosten,H.M.,& TerKuile,B.H.(2013).Low–wateractivityfoods:increasedconcernasvehiclesoffood-bornepathogens. JournalofFoodProtection76:150–172.

6 TheJointFAO/WHO(2014).ExpertMeetingonMicrobiologicalHazardsinSpicesandDriedAromaticHerbs. PreliminaryReport:28October2014.ftp://ftp.fao.org/codex/meetings/ccfh/ccfh46/Report_Spices_Dried_Herbs Expert%20Meeting.pdf(Accessedon19.06.2018)

7 Schweiggert,U.,Carle,R.,&Schieber,A.(2007).Conventionalandalternativeprocessesforspices.Areview. TrendsinFoodScience&Technology18:260–268.

8 WHO.WorldHealthOrganization.(2016)TheInternationalPharmacopoeia.Methodsofsterilization http://apps.who.int/phint/pdf/b/7.5.9.5.8-Methods-of-sterilization.pdf(Accessedon22.06.2018)

9 Farkas,J.(1998).Irradiationasamethodfordecontaminationfood,(areview). InternationalJournalofFoodMicrobiology44:189–204.

10 Satomi,L.C.;Soriani,R.R.andPinto,T.A.(2005).Decontaminationofvegetaldrugsusinggammairradiationand ethyleneoxide:microbialandchemicalaspects.BrazilianJournalofPharmaceuticalSciences.41(4).

11 Fowles,J.,Mitchell,J.,&McGrath,H.(2011).Assessmentofcancerriskfromethyleneoxideresiduesinspices importedintoNewZealand.FoodandChemicalToxicology39:1055–1062.

12 Toofanian,F.&Stegeman,H.(1988).Comparativeeffectofethyleneoxideandgammairradiationonthechemical, sensoryandmicrobialqualityofginger,cinnamon,fennelandfenugreek.ActaAlimentaria17:271-81.

13 EU(1986)CouncilDirectiveof21July1989amendingDirective79/117/EECprohibitingtheplacingonthemarketand useofplantprotectionproductscontainingcertainactivesubstances.OfficialJournalofEuropeanCommunities L212/33-L212/34.

14 EPA.EnvironmentalProtectionAgency.Methylbromide.(2000a). https://www.epa.gov/sites/production/files/2016-09/documents/methyl-bromide.pdf (Accessedon21.06.2018)

EPA.EnvironmentalProtectionAgency.Propyleneoxide.(2000b). https://www.epa.gov/sites/production/files/2016-09/documents/propylene-oxide.pdf (Accessedon21.06.2018)

Page 11: hite paper - Bühler Group

11

15 CAC(CodexAlimentariusCommission).(2003).Codexgeneralstandardforirradiatedfoods. CODEXSTAN106-1983.Rev.1-2003.

16 Mittendorfer,J.(2016).Foodirradiationfacilities:Requirementsandtechnicalaspects. RadiationPhysicsandChemistry129:61-63

17 EFSA.EuropeanFoodSafetyAuthority.(2011).Statementofsummarizingtheconclusionsandrecommendations fromtheopinionsofthesafetyofirradiationoffoodadoptedbytheBIOHAZandCEFpanels.EFSAJournal9:2107

18 Farkas,J.(2006).Irradiationforbetterfoods.TrendsinFoodScience&Technology17:148–152. Farkas,J.,&Mohacsi-Farkas,C.(2011).Historyandfutureoffoodirradiation. TrendsinFoodScience&Technology20:1–6.

19 FDA.USFoodandDrugAdministration.(2017)21CFR179.26 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.26 (Accessedon06.07.2018)

CFIA.CanadianFoodInspectionAgency.(2018)Irradiatedfoods. http://www.inspection.gc.ca/food/labelling/food-labelling-for-industry/irradiated-foods eng/1334594151161/1334596074872(Accessedon06.07.2018)

20 EC.EuropeanCommission.(2017)EvaluationoftheEUlegalframeworkonfoodirradiation.Ares(2017)4196327. https://ec.europa.eu/info/law/better-regulation/initiatives/ares-2017-4196327_en(Accessedon06.07.2018)

21 FDA(2017)GuidanceforIndustry:FoodAdditivePetitionExpeditedReview. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation IngredientsAdditivesGRASPackaging/ucm224104.htm(Accessedon06.07.2018)

22 Quested,T.E.,Cook,P.E.,Gorris,L.G.M.,&Cole,M.B.(2010).Trendsintechnology,tradeandconsumptionlikelyto impactonmicrobialfoodsafety.InternationalJournalofFoodMicrobiology139:29–42.

23 Pereira,R.N&Vicente,A.A.(2010)Environmentalimpactofnovelthermalandnonthermaltechnologiesinfood processing.FoodResearchInternational43:1936–1943.

24 Baba,T.,Kaneko,H.,&Taniguchi,S.(2004).Softelectronprocessorforsurfacesterilizationoffoodmaterial. RadiationPhysicsandChemistry71:207–209.

25 Hayashi,T.,Takahashi,Y.,Torodriki,S.(1998).Sterilizationoffoodswithlow-energyelectrons(“soft-electrons”). RadiationPhysicsandChemistry52:73–76.

26 Hayashi,T.(1991)Comparativeeffectivenessofgammaraysandelectronbeamsinfoodirradiation. InFoodirradiation.ed.byThorne,S.pp.167-216.ElsevierSciencePublisher,Inc.,London

Hayashi,T.,Takahashi,Y.,&Todoriki,S.(1997).Low-energyelectroneffectsonthesterilityandviscosityofgrains JournalofFoodScience62:858–860.

Hayashi,T.(1998).Decontaminationofdryfoodingredientswith“soft-electrons”(low-energyelectrons). JapanAgriculturalResearchQuarterly32:293-299.

Todoriki,S.,Kikuchi,O.K.,Nakaoka,M.,Miike,M.,&Hayashi,T.(2002)Softelectron(lowenergyelectron) processingoffoodsformicrobialcontrol.RadiationPhysicsandChemistry63:349–351

27 Kikuchi,O.K.,Todoriki,S.,Saito,M.,&Hayashi,T.(2003).EfficacyofSoft-electron(Low-energyElectronBeam) forSoybeanDecontaminationinComparisonwithGamma-rays.JournalofFoodScience68:649–652

Page 12: hite paper - Bühler Group

Bühler UK Limited

20AtlantisAvenue LondonE162BFUnitedKingdom

[email protected] www.buhlergroup.com

LaatuWhitepaperen0319Z&B191014

Authors:

HeidiKotilainenNicolasMeneses TraceyIbbotsonBeatriceConde-Petit April 2019