Top Banner
School of Civil Engineering FACULTY OF ENGINEERING Ground=source Heat Pump Applications CIBSE Yorkshire March 16 th 2016 Simon Rees [email protected]
76

Ground Source Heatpump Applications

Feb 12, 2017

Download

Engineering

Simon Owen FIRP
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Ground Source Heatpump Applications

School&of&Civil&EngineeringFACULTY&OF&ENGINEERING

School&of&Civil&EngineeringFACULTY&OF&ENGINEERING

Ground=source&Heat&Pump&Applications

CIBSE&YorkshireMarch&16th 2016

Simon&Rees

[email protected]

Page 2: Ground Source Heatpump Applications

Outline

• Heat*pump*principles

• Historical*developments

• Domestic*field*trials

• Non6domestic*Systems*6

• Ground*heat*exchange

• System*Integration

• Measured*Performance

• GSHP*Research

Rees,%S.%and%R.%Curtis%(2014)%National%Deployment%of%Domestic%Geothermal%Heat%Pump%

Technology:%Observations%on%the%UK%Experience%1995–2013.%Energies.%7(8):% 5460T5499Free%online%at:%http://www.mdpi.com/1996T1073/7/9/6224

Page 3: Ground Source Heatpump Applications

Heat&Pump&Principles

• Based&on&a&vapour=compression&refrigeration&cycle

• Heat&is&‘pumped’ by&a&compressor:&more&heat&out&than&electrical&power&in.

• Coefficient&of&Performance&defines&thermodynamic&efficiency

• The&smaller&the&temperature&difference&Inside=to=outside,&the&greater&the&efficiency.

Compressor

Heat Rejected ( to the heat sink at high

temperature ( )TH

QH)

Compressor Electrical Power ( )P

Heat extracted ( the heat source at low

temperature (T )

QC) from

C

Page 4: Ground Source Heatpump Applications

Heat&Pump&Characteristics

Staffell,%I%(2009).%A)review)of)domestic)heat)pump)coefficient)of)performance,%2009.%

Page 5: Ground Source Heatpump Applications

Heat&Sources:&Air&or&Ground?

The&ground’s&high&thermal&mass&means&it&has&a&temperature&that&is&more&favourable&for&heat&exchange&than&the&air.

!10

!5

0

5

10

15

20

25

Tempe

rature)(°C))

Time)()mm)yy))

Daily+Mean+Ground+Loop+Average+Fluid+Temperature Daily+Mean+Air+Temperature Initial+Ground+Temperature+ (+12.3+°C+)

Page 6: Ground Source Heatpump Applications

Ground&Temperatures

CIBSE&TM51&

(Busby&et&al.&2009)

����

����

����

���

���

���

���

���

�� �� ��� ��� ��� ��� ��� ���

��������

����������������

������������������������������

Page 7: Ground Source Heatpump Applications

Approaches&to&Ground=coupling

The&coupling&with&the&ground&can&be&through&

closed=loop&systems&with:

• Vertical&borehole&heat&exchangers&(100=150m&typical&in&UK)

• Single&U=tube

• Double&U=tube

• Co=axial

• Horizontal&loops&with&straight&pipe

• ’Slinky’&horizontal&loops

Water&sources&can&be&used&through:

• Extraction&from&wells,&rivers,&lakes&(open&loop)

• Closed&loops&submerged&in&lakes

Seasonal&storage&can&be&achieved&using&large&groups&of&boreholes&(BTES)&or&pairs&of&wells&in&aquifers&(ATES).

SingleU-tube

DoubleU-tube

Co-axial

E

C

Page 8: Ground Source Heatpump Applications

Horizontal&Slinky&Heat&Exchangers

Source:&GeoScience&Ltd

Source:&Carbon&Trust

Page 9: Ground Source Heatpump Applications

Heat&Exchanger&Technology

Vertical&Boreholes:&Drill,&Insert,&Grout.

Page 10: Ground Source Heatpump Applications

Energy&Piles&and&Walls

REHAU Soga*and*Rui (2016)*Energy*Geostructures

Page 11: Ground Source Heatpump Applications

Seasonal&Performance

• Coefficient*of*Performance*(COP)*is*a*steady6state*parameter*at*particular*operating*conditions*(catalogue*values).

• Seasonal*Performance*Factor*(SPF)*is*based*on*seasonal*energy* inputs*and*outputs.*This*is*of*more*interest* in*evaluating*real*performance

• SPF*is*the*ratio*of*total*useful*thermal*energy*to*system*electrical*energy*consumed.

• In*reality*systems*are*complex*and*SPF*can*be*calculated*different*ways*depending*on*what*electrical*demands*are*included.

• Heating*and*cooling*can*be*separated:*SPFH,*SPFC

Page 12: Ground Source Heatpump Applications

SPF&Defined

• SPF1 is*heat*pump*product*alone

• SPF2 includes*the*ground*loop*pump

• SPF3 includes*supplementary* heater

• SPF4 includes*the*heating*circulating*pump

Page 13: Ground Source Heatpump Applications

SPF&Target&Values

• Acceptable*values*vary*depending*on*the*comparison*being*made:*site*energy,*primary*energy,*carbon*saving,*running*cost,*renewable*contribution…

• A*modern*domestic*gas*boiler*system*has*SPF4 about*0.85.

• For*carbon*benefits*in*the*UK,*HP*SPF4 needs*to*be*>*2.21

• For*cost*savings*(DECC*2014*values)*SPF4 needs*to*be:

• >*2.49*relative* to*gas

• >*1.9*relative* to*LPG

• >*1.65*relative* to*oil

• For*the*purposes*of*the*RES*Directive*SPF2 >=*2.5*to*be*classed*as*renewable*(saving*primary*energy).

Page 14: Ground Source Heatpump Applications

Historical&Developments

Page 15: Ground Source Heatpump Applications

Early&Heat&Pump&Pioneers

• Originally&proposed&by&Lord&Thompson&Kelvin&“On&the&Economy&of&the&Heating&or&Cooling&of&

Buildings&by&Means&of&Currents&of&Air.”&Proceedings+of+the+Physical+Society+of+Glasgow 3:&269–72.

• Further&comments&in&a&book&‘The&Steam&Engine&

and&other&Heat&Engines’&(1910)&by&James&Alfred&Ewing:&“Burning+fuel+to+warm+a+room+by+a+few+degrees+is+a+wasteful+way+to+utilise+heat”.

• First&GSHP&patent&by&Swiss&engineer,&Heinrich&

Zoelly in&1912.

Page 16: Ground Source Heatpump Applications

Early&Heat&Pump&Pioneers

Haldane,&T.G.N.&1930.&“The&Heat&Pump===an&Economical&Method&of&Producing&

Low=Grade&Heat&from&Electricity.”&Journal+of+the+Institution+of+Electrical+Engineers68&(402):&666–75.

Results&from&his&Glasgow&home:&

1926=1928&season

Haldane’s&proposal&for&a&River=source&

heat&pump&and&radiant&panel&system

Page 17: Ground Source Heatpump Applications

Early&work&in&the&USA

Crandall,&A.C.&1946.&“House&Heating&with&Earth&Heat&Pump.”&Electrical+World 19&(November&9):&94–95.

‘Earth&coils’&were&metal&pipes&to&directly&evaporate&

the&refrigerant&(DX)

Page 18: Ground Source Heatpump Applications

The&origins&of&GSHP:&USA

Coogan,%C.%H.%1948.%The)residential)heat)pump)in)New)England.%Waterbury,%CT,%USA:%Connecticut%Light%and%Power%Co.

Page 19: Ground Source Heatpump Applications

A&Divergence&of&Opinions…

The%heat%pump%holds%promise%of%permitting%the%industry%to%supply%domesticT

heating%service%in%an%economical%manner.%Up%until%now%the%electric%utility%

industry%has%supplied%very%little%of%this%market%and%we%think%that%without%the%

heat%pump%we%are%not%likely%ever%to%supply%very%much%of%it.

Andrews,%S.%W.%1948.%The%Heat%Pump%From%the%Utility’s%Point%of%View.%Transactions)of)the)American)Institute)of)Electrical)Engineers,%67(1),%562–564.%

undesirable%electrical%features%such%as%highTstarting%current,%lowTpower%

factor,%and%high%demand,%which,%otherwise,%would%have%adverse%economic%

effects%upon%the%electric%supply%system%and%thus%result%in%economic%

handicaps%in%the%utilization%of%the%electrical%service%by%this%device.%

Bary,%C.%1948.%The%Heat%pump%– Its%Significance%As%a%Potential%Residential%Load.%Electrical)Engineering,%p.%340T344.%

Page 20: Ground Source Heatpump Applications

The&origins&of&GSHP:&UK

Proceedings)of)the)IEE)Part)A:)Power)Engineering,%1956,%104(15),%262–271.%

Page 21: Ground Source Heatpump Applications

Origins&of&the&GSHP:&UK

Comment% from%J.%Sumner%(1957)%in%response%to%Miriam%Griffith’s%

presentation:

It%has%been%said%that%nowadays%we%cannot%afford%the%capital%

required%to%build%heat%pumps.%I%understand%that% the%National%

Coal%Board%is%proposing%to%spend%£1000%million%in%the%next%ten%

years%in%order%to%increase%the%output%of%coal%by%10%million%tons%a%

year.%I%think%it%could%be%demonstrated% that,%if%the%N.C.B.%were%to%

allocate%even%£1%million%of%this%to%building%heat%pumps,%they%

could%conserve%more%coal%than%if%it%were%spent%on%new%plant.%

Page 22: Ground Source Heatpump Applications

After&the&1950s&…

In&the&UK:

• Miriam&Griffith&and&BEAIRA&did&no&further&work

• John&Sumner&was&a&lone&campaigner&for&HP&technology

• Natural&Gas&was&a&clear&winner

• Some&EA&Technology&work&on&ASHP&in&70/80s

• No&GSHP&interest&until&mid&1990s

In&the&rest&of&the&world:

• The&immediate&post&war&US&oil&shortage&eased&– little&further&interest&in&50/60s

• Domestic&air&conditioning&demand&in&the&USA&grew&hugely

• The&1973&oil&crisis&saw&a&big&spurt&in&GSHP&research&– National&Labs,&Universities,&Utilities&and&IGSHPA.&Similarly& in&Europe&(Sweden&and&Switzerland)&but&not&UK.

• Plastic&pipe&meant&corrosion&and&DX&could&be&avoided.&Better&compressors&by&the&80s

Page 23: Ground Source Heatpump Applications

Current&Worldwide&Deployment

1400000

981667

476842

314502

144069

141833

122250

94288

85307

51638

45986

31038

22750

19908

13200

8875

6996

5500

4272

3201

3020

2839

2828

2597

1250

1144

106

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000USA

China

Sweden

Germany

France

Switzerland

Canada

Austria

Finland

Denmark

Netherlands

Poland

UK

CzechGRep.

Italy

Estonia

Belgium

Slovenia

Bulgaria

Ireland

Portugal

Slovakia

Lithuania

Hungary

Romania

Spain

Luxembourg

Installatio

ns

Page 24: Ground Source Heatpump Applications

Current&Worldwide&Deployment

5028

5

1755

4

1579

4

1121

4

9253

6697

4390

3915

3874

2749

2676

2207

1895

942

805

723

698

631

583

525

358

286

261

222

202

62 24

0

10000

20000

30000

40000

50000

60000Sw

eden

Switzerland

Finland

Austria

Denmark

Estonia

USA

Germany

Canada

Netherland

s

Slovenia

France

CzechGRep.

Lithuania

Poland

China

Ireland

Belgium

Bulgaria

Slovakia UK

Portugal

Hun

gary

Italy

Luxembo

urg

Romania

Spain

Installaions)per)million)captia

Page 25: Ground Source Heatpump Applications

Large&Systems&in&the&UK

Churchill&Hospital,&Oxford

240&x&100m&borehole

8&x&500kW&heat&pumps

Page 26: Ground Source Heatpump Applications

Domestic&Systems&in&the&UK

Page 27: Ground Source Heatpump Applications

UK&Developments&(later&1990s)

Initial&installations:&one=off&‘low&energy’ houses&and&refurbs

Source:&GeoScience Ltd

Page 28: Ground Source Heatpump Applications

Along&came&ECC&and&Clear&Skies&…

Source:&GeoScience Ltd

Page 29: Ground Source Heatpump Applications

UK&Support&Programmes

Grant&programmes

• Clear&Skies&(£10m,&8.2%&for&GSHP)

• Low&carbon&building&Programme&(£139m)

• Renewable&Heat&Premium&Payments&(RHPP)

Supplier&Obligation&programmes

• Energy&Conservation&Commitments:&ECC1,&ECC2&(£500m)

• Carbon&Emissions&Reduction&Target:&CERT&(£1.2bn)

• Energy&Company&Obligation:&ECO&(£1.3bn&– now&cut)&

Current&programmes:&RHI&and&Green&Deal&.&ECO&does&not&support&renewables

Page 30: Ground Source Heatpump Applications

UK&Support&Programme&Outcomes&to&2014

0

5000

10000

15000

20000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Cumlative*GS

HP*In

stallations

Year

Other0funding

RHPP

EEC1,0EEC2,0CERT

Clear0Skies0&0LCBP

Page 31: Ground Source Heatpump Applications

National&Trials&and&Monitoring

• EST&National&Field&Trial&– Phase&1&(54&GSHP&sites)

• Monitored&‘system&efficiency’

• User&research&by&the&Open&University

• DECC&technical&investigation

• EST&National&Field&Trial&– Phase&2.&After&a&range&of&interventions

• RHPP&– more&detailed&monitoring&but&without&manufacturers.&User&data&from&online&questionnaires.&Initial&results&published&in&2014.

• Related&domestic&fields&trials:&

Stafford,%A.,%&%Lilley,%D.%(2012).%Predicting%in%situ%heat%pump%performance:%An%

investigation% into%a%single%groundTsource%heat%pump%system%in%the%context%of%10%

similar%systems.%Energy)and)Buildings,%49,%536–541.%

Page 32: Ground Source Heatpump Applications

Field&Trial&Results&– Phase&1

Page 33: Ground Source Heatpump Applications

Field&Trial&Results&– Phase&1&Findings

A&number&of&systems&with&Efficiencies&>&3&but&some&very&poor&performing&systems

Main&technical&findings:

1. under=sizing&of&the&heat&pumpq

2. under=sizing&of&the&ground&heat&exchangerq

3. poor&insulation&standards&(pipes&and&tanks)q

4. flow&temperature&unnecessarily&highq

5. excessive&pump&usage&(time&control&or&number&of&pumps)q

6. poor&control.

Non=technical& findings&from&user&surveys:

• 86%&satisfied&with&heating&performanceq

• only&63%&satisfied&with&level&of&supportq

• only&62%&satisfied&with&cost&savingsq

• controls&not&easy&to&understand&and&use.

Issues&for&the&industry:&changes&to&Micro=generation&Certification&Scheme&standards&(MIS),&better&training,&better&user&support&and&information.

Page 34: Ground Source Heatpump Applications

Field&Trial&Results&– Phase&2

Page 35: Ground Source Heatpump Applications

Field&Trial&Results&– RHPP&2013

• Mean&SPF4 is&2.92,&System&efficiency&2.74&(from&2.39)

• 84%&of&systems&would&be&classed&as&renewable

• 85%&would&show&carbon&savings&relative&to&gas&heating

• 64%&would&show&cost&savings&relative&to&gas.&Nearly&all&RHPP&participants&

saved&money&as&initial&fuel&was&not&gas

Page 36: Ground Source Heatpump Applications

Further&Technical&Challenges

• Performance&levels&are&improving&but&still&not&as&high&as&other&EU&trial&results

• Some&systems&are&still&‘failures’

• User&survey&highlights&some&control&issues

• UK&Specific&issues:&small&houses,&high&thermal&mass,&high&heating&temperatures?

Page 37: Ground Source Heatpump Applications

Non=Domestic&Systems:&Ground&heat&exchange

Page 38: Ground Source Heatpump Applications

Ground&heat&exchange

The*design*question:*for*a*given*set*of*heating*and*cooling*demands,*how*many*and*how*deep*do*the*boreholes*need*to*be?

Key*design*points:

1. System*efficiency*depends*on*fluid*temperatures* and*so*we*want*these* to*be*close*to*the*‘undisturbed’*or*background*ground*temperature.

2. The*relationship*between* fluid*temperatures* and*the*ground*temperature*depends,* in*general,*on

• Ground* thermal*conductivity

• Borehole*thermal*resistance.

3. Long*term*(seasonal)* temperatures* depend*on*long*term*energy*exchange:*

• design*is*based*on*annual*energy*demands*– not*just*peak*loads.

• consider*several*years*of*operation* to*find*the*min/max*fluid* temperature*range.

4. In*design*methods*(software)*we*define*the*temperature* limits*we*want*to*work*with*(targets).*These*can*be*based*on:*

• Heat*pump*min/max*operating* temperatures

• Values*that*are*going* to*give*the*SPF*we*are*looking* for

Page 39: Ground Source Heatpump Applications

Borehole*resistance*and*ground*conductivity

• First,*think*about*rejecting*a*given*amount*of*heat*per*meter*of*borehole.

• Local*temperature*gradient*depends*on*the*thermal*resistance*of*the*components*in*the*borehole*and*the*thermal*conductivity*of*the*ground

• High*thermal*resistance*means*fluid*temperatures* have*to*be*higher*to*reject*a*given*amount*of*heat.

Page 40: Ground Source Heatpump Applications

Borehole*resistance*and*ground*conductivity

• Borehole* resistance*depends*on

• Configuration*– single,*double*or*co6ax

• Pipe*size*and*spacing

• Grout*properties*– thermally*enhanced*grouts*are*often*used

• Borehole*diameter*– typically*1206150mm.

• Fluid*resistance*– flow*rate*and*fluid*properties*(Reynolds*number).

!"∗ =%& − %"("

0.000.020.040.060.080.100.120.140.16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

R g[(m

$K)/W]

λg [W/(m$K)]

Zeroth0order2Multipole

10th0order2Multipole

Bauer2et2al.2(2011)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

R a[(m

$K)/W]

λg [W/(m$K)]

Zeroth.order0Multipole

1st.order0Multipole

10th.order0Multipole

Javed and%Spitler (2016)

Page 41: Ground Source Heatpump Applications

System&hydraulic&design

• Propylene&or&Ethylene&glycol&based&mixtures&are&the&common&heat&transfer&fluids&for&geothermal&systems

• Viscosity&is&noticeably&higher&than&water&and&varies&with&temperature&

significantly

• Reynolds&numbers&can&be&low&and&heat&transfer&drop=off&without&care.

• Some&optimization&is&required:

• High&flow&rate&gives&better&heat&

transfer

• Higher&flow&rate&gives&higher&pressure&drop&and&pump&energy&demand

• Pump&demand&no&more&than&3%&of&

heat&delivered&is&required&for&compliant&domestic&systems

Page 42: Ground Source Heatpump Applications

Long6term*borehole*field*response

• Long*term*temperature* trends*are*important*and*depend*on*annual*heating*and*cooling*energy*balances

• Whether*the*long*term*trend*is*rising*or*falling*temperatures* depends*on*whether*heating*or*cooling*is*dominant

• Borehole*depth*is*selected*on*the*basis*of*the*long6term*trend

• Balanced*demands*lead*to*the*most*economical*solutions*– shortest*boreholes.

• Max*and*min*temperatures* depend*on*a*combination*of*demands*and*peak*loads

• Simulation*results*are*needed* to*estimate*the*costs*accurately

15

17

19

21

23

25

27

29

31

33

35

37

0 1460 2920 4380 5840 7300

Temperature3[°C]

Simulation3Days3

163bh 323bh 1203bh

!70!55!40!25!1052035506580

0 730 1460 2190 2920 3650 4380 5110 5840 6570 7300 8030 8760

Time0(hours)

Building0Loads0(kW)

Page 43: Ground Source Heatpump Applications

Borehole&field&configuration

• After&a&few&seasons,&boreholes&interact&– temperature&changes&at&one&influence&those&at&neighboring&boreholes.

• This&effect&is&well&understood&and&can&be&modelled.

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20

ΔT)(°C

)

Distance)(m)

DT DT)1 DT)2

Page 44: Ground Source Heatpump Applications

Borehole&field&configuration

• Different&configurations&(rows&and&columns&of&boreholes)&respond&differently&e.g.&2&x&6&

is&not&the&same&as&3&x&4&etc.&

• Response&characteristic&also&depends&on&spacing/depth&

ratio.

• Response&can&be&characterized&by&‘g=function’&

data.&This&relates&temperature&change&to&heat&input. 0

24681012141618202224262830323436384042

(5 (4.5 (4 (3.5 (3 (2.5 (2 (1.5 (1 (0.5 0 0.5 1 1.5 2 2.5 3 3.5

ln(t/ts)

g(t/ts,rb/H=0.0005)

Page 45: Ground Source Heatpump Applications

Borehole&Array&Design

Simulationof+GHE

Adjust+size

User+input:GSHP+Loads+&+(optionally)GHE+Loads

User+inputs:+Ground+properties

BH+info.HP+characteristics

HP+Simulation

Spitler and%Bernier%(2016).%Vertical%Borehole%Heat%Exchanger%Design%Methods

Ground&heat&exchanger&design&software&helps&with&the&iterative&process&needed&to&find&the&design&heat&exchanger&size

Page 46: Ground Source Heatpump Applications

Essential&Design&Data

To&summarize:&the&design&data&needed&is:

1. Local&undisturbed&ground&temperature

2. Ground&thermal&conductivity&and&diffusivity

3. Building&heating/cooling&rejection&demands&(monthly)

4. Monthly&peak&heating&and&cooling&loads

5. Borehole&resistance&– pipe&size,&spacing,&grout&properties,&

borehole&diameter

6. Target&temperature&range&for&the&system&– avoiding&

freezing&and&high&pressure&limit,&or&targets&for&SPF.

Page 47: Ground Source Heatpump Applications

Ground&Thermal&Response&Testing

Ground&thermal&conductivity&is&a&key&parameter&– how&do&we&estimate&it?

• Reference&book&valuesq

• British&Geological&Survey&desktop&study

• In=situ&Thermal&Response&Testing&(TRT)&f

Page 48: Ground Source Heatpump Applications

In&Situ&Thermal&Response&Testing

1. A&single&test&borehole&is&completed

2. A&closed&circuit&is&formed&and&electrical&heaters&used&to&

apply&a&pulse&of&heat&over&48+&hours.

3. Flow,&power&and&temperature&data&are&collected&and&

analyzed.

Page 49: Ground Source Heatpump Applications

Typical&TRT&Responses

The&key&data&needed&for&

analysis&is&the&average&fluid&

temperature&and&power&input

Data& source:& IGSPHA

Data& source:& Groenholland

Page 50: Ground Source Heatpump Applications

Research&Equipment

Photos:&J.D.&Spitler

Electric&heaters&

(3&x&3kW)

Flow&

meterFlow/return&temp.&

sensors

Pumps&and&purge&valves

Page 51: Ground Source Heatpump Applications

Compact&Site&Equipment

A.&ChaissonGroenholland Geo&Energy&Systems

Page 52: Ground Source Heatpump Applications

TRT&Analysis

1. Plot&temperature&vs natural&log&of&time2. Find&the&slope&– ignoring&some&early&data

3. Use&the&slope&to&derive&the&effective&conductivity

! = #4%&'!

Where&s is&the&slope&of&the&temperature&vs natural&log&time&plot

Page 53: Ground Source Heatpump Applications

Non=Domestic&Systems:&System&Integration

Page 54: Ground Source Heatpump Applications

System&Integration

Operating&temperatures

• Chilled&water&temperatures&can&be&in&the&usual&range&– hence&able&to&serve&AHUs,&Fan&Coils&etc.

• Heating&temperatures&can&be&up&to&55&but&better&at&40/45.&Hence&well&suited&to&underfloor&heating/&oversized&radiators,&fan&coils.

Central&Plant&Integration&– 3&basic&approaches

1. Reversible&heat&pumps&with&sliding&headers.

2. Reversible&heat&pumps&with&Independent&header&connections.

3. Reversing&on&the&water=side&and&heat&exchange&between&buffer&tanks.

Page 55: Ground Source Heatpump Applications

Sliding&header&configuration

CIBSE&TM51

• Header&is&split&between&heating&and&cooling&depending&on&valve&position&

and&demand

• Heat&pumps&are&controlled&in&sequence&according&to&

heating/cooling&demand&by&BMS.

• Heat&pumps&can’t&be&

independently&switched&between&heating&and&cooling.

Page 56: Ground Source Heatpump Applications

Independent&Header&Connections

Naicker and&Rees&(2011)

Page 57: Ground Source Heatpump Applications

Plantroom installation

Header&pipes&and&valves

Page 58: Ground Source Heatpump Applications

Water=side&reversing&and&buffer&tanks

Groenholland Geo&Energy&Systems

Page 59: Ground Source Heatpump Applications

Plantroom Installation&(Skids)

Groenholland Geo&

Energy&Systems

Page 60: Ground Source Heatpump Applications

Non=Domestic&Systems:&Measured&Peformance

Page 61: Ground Source Heatpump Applications

• A*multi6use*building*(15,607*m2)

• Monitored*since*opening*in*Jan.*2010

• GSHP*system*provides*all*AHU*and*FCU*cooling*(360*kW*peak)*and*all*underfloor heating*(330*kW*peak*capacity)***

• Has**Four*Water*Furnace*26stage*reversible*heat*pumps

• 56*x*100m*deep*borehole*heat*exchangers,*125mm*diameter.*30*l/s*peak*flow

Monitoring*at*De*Montfort*University*Hugh*Aston*Building

Naiker,%S.S.%(2016)%Performance%Analysis%of%a%LargeTscale%Ground%Source%

Heat%Pump%System.%PhD%Thesis:%De%Montfort%University.

Page 62: Ground Source Heatpump Applications

Hugh&Aston&Building&Ground&Heat&Exchangers

19&+&37&arrays,&100m&deep

Page 63: Ground Source Heatpump Applications

Heat&Pump&Installation

Header&pumps

Ground&loop&pumps

Header&pipes&and&valves

Page 64: Ground Source Heatpump Applications

Monthly&Heat&Balances

0

2

4

6

8

10

12

14

16

18

20

'0.6

'0.4

'0.2

0

0.2

0.4

0.6

0.8

1

Tempe

rature)(°C))

Heat)Ex

chan

ge)(M

Wh)

Time)(mmm)8 yy)

Monthly0daily0Mean0Heat0Extraction(MWh) Monthly0daily0Mean0Heat0Rejection(MWh) Monthly0daily0Mean0Net0Heat0Exchange0(0MWh)

Monthly0daily0Mean0Ground0Loop0Temp.0(°C0) Monthly0daily0Mean0Air0Temp.0(°C0)

Page 65: Ground Source Heatpump Applications

System&Efficiencies

2.89

3.99

3.31

2.69

2.22

3.55

3.87

3.67

3.16

2.61

3.19

4.06

3.54

2.97

2.49

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

SPF//H1 SPF/C1 SPF/1 SPF/2 SPF/4

SPF

May/52010/to/April/52011 May/52011/to/April/52012 Feb/52010/to/July/52012

Year%(%Season) SPF%%H1 SPF%C1 SPF%1 SPF%2 SPF%4May%52010%to%April%52011 2.89 3.99 3.31 2.69 2.22May%52011%to%April%52012 3.55 3.87 3.67 3.16 2.61Feb%52010%to%July%52012 3.19 4.06 3.54 2.97 2.49

Seasonal&performance&Factors:

• SPF1&is&heat&pump&alone

• SPF2&includes&the&ground&loop&pump&demand

• SPF&4&includes&the&heating/cooling&header&pumps

RES&Directive&requires&SPFH2&>&2.5

Page 66: Ground Source Heatpump Applications

Dynamic&Operation

Only&one&compressor&stage&is&needed&for&much&of&the&time.&On/off&control&leads&to&short&cycle&times.

0

5

10

15

20

25

30

35

%"of""Occurrence

Hourly"kWh

Heating Cooling

0

5

10

15

20

25

30

%"of"O

ccurrence

Daily"kWhrHeating Cooling

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

18

Flow%(l/s)

Temp

eratur

e%(°C)

Time%(Date%Hour)

Source0side0outlet0Temperature0(°C) Source0side0intlet0Temperature0(°C) Source0side0Flow0rate0(l/s)

Page 67: Ground Source Heatpump Applications

Dynamic&Operation

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

Daily&&SPF

H1

Daily&Heating&Demand&(kWh)

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200

Daily&&SPF

C1

Daily&Cooling&Demand&(kWh)

0

10

20

30

40

50

60

0(1 1(2 2(3 3(4 4(5 5(6 6(7 >7

%""of"O

ccurrence

Hourly"SPFH1

Cycle0Time0(0(100min/cycle) Cycle0Time0(11(200min/cycle) Cycle0Time0(21(300min/cycle)Cycle0Time0(31(400min/cycle) Cycle0Time0(41(500min/cycle) Cycle0Time0(51(600min/cycle)

0

5

10

15

20

25

30

35

40

45

0'1 1'2 2'3 3'4 4'5 5'6 6'7 >7

%"of"O

ccurrence

Hourly"SPFC1Cycle0Time0(0'100min/cycle) Cycle0Time0(11'200min/cycle) Cycle0Time0(21'300min/cycle)Cycle0Time0(31'400min/cycle) Cycle0Time0(41'500min/cycle) Cycle0Time0(51'600min/cycle)

Page 68: Ground Source Heatpump Applications

Circulating&Pump&Operation

Pump&sizes&are&large&relative&to&compressor&sizes

Pumps&also&operate&unnecessarily&– valve,&flow&switch&

and&control&faults

0

10

20

30

40

50

60

70

80

90

100

Ope

ratio

nal+Hou

rs++/%

Time+(+mmm/yy)

Compressor2Operational2Hours2;%22(Both2Cooling2and2Heating2)2 Useful2Heating2and2Cooling2Energy2Delivered2Across2Manifold2; Hours2%

Heating2or2Cooling2Loop2Circulating2Pump2Operational2Hours22; % Ground2Loop2Circulating2Pump2Operational2Hours2; %

Page 69: Ground Source Heatpump Applications

Circulating&Pump&Energy&Demands

Pump&demands&have&a&big&effect&on&SPF2 and&SPF4

Monthly&Pump&to&Compressor&Power&Ratio&Vs Monthly&SPF2,&SPF4

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8Mon

thly(SP

F 4

Power(Ratio(((Wp(SPF4)(/Wc)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4

Mon

thly(SP

F 2

Power(Ratio(((Wp(SPF2)(/Wc)

Page 70: Ground Source Heatpump Applications

Improving&Performance

Overall,&performance&is&satisfactory.&

Cycle&times&would&be&improved&by

• Smaller&lead&machine

• Variable&compressor&speed

• Buffer&tanks

Lift&could&be&reduced&by&heating&temperature&

tuning/reduction

Pump&energy&demands&could&be&reduced&by:

• Better&hydraulic&design

• More&robust&control&(fault&detection/correction)

• Reduced&start=up/shut=down&running

• Ground&loop&demand&control

Page 71: Ground Source Heatpump Applications

Geothermal&Heat&Pump&System&Research

Page 72: Ground Source Heatpump Applications

The&EU&Horizon&2020&Programme

Aim:&reduced&complexity,&improved&robustness&and&efficiency

Key&Technologies:

• Innovative&drilling&technology

• High&efficiency&heat&exchanger

• Dual=source&heat&pump

• Robust&control&systems&and&

monitoring

• Foundation&heat&exchange&systems

Geothermal&Technology&for&Economic&Cooling&and&Heating

Page 73: Ground Source Heatpump Applications

� Innostock�2012� ���The�12th�International�Conference�on�Energy�Storage�

� 1

INNO-U-32

The GEOTHEX geothermal heat exchanger, characterisation of a novel high efficiency heat exchanger design

Henk Witte

Groenholland Geo-Energysystems, Valschermkade 26, 1059CD Amsterdam, Netherlands,

Phone: 31-20-6159050, e-mail: [email protected]

1. Introduction

The Geothex heat exchanger (http://www.geothex.nl/en/), figure 1, has been developed to provide a highly efficient ground source heat exchanger for use with geothermal heat pumps. The goal has been to develop a high-quality heat exchanger with a very low thermal resistance, even at laminar flow conditions and, at the same time, achieve this with a low pressure loss.

Geothermal heat pumps are widely recognized as very efficient systems for heating and cooling applications that combine a high potential for saving on primary energy and greenhouse gas emissions with a very long life span and low maintenance. Different ways to interface the heat pump with the ground are in use, but by far the largest number of systems use a closed loop heat exchanger placed vertically to depths varying between perhaps 30 and 400 meters. In these so-called "Borehole Heat Exchangers" (BHE) heat is exchanged between the primary side (the fluid flowing through the loop and heat pump) and secondary side (the ground volume) due to a temperature difference.

Figure 1. Impression of the Geothex heat exchanger showing the insulated inner pipe and helical vanes (source: Geothex BV). Shown is the functioning in heat extraction mode with flow through the inner tube or flow through the

annulus.

As with any heat exchanger, there is a relation between the amount of heat transferred (q), the thermal resistance of the heat exchanger (R) and the temperature difference ('T) between the primary and secondary side:

q = 'T/R

This implies that, for a given constant heat flux rate, the higher the thermal resistance of the heat exchanger, the larger the required temperature difference between the fluid and the ground. Now, the efficiency of the heat pump depends mainly on the difference between the source (cold) and sink (hot) temperatures. In fact, it can be shown that for every degree of temperature

The&EU&Horizon&2020&Programme

Page 74: Ground Source Heatpump Applications

The&EU&Horizon&2020&Programme

• A&hybrid&dual=source&approach:&air&and&ground&heat&exchanger&for&optimal&choice&of&source/sink&temperature

• Variable&speed,&DC&permanent&magnet&motor,&scroll&compressor,&refrigerant&R32.

• Hybrid&design&and&smart&controls&make&the&implementation&robust

• Reduced&complexity&to&improve&uptake&(consumers,&developers&and&SMEs).

New&Heat&Pump&Development&in&the&GEOTeCH project&=

Page 75: Ground Source Heatpump Applications

Sources&of&information

http://geotrainet.eu

http://www.gshp.org.uk

http://www.igshpa.okstate.edu

http://www.egec.org

CIBSE&TM45,&TM51&and&CP2&– via&knowledge&portal

Useful&web&sites:

UK

EU

US

Page 76: Ground Source Heatpump Applications

Thank&you&for&listening

[email protected]