Top Banner
s Operating Instructions Synchronous generator
452
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Generator Manual

s

Operating Instructions

Synchronous generator

Page 2: Generator Manual

s

Operating manual: Edition: Project code: Fenirol Type: 1DT 4138-8ADO2-Z

Contract-No.: 1219294 Works Order No.: 178553 Documentation List:

Register No. Document

1. Technical data Text of dimension drawing TK.930276-1219294

Electrical data Page 5

2. Drawings Generator description TK.930276-1219294

Dimensions drawing (07 2070 0023)

Instrument wiring diagram 577287 A

577291

Shaft calculation drawing 2 132 z294w/A

Rotor withdrawal 592481

Generator foundation 573436A

3. Reports Quality inspection certificate

4. Instructions and Additional documents a) Synchronous generator

b) Logbook

c) Brushless exciter

d) Anti-condensation heating

e) Air-to-Water Cooler

f) Cooler-Coiltech, Operation and Maintenance instruction

g) Cooling data

h) Cooler dimension

i) Drawing of DE- Bearing - EFZLK 22k-250H7

j) Drawing of NDE- Bearing - EFZLQ 22k-225H7

k) Drying of Windings

l) Bolt tightening torques

m) Slide Bearing Type EF RH-EFZEI-E-10.00

n) Slide Bearing Type EF RH-EFZWI-E-10.00

o) Lubricants for Slide Bearings Recommendation RH-2005

p) List of recommended spare parts

Page 3: Generator Manual

s

Revision

Page Revised Rev.

Page 4: Generator Manual

s Dimension Drawing Text Type : 1DT 4138-8ADO2-Z W.-No. : 178553 Contract-No. : 1219294 Code : FENIROL Drawing-No. : TK.930276-1219294

Page 5: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 4

CONTENTS

1. Technical data .................................................................................................................................... 5

1.1 Electrical data ............................................................................................................................. 5

1.2 Degree of protection ................................................................................................................... 6

1.3 Weights ....................................................................................................................................... 6

2. Text part - legend............................................................................................................................... 7

3. Operation of cooler ............................................................................................................................ 9

4. Temperature monitoring devices ..................................................................................................... 10

5. Machine monitoring......................................................................................................................... 11

6. Shaft end .......................................................................................................................................... 12

7. Direction of rotation......................................................................................................................... 13

8. Foundation load ............................................................................................................................... 14

9. Rating plate ...................................................................................................................................... 15

10. Outlet box ........................................................................................................................................ 16

11. Sleeve bearing - DE ......................................................................................................................... 17

12. Sleeve bearing - NDE ...................................................................................................................... 18

13. Oil lubrication inlet.......................................................................................................................... 19

14. Axial bearing clearance ................................................................................................................... 20

15. Rotary rectifier - brushless excitation components.......................................................................... 21

16. Anti-condensation heater ................................................................................................................. 22

17. Shaft earthing................................................................................................................................... 23

18. External earthing ball point and earth terminals.............................................................................. 24

19. Thermal expansion........................................................................................................................... 25

20. Displacement ................................................................................................................................... 25

21. Relative vibration sensor PROXPAC 330800 type Bently Nevada .............................................. 26

22. Shaft vibration monitoring system................................................................................................... 27

23. Lifting instruction ............................................................................................................................ 28

24. Service covers .................................................................................................................................. 29

25. Outdrawal space for heat exchanger................................................................................................ 30

26. Protection against corosion.............................................................................................................. 31

Page 6: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 5

1. Technical data

1.1 Electrical data

Rated output SN : 12 500 kVA

Rated voltage UN : 6 600 V

Rated current IN : 1 093 A

Power factor : 0.8

Rated frequency f : 50 Hz

Rated speed nN : 1 500 min-1

Excitation current IFN : 413 A*)

Excitation voltage UFN : 149 V*)

Exciter:

Excitation current IFRG : 9,5 A*)

Excitation voltage UFRG : 62 V*)

Type of construction : IM 1005

Cooling method : IC81W

Ambient temperature : 40 °C

Necessary volume of cooling air : 8,5 m3/s

Losses to dissipate : 272 kW

Thermal class : F

Stator winding temperature rise (res. method) : acc.to Th.-Cl. F

Xd’’ saturated value : 16,5 %*)

Page 7: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 6

1.2 Degree of protection

Machine : IP 54 EN60034-5

Terminal : IP 54 EN60034-5

1.3 Weights

Total weight : 31 000 kg

Rotor complete : 9 150 kg

Cooler top housing : 2 200 kg

Moment of inertia rotor cpl. : 1 007 kg.m2

(Shaft drawing No. 2 132 z573w/A )

*) Calculated values

Dynamic analysis and check of the shafting acc. to VDI-3840 recommended. Transient torques and

shaft calculation data will be supplied on request.

Page 8: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 7

2. Text part - legend Machine parts listed in the following text are supplied by SEM Siemens Electric Machines s.r.o., unless otherwise stated.

1 Cooler housing There is a flexible connection between the Cooler housing and the Stator frame. Their dynamic behaviors are different. Any rigid connection between them is not allowed (for example water piping connected to the Cooler and to the Stator frame)

2 Closed circuit cooler see page 9

Type: QLKE-234-110-3-2-4-23-3-8-X

X= 0,15 mm fins.

Quantity: 2 Cooling data: Register 2

3 DE-bearing EFZLK 22-250 see page 17 Lubricants see recommendation of manufacturer Renk see register 4 Axial bearing clearance see page 20

4 NDE-bearing EFZLQ 22-225 see page 18 Floating bearing. see register 4

5 Outlet box see page 16

6 Anti-condensation-heater see page 22 Terminal diagram see register 2

7 Leakage-water detector see page 11

Type: GEA 11 19 1259 01 Quantity: 2

8 Leakage-monitoring

Type: RM4 LA32 MW Quantity: 1

9 Centre of gravity

10 Covers on servicing openings

11 External earthing ball point see page 24 Quantity: 2

12 Grounding terminal see page 24

13 Aux. terminal box for anti-condensation heater, exciter, thermometers. Terminal diagram see register 2

14 Lifting lugs for lifting complete machine. For lifting a suitable lifting beam must be used. see page 28

Page 9: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 8

15 Exciter see page 21 Type: 1JG3300-8HV06-Z Terminal diagram see register 2

16 Vent plug

17 Water drain plug

18 Bearing temperature sensors. Each bearing has 1 double resistance thermometer 2xPT100

Type DE: 2PT100/B-235X6S-G1/2-3/0-N

NDE: 2PT100/B-250X6S-G1/2-3/0-N Manufacturer Fa. Dosch Terminal diagram see register 2 Location see page 11 PT100s are lead out into aux. terminal box.

19 Foundation load see page 14

20 Cold-air resistant thermometer Type: 2xPT 100

Quantity: 2 Location see page 11 Terminal diagram see register 2

21 Hot-air resistant thermometer Type: 2xPT 100 (100 Ohm at 0°C, DIN IEC 751)

Quantity: 1 Location see page 11 Terminal diagram see register 2

22 Slot resistance thermometer in stator winding Type: PT 100 (100 Ohm at 0°C, DIN IEC 751) Quantity: 9 Setting see page 10 Location see page 11

Terminal diagram see register 2

23 Foundation screws M 56 Quantity: 8

24 Oil lubrication inlet see page 19

25 DE shaft end see page 12

26 Earthing of shaft see page 23

27 Water inlet 2 ½”ANSI B16,5; 150LB

28 Water outlet 2 ½”ANSI B16,5; 150LB

29 Vibration monitoring see page 26,27

Page 10: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 9

3. Operation of cooler Air-water single-tube cooler

Water-cooler data:

Water cooler composed of : 2 Elements

Cooler resistance (water side) : 0,8 bar

Max. operating gauge pressure : 6 bar

Required water flow rate: 1 cooler operation : 22,7 m3 / h

2 coolers operation : 33,7 m3 / h

at a water inlet temperature of : 32 °C

Water outlet temperature : 39 °C

Connection flange for cooling water : 2 ½”ANSI B 16,5; 150LB Core tubes : CuNi10Fe

Cooling fins : Al Tube plates water side : CuZn38SnAl Tube plates air side : CuZn38SnAl Water boxes : CS + Rilsan Side walls : CS galvanized

To obtain noise-damping and vibration isolation it is necessary to use expansion-joints for cooler connection.

In case of one cooler failure, it is necessary to reduce generator power output

to 50% of nominal power.

Page 11: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 10

4. Temperature monitoring devices

Slot resistance thermometer in stator winding Position in Stator core viewed from drive end. Thermometer in slot 3 is located at top of the stator core. Arrangement clockwise

Temperature limits. Max. continuous operating temperature

Sensor Terminal Quantity Type Location

Max. continuous

operating

temperature

Stator winding XT2 9 PT 100 Stator core slots 145°C

Bearings XT3 2 2xPT 100 Bearing shell 95 °C

Cold air XT7 2 2xPT 100 Cooler housing 45°C

Hot air XT7 1 2xPT 100 Cooler housing 78°C

Leakage sensor XT5 2 GEA 11 19 1259 01 Cooler housing -

Guide values for adjustment of tripping temperatures:

1. Switch point (Warning) 5 K above the measured max. operating temperature.

2. Switch point (Cut out) 10 K above the measured max. operating temperature.

No. Thermometer with connection in slot in phase 1 2:1 – 2:3 3 U 2 2:4 – 2:6 15 V 3 2:7 – 2:9 27 W 4 2:10 – 2:12 39 U 5 2:13 – 2:15 51 V 6 2:16 – 2:18 63 W 7 2:19 – 2:21 57 U 8 2:22 – 2:24 69 V 9 2:25 – 2:27 9 W

Page 12: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 11

5. Machine monitoring

Page 13: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 12

6. Shaft end

Type of flange: K-31310-2 MODEL LS3

Page 14: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 13

7. Direction of rotation

Direction of rotation facing drive end.

The generator is only suitable for CLOCKWISE direction of rotation.

Connection of the system phases in the positive sequence to the machine terminals U1 V1 W1.

Page 15: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 14

8. Foundation load

2k Peak torque produced by maximum asymetric short-circuit currents Stosskurzschlussfaktor 8,4

Mn The following applies for the three-phase generator Mn=9,55*Sn/n Für den Drehstromgenerator gilt Sn in [kVA] 79,6 kNm

M(2k) max Peak torque produced by maximum asymetric short-circuit currents Mn*2k Max. Stosskurzschlussmoment 668,64 kNm *

The vibration caused by maximum asymetric short-circuit currents can be calculated from the following equation Die Stosskurzschlussschwingung verläuft nach der Gleichung

ωN Angular frequency of the system [1/s] Netzfrequenz

Tg Time constant of d.c. component Zeitkonstante des Gleichstromgliedes 0,199 s

T(2k) Time constant of initial asymetric short-circuit current Zeitkonstante des Stosskurzschlusswechselstromes 0,365 s

Fmax =±

371,46 kN

G Force produced by the machine weight Gewichtskraft durch das Eigengewicht 304,1 kN

A Foundation load +F+G/2 Fundamentbelastung 523,4 kNm

B Foundation load -F+G/2 Fundamentbelastung -219,3 kNm

*

By neglection of fadeout process. Bei Varnachlässigung des Abklingvorganges.

The foundation is to be calculated and constructed ba the civil-engineering contractor. Transfer of vibration from adjacent machine sets to be prevented by an adequate design of the foundation. Die Berechnung und Ausführung des Fundamentes ist Angelegenheit der ausführenden Baufirma. Eine Schwingungsübertragung vonNachbaraggregaten muss durch entsprechende Fundamentgestal tung vermieden werden.

DYNAMIC LOAD STATIC LOAD

DYNAMISCHE BELASTUNG RUHENDE BELASTUNG

Page 16: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 15

9. Rating plate

Page 17: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 16

10. Outlet box

Cable outlet of each phase is provided by 2 cables SIAF 150, 13,8 kV.

Page 18: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 17

11. Sleeve bearing - DE

Suplier : Renk

Bearing type : EFZLK

Size : 22-250

Oil viscosity grade : ISO VG 46

Power dissipation : 4,1 kW

Flow rate : 14 l/min

Min. oil inlet temperature : -4 °C

Max. allowed oil inlet temperature : 45 °C

Min. pressure in oil supply pipe : 1, 5 Bar

Max. pressure in oil supply pipe : 6 Bar

Oil reservoir capacity : 23 l

Lubrication by oil circulation and with oil ring lubrication.

Bearing is shipped without oil.

Axial clearance see page 20.

Lubricant - see recommendations by bearing manufacturer.

The bearing is insulated. Insulation of the drive end bearing is bridged with stranded copper conductor.

The generator shall only be driven while being bridged.

Lubrication for sleeve bearings

Forced lubrication

Flow rate: 14 l/min

Viscosity of oil(ISO VG) 46

Oil reservoar capacity 23 l

Page 19: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 18

12. Sleeve bearing - NDE

Supplier : Renk

Bearing type : EFZLQ

Size : 22-225

Oil viscosity grade : ISO VG 46

Power dissipation : 3,5 kW

Flow rate : 5 l/min

Min. oil inlet temperature : -4 °C

Max. allowed oil inlet temperature : 45 °C

Min. pressure in oil supply pipe : 1, 5 Bar

Max. pressure in oil supply pipe : 6 Bar

Oil reservoir capacity : 23 l

Lubrication by oil circulation and with oil ring lubrication.

Bearing is shipped without oil.

Lubricant - see recommendations by bearing manufacturer.

The bearing is insulated. Insulation of the NDE bearing may not be bridged.

Lubrication for sleeve bearings

Forced lubrication

Flow rate: 5 l/min

Viscosity of oil(ISO VG) 46

Oil reservoar capacity 23 l

Page 20: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 19

13. Oil lubrication inlet

1. Throttle valve Type: VRFB 90°, Fa. Hydrocom

2. Oil-flow meter Type: DKM/A-1/24 MS G3/4”, Fa. Meister

with minimal flow contact

3. Shut-off valve EMIL01C, Fa. MTC

4. Pressure gauge MGN63R006, Type: 304G, 0-6 Bar

5. Oil inlet Flange class 150 ANSI B16,5-3/4”

6. Hydrostatic inlet Hydrostatic connection G ¼”

7. Oil outlet Flange class 150 ANSI B16,5-2”

Lubricant oil circuit

Terminals from Oil-flow meter switch are lead out into aux. terminal box.

Hydrostatic values DE NDE Starting pressure 8,5 Mpa (85 Bar) Starting pressure 8 Mpa (80 Bar)

Operation pressure 5 Mpa (50 Bar) Operation pressure 4,5 Mpa (45 Bar)

Oil flow 0,8 l/min Oil flow 0,8 l/min

ON/OFF speed limit(cold) 40 rpm ON/OFF speed limit(cold) 40 rpm

ON/OFF speed limit(warm) 90 rpm ON/OFF speed limit(warm) 90 rpm

Page 21: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 20

14. Axial bearing clearance

All measurements are in mm.

Page 22: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 21

15. Rotary rectifier - brushless excitation components

Page 23: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 22

16. Anti-condensation heater

Quantity : 1

Type : DEW 8,5-400-380/1000W/3Y

Voltage : 380 V / 50 Hz

No. of phases : 3

Power rating : ca. 1000 W

Page 24: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 23

17. Shaft earthing

Page 25: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 24

18. External earthing ball point and earth terminals

Type: 754 200 DIN VDE 0683-1, DIN 48088-1 Ø 20 mm

Earthing ball points are placed on the both side of the generator.

Earthing ball point is galvanized – Do not paint!!

Earth protective terminals are placed in diagonal corners of the generator.

Page 26: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 25

19. Thermal expansion

Vertical development ∆ l = 0,34 mm

Horizontal development ∆ h = 0,54 mm

20. Displacement

Vertical displacement sx = 0,064 mm

Horizontal displacement sy = 0,086 mm

Note: Values are calculated for rated operation conditions.

Page 27: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 26

21. Relative vibration sensor PROXPAC 330800 type Bently Nevada

Page 28: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 27

22. Shaft vibration monitoring system Manufacturer : Bently Nevada

Type shaft vibration DE : 330880-16-15-061(154mm)-03(M20)-02

Type shaft vibration NDE : 330880-16-15-066(168mm)-03(M20)-02

Recommended values for the set points:

1. operating data (alarm) (max.80 µ p.t.p.)

2. operating data (trip) (max.110 µ p.t.p.)

The amplitude of oscillation which is measured at normal operation

Operating data: measured value at normal operation

Page 29: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 28

23. Lifting instruction

The lifting capacity of the beam must be min 32 ton s.

Page 30: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 29

24. Service covers Service cover no.1 dismantle in case of maintenance of rectifier or for cold air temperature detector

exchange. Service cover no. 2 dismantle for hot air detector exchange and cover no. 3 for cold air

detector exchange.

Do not use for emergency cooling !

Page 31: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 30

25. Outdrawal space for heat exchanger

Page 32: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 31

26. Protection against corosion

Inside Outside

Total thickness : 30 µm 60 µm

Number of coats : 1 2

Primary coat : 30 µm 30 µm

Colour RAL 3012 Colour RAL 3012

Top coat : - 30 µm

Colour RAL 7002

Tolerance per coat : ±10 µm

Page 33: Generator Manual
Page 34: Generator Manual
Page 35: Generator Manual
Page 36: Generator Manual
Page 37: Generator Manual
Page 38: Generator Manual
Page 39: Generator Manual
Page 40: Generator Manual
Page 41: Generator Manual

s

Operating instructions

Siemens Electric Machines s.r.o. Drásov 126 CZ 664 24 Drásov

Synchronous Generator

G 3~

Page 42: Generator Manual

s

Product documentation v3.5.a page 2/31 2-032 (21/2/05)

Dear customers, Now you become the owners of a synchronous generator produced by the Siemens Electric Machine, s.r.o. It is a product of the company with many-years' tradition that was produced on the basis of operational experience by a team of experts and skilled workers and which incorporates the latest know-how and advanced technology. We produce the series of synchronous generators with power output from about 20 to 12 000 kVA, LV and HV options for all usual applications. We will fulfil your special demands on a generator for special use or arrangement.

Team of company employees

Page 43: Generator Manual

s

Product documentation v3.5.a page 3/31 2-032 (21/2/05)

Contents page 1 Generally 1.1 Significant (relevant) safety terms...................................................................... 6 1.2 General safety information................................................................................. 6 1.3 Type marking of generators...............................................................…............ 8 2 Description 2.1 Technical description, variants........................................................................... 9 2.2 Electric characteristics....................................................................................... 10 2.3 Use.... ..............................................................................................……....... 11 2.4 Warranties......................................................................................................... 11 2.5 Standards.............................................................................................……...... 11 3 Transport and storage 3.1 Safety recommendations.................................................................................... 12 3.2 Storage conditions.... ................................................................................. 13 3.3 Inspection during storage time........................................................................... 13 4 Installation and operation 4.1 Safety recommendations.................................................................................... 14 4.2 Preparation........................................................................................................ 14 4.3 Electric installation............................................................................................ 17 4.4 First start up and operation.. ................................................................. 18 4.5 Diagnostics of defects …………….............................................................. 22 5 Maintenance 5.1 Safety recommendations.................................................................................... 25 5.2 Inspection of insulation condition...................................................................... 25 5.3 Cleaning............................................................................................................ 26 5.4 Bearing maintenance........................................................................................ 26 6 Disassembly and regressive assembly 6.1 Dismantling (disassembling)............................................................................... 27 6.2 Regressive assembly (assembly)......................................................................... 27 7 Regulation 7.1 General description, principle of regulation........................................................ 28 7.2 Range of voltage regulation............................................................................... 29 7.3 Regulation accuracy.......................................................................................... 29 7.4 Dynamic state of voltage................................................................................... 29 7.5 Parallel operation.............................................................................................. 30

Page 44: Generator Manual

s

Product documentation v3.5.a page 4/31 2-032 (21/2/05)

page

8 Neutral point 8.1 Generally....................................................................................................... 31 9 Generator disposal after lifetime expiration ................................... 31 List of enclosures Enclosed Enclosure No. 1: Technical data………………………..….. Enclosure No. 2: Machine name plate…………………...… Enclosure No. 3: Direction of rotation………………….…. Enclosure No. 4: Load of foundation by generator…….…. Enclosure No. 5: List of bearings with relubricating plan… Enclosure No. 6: Operational logbook of generator ……… Enclosure No. 7: Voltage regulators ……………………….. Enclosure No. 8: Regulator VAR/Power factor…………... Enclosure No. 9: Regulator RÜW 10……………………… Enclosure No. 10: Test certificate…..……………………… Enclosure No. 11: Connection diagram…………………… Enclosure No. 12: Dimensions drawing……………………

Page 45: Generator Manual

s

Product documentation v3.5.a page 5/31 2-032 (21/2/05)

1. Generally Herein submitted operational instructions refer only to standard type. Possible dissimilarities from standard model (special models) are described in enclosures or supplements of operational instructions. NOTICE: Contents of operational instructions and production documentation is not the part of previous or current agreements promises or juridical relations or is not to change above mentioned. All obligations of SIEMENS result from existing purchase contract that also contains complete and valid delimitation of warranties. These contractual warranty contracts are neither limited nor extended by elaboration of these instructions and documentation.

Therefore the workers responsible for safety operation of a device have to secure the following:

- only qualified operators have to be authorised to attend these machines

- these operators and the others must always have submitted operational instructions and the other production documentation at their disposal in the course of all corresponding operations and have to adhere to this documentation consistently.

- unqualified people are forbidden to operate the machines and keep in their surrounding.!!!

Danger Electric machines are operational devices to be used in industrial heavy-current machinery. In the course of operation these operational devices have dangerous voltage, conductive bare parts, moving or rotating parts. Therefore they can cause the worst injuries or damage to properties in case of inadmissible removing of covers, unprofessional handling, incorrect manipulating or insufficient maintenance.

Page 46: Generator Manual

s

Product documentation v3.5.a page 6/31 2-032 (21/2/05)

1.1 Significant (relevant) terms Warning terms such as DANGER, WARNING, CAUTION and RECOMMENDATION which are mentioned in this operational instructions are used to inform about danger or extraordinary information that require special marking. DANGER means that in case a person does not adhere to it, his life can be jeopardised or he may cause damage to property. WARNING means that in case a person does not adhere to it, he may induce difficult injury or cause damage to property. CAUTION means hat in case a person does not adhere to it, he may induce an injury or cause damage to property. RECOMMENDATION means that there are extraordinary and special technical connections that are not obvious even for experts. Regardless, it is also necessary to adhere to recommendations that are not specially emphasized, regarding transport, operation and maintenance as well as technical data (which are given in operational instructions, production documentation and on the machine itself) to prevent breakdown which can either directly or indirectly induce difficult injuries of people or cause damage to property. Qualified staff are operators who were in charge of safety of device, who are able to perform all necessary activities and at the same time recognize and prevent possible danger. These operators have to perform above mentioned as the result of their education, experience, previous training as well as acquiring knowledge of standards, provisions, regulations, safety of work and working relations. Above all qualification of staff providing service and maintenance has to correspond to the laws concerning work on heavy-current devices of a particular country which the device is operated in. Besides, knowledge of provisions of first aid and local rescue devices is necessary as well. Concerning work on heavy-current devices, restriction of employing unqualified people is determined in e.g. VBG 4 or ČSN 33 2000-4-41 or IEC 364-4-443. 1.2 General safety information Herein mentioned machines are parts of heavy-current devices for industrial extent of use. They are produced in compliance with corresponding and acknowledged technical regulations. WARNING: It is supposed that basic planned operations with a device as well as all operations concerning transport, assembly, installation, launching, maintenance and repairs will be performed by qualified staff or checked by responsible experts.

Page 47: Generator Manual

s

Product documentation v3.5.a page 7/31 2-032 (21/2/05)

Concurrently it is necessary to take the following into consideration:

- Technical data and data of admissible use (assembly connection terms, environmental terms and operational terms), which are, among others, stated in a catalogue, in operational instructions, orders, name plates and in the other technical documentation.

- General establishing and safety provisions.

- Local provisions and requirements which are specific for the device.

- Qualified use of tools, lifting and transport devices.

- Use of personal protective devices.

- Duty of responsible people to take part in training on safety of employees in

accordance with SAFETY PROVISIONS as well as keeping to the laws of a country in which the device is operated. Above all the laws, concerning protection of environment, handling with waste, safety use of substances that are dangerous for lives or environment e.g. cleaners, lubricants, adhesives, varnishes etc. Detailed information about these special products can be found in a “list of safety data” provided by producers or importer of a product.

Operational instructions cannot contain all detailed information concerning different construction variants and cannot take into consideration every possible occurrence of installation, operation or maintenance owing to the loss of lucidity. Therefore operational instructions designed for qualified operators (see above mentioned) contain such recommendations that are necessary if a machine is used in accordance with provisions in the extent of industrial operation. If there are special requirements concerning nonindustrial area (e.g. protection against dangerous touch of children fingers and so on), these conditions have to be secured on the device by means of supplementary protective provisions. If there are any discrepancies, especially missing information which specify a product, sales department of SIEMENS is in charge of providing necessary explanation. Concerning this matter we ask you to mention mainly type and production number of a machine, please. Concerning planning, assembly, launching and service we recommend using the promotion and services of appropriate service centre of SIEMENS. RECOMMENDATIONS: Other detailed information concerning general works e.g. checking of delivered coils (damages which can be caused during transport), long term storage and preserving of machines, checking of footing, connection stretching, erection (setting) and (seating), levelling of a machine and others could be found in our “Assembly materials” or (newly) in “Operational instructions”. These materials could be obtained in SIEMENS sales department.

Page 48: Generator Manual

s

Product documentation v3.5.a page 8/31 2-032 (21/2/05)

1.3 Type marking of generators

1FC2 353-4SB40-Z

Rotating electric machine 1 Synchronous machine F Basic design C Water cooler design J Air cooler design Q Military design R Low voltage, output up to 3 MVA 2 Low voltage, output above 3 MVA 3 Middle and high voltage 4 Axial height 180 mm 18 225 mm 22 280 mm 28 355 mm 35 450 mm 45 560 mm 56 630 mm 63 710 mm 71 800 mm 80 Power size 1 2 3 .

Number of poles 4 4 6 6 8 8 10 10 12 12

Page 49: Generator Manual

s

Product documentation v3.5.a page 9/31 2-032 (21/2/05)

2. Description 2.1 Technical description, variants Machines of type 1FC2 are three-phase synchronous generators for low voltage with a rotor with protruding poles in brushless design. They consist of alternative current generator (main machine) and exciter with rotating rectifier. Rotors of main machine and exciter together with rotating rectifier and fan are situated on one shaft. Parts that are used for voltage regulation can be found in terminal box. One construction unit consists of above mentioned parts, welded cover and bearings. Main machine has got a rotor with protruding poles. Three-phase winding is brought out on four terminals and connected in a star. The star is brought out. Rotor is equipped with damper winding to improve dynamic stability of asymmetric load. Exciter is an alternative generator with outer poles with steady exciter winding in stator. Rotor alternating winding feeds winding in the winding of main machine by means of rotating rectifier. Rotating rectifier is a diode module connected in a three-phase bridge that is equipped with overvoltage protection. Basic mechanical design is represented by two-bearing design with degree of protection IP 23 and feet that are pulled out. There are other variants such as footing-flange, one-bearing or other designs. Bundle of stator sheets is pressed into a solid welded box and it secured to prevent round moving. It is possible to adjust the height of footings towards generator axis. Generator rotor is a compact part of the machine with damper cage (amortiser) in magnet field. It is excited by means of integrated exciter. Stator of exciting machine (exciter) is situated in bearing shield on the non-drive-end. Bearing shields are produced of qualitative grey cast iron, may be welded. Rectifier and protective varistor are attached outside the machine on NS – side (front side). This solution can enable their easy replacement. In special designs it is situated even inside of the machine. There is a through system of cooling in the machine, which is optimal. Fans are made of aluminium up to axial height of 350 mm. Welded constructions are used for higher axial heights. Protective coverage is secured with ribbed sheets in the places where the air comes in and out. If generator operates in dusty areas, it can be equipped with a filter on the side where the air comes in. There is an option of supplying generators equipped with higher degree of protection than IP 23, and with water cooler or air cooler. Spacious terminal box is situated on the upper part of generator stator box. It contains all equipment that is needed for connection and operation of generator, including regulator. Terminals are arranged on 6-terminal bars. There is also an option of equipping a generator with thermal sensors in stator winding and bearings. Standard design of generator is supplied without drilled openings for outlet cables. There is an option of supplying inlet cable necks with PG – screw joints.

Page 50: Generator Manual

s

Product documentation v3.5.a page 10/31 2-032 (21/2/05)

2.2 Electric characteristics 2.2.1. Output and raise of the temperature Determined output that is stated on the name plate is intended for long-term operation with symmetrical load, prescribed frequency and voltage, power factor cosϕ = 0,8 to 1,0, ambient air temperature up to 40o C and altitude of machine location up to 1000 m. Simultaneously, the machine is used in compliance with temperature class F, if need H according to IEC 60034-1. 2.2.2. Short-term current overload Machines can bear short-term overload without harmful effect in compliance with the following table: Tab.2.3.a Current overload I/In 1,10 1,15 1,30 1,5 3,0 t 1 h 25 min 6 min 15s 5 s Above mentioned overload can occur only rarely and must be followed by running of machine for at least one hour at reduced output or at most at determined output. 2.2.3. Voltage Machines are standardly supplied with a star connection for voltage of 400 V at 50 Hz, or 450 V at 60 Hz (according to machine name plate). ATTENTION!! Machines that were supplied for voltage of 400V at 50 Hz, cannot be operated at voltage of 450 V and 60 Hz. 2.2.4. Shape of a voltage curve Time behaviour of terminal voltage during idle running and during symmetrical linear load is virtually sinusoid with upper frequency response according to ISO 8528, part 1, and at most 5 % of difference from the fundamental oscillation. 2.2.5. Asymmetric load Asymmetric load according to IEC 60034-1 article 22 Maximum I 2 / IN for permanent operation 0,08 Maximum ( I2 / IN )

2.t operation during breakdowns 20 2.2.6. Short-circuit current During symmetrical three-phase short-circuit the value of short-time short-circuit current makes minimally triple of nominal current. Short-circuit current must be switched off by 5 s.

Page 51: Generator Manual

s

Product documentation v3.5.a page 11/31 2-032 (21/2/05)

2.2.7. Radio interference elimination Generators correspond to interference elimination degree according to IEC 60034-1. 2.2.8. Currents in star neutral points If star neutral points of generators are connected mutually or with neutral points of transformers and appliances directly, then transient currents with triple determined frequency could appear in conductor among neutral points. To prevent thermal jeopardy of generators, transient currents should not exceed 50 % of nominal current of generator. Higher currents should be reduced outside of device by means of current limiting choke or similar devices. 2.3 Use Generators are used in land central offices and in naval shipboard networks for long-term or reserve operation. They can be driven by combustion engines, gas of water turbines or electromotors. They can run individually, parallelly with similar device or it is possible to connect them to public network. 2.4 Warranties Warranties refer to adhering of operational instructions and permissible operational terms. If these provisions are not adhered, it can result in refusing of warranty claims. During claim or with spare parts order it is necessary to provide factory (production) number and if need other data stated in output name plate. The user is obliged to keep the operational log, and he can dismantle the generator only if approved by the producer otherwise the producer shall be released from the obligations under its warranty. During the warranty and after the warranty period, the user must not make any external and internal intervention in the machine design. 2.5 Standards Generator design corresponds to standards IEC 60034-1 and also DIN EN 60034 (VDE 0530-1). If required, generators can meet requirements of other standards and regulations.

Page 52: Generator Manual

s

Product documentation v3.5.a page 12/31 2-032 (21/2/05)

3 Transport and storage 3.1 Safety recommendation ! WARNING. During any lifting or transport of an aggregate it is necessary to use only openings that are provided for lifting and transportation, gripping lugs or pins in foundation plate! Lifting should be performed at four axially symmetrical places at least (see picture 3a). Aggregates must not be lifted hanging on individual parts of a machine! Existing accessory lifting lugs e.g. on bearing shields, cooler superstructure etc. are provided only for lifting of these individual parts of the machine. Lifting capacity of applied lifting device should be taken into consideration! Lifting devices should be chosen with respect of the weight of machine. Appropriate guiding of ropes should be used with possible superstructures or extension.

Picture 3a. Transport of machine

Page 53: Generator Manual

s

Product documentation v3.5.a page 13/31 2-032 (21/2/05)

3.2 Storage conditions Generator and accessories must be professionally stored before installation. They must be protected from humidity, harmful environmental conditions and from other strange influences. If generator is placed in a transport box, it must be removed out of it before storage. Storage areas must be clean, dry, closed and protected from tremors. Temperature should not drop bellow 5oC. 3.3 Inspection during storage If storage takes more than 3 months, insulation resistance and preservative coats must be inspected. If the value of insulation resistance drops down bellow the value determined in point 4.3.1, table 1, generator must be desiccated immediately. You are obliged to record the start/end date of the storage period including all activities performed with the generator during this period to the operational log of the generator.

Page 54: Generator Manual

s

Product documentation v3.5.a page 14/31 2-032 (21/2/05)

4 Installation and operation 4.1 Safety recommendation ! WARNING Strictly adhere to ”General safety information”, please. In paragraph 1.2 of this Instructions, recommendations concerning admissible use of machine and recommendations concerning required professional knowledge that is necessary while operating heavy-current machinery. Coverings must not be opened during operation (see also paragraph 5). Covers prevent from touching of active or rotating parts or they are necessary for right routing of air and effective cooling . For safety reasons, the machine can be started until the coupling is inserted at the free shaft end or after dismantling the key at the free shaft end. No higher speeds cannot be adjusted because this is ensured by right designed controlling and checking of speeds. The only admissible speeds are these that are given according to output name plate. 4.2. Preparation 4.2.1 General inspection of machine Generator must be properly inspected prior to erection (installation) with the aim to find out if there are any damages caused during transport or storage. Any imperfections that are found out must be reported to a supplier or transport company and must be professionally repaired. Remove preservative coating from metal surfaces (feet, flange, free end, etc.) prior to machine seating and installation. Insulation resistance must be inspected. Record the data measured to the operational log. 4.2.2 Locating Generator must be located in the way that terminal box, bearings and accessories could be easily approachable. 4.2.3 Installation Generator must be placed on a solid foundation without any vibrations. Machine feet must stand on flat metal base. If need, contact surface must be carefully laid under to prevent deformation of stator body.

Page 55: Generator Manual

s

Product documentation v3.5.a page 15/31 2-032 (21/2/05)

When installed, it is recommended that the increase of the axial height of the loaded generator must be taken into account. The increase of the axial height is affected by the heat machine use (its classification), the method of ventilation, the generator size, etc. The most suitable way is to operate the drive until the steady operational temperature regime is achieved, then to switch off the machine and to make the axial height correction. The informative calculation of the above-mentioned increase can be done from the following formula: Height increase [µm] = 0.312 x vertical foot distance from the shaft axis. Keep a record in the operational log. 4.2.4 Cooling Space, in which generator is situated, must be sufficiently large and aired. Generator cannot suck warm air from other machine. For continuous operation, it is necessary to provide a steady cooling air ventilation with a volume rate of 0.55 m3s-1 for each 100 kW. ATTENTION Temperature on surface parts of electric machines (stator housing, shields) can reach over 100oC, therefore possibility of touching these surfaces must be prevented. At the same time it is forbidden to put or attach any parts that are temperature sensitive such as normal leads or parts of electronic equipment. 4.2.5 Coupling Flexible connections must be used to connect generator and driving machine mechanically. The coupling must transmit only torsion moment from driving machine that must get rid of impact peaks that are produced especially by combustion engines. Further, it must attenuate all axial and radial vibrations of driving machine. Coupling must be dynamically balanced, it itself must not be a source of any undesirable forces and vibrations. Shaft extensibility Due to motor heat dilatation the free end may extend to the clutch by 0.0012 fold motor stator length Shaft extension (mm) = 0.0012 x stator length (mm) That extension should be considered in motor clutch system design. For additional information see Annex, or contact us.

Page 56: Generator Manual

s

Product documentation v3.5.a page 16/31 2-032 (21/2/05)

Prior to assembly of connection on the generator shaft, preservative coat must be removed and the shaft should be slightly varnished with oil. Concerning actual assembly of a installation on the shaft, it is recommended to use assembly jig that will fit in a thread in generator shaft. If need, installation can be heated in oil bath with a temperature of up to 100oC. Installation must not be pulled on shaft by force. When pulling down the connection from the shaft, it is necessary to use pulling jig. Coupling of a set must be adjusted by means of two indicators or another appropriate device according to picture 4.2.5. Tolerance that is determined by a producer of connection should be reduced as much as possible because every slightest defect will cause disproportionate increase of burden on bearings and coupling. Check the coupling during the steady operational temperature regime, and record the parameters to the operational log. Picture 4.2.5: Points of measurement 4.2.6 Securing of mechanical position The right position of installed and fixed generator to the foundation must be secured in such a way that set axial alignment will not be changed in the course of operation. Feet must be plugged in into the foundation.

Page 57: Generator Manual

s

Product documentation v3.5.a page 17/31 2-032 (21/2/05)

4.3 Connection 4.3.1 Insulation resistance of winding Insulation resistance of stator winding must be measured prior to launching a new generator or in generator that was out of operation for longer period of time. In winding without defects the resistance must not drop bellow the values given in table 4.3.1. ! WARNING The terminals have partly dangerous voltage and it is dangerous to touch them during or just after measurement. If there is a possibility of connecting network line being under voltage, make sure that network line cannot be connected during measurement. Table 4.3.1. Nominal voltage

Insulation resistance at winding

temperature 25ºC

Insulation resistance at winding

temperature 75ºC

Measuring direct voltage

V MOhm MOhm V > 1000 1500

30 50

1,0 1,7

500 1)

500

1)the lowest measuring voltage 100V It takes about 1 min. to reach final value of insulation resistance. If a measured value of resistance is bellow determined value, generator must be dried out. Increased temperature of winding by 10oC results in decrease of value of insulation resistance by a half. If the temperature of winding drops bellow 5oC, measured value of insulation resistance must not be considered as to be ready for connection because this may result in false conclusions. Record the values measured to the operational log. 4.3.2 Desiccation The simplest method of desiccation is a dry area with 80oC clean warm air and with exhaust. Generator does not have to be disassembled. Concerning generators with high protection e.g. IP 54, the parts that secure protection must be disassembled. Time of desiccation depends on the degree of humidity. The other desiccation methods: - short-circuit operation at IN with foreign exciter - warming up by means of direct current Insulation resistance must be measured during desiccation. At the start it will drop down quickly and then it will raise again. Desiccation is finished when insulation resistance reaches corresponding value. If insulation resistance of generator is not improved after longer period of desiccation, then the low value is not caused by humidity in stator. There must be another defect. Record to the operational log that the drying has been done.

Page 58: Generator Manual

s

Product documentation v3.5.a page 18/31 2-032 (21/2/05)

Only qualified professionals can carry out cable lead to generator and its connection to switching and protective apparatus. And they have to adhere to valid regulations and standards. Cables must be thoroughly connected, and can stress connection terminals neither in tension nor in bending. Connection cables are connected in compliance with connection diagrams that can be found on inner side of terminal box cover. Terminal bolt must be properly tightened so as not to warm up and loose due to resistance during operation. Terminal box must be closed after the connection is finished. 4.3.3 Safeguarding Generator must be well protected by means of regressive protection to prevent dangerous operational situations and overcurrent defects. Generators must be safeguarded in compliance with nominal current that is determined in output name plate. 4.4 Launching and operation 4.4.1 Installation Prior to launching a driving machine, the following must be checked: - Generator load must be disconnected - Insulation resistance must be kept at least to minimal value - Safety regulations concerning operation of aggregate must be adhered - Protective wire must be connected When the check is over the whole aggregate can be launched according to operational instructions designed for the whole set. In case that the machine is not put out of operation for more than 3 months, only a short visual inspection is sufficient before the connection starts. 4.4.2 Change of rotating direction Change of rotating direction is possible only in generators equipped with a fan that can rotate in both directions. Change of direction is performed by switching over the terminals k and l of current transformer (picture 7.1.a). Change of rotating direction is accompanied with the change of phase sequence on the main terminals. Rotating direction cannot be changed in generators that have got only one-way fan. The fan must be exchanged.

Page 59: Generator Manual

s

Product documentation v3.5.a page 19/31 2-032 (21/2/05)

4.4.3 Operation ! WARNING If any changes occur that are different from normal operation (higher input, temperature or vibrations, unusual noise or smells, reaction of control devices etc.), it means that function is damaged. Maintenance staff must be called immediately to prevent breakdowns that can directly or indirectly jeopardize people or that can cause damage to property.

IN CASE OF ANY DOUBTS, IMMEDIATELY DISCONNECT APPROPRIATE DRIVING MECHANISM

Generator is able to be excited itself. But the following must be taken into consideration: - Required terminal voltage in the extent of UN ± 5% or according to technical specification can be set by external potentiometer after nominal revolutions are reached. - Generator can be fully loaded after nominal speeds are reached The following operational data must be checked again: - Current, generator cannot be overloaded - Symmetry of load of individual phases - Frequency - Increase of temperature in bearings, cooling of machine and mechanical operation To prevent resonance, take heed of the following: own electromechanical frequencies of generator must not be in accordance with mechanical exciting frequencies of driving machine. 4.4.4 Check of operation The function of generator must be continuously observed during operation so as to avoid a breakdown. Its course must be recorded in generator operational logbook, especially the changes that are unusual in the course of normal operation. Any found imperfections must be repaired immediately. Above all, generator must be clean, must be secured in accordance with the data on output name plate, running must be centred without vibrations, perfect condition of bearings and good tightening of connection terminals. During generator operation ventilation openings must not be covered in any way. If a generator was out of operation for longer period, insulation resistance of winding, condition of lubrication in bearings, tightening of terminal bolts and mechanical connection with driving machine must be inspected prior to putting the machine into operation.

Page 60: Generator Manual

s

Product documentation v3.5.a page 20/31 2-032 (21/2/05)

Intervals of preventive inspections Preventive inspection I. is carried out regularly in the course of common operation of the machine after 500 operational hours from the beginning. The inspection consists of:

a) Inspection of cleanliness of cooling surfaces of machine. b) Measurement of stator winding insulation resistance. c) Inspection of bearings operation if needed. d) Inspection of function of additional equipment if needed. Any found imperfections must be repaired prior to putting the machine into operation.

Preventive inspection II. is carried out regularly after 5000 operational hours from the beginning. The inspection consists of:

a) Inspection of cleanliness of cooling surfaces of machine. b) Measurement of stator winding insulation resistance. c) Measurement of rotor winding circuit insulation resistance. (measuring

voltage is 500 V) d) Measurement of voltage, current, temperature, bearings and oscillations. e) Inspection of bearings operation. f) Inspection of connection to the net and tightening of terminal bolts. g) Inspection of tightness of terminal box cover. h) Inspection of function of additional equipment. Any found imperfections must be repaired prior to putting the machine into operation.

Preventive inspection III. is carried out regularly after 15000 operational hours from the beginning. The inspection consists of:

a) Thorough cleaning. b) Thorough inspection. c) Reparation of any imperfections. d) Bearings relubrication. e) Assembly according to the instructions. f) Measurements. g) Tests.

Any found imperfections must be repaired prior to putting the machine into operation.

All inspections must be recorded in the generator operational logbook.

4.4.5 Putting out of operation

Page 61: Generator Manual

s

Product documentation v3.5.a page 21/31 2-032 (21/2/05)

Loading must be disconnected before generator is put out of operation. Next steps should follow operational instructions prescribed for the whole set.

4.4.6 Operational log The operational log serves for recording all events that relate to operation, maintenance and revisions of the generator. Keep the records starting from the storage period before putting the generator into operation. Record the current number of the operational hours to the "Operational hours" box starting from the first commissioning. Record also all events that are related to winding insulating resistance, drying, and record parameter values (e.g. voltage, current, bearing temperature, vibration, etc.) during both the commissioning and normal operation. The operational log is also used to record the results of all inspections and revisions. All machine modifications, part replacement, faults of generator, accessories, switching and breaking elements including their replacement are recorded to the operational log. Moreover, emergency events are also recorded (e.g. overload, short circuit, etc.) even if no generator failure occurred. The record in the operational log may refer to another document in which the activity is evidently recorded.

Page 62: Generator Manual

s

Product documentation v3.5.a page 22/31 2-032 (21/2/05)

4.5. Diagnostics of defects 4.5.1. Mechanical cause

Breakdown

Scr

atch

y no

ise

Bea

rings

are

ov

erhe

ated

E

xces

sive

te

mpe

ratu

re o

f ge

nera

tor

Rad

ial v

ibra

tion

Axi

al v

ibra

tion

Exc

essi

ve n

oise

Possible cause Remedy precaution

• Contact of rotor or shaft with solid

parts of machine appears Find and eliminate cause

• Limited access of air, excessive

amount of dust in winding, dust in cooler ducts

Perform check of access of air, pollution of winding, check cooler

• Polluted or blocked air filter (if it is

equipped) Filter exchange, if need to clean

• Cooler function gets worse (goes for

design with watercooler)

Clean cooler with regards to operational instructions, check amount of cooling

medium, vent cooler • Unbalance on rotor Contact producer and require balancing

• Unbalance in coupling Rebalancing

• Transfer of vibration from linked

machine Check of linked machine

• • Badly fixed generator in foundation or

changes in foundation Level machine, check foundation, and

tightening of generator

• • Resonance with foundation Strengthen foundation

• Lack of lubricant in bearing Check amount of lubricant in bearing

• Bearing is overloaded Check tightening, levelling and clamping of

machine

• Damaged or badly worn out bearing Perform exchange

Page 63: Generator Manual

s

Product documentation v3.5.a page 23/31 2-032 (21/2/05)

4.5.2 Electric cause

Breakdown

Gen

erat

or v

olta

ge <

UN

UN c

anno

t be

set b

y m

eans

of

pote

ncio

met

er V

OLT

Gen

erat

or v

olta

ge a

pp.0

,1

UN (

rem

anen

t vol

tage

)

Gen

erat

or v

olta

ge >> >>1

,1 U

N

cann

ot b

e se

t by

mea

ns o

f co

ntro

l dev

ice

Out

side

con

trol

dev

ice

with

no

func

tion

Cur

rent

and

vol

tage

drif

ting

Possible cause Remedy precaution

• Too high number of speeds Check speeds of drive

• Too low number of speeds Check speeds of drive

• Oscillation of number of speeds Check speeds of drive

• • Defect on rotating rectifier Check diodes, exchange diode

module • Defective varistor or diodes Exchange varistor or diodes • Break in circuit Check wires

• Break in regulator feeding

Check wires from auxiliary winding to regulator

(terminals X3-X4,voltage app 180-200 V)

• Defect on fuse F1 Exchange fuse

• Break in exciting circuit Check wires from regulator to

exciter

• • • Defective voltage regulator Exchange regulator

• Stability potentiometer reset New adjustment of potentiometer, stability according to operational

instructions of regulator

• Frequency potentiometer reset New adjustment of potentiometer, frequency according to operational

instructions of regulator

• Breakdown in circuit of planned

values, short-circuit in leads Eliminate short-circuit

• • Breakdown in circuit of planned

values, interruption in leads Eliminate interruption

• During operation of potentiometer

of planned values bridge 6-7 is missing

Input bridge 6-7 or attach external potentiometer with planned value

Page 64: Generator Manual

s

Product documentation v3.5.a page 24/31 2-032 (21/2/05)

Electric cause – follow-up

Breakdown

Gen

erat

or v

olta

ge <

UN

Une

ven

load

dis

trib

utio

n du

ring

para

llel o

pera

tion

Diff

eren

ce o

f vol

tage

am

ong

indi

vidu

al p

hase

s

Ove

rhea

ting

Par

t of w

indi

ng is

ove

rhea

ted

Flu

ctua

tion

of o

utpu

t

Possible cause Remedy precaution

• Overload Reduce load

• Break of outer wires Check outer wires

• Short-circuit of stator winding Measure winding and insulation

resistance, consult producer and repair • Overload Reduce load • Uneven load Adjust load

• Short-circuit of stator winding Measure winding and insulation

resistance, consult producer and repair • Fluctuation of turning moment Check driving machine

• Potentiometer of statics is reset In generator equipped with statics module-set potentiometer of statics

according to operational instructions

• Break or short-circuit of lead

from statics current transformer T1 to statics A2

Eliminate short-circuit, in case of a break check current transformer

Page 65: Generator Manual

s

Product documentation v3.5.a page 25/31 2-032 (21/2/05)

5 Maintenance 5.1 Safety recommendation ! WARNING Pay heed to strict adhering to “General safety information” in paragraph 1.2 of these instructions. Unconditionally pay heed to necessary professional knowledge that must be acquired while operating in heavy-current machinery. Before any work on machines is started, make sure that machine or unit is disconnected in accordance to regulations. This applies especially for opening of protective covers. Pay heed not only to main current circuits but also to possible supplementary auxiliary current circuits. This especially applies to heater in the course of stoppage of machine. There are “5 safety regulations’’ (e.g. according to EN 50110-1): - disconnection - securing that prevents new connection - make sure that machine is disconnected - earthing and short-circuit connection (for voltage above 1000 V), - block or cover (close) neighbouring active parts. NOTICE: Cross-section drawings and or detailed drawings that are a part of instructions, usually contain useful information on technical construction of normal machines and constructional groups. This information can be appreciated by experts and should be taken into consideration in a certain way. ATTENTION Special designs and constructional variants can differ from normal projections as far as technical details are concerned. We are here to solve any potential uncertainty, please, contact us and provide us with type and production number of a machine. Other possibility is to contact directly SIEMENS service centre and have maintenance works performed by the centre. WARNING. Any works that are performed on generator must be carried out on disconnected machine, apart from relubrication of bearings. In that particular case it is necessary to adhere to safety instructions. If the works are performed on the parts of machine or accessories under current , make sure that generator is always separated from the network. At the same time check if these parts are not under voltage. Protective wire must always be connected. 5.2 Inspection of insulation condition Condition of generator insulation must be inspected during every maintenance and prior to putting into operation in case of longer period of a shut down.

Page 66: Generator Manual

s

Product documentation v3.5.a page 26/31 2-032 (21/2/05)

5.3 Cleaning Generator and its accessories must be kept in clean condition. Cleaning must be carried out in dependence on operational requirements. The best way of cleaning is to use clean and dry pressed air (most 200 kpa). Collecting dust decreases cooling capacity and increases raise of temperature of machine. If generator is fitted with a filter in the inlet spot of cooling air, then it must be cleaned regularly. Cleaning intervals depend on conditions of ambient surrounding in which generator operates. Degree of contamination can be assessed in dependence on increase of temperature of stator winding which is normally equipped with resistance thermometer (concerning designs with a filter). Filter is disassembled and blown with pressed air. Keep a record of cleaning in the operational log. ! WARNING Pay heed to suitable exhaust and personal protective aids (protective goggles, filter, respirator etc.) in the course of pressure cleaning! When chemical cleaners are used, please, adhere to warning and safety recommendations that are stated in appropriate list of safety data (see paragraph 1.2). Chemical cleaners must be applicable for machine parts, especially parts made of plastics. 5.4 Bearing maintenance 5.4.1 Antifriction bearings Generator antifriction bearings are filled with lubricating grease and ready for operation. Generators are provided with bearings including relubrication equipment and grease amount regulator. Bearing type together with lubricant used are given complementary rating plate at each lubrication point. Relubrication intervals, if any, are given in Annex. Grease amount must be regularly checked in antifriction bearings and exchange, if necessary. New grease is to be filled during the preventive inspection III., no later than after 3 years. During maintenance the bearing part must be cleaned and new grease filled. Keep a record of additional lubrication in the operational log.

5.4.2 Sliding bearings Maintenance of sliding bearings is specified in manufacturer’s Manual which is enclosed. Take care of the following: - a regular oil exchange at specified intervals, - checks of screwed joints, - checks of temperature sensors.

Page 67: Generator Manual

s

Product documentation v3.5.a page 27/31 2-032 (21/2/05)

6 Disassembly and regressive assembly 6.1 Disassembly Disassembly can be carried out only in clean dustless and dry environment. Prior to actual disassembly, plate of cable inputs must be removed. Open terminal box and release exciting cables and wire of bearing thermometer. Release the bolts (01), and then it is possible to remove the cover of rotating rectifier. Exchange of three-phase bridge or varistor can be carried out, then.. Release the bolts 02) and (03), and then it is possible to pull down bearing covers by means of pulling device and thread openings in bearing shields. Afterwards, a check or bearing exchange can be carried out. Once the stator is removed, winding of stator and rotor of main and exciting machine can be inspected.

Picture 6.2 a: Generator longitudinal cross-section 6.2 Regressive assembly (assembly) Regressive assembly of generator is carried out as a reversed sequence of steps. Appropriate tools must be used in the course of regressive assembly to prevent any violent force. If a generator differs from basic design e.g. different arranging of feet with two bearings, disassembly and regressive assembly can differ. Variants equipped with air filter, air watercooler, with different design of protection degree than IP 23, with special shape or mechanical design are provided with complementary supplements enclosed to operational instructions. Keep a record of dismantling in the operational log.

Page 68: Generator Manual

s

Product documentation v3.5.a page 28/31 2-032 (21/2/05)

7 Regulation 7.1 General description, regulation principle Regulation is performed to keep constant terminal voltage of main machine independently of load and power factor. Apart from this voltage regulator measures voltage of generator and compares it with adjusted required value. Exciting winding of exciting machine gets necessary direct current by means of regulation body of voltage regulator that is fed by means of auxiliary winding that is inserted into the main machine stator. Three-phase winding of exciting machine feeds magnet wheel of main machine through rotating rectifiers. Overvoltage protection (varistor) limits arising voltage peaks to tolerable values. Generators are standardly equipped with voltage regulator AEC 63-7, pic. 7.1.a., or with power factor regulator (option) cos ϕ SCP 250 G , pic. 7.1.b. (producer Basler Electric Company). Voltage regulators in compact design are resistant against humidity and vibrations. Selfexcitation of generator is secured by sufficiently high remanence in stator of exciting machine.

Picture 7.1 a: Diagram of regulator without regulation cos ϕ

L2 L1 L3 LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)

L1 L2 L3 RIGHT ROTATION

1 PROPOJKA 50/60 Hz

A1 VOLTAGE REGULATOR F1 FUSE G1 MAIN MACHINE G2 EXCITER MACHINE H AUXILIARY WINDING T1 CURRENT TRANSFORMER FOR DROP COMPENSATION U VARISTOR V2 ROTATING RECTIFIERS 1 JUMPER FOR OPERATION 50 Hz OR 60 Hz

CONNECTION OF AN EXTERNAL POTENTIOMETER

SUPPLY CONNECTION

Page 69: Generator Manual

s

Product documentation v3.5.a page 29/31 2-032 (21/2/05)

Picture 7.1 b: Diagram of regulator with regulation cos ϕ 7.2 Range of voltage regulation Terminal voltage can be adjusted in the range of ±5,0% of nominal voltage by means of potentiometer that is situated on regulator. There is an option of supplying external potentiometer designed for remote control. Optionally it can be supplied with motor control. 7.3 Regulation accuracy Static accuracy of regulation is ±1% in the range from running without load up to full load as well as during constant output and change of revolutions of up to ±5,0%. Other information about regulation accuracy on demand. 7.4 Dynamic states of voltage Temporary drop of voltage that occurs during connection of full load with power factor cos ϕ makes normally up to 20%. This value depends on generator size. Time of reregulation makes about 1,5 - 2 s and depends on the size of regulator.

A1 VOLTAGE REGULATOR

A2 COS ϕ REGULATOR F1 FUSE G1 MAIN MACHINE G2 EXCITER MACHINE H AUXILIARY WINDING R1 VOLTAGE SETTING POTENTIOMETER S1 SWITCH

-FOR COS ϕ REGULATION : OPEN

-UNIT COS ϕ REGULATION : CLOSED T1 CURRENT TRANSFORMER FOR DROP COMPENSATION T2 CURRENT TRANSFORMER 1/5A U VARISTOR V2 ROTATING RECTIFIERS 1 JUMPER FOR OPERATION 50 Hz OR 60 Hz

L2 L1 L3 LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)

L1 L2 L3 RIGHT ROTATION SUPPLY CONNECTION

Page 70: Generator Manual

s

Product documentation v3.5.a page 30/31 2-032 (21/2/05)

7.5 Parallel operation Synchronous generators 1FC2 are suitable for parallel operation with another generator and network. In the course of parallel operation, distribution of active load is determined by driving machines. To secure uniform distribution of active load, regulators of revolutions of parallely working driving machines must be adjusted at the same characteristics. They can even be equipped with electronic load regulator. Concerning parallel operation, generators are equipped with static regulator to secure good distribution of reactive load. Inclination (gradient) of reactive current characteristics can be changed by means of adjusting of resistance in static regulator. Statics is set by producer to a value of about 6% - possible range of adjustment is 10%. This adjustment enables voltage swing up to ±2,5% in parallel operation of network without exceeding maximum reactive generator current. If higher line voltage swing appears, it is necessary either to increase statics or and to regulate terminal voltage by means of power factor regulator.

Page 71: Generator Manual

s

Product documentation v3.5.a page 31/31 2-032 (21/2/05)

8 Neutral wire 8.1 Generally In the course of parallel operation of generators amongst themselves or with the line, differential currents can appear as the result of distribution harmonic oscillation of 3rd order. Differential currents are added to phase currents and can result in inadmissible raise of temperature of generators. Neutral current must not exceed 50% of nominal current. If currents are higher, it is necessary to adopt suitable remedies concerning limitation e.g. current limiting choke.

9 Generator disposal after lifetime expiration After expiration of the generator lifetime it is user’s responsibility to dispose it ecologically. It is recommended to use the service of an authorized company. It is necessary to disassemble the generator and separate individual materials. The machine disposal may produce environment-demanding waste, such as grease or insulation material remaining. For machine ecological disposal including unexpended parts of the machine (e.g. packing materials - plastic, wood, metal) obey the legal regulations in force in particular country.

Page 72: Generator Manual

s

Enclosure page 1/5

Enclosure Operational logbook

Operational logbook of generator

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 1

Date Count of

operation hours Records: Name Signature

Page 73: Generator Manual

s

Enclosure page 2/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 2

Date Count of

operation hours Records: Name Signature

Page 74: Generator Manual

s

Enclosure page 3/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 3

Date Count of

operation hours Records: Name Signature

Page 75: Generator Manual

s

Enclosure page 4/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 4

Date Count of

operation hours Records: Name Signature

Page 76: Generator Manual

s

Enclosure page 5/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 5

Date Count of

operation hours Records: Name Signature

Page 77: Generator Manual

D1973/7-74 0106 Seite/Page 1

RG-Erregermaschine Brushless exciter Betriebsanleitung / Instructions

Beschreibung Description Aufbau Construction Die RG-Erregermaschine, ausgeführt als Außenpol-generator, ist eine bürstenlose Erregereinrichtung. Der Läufer der Erregermaschine ist auf der Welle der Hauptmaschine angeordnet, während der Ständer an der Hauptmaschine befestigt wird.

The exciter, designed as stationary-field generator, is of the brushless type. The exciter rotor is on the main machine shaft, and the stator is secured to the main machine itself.

Eine statische Hilfserregereinrichtung, die an anderer Stelle beschrieben ist, erregt über einen Spannungs-regler das Feld des Außenpolgenerators. Der in der Läuferwicklung fließende Drehstrom wird in dem mit-rotierenden Gleichrichterrad von Siliziumdioden gleichgerichtet und über die Erregerleitung der Erre-gerwicklung der Hauptmaschine zugeführt.

A static auxiliary excitation unit described separately, is used for exciting the field of the external-pole via a voltage regulator. The three-phase current flowing in the rotor winding is rectified by silicon diodes in the rotating rectifier and fed into the field winding of the main machine through the excitation line of the field winding of the main machine.

Da sich die Erregermaschine innerhalb der Hauptma-schine befindet, benötigt sie keine Gehäuseabde-ckung.

As the exciter is situated inside the main machine, it needs no casing.

Läufer Rotor Der Läufer ist auf einen Wellenstumpf der Haupt-maschine aufgeschrumpft und in Umfangsrichtung durch eine Passfedern gesichert.

The rotor is shrunk onto the shaft of the main ma-chine and secured in the circumferential direction by a feather key.

Die Läufernabe ist als Blechpaket ausgeführt. The rotor hub is designed as laminated core. Die in die Nuten des Blechpaketes eingelegte Läufer-wicklung ist eine dreiphasige Drehstromwicklung in Sternschaltung. Sie ist als Einschicht-Wicklung aus i-soliertem Cu-Draht mit mehreren parallelen Leitern ausgeführt. Die Schaltenden der Einzelspulen liegen auf der A-Seite und sind mit den auf der gleichen Seite befindlichen Sammelringen W, U und V verbunden. Zur Sicherung gegen Fliehkräfte ist auf jedem Wickel-kopf eine Bandage angeordnet

The three-phase rotorwinding, inserted in the slots of the laminated core, is connected in star. It is a one-layer winding of insulated copper wire with multiple parallel conductors. The free ends of the individual windings are arranged at the D end and connected to the W, U and V and neutral bus rings arranged on the same side. The winding overhangs are provided with bandings to afford protection against centrifugal for-ces.

Die Läuferwicklung ist mit Epoxydharz imprägniert. The rotor winding is impregnated with epoxy resin.

Page 78: Generator Manual

s

D1973/7 Seite/Page2

Ständer Stator Der Ständer der RG-Erregermaschine besteht aus ei-nem gewalzten Jochring mit über Rippen ange-schweißtem Flansch. Im Jochring befinden sich die durch Schrauben befestigten Pole mit der Erreger-wicklung. Auf jeden Pol ist eine Spule aus isoliertem Cu-Draht gewickelt, die mit Harz verfestigt ist. Die Polspulen sind in Reihe geschaltet, wobei die Schal-tenden der Nordpole gekreuzt und die der Südpole ungekreuzt ausgeführt sind. Die Enden der Erreger-wicklung sind an eine Reihenklemme angeschlossen. Der Erregermaschinenständer wird im Gehäuse der Hauptmaschine mit Sechskantschrauben befestigt und zentriert.

The Stator frame of the brushless exciter consists of a rolled yoke ring with welded-on mounting feet. The pole pieces carrying the exciter winding are screwed to the in-side of the yoke ring. The coils wound on the pole pieces are of insulated copperwire and impreg-nated with resin. They are connected in series in such a way that the end leads of the north poles are crossed over, while those of the south poles are un-crossed. The exciter winding end leads are taken to a terminal block. The exciter frame is secured with hex-agonal-head screws directiy to the main machine and locked with tapered pins.

Belüftung Ventilation Die RG-Erregermaschine ist im Kaltluftstrom der Hauptmaschine angeordnet. Öffnungen im Läufer-blechpaket lassen die Kühlluft durch die Läufernabe strömen.

The brushless exciter is arranged in the cool air flow of the main machine. Openings in the laminated rotor core allow the cooling air to flow through the rotor hub

Gleichrichterrad Rotating rectifier Der Gleichrichterteil befindet sich auf dem Gleichrich-terrad und enthält je nach Höhe des Maschinenstro-mes drei oder sechs Diodeneinbausätze.

The rectifier section is located on the rotating rectifier and contains three or six diode assemblies, depend-ing on machine current magnitude.

Diodeneinbausätze Diode assemblies Jeder Dioden-Einbausatz besteht aus einem mit Kühl-rippen versehenen Leichtmetallkörper und enthält ei-ne Siliziumdiode, die durch eine Spannkappe gehal-ten wird und deren Einbaulage die Polarität bestimmt.

Each diode assembly consists of a light metal heat sink with cooling ribs and includes two silicon diodes that are fitted by means of clamping caps and ar-ranged according to polarity.

Da die Kühlkörper unter Spannung stehen, sind sie isoliert an der Läufernabe befestigt.

As the heat sinks are live, they are fitted to the rotor hub using insulated elements.

Die Verbindung zwischen den Kontaktbolzen, den Si-liziumdioden und den Gleichstromsammelringen er-folgt durch längsliegende Anschlusswinkel.

The connection between the contact pins of the silicon diodes and the DC bus rings is established via longi-tudinally arranged connecting angles.

Die Gleichstromsammelringe, an denen die Teile des Varistor-Schutzwiderstandes befestigt sind, sind iso-liert auf der A-Seite des Gleichrichterrades ange-schraubt.

The DC bus rings carry the components of the protec-tive varistor and are fastened to the rotating rectifier at the D-end using insulating screws.

Varistoren Varistors Als Schutz der Gleichrichter gegen energiereiche Ü-berspannungen in Störungsfällen ist ein spannungs-abhängiger Widerstand eingebaut. Dieser Schutzwi-derstand besteht aus sechs oder zwölf Varistorschei-ben, die parallel zwischen dem Plus- und Minussam-melring angeordnet sind. Jede Varistorscheibe wird von einer zentralen, isolierten Schraube gehalten. Der elektrische Kontakt zu den Sammelringen wird auf je-der Seite durch weichgeglühte Kupferscheiben herge-stellt.

The rectifier bridge is protected against such high-energy overvoltages as may occur in the event of faults by a voltage-dependent resistor consisting of six or twelve varistor disks arranged in parallel between the positive and negative bus ring. Each varistor disk is secured by a central insulating screw. The electrical connection to the bus rings is established on either side by two soft-an-nealed copper disks.

Page 79: Generator Manual

s

D1973/7 Seite/Page

3

Wartung Maintenance Die RG-Erregermaschine ist im wesentlichen war-tungsfrei. Es empfiehlt sich, die Maschine in gewis-sen Zeitabständen auf Staubablagerungen zu kon-trollieren und bei Bedarf, vor allem im Bereich der Kühlkörper, zu reinigen. Es genügt dafür Ausblasen der Maschine mit Pressluft (max. 4 bar).

The brushless exciter requires only a minimum of maintenance. It is advisable to inspect the machine for dust deposits at suitable internals and to clean it if necessary, above all the heat sinks. It will be suffi-cient for this purpose to blow out the machine with compressed air at a pressure of not more than 4 bar.

Die Demontage des Erregermaschinen-Ständers er-folgt gemeinsam mit dem BS-Gehäuse der Hauptma-schine. Dazu sind zunächst die Kabelverbindungen zu trennen. Das Gehäuse ist axial zu demontieren und dann auf die Gehäusewand zu legen. Der Aus-bau des Erregerständers geschieht nach lösen der Sechskantschrauben, in senkrechter Richtung.

Dismantling of the exciter machine Stator is achieved by removing the N end. housing of the main machine. Firstly, disconnect the cable joints, lift the housing ax-ial upwards and rest it on the housing panel. To re-move the exciter Stator vertically, remove the screws.

Bei einem eventuell erforderlichen Abziehen von Läu-fer und Gleichrichterrad von der Hauptmaschinenwel-le, sind vor dem Erwärmen der Naben mit einem Schweißbrenner, alle Diodeneinbausätze sowie die Gleichstromsammelringe auszubauen.

If the rotor is to be removed from the shaft of the main machine, detach all the diode assemblies and DC bus rings before the hub is heated by means of a welding torch.

Zum Aufschrumpfen können der komplett montierte Erregermaschinenläufer und das Gleichrichterrad in einem geeigneten Ofen erwärmt werden, wobei mit Rücksicht auf die Halbleiterbauelemente eine Ofen-temperatur von 100 C° nicht überschritten werden darf.

Before shrink titling, heat up the completely assem-bled rotor in a suitable oven and take care that a temperature of 100 °C is not exceeded so that the semiconductor elements are not damaged.

Zum Ausbau der Dioden sind die betroffenen Kon-taktverbindungen sowie die Spannkappen der Ein-bausätze zu lösen. Die einzelnen Dioden können dann entnommen werden.

To remove a diode assembly, undo the associated contact screws as well as the clamping caps of the assemblies. The individual diodes can then be with-drawn from the rotor.

HINWEIS NOTE Beim Einbau neuer Dioden auf alle damit in Verbin-dung stehenden Kontaktflächen, in dünner Schicht Kontaktöl (zB. Electrolube 2X, Produkt der Fa. Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 Ulm-Lehr), gleichmäßig auftragen. Anzugsmoment der Schrauben M6 an den Spannkappen 8 Nm. Schrau-ben über Kreuz anziehen.

When fitting new diodes, apply a thin coat of heat-con-ducting oil (e.g. Electroiube 2X, a product of Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 Ulm-Lehr), on all contact faces involved. Tighten the M6 screws at the clamping caps with a torque of 8 Nrn. These screws must be tightened diagonally.

Für die Wartungsarbeiten an der Erregermaschine ist der Bedienungsdeckel des BS-Gehäuses abzuneh-men. Die genannten Teile und deren Befestigungs-elemente sind dann für die Montage zugänglich.

To permit replacement of the varistor disks, the in-spection cover at the N end must be removed so that the parts mentioned above, including their fastening elements, become accessible.

Fehlersuche bei Diodenausfall Fault location on diode failure Fehlerhafte Dioden können mittels eines Gleichspan-nungs-Durchgangsprüfers (z.B. AVΩ-Multizet) ausfin-dig gemacht werden. Es sei jedoch darauf hingewie-sen, dass eine derartige Messung wegen der niedri-gen Mess-Spannung je nach Wahl des Messberei-ches am Instrument, besonders in Durchlassrichtung, sehr unterschiedliche Werte liefert und nur für einen größenordnungsmäßigen Vergleich der Widerstände in Sperr- und Durchlassrichtung geeignet ist.

Defective diodes can be located by means of a DC continuity tester (e.g. AVΩ -MULTIZET). It should be noted, however, that owing to the low measuring voltage de-pending on the measuring range selected, measurements carried out with Instruments of this type may pro-vide greatly differing results, particularly in the forward direction. The results can therefore only be used for comparing the Orders of magnitude of resistance in the blocking and forward directions.

Page 80: Generator Manual

s

D1973/7 Seite/Page4

Zur Messung des Widerstandes in Durchlassrichtung ist ein möglichst großer Messbereich zu wählen. Bei einwandfreien Dioden können unter Verwendung von 1,5 V Mess-Spannung die Widerstandswerte in Durchlassrichtung je nach Messbereich ca. 100 Ω bis 10 kΩ, in Sperr-Richtung einige hundert kΩ betra-gen. Um die Diodenbrücke auf fehlerhafte Dioden überprüfen zu können, sind die Anschlussleitungen aller Dioden von den Sammelringen zu lösen. Hin-sichtlich möglicher Störungen an der Diodenbrücke sind zwei Fälle zu unterscheiden:

For measuring the resistance in the forward direction, the measuring range should be as small as possible. With healthy diodes and with a measuring voltage of 1.5 V, the resistance in the forward direction may be about 100 Ω to 10 kΩ, depending on the measuring range, and a few hundred Kohms in the reverse di-rection. Diode bridges can be tested for faulty diodes after the leads of all the diodes have been discon-nected from the bus rings. Diode bridges are likely to give rise to two kinds of faults as follows:

Verlust der Sperrfähigkeit (Durchlegieren) Loss of blocking capability (diode breakdown) Beim Durchlegieren einer Diode fließt nur noch ein geringer Strom durch die Feldwicklung der Hauptma-schine, so dass die belastete Maschine übersynchron außer Tritt fallen wird. Die Maschine muss daher zur Behebung der Störung sofort entregt und stillgesetzt werden. Durchlegierte Dioden zeigen in beiden Rich-tungen einen extrem geringen Widerstand.

If a diode breaks down, only a low current flows through the field winding of the main machine, caus-ing the loaded machine to fall out of Step oversyn-chronously. To clear the fault, the machine must be de-excited and stopped immediately. Diodes that have broken down display an extremely low resis-tance in both directions.

Verlust der Leitfähigkeit in Durchlaßrichtung (Un-terbrechung)

Loss of blocking capability (diode failure)

Die Unterbrechung einer Diode tritt wesentlich selte-ner auf als das Durchlegieren, sie macht sich in der Weise bemerkbar, dass die von der Brücke abgege-bene Spannung um ca. 15 % zurückgeht. Wegen der Erregungsreserve kann die Hilfserregereinrichtung diesen Verlust an Erregerspannung voll ausgleichen, wobei die Maschine bei Nennleistung und Nennleis-tungsfaktor einen höheren Hilfserregerstrom benötigt. Dioden, bei denen eine Unterbrechung in Durchlass-richtung vorliegt, zeigen in beiden Richtungen extrem hohe Widerstandswerte.

Loss of diode conductivity occurs considerably less of-ten than diode breakdown and is indicated by a re-duction of the voltage delivered by the bridge of ap-prox. 15 %. Thanks to the excitation reserve, the aux-iliary excitation unit is able to fully compensate this loss of excitation voltage even though the machine requires a higher auxiliary excitation current at rated Output and nominal powerfactor. Diodes which have become blocked in the forward direction have ex-tremely high resistance values.

© Siemens AG Bestell-Nr./Order-No. D 1973/7-74 0106 All Rights Reserved Alle Rechte vorbehalten Printed in Germany

Page 81: Generator Manual

s

D 567-0502 de-en 567

Seite/Page 1

Stillstandsheizung Anti-condensation heating Baugruppen-Nr. 6590 Assembly Group No. 6590 Beschreibung Description Verwendung Application Verwendung In die elektrische Maschine ist eine Stillstands-heizung eingebaut.

The electrical machine is fitted with an anti-condensation heat-ing system.

Die Stillstandsheizung ist so ausgelegt, daß die aktiven Maschi-nenteile immer wärmer als ihre Umgebung sind und eine Betau-ung vermieden wird. Die erforderliche Heizleistung wird bei der Auslegung der elektrischen Maschine bestimmt.

This system is so designed that the temperature of the active parts of the machine is always higher than the ambient tempera-ture and that condensation is prevented. The heating power re-quired is determined when designing the electrical machine.

a) Heizkörper im oder am Gehäuse befestigt a) Heater 1 fitted inside the casing or to the casing

b) Heizkörper 1 im Außengehäuse oder am Grundrahmen befestigt b) Heater 1 fitted inside the outer casing or to the baseframe

1 1

1 1

1

1

c) Heizkörper im Fundament befestigt c) Heater 1 fitted inside the foundation

Fig. 1 Anordnung der Stillstandsheizung Fig. 2 Arrangement of anti-condensation heaters

Ausführung Design Die Stillstandsheizung besteht aus einem oder mehreren elektrisch zusammengeschalteten Rohrheizkörpern, die im Innern der Maschine an geeigneten Stellen so montiert sind, daß die aufsteigende Warmluft die aktiven Maschinen-teile berührt, die Wicklungsisolierung aber nicht durch die hohe Oberflächentemperatur der Heizkörper beschädigt wird.

The anti-condensation heating system consists of one or several heating tubes which are connected together and so arranged in the machine that the warm air rises to the active parts and that the winding insulation is not damaged by the high surface temperature of the heaters.

Abhängig von der Konstruktion der elektrischen Maschine sind mehrere Einbauvarianten möglich (Fig. 1).

Depending on the type of construction of the machine, the heaters can be arranged in various forms as shown in Fig.1.

Stillstandsheizungen für explosionsgeschützte Maschinen sind mit einem Temperaturregler und Temperaturbegrenzer ausgerüstet. Der Temperaturbegrenzer ist auf die der Zündgruppe entsprechende höchstzulässige Oberflächen-temperatur des Heizkörpers eingestellt und plombiert. Die-se Heizkörper entsprechen den VDE-Vorschriften 0170 und 0171 und sind bescheinigt.

Anti-condensation heaters for machines intended for use in explosive atmospheres are equipped with thermostats and cut-outs. The cut-out is set to the maximum surface tem-perature permitted for the particular ignition-temperature group and then sealed. These heaters comply with the VDE specifications 0170 and 0171. The heaters have been offi-cially approved.

Leistung und Anschlußspannung sind dem ,,Maßbild-Text" zu entnehmen.

For rating and supply voltage, please refer to the text in the ,,Dimension drawing”.

Page 82: Generator Manual

s

567 Seite/Page 2

Fig. 2 Ausführungsbeispiel von montierten Rohrheizkörpern Fig. 2 Tubular anti-condensation heaters (example)

Fig. 3 Heizkörper, eingebaut in einer explosionsgeschützten Ma-schine Fig. 3 Heater installed in a machine for use in explosive atmosphe-res

Montage Installation Anschluß Connection Die Anschlußleitungen sind in einem Sekundärklemmen-kasten oder an eine Klemmenleiste geführt. Der Anschluß der Netzleitungen ist nach dem gültigen Schaltplan vorzu-nehmen (s. a. ,,Maßbild").

The heater connecting leads are brought to a secondary terminal box or to a terminal block. The supply leads should be connected according to the applicable circuit diagram (also refer to the ,,Dimension drawing").

Werden die Heizkörper explosionsgeschützter Maschinen erst auf der Baustelle direkt angeschlossen, ist mittels Steckschlüssel der Anschlußkastendeckel zu öffnen und der Anschluß nach einliegendem Wirkschaltplan, unter Be-achtung der Betriebsanleitung des Heizkörperherstellers, vorzunehmen.

Should the heaters of machines for use in explosive atmos-pheres only be connected on site, this is to be done by opening the terminal box cover using a socket wrench and proceeding as indicated on the enclosed wiring diagram, following the operating instructions for the tubular heaters.

Achtung! Vorgesehene Standorterdung unbedingt an-schließen. Bei Drehstromanschluß ist darauf zu achten, daß auch die Steuerseite elektrisch angeschlossen wird.

Important: Connect to earthing system. With three-phase connection also make sure that the control circuit is cor-rectly connected.

Einschalten Switching on Die Stillstandsheizung darf während des Betriebes der e-lektrischen Maschine nicht eingeschaltet sein. Deshalb ist eine Verriegelung erforderlich, die verhindert, daß die Ma-schine bei eingeschalteter Heizung in Betrieb genommen werden kann.

The anti-condensation heater must be switched off when the machine is running. An interlocking circuit is therefore necessary which prevents the machine from being started while the heater is switched on.

Umgekehrt empfiehlt es sich, das Einschalten der Still-standsheizung vom Abschalten der Maschine abhängig zu machen.

On the other hand, it is recommended that switching on of the heater be made dependent on the shut-down of the machine.

Wartung Maintenance Austausch Replacement Bei einem Austausch defekter Stillstandsheizungen nur solche gleicher Ausführung verwenden.

When replacing defective heating tubes, only use tubes of the same type.

Achtung! Dies gilt insbesondere bei explosionsgeschützten Maschinen.

Important: This is of special importance with machines for use in explosive atmospheres.

Es wird empfohlen, Ersatzheizkörper vom Herstellerwerk der Maschinen zu beziehen. Bei Bestellung Maschinentyp und Fabriknummer angeben. Beide Angaben sind aus dem Leistungsschild ersichtlich.

lt is recommended that spare heating tubes be ordered from the machine manufacturer stating type and serial number which can be taken from the rating plate.

Beim Einbau darauf achten, daß explosionsgeschützte Heizkörper wieder in der gleichen Lage eingebaut und an-geschlossen werden, da sonst die Funktion der Regler und Begrenzer beeinträchtigt wird.

New heaters for use in explosive atmospheres must be in-stalled in the same position and connected in the same way as the old ones to ensure proper functioning of the thermo-stats and cut-outs.

Reinigung Cleaning Bei den entsprechenden Maschinenrevisionen ist eine Rei-nigung von Schmutz- und Staubablagerungen sowie eine Funktionsüberprüfung vorzunehmen.

Remove dirt and dust deposits from the heaters and test for proper functioning when machine inspections are carried out.

© Siemens AG Bestell-Nr./Order-No. D 567-0502 de-en All Rights Reserved Alle Rechte vorbehalten Printed in Germany

Page 83: Generator Manual

DW 8692-0106 74 Seite/Page 1

Luft-Wasser-Kühler Air-to-Water Cooler Betriebsanleitung / Instructions

Beschreibung Description Der Luft-Wasser-Kühler ist in der nachfolgenden Druckschrift der Herstellerfirma beschrieben. Die technischen Angaben sind im Maßbild-Text enthalten.

The air-to-water cooler is described in the following leaflet of the manufacturers. The technical data will be found in the legend of the dimension drawing.

Die Kühlerwerkstoffe sind optimal für die Wasserver-hältnisse gewählt, für die der Kühler bestellt wurde. Für andere Wasserverhältnisse kann er nicht ohne weiteres eingesetzt werden.

The materials of the cooler have been selected for the water conditions for which the cooler has been ordered. It cannot be used indiscriminately for other water conditions.

Montage Installation

Der Luft-Wasser-Kühler ist in den Gehäuseaufsatz eingeschoben und mit Spannlaschen befestigt. Unter dem Kühlerelement ist eine Auffangwanne für Kon-denswasser eingebaut. Durch je eine Bohrung an den Längsseiten der Maschine, die durch Sechskant-schrauben verschlossen sind, kann ein möglicher Kondenswasserstand kontrolliert werden.

The air-to-water cooler is inserted in the top-mounted casing and secured with clamping straps. Below the cooler is a collection tray for condensed water. The level of any eventual condensed water can be checked through a hole on each side of the machine which is closed by a hexagon screw plug.

Die Öffnung auf der dem Kühlereinschub gegenüber liegenden Seite ist gleich groß und durch einen Deckel verschlossen. Wird der Deckel abgenommen, kann die Wasserkammer demontiert werden.

The opening at the end opposite to the cooler insert is of equal size and closed by a cover. After removing this cover, the water box can be removed.

Korrosionsschutz Corrosion protection

Allgemeines General Rohre aus Kupfer und Kupferlegierungen müssen auf der Kühlwasserseite Schutzschichten aufbauen, damit eine ausreichende Korrosionsbeständigkeit erreicht wird.

Tubes made of copper and copper alloys must build up protective layers on the cooling-water side to achieve sufficient corrosion resistance.

Schutzschichtbildung und -erhaltung ist im wesent-lichen von der Inbetriebsetzung und den späteren Betriebsbedingungen abhängig. Nur eine dichte, fest-haftende Schutzschicht kann vor Korrosionsangriff schützen.

The formation and preservation of the protective layers depends essentially on the conditions prevailing during commissioning and subsequent operation. Protection against corrosion is only provided if the covering layers are dense and adhere well.

Page 84: Generator Manual

s

8692 Seite/Page

2

Inbetriebsetzung Commissioning Die Zeit der Inbetriebsetzung ist als Einfahrphase für die Schutzschichtbildung ausschlaggebend. Nach Mög-lichkeit soll für mindestens zwei Monate ein konti-nuierlicher Betrieb mit der Kühlwasser-Nennmenge erfolgen (siehe Maßbild-Text).

The commisioning period is decisive for the initial formation of the protective layer. If possible, there should be continuous operation with the nominal cooling water flow for at least two months (see dimension drawing legend).

Zur weitgehenden Verhinderung von Ablagerungen bzw. Störung der Schutzschichtbildung darf die im Maßbild-Text angegebene Kühlwassermenge nur um + 10% bzw. - 20% geändert werden.

In order to prevent deposits as far as possible and to avoid inhibiting the formation of protective layers, the cooling water flow rate given in the dimension drawing legend should not be varied by more than 10% or -20%.

Je aggressiver ein Kühlwasser ist (z. B. hoher Gehalt an Chloriden, Sulfaten, suspendierten Stoffen) um so notwendiger wird ein kontinuierlicher Betrieb für die homogene Schutzschichtbildung. Zur schnelleren Aus-bildung einer Schutzschicht ist ein möglichst hoher O2-Gehalt erforderlich. Da dies bei der Inbetriebsetzung einer Anlage nicht immer gewährleistet ist, empfiehlt es sich, den Kühler bereits vor Inbetriebnahme der Anlage mit Kühlwasser zu beaufschlagen und Schutzschichtbetrieb zu fahren.

The more corrosive the cooling water (e.g. high levels of chlorides, sulphates, suspended matter), the more necessary it is to have continuous operation in order to obtain a homogeneous protective layer. The highest possible level of O2 is necessary for rapid formation of the protective layer. Since this cannot always be ensured when a plant is being commissioned, it is recommended that cooling water be passed through the cooler before commissioning of the plant for the purpose of protective layer formation.

HINWEIS NOTE Sollten sich unvermeidbare Betriebsunterbrechungen ergeben, oder entsteht zeitlich ein Abstand zwischen dem Füllen mit Wasser und dem Normalbetrieb sind die beschriebenen Maßnahmen unter „Stillstand” zu beachten.

In the event of unavoidable interruptions of operation or should some time elapse before filling with water and the beginning of normal operation the measures described under ”Standstill periods” should be ob-served.

Es ist selbstverständlich, dass vor der Inbetriebsetzung eine sorgfältige Reinigung des Kühlwasserzulaufsys-tems zu erfolgen hat. Sollten Fremdkörper im Kühl-wasserzulaufsystem nicht mit Sicherheit vermeidbar sein, müssen die Rohre kontrolliert und bei Ansatz von Fremdkörpern gereinigt werden

It is obvious that the cooling water supply system must be thoroughly cleaned before commissioning. If the presence of foreign bodies in the water supply system cannot be excluded with certainty, the piping must be checked and then cleaned should foreign bodies be detected.

Dauerbetrieb Continuous operation Der Dauerbetrieb mit der im Maßbild-Text angege-benen Kühlwassermenge ist für den Erhaltungszustand optimal. Eine größere Kühlwassermenge oder eine örtliche Querschnittsverengung (z. B. Fremdkörper), die zu einer Erhöhung der Kühlwassergeschwindigkeit führen, zerstören die Schutzschichten durch Erosion, die zuerst auf der Kühlwassereintrittsseite der Kühlrohre in Erscheinung tritt.

Continuous operation with the cooling water flow rate given in the dimension drawing legend is optimal for proper care of the cooler. A higher cooling water flow rate or a local constriction (e.g. foreign bodies) which lead to an increase in the cooling water velocity, will result erosion of the protective layers which appears initially at the cooling water inlet of the cooling tubes.

Es soll auch nicht mit einer zu niedrigen Geschwindig-keit gefahren werden, da sonst die Gefahr von Ablage-rungen aus dem Kühlwasser besteht.

The velocity should not be too low to avoid deposits from the cooling water.

Ablagerungen in den Kühlrohren stören die Schutz-schichtbildung erheblich und können eine bereits vor-handene Schutzschicht durch Korrosion zerstören. Ab-lagerungen sind Abscheidungen fester Schwebstoffe aus dem Kühlwasser. Eine Reinigung mittels Handrei-nigungsbürste bzw. Hochdruckreinigungsmaschine ist erforderlich. Hinsichtlich der Dauer der Reinigungspe-rioden und der Intervalle sind die Betriebserfahrungen maßgebend. Allgemein gültige Richtlinien können deshalb nicht gegeben werden.

Deposits in the cooler tubes impair protective layer formation considerably and can also destroy an existing protective layer by corrosion. Deposits normally arise from suspended solid matter in the cooling water. The tubing must then be cleaned using a hand brush or a high-pressure cleaning machine. Operating experience will determine the duration and frequency of cleaning. Generally applicable guidelines cannot therefore be given.

Page 85: Generator Manual

s

8692 Seite/Page

3

Durch Kontrollieren der Berohrung bei Stillständen soll sich der Betreiber ein Bild über das Verhalten der Kühler machen und Erfahrungen mit dem zur Verfü-gung stehenden Kühlwasser sammeln.

The operator will have to form his own opinion as to the behaviour of the cooler by inspecting the tubing during standstill periods and by gathering experience with the available cooling water.

Häufig verschmutzen die Kühlrohre auch durch das Wachstum von Mikroorganismen, meist schleimigen Bakterien, die durch eine mechanische Rohrreinigung nicht immer beseitigt werden können, sondern z. B. eine Stoßchlorierung mit 2 bis 3 mg Cl2/l erfordern. In besonders hartnäckigen Fällen kann die Chlorkon-zentration ohne Gefährdung der Rohrwerkstoffe bis 10 mg Cl2/l erhöht werden.

The cooling tubes frequently become fouled also due to the growth of micro-organisms, mainly slimy bacteria, which cannot always be removed by mechanical cleaning but may require, for example, chlorinating with a concentration of 2 to 3 mg Cl2/l. In particularly stubborn cases, the chlorine concentration can be increased up to 10 mg Cl2/l.

Stillstände Standstill periods Stillstände sind für Rohre aus Kupfer und Kupfer-legierungen besonders gefährlich, wenn die Schutz-schicht sich noch nicht gebildet hat oder aber die Gefahr ihrer Zerstörung durch Korrosion unter Ab-lagerungen besteht.

Standstill periods are particularly dangerous for tubes made of copper and copper alloys if the protective layer has not yet been formed or if they are likely to be destroyed by corrosion under deposits.

Bei Betriebsunterbrechungen oder Ausfall der Kühl-wasserversorgung bis zu drei Tagen, können die Kühler mit Kühlwasser gefüllt bleiben, wenn

In the event of operational outages or failure of the cooling water supply for periods up to three days, the coolers may remain filled with cooling water when the following conditions are satisfied

Rohre frei von Ablagerungen sind. Tubes are free from deposits Absperrarmaturen zum Schließen vorhanden sind

und System entlüftet wurde. Shut-off valves are fitted and system has been

vented. keine Gefahr besteht, dass das Kühlwasser ge-

frieren könnte. Cooling water is not likely to freeze.

Werden die Bedingungen nicht erfüllt, muss When these conditions are not satisfied: das Kühlwasser abgelassen werden. Cooling water must be drained. das Rohrsystem gereinigt, mit sauberem Wasser

gespült und mit warmer, vorgetrockneter Luft getrocknet werden.

Tubing must be cleaned, flushed out with clean water and dried with hot, pre-dried air.

Bei Stillständen von mehr als drei Tagen sind die Kühler wie vorher bei nicht erfüllter Bedingung zu behandeln.

In the case of standstill periods lasting longer than three days, the coolers should be treated as described above for non-satisfied conditions.

Für Stillstände bis zu drei Tagen ist auch der Betrieb mit kleineren Kühlwassermengen bis 20% (Schleich-strömung) zulässig, damit Ablagerungen in den Rohren vermieden werden. Diese Maßnahme ist besser als ein absoluter Stillstand des Kühlwassers in den Rohren, da Fäulnisprodukte vom Ort ihrer Entstehung fortgespült werden.

In the case of standstill periods up to three days it is also permissible to operate with lower cooling water flow rates up to 20% to avoid the accumulation of deposits in the tubes. This measure is better than absolute standstill of the cooling water in the tubes since any products of decay are flushed away from where they originate.

© Siemens AG Bestell-Nr./Order-No. DW 8692-74 0106All Rights Reserved Alle Rechte vorbehalten Printed in Germany

Page 86: Generator Manual
Page 87: Generator Manual
Page 88: Generator Manual
Page 89: Generator Manual
Page 90: Generator Manual

2008-04-21

!"#$%$#$&

'(

)$%*+# ,-.+/0

/($%$%

8.10.1.0 bp

1

Motor/Generator Cooler from Coiltech

Id CZ 8012-22,7 one cooler.

______________________________________________________________________________________________Air Capacity 183 kW

Flow rate 8.5 m³/s (48°C)

Temperature in 67.5 °C

Temperature out 48.0 °C

Absolute pressure 1013 hPa

Pressure drop 106 Pa

Velocity 3.4 m/s

______________________________________________________________________________________________Cooling medium Water

Flow rate 22.7 m³/h (32°C)

Temperature in 32.0 °C

Temperature out 39.0 °C

Pressure drop 78 kPa

Velocity 2.3 m/s

______________________________________________________________________________________________Dimensions Overdesign 7 %

Tube length 2340 mm

Finned width 1100 mm

Nozzle size 2 1/2" ANSI B 16.5 150LB

No. of tube rows 3

Fin pitch 2.5 mm

Tube material Copper-Nickel

Fin material Aluminium

Removable header Rilsan coated steel

Casing material Galvanized steel

Tube plates Brass

Dry weight / Internal volume 242/41 kg/l

Copper content 116 kg

No of tubes 99

Cooling surface 162 m²

Max op. pressure 0.6 MPa

Test pressure 0.9 MPa

Max op. temperature 100 °C

______________________________________________________________________________________________

Ordering code QLKE-234-110-3-2-4-23-3-8-X

X= 0,15 mm fins.

Page 91: Generator Manual

2008-04-21

!"#$%$#$&

'(

)$%*+# ,-.+/0

/($%$%

8.10.1.0 bp

2

Motor/Generator Cooler from Coiltech

Id CZ 8012-22,7 one cooler.

______________________________________________________________________________________________

______________________________________________________________________________________________

Ordering code QLKE-234-110-3-2-4-23-3-8

Page 92: Generator Manual
Page 93: Generator Manual
Page 94: Generator Manual

s

D1074g-0312 de-en 1074 Seite/Page 1

Trocknen von Wicklungen Drying of Windings Allgemeines General Siemens-Isolierungen MICALASTIC® sind grundsätz-lich unempfindlich gegen Feuchte. Anschlussklemmen und während der Montage eingefügte Stäbe, Spulen oder Verbindungen, die nicht voll der Isoliertechnik der übrigen Wicklung entsprechen, können jedoch durch Feuchtigkeit gefährdet sein. Es kann sich auch durch Transport, Lagerung, Bauarbeiten oder durch längere Stillstandszeit innerhalb der Maschine ein Feuchtig-keitsfilm auf den Oberflächen gebildet haben, der vor einer Inbetriebnahme durch eine der nachfolgend be-schriebenen Trocknungsmethoden zu beseitigen ist.

Siemens MICALASTIC® insulation is basically not af-fected by moisture. Terminals as well as conductor bars, coils or connections fitted during the installation that are not insulated to the same degree as the rest of the winding can, however, be endangered by mois-ture. Shipping, storage, construction work or a long period of standstill can cause a film of moisture to form inside the machine on the surface of the insula-tion which must be dried before commissioning by one of the methods described here.

Da ein Feuchtigkeitsfilm auf der Isolierung im Innern von Maschinen visuell nicht immer festgestellt werden kann, sind zusätzliche Beurteilungskriterien - wie z. B. Isolationswiderstand und Nachladezahl -zu beachten.

Because a film of moisture on the insulation inside the machine cannot always be visually detected, other detection methods such as insulation resistance and polarization index must be used.

Der Isolationswiderstand ist in jedem Fall zu bestim-men, da aus den Messwerten Aussagen über den Zu-stand der Wicklung abgeleitet werden können. Die er-mittelten Werte protokollieren und - falls vorhanden - mit früheren Werten vergleichen.

The insulation resistance should always be deter-mined because information on the condition of the winding can be derived from this. Record the meas-ured values and compare them with earlier values, if available.

Bei der Trocknung wird durch Erwärmung der Wick-lung die unerwünschte Oberflächenfeuchtigkeit besei-tigt. Werden bei Maschinen einzelne Wicklungsteile (z. B. beim Schließen der Teilfuge) am Montageort einge-baut, sind diese vor dem Lackieren vorzutrocknen, vorzugsweise mit trockener Warmluft.

During the drying process the surface moisture is driven off by heating the windings. If individual por-tions of the windings are installed at site, for example after closing the stator joints, these parts must be dried before varnishing, preferably by hot, dry air.

Für Mikafolium-Isolierung wird nach längerer Still-standszeit immer eine Trocknung notwendig sein.

In the case of mica folium insulation, drying is always necessary after a long standstill.

Ist eine Stillstandsheizung vorhanden, so ist diese so-bald wie möglich in Betrieb zu nehmen, um Eindringen bzw. Niederschlagen von Feuchtigkeit zu verhindern.

Where anti-condensation heating is fitted, this should be switched on as early as possible in order to pre-vent the ingress or condensation of moisture.

Die Läuferwicklung wird normalerweise ausreichend durch die warme Umgebungsluft miterwärmt, wenn der Ständer bei der Trocknung Strom führt. Eine Trock-nung bei laufender Maschine ist einer solchen im Still-stand vorzuziehen.

The rotor winding is normally heated sufficiently by the surrounding air when the stator is heated by passing current through it. Drying the machine whilst running is preferable to drying at standstill.

Isolationswiderstand von Hochspannungswicklungen

Insulation resistance of HV windings

Der Isolationswiderstand gibt Aufschluss über Ober-Flächen-Feuchtigkeitsgehalt, Verschmutzung und evtl. Beschädigung der Wicklungen. Einzelheiten über die Durchführung der Messung sind in „Messen des Isolationswiderstandes elektrischer Maschinen“ 1075 enthalten.

The insulation resistance provides information about the surface moisture content, contamination and any damage to the windings. The measuring procedure is detailed in "Measuring the Insulation Resistance of Electrical Machines" 1075.

Bei Hochspannungswicklungen sollen folgende Werte gemessen werden:

With HV windings the following values should be measured:

1 Isolationswiderstand jedes Stranges gegen geer- detes Gehäuse und die anderen geerdeten Strän- ge.

1 Insulation resistance of each phase to earthed frame and to the other earthed phases.

2 Isolationswiderstand aller Wicklungsstränge gegen geerdetes Gehäuse.

2 Insulation resistance of all winding phases to earthed frame.

Der Isolationsmesser soll dabei eine Spannung von 500 bis 3000 V, vorzugsweise 1000 V, abgeben. Die Temperatur der Wicklung ist über die eingebauten Temperaturfühler (normalerweise Widerstandsthermometer) zu messen.

The insulation resistance tester should produce a voltage of 500 to 3000 V, preferably 1000 V. The temperature of the winding is measured by built-in sensors (normally resistance thermometers).

Nachladezahl Polarization index In Abhängigkeit von der Zeit sind nach Anlegen der Prüfspannung die Werte des Isolationswiderstandes bei 30s, 1 min und fortlaufend jede Minute bis 12 min zu notieren.

The insulation resistance is taken at 30s, 1 min and then at every minute up to 12 min after the test voltage has been applied.

Page 95: Generator Manual

s

1074 Seite/Page 2

Die lange Messdauer ist durch den Absorptionsstrom bedingt, der seine Ursache in der Polarisation des Die-lektrikums hat. Das dielektrische Absorptionsverhältnis wird auch zur Kennzeichnung des Zustandes der Isolation von Wicklungen herangezogen. Es ist das Verhältnis von zwei Ablesungen des Isolationswiderstandes nach verschiedenen Zeiten während der gleichen Messung, d. h. auch gleicher Temperatur (z. B. R60s Isolationswert nach 60 s abgelesen).

The length of the measurement period is determined by the absorption current which is caused by the po-larization of the dielectric. The dielectric polarization index is also used as an indication of the condition of the winding insulation. It is the ratio of two readings of the insulation resistance taken at specified time intervals during the same measurement, i.e. at the same temperature (R60s = insulation resistance reading 60 s after the test voltage has been applied).

s

s

RR

30

60 R 10minR 1min

s

s

RR

30

60 R 10minR 1min

PI oder N PI or N

Richtwerte

PI = Polarisationsindex N = Nachladezahl

Trocknen Comparative rating

PI or N = Polarization index

Drying

Gefährlich - < 1 ja Dangerous - <1 yes Schlecht < 1,1 1 bis 1,5 ja Poor <1.1 1 to 1.5 yes Fraglich 1,1 bis 1,25 1,5 bis 2 empfehlenswert Questionable 1, 1 to 1.25 1.5 to 2 recommended Brauchbar 1,25 bis 1,4 2 bis 3 nein Satisfactory 1.25 to 1.4 2 to 3 no Gut 1,4 bis 1,6 3 bis 4 nein Good 1.4 to 1.6 3 to 4 no Ausgezeichnet

> 1,6 >4 nein

Very good > 1.6 >4 no

Der Polarisationsindex oder die Nachladezahl soll -wenn die Wicklung getrocknet werden muss - vor und nach dem Trocknen bei gleicher Temperatur bestimmt werden, da eine gewisse Temperaturabhängigkeit bestehen kann.

The polarization index should be determined before and after drying - in the event that the winding requires drying - at the same temperature because to a certain extent the index is temperature dependent.

Mindestwert des Isolationswiderstandes Minimum value of the insulation resistance Der Isolationswiderstand soll einen gewissen Mindestwert haben, den die Fig. 1 für die gesamte Wicklung gegen Erde, in Abhängigkeit von der Wicklungstemperatur zeigt. Um die Abhängigkeit des Isolationswiderstandes von der Maschinengröße zu eliminieren, ist hier als Ordinate das (konstante) Produkt aus Wicklungskapazität und Isolationswiderstand, die sogenannte Isolationszeitkonstante τ = R10 x C in MΩ, µF = s aufgetragen. Der Isolationswiderstand ist dabei der 10-min-Wert, der als zeitlicher Endwert bei der Messung angesehen wird.

The insulation resistance of the complete winding to earth should have a certain minimum value which is shown in Fig. 1 as a function of the winding temperature. In order to eliminate the dependence of the insulation resistance on the size of the machine, the ordinate is formed by the (constant) product of the winding capacitance and the insulation resistance which is known as the insulation time constant τ = R10 x C in MΩ, µF = s The insulation resistance is the 10 min value which is considered to be the final measurement value.

Unterliegen Maschinen ausländischen Normen, müssen selbstverständlich darin enthaltene Mindestwerte eingehalten werden.

If machines are subject to foreign standards, the minimum values contained therein must be observed.

Page 96: Generator Manual

s

1074 Seite/Page 3

B U

mre

chnu

ngsf

akto

r für

Bez

ugst

empe

ratu

r 75°

C →

C

onve

rsio

n fa

ctor

for r

efer

ence

tem

pera

ture

of 7

5°C

Fig. 1 A Is

olat

ions

zeitk

onst

ante

/Insu

latio

n tim

e co

nsta

nt

10 =

R10

C

Mindestwert der Isolationszeitkonstante und Beispiel einer Trocknung

Nuttemperatur/Slot temperature Minimum value of the insulation time constant and example of a drying process

In bestimmten Fällen kann auch mit Hinweis auf die IEEE-Empfehlung St 43-1974 für den Mindestwert des Isolationswider-standes die Formel R is,min = kV + 1 M angewendet werden, wobei R is,min der Wert bei 40°C und kV die Maschinennennspannung ist.

In certain cases the formula R is,min = kV + 1 in M may also be used with reference to IEEE recommendation St 43-1974 for the minimum value of the insulation resistance where R is,min is the value at 40°C and kV is the rated machine voltage.

Die Wicklungskapazität C (alle 3 Stränge gegen Erde) wird einer evtl. durchgeführten tan-δ-Messung entnommen oder über die Stromaufnahme an 220 V Wechselspannung (50 Hz bzw. 60 Hz) oder mit einer C-Messbrücke bestimmt.

C = ω⋅U

J

The winding capacitance C (all three phases to earth) may be determined from a loss-tangent test if carried out, by measuring the current input at 220 V AC (50 Hz or 60 Hz) or by means of a capacitance measuring bridge.

C = ω⋅U

J

In der Praxis genügt es an kleinen und mittleren Maschinen, d. h. bis ca. 20 MVA, den Mindest-Isolationswiderstand nach der angegebenen IEEE-Formel anzusetzen. Der Messwert R 1 min (d.h. 1 min Messdauer) ist ausreichend.

In practice, it is sufficient with small and medium machines, i.e. up to approx. 20 MVA, to use the minimum insulation value in accordance with the IEEE formula given above. The measured value R 1 min (i.e. 1 minute value) is sufficient.

Für die Temperaturabhängigkeit des Isolationswiderstandes kann man in grober Annäherung mit der Faustformel arbeiten, dass 10 K Erwärmung den Widerstand halbieren bzw., dass nach Abfall der Temperatur um 10 K sich der Isolationswiderstand verdoppelt.

To determine the insulation resistance at other temperatures, the rule of thumb can be used, i.e. for 10 K temperature rise the insulation resistance is halved and for 10 K temperature drop it is doubled.

Die genaue Umrechnung ist aus Fig. 1 zu entnehmen (s.a. unter „Trocknungsmethoden“). Nach Erreichen des Mindest-Isolationswiderstandes kann die Trocknung beendet werden.

The exact conversion can be seen in Fig. 1 (see also "Drying Methods"). Drying can be stopped when the minimum insulation resistance is reached.

Falls eines der beiden Beurteilungskriterien - Polarisationsindex und Isolationswiderstand - zu niedrige Werte hat, sollte die Wicklung erst einmal visuell auf Feuchtigkeit, Verschmutzung und Beschädigung untersucht werden.

If either of the measurement methods - polarization index or insulation resistance - produces values that are too low, the winding should initially be visually examined for moisture, contamination or damage.

Page 97: Generator Manual

s

1074 Seite/Page 4

Können dabei Mängel nicht festgestellt oder nicht be-hoben werden, so muss eine Trocknung vorgenom-men werden. Eine Trocknung ist natürlich auch dann erforderlich, wenn trotz guten Polarisationsindexes und guten Isolationswiderstandes offensichtlich Feuchtig-keit an der Wicklung vorhanden ist.

If deficiencies cannot be detected or cannot be dealt with then the winding should be dried. Of course, dry-ing is also necessary when, in spite of good polariza-tion index and insulation resistance values, moisture is visible on the windings.

Niedrige Werte des Isolationswiderstandes bei neuen oder reparierten Wicklungen können allerdings auch durch noch unvollständig ausgehärtete Harzsysteme verursacht sein. Der endgültige hohe Isolationswider-stand wird dann erst nach längerer Betriebszeit (einige hundert Stunden) erreicht. Bei zweifelhaften Messer-gebnissen sind deshalb unbedingt die Ursachen der Abweichungen zu suchen.

Low insulation resistance values of new or repaired windings can also be caused by resin before it has completely cured. In this case the final insulation resis-tance value is only attained after an extended operat-ing period (several 100 hours). If doubtful measure-ment results are obtained, it is important to determine the cause.

Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und ggf. auch Trocknung durchgeführt werden.

In any case, whenever low insulation resistance val-ues are obtained, carry out thorough cleaning and also, if required, drying.

Isolationswiderstand von Erreger- und Nieder-spannungswicklungen

Insulation resistance of field and LV windings

Niederspannungswicklungen in MICALASTIC- Ausfüh-rung sind im wesentlichen genauso zu beurteilen wie Hochspannungs-Wicklungen. Hier kann der Isolati-onswiderstand bei höheren Temperaturen im kΩ -Bereich liegen; es ist deswegen ratsam, mit Span-nungen <500 V, z. B. 100 V, zu messen. Bei Läufer-wicklungen wird der Isolationswiderstand gegen die geerdete Welle gemessen.

For LV windings using MICALASTIC insulation, basi-cally the same applies as for HV windings. Here, the insulation resistance can be in the kΩ range at higher temperatures; it is therefore advisable to carry out the measurement with voltages less than 500 V, for ex-ample 100 V. The insulation resistance of rotor wind-ings is measured relative to the earthed shaft.

Polwicklungen von Synchronmaschinen Field windings of synchronous machines Erregerwicklungen von Synchronmaschinen sollen - besonders wenn es sich um einlagige Wicklungen handelt - während ihrer Betriebszeit bei Betriebstem-peratur einen Isolationswiderstand von 0,1 MΩ nicht unterschreiten; andernfalls sind die Wicklungen zu säubern bzw. zu trocknen. Besondere Sorgfalt ist den Polverbindungen und den Schleifringzuleitungen zu widmen.

During operation, the insulation resistance of the field windings of synchronous machines should not fall be-low a value of 0.1 MΩ at operating temperature - par-ticularly in the case of single-layer windings. If the in-sulation resistance does fall below this value the wind-ings must be cleaned and/or dried. Special attention should be paid to the pole connections and the slipring leads.

Im Neuzustand soll der Wert des Isolationswiderstan-des pro Pol bei Raumtemperatur Ris > 200 MΩ sein. Dementsprechend ergibt sich für die gesamte Wick-lung ein Mindestwert von Ris,min >

Polzahl200 MΩ. Nach

längerer Lagerung bzw. längerem Betrieb soll der Iso-lationswiderstand erst bei kleiner Spannung (500 V) gemessen werden, damit durch die Messspannung nicht Schäden an der (evtl. nachzubehandelnden) Iso-lierung entstehen.

When new, their insulation resistance per pole should be Ris > 200 M at room temperature. Accordingly, this results in a minimum value for the whole winding of Ris,min >

poles of No.200 MΩ. After prolonged storage or

after prolonged operation the insulation resistance should initially be measured with a low voltage (< 500 V) so that damage is not caused to the insula-tion as a result of the test voltage. If such damage does occur it must be repaired.

Gleichstrommaschinen DC machines Bei Gleichstromankern mit der Vielzahl der offen lie-genden Wicklungsenden und den daran angeschlos-senen Kommutatorlamellen gibt naturgemäß der ge-messene Isolationswiderstand in erster Linie den Zu-stand der zwischen den nicht isolierten Leiterteilen und Eisen liegenden Kriechstrecken auf der Isolationsober-fläche an. Das gilt auch für die Hauptstromwicklungen (Kompensations-, Wendepol- und Reihenschlusswick-lung) im Magnetgestell. Deswegen kann der Mindest-wert des Isolationswiderstandes nur im Neuzustand gefordert werden. Schon Transport und Lagerung kön-nen die Isolationswerte erheblich verringern. Nach län-geren Betriebs- bzw. Stillstandszeiten kann auch nach sorgfältiger Reinigung und Trocknung der ursprüngli-che Isolationswert nicht mehr erreicht werden; Folge-rungen auf den Zustand der Isolierung sind aus oben

The insulation resistance of DC armatures,which have a large number of open winding ends connected to commutator segments, is first and foremost a measure of the condition of the leakage paths over the insula-tion surface between the non-insulated conducting parts and the armature body. This is also true of the main windings (compensating, interpole and series windings) on the yoke. Thus the minimum value of the insulation resistance can only be specified in the new condition. Even shipment and storage can considera-bly reduce insulation resistance values. After extended periods of operation or standstill, the original value of the insulation resistance will no longer be attained even after careful cleaning and drying. Conclusions regarding the condition of the insulation are for the abovementioned reasons difficult.

Page 98: Generator Manual

s

1074 Seite/Page 5

oben genannten Gründen schwierig. Als grober Richtwert sollte bei Gleichstrommaschinen ein Isolationswiderstand von 1000 Ω/Volt Betriebs-spannung bei 75°C angestrebt werden (entspricht ca. 20 kΩ/V bei 25°C).

A typical value of roughly 1000 Ω/Volt of operating voltage should be expected for DC machines at 75°C (corresponds to approx. 20 kΩ/V at 25°C).

Einige Betreiber begnügen sich auch mit 500 Ω/Volt. Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und gegebenenfalls auch Trocknung durchgeführt werden.

Some users are also satisfied with 500 ΩV. In any case, when poor insulation resistance values are ob-tained, carry out thorough cleaning and also, if re-quired, drying.

Die Feldwicklung der Gleichstrommaschine soll bei 75°C einen Isolationswiderstand von 1 MΩ nicht unter-schreiten.

The field winding insulation resistance of DC machines is not to fall below 1 MΩ at 75°C.

Trocknungsmethoden Drying methods Beim Trocknen von Wicklungen kann die Wärme auf drei Arten zugeführt werden:

For the purpose of drying windings, heat can be ap-plied in three ways:

1 Erzeugung von Verlustwärme in der Maschine selbst, d. h. im Kurzschlussbetrieb.

1 By producing heat losses in the machine itself, i.e. by operating the machine on short circuit.

2 Einspeisung von Strom aus fremden Energiequel-len zur Erzeugung von Verlustwärme in den Wick-lungen, z. B. mit Hilfe von Schweißumformern oder steuerbaren HochstromgIeichrichtern.

2 By feeding current from external energy sources to produce heat losses in the windings, e.g. with the aid of m.g. welding sets or controllable high-current rectifiers.

3 Warmluftzuführung nach entsprechender Abdeck- kung mit Zeltplanen, Holzverkleidungen usw.

3 By providing a flow of hot air after suitably covering with tarpaulins, wood cladding etc.

Bei allen Methoden muss natürlich darauf geachtet werden, dass ein Luftaustausch zum Abführen der Feuchtigkeit erfolgt.

With all these methods some air circulation must natu-rally be provided to allow the moisture to escape.

Als Beharrungstemperatur beim Trocknen ist eine Temperatur von ca. 60°C anzustreben.

A steady-state temperature of about 60°C is desirable for the drying process.

Dieser Wert soll jedoch erst nach ca. vier Stunden bei Micalastic und ca. acht Stunden bei Mikafolium von Beginn der Trocknung an erreicht werden. Die Strom-stärke in den Wicklungen bzw. die zugeführte Wär-memenge ist - angefangen von kleinen Werten unter Beachtung der Temperaturzunahme - so zu steigern bzw. einzustellen, dass diese Bedingung eingehalten wird.

However, this value should be reached not less then about four hours with Micalastic and about eight hours with micafolium after starting the drying process. The magnitude of the current in the winding or the quantity of heat applied should be controlled so as to fulfil this requirement, i.e. starting with low values and regulated according to the temperature rise.

(Bei wasserstoffgekühlten Maschinen wird wegen des Luftaustausches mit normaler Frischluft getrocknet, deswegen den Kurzschlussstrom wegen höherer Er-wärmung niedrig halten!)

(With hydrogen-cooled machines, normal fresh air is used for drying due to the air circulation. The short-circuit current must be kept low due to the increased temperature rise.)

Durchführungen und Stützer vor dem Trocknen mit trockenem Lappen säubern.

Bushings and post-type insulators should be cleaned with dry rags before drying.

Bei der Durchführung einer Trocknung wird entspre-chend der Fig. 1 nur der Isolationswiderstand der ge-samten Wicklung gegen Erde gemessen, und zwar der 10-min-Wert. Die Umrechnung des jeweiligen Isolati-onswiderstandes auf die Bezugstemperatur von 75°C erfolgt nach Kurve B.

During the drying process, only the insulation resis-tance of the whole winding to earth is measured, i.e. the 10 min value, according to Fig. 1. The insulation resistances are converted to the reference tempera-ture of 75°C from curve B.

Beispiel: Gemessen bei 40°C Ris,40 = 33 M, Ris,75 = 0,125 x 33 = 4,1 M

Example: Measured at 40°C Ris,40 = 33 M, Ris,75 = 0.125 x 33 = 4.1 M

Temperaturschwankungen während des Trockenbe-triebes vermeiden. Bei vollständig gekapselten Ma-schinen Abzugsmöglichkeit (Klappen, Deckel) für feuchte Luft schaffen und für saubere, möglichst tro-ckene Zuluft sorgen.

Avoid temperature variations during the drying proc-ess. With totally enclosed machines provision should be made (by removing covers, etc.) to permit the mois-ture to escape and for clean, dry air to enter.

Temperatur möglichst durch eingebaute Widerstands-thermometer (Nutthermometer) messen. Bei laufender Maschine zusätzlich Zu- und Abluft (Kalt- und Warm-luft) messen. Bei fehlenden Nutthermometern und in jedem Fall bei stehender Maschine, möglichst an den Wickelköpfen Alkoholthermometer befestigen. Maßge-bend ist die Temperatur an der räumlich höchsten Stel-le.

Measure the temperature, using the built-in resistance thermo-meters (slot thermometers) if possible. In addi-tion, in the case of running machines, measure the inlet and outlet (cold and hot air) temperatures. Where slot thermometers are not provided and, in any case, with stationary machines, install alcohol thermometers on the winding overhangs if possible. The most impor-tant measurement is the temperature at the highest point.

Page 99: Generator Manual

s

1074 Seite/Page 6

Quecksilberthermometer wegen Bruchgefahr nicht verwenden, bei Wechselstrom außerdem Fehlanzeige durch Wirbelströme. Unteres Ende der Thermometer zur besseren Wärmeübertragung mit Aluminiumfolie umwickeln und gegen Abkühlung mit Filz oder Watte bedecken. Bei Maschinen kann nicht von der Gehäu-setemperatur auf die Wicklungstemperatur geschlos-sen werden.

Mercury thermometers should not be used because of the danger of breakage and also because of incorrect readings resulting from AC induced eddy currents. Wind aluminium foil around the lower end of the ther-mometers to improve the thermal contact and cover with felt or cotton wadding to reduce the effects of cooling. Do not assume that the temperature of the machine housing is also the temperature of the wind-ing.

Die Temperaturerhöhung über der Umgebungstempe-ratur bei Maschinen ohne Widerstandsthermometer sollte außerdem aus der Zunahme des gemessenen Wicklungswiderstandes errechnet werden.

The rise in temperature above the ambient tempera-ture of machines without resistance thermometers should be calculated from the increase in the meas-ured winding resistance.

Faustregel: Je 10 K Temperaturerhöhung nimmt der Widerstand bei Cu um 4 % zu. Maschine nach been-detem Trockenbetrieb möglichst bald belasten, damit erneute Aufnahme von Feuchtigkeit verhindert wird. Falls eine Stillstandsheizung vorhanden, so ist diese natürlich nach beendeter Trocknung in Betrieb zu nehmen.

Rule of thumb: For every 10 K temperature rise the resistance of copper rises by 4 %. After completing the drying process, the machine should be loaded as soon as possible to prevent moisture from being re-absorbed. Where anti-condensation heating is pro-vided, this should naturally be put back into service after drying.

Kurzschlusstrocknung von Generatoren Short-circuit drying of generators Bei Generatoren sollte die Wicklung möglichst im Kurzschluss bei laufender Maschine getrocknet wer-den, damit keine Heißstellen durch Wärmestau entste-hen.

The windings of generators should preferably be dried with the machine running on short circuit to prevent hot spots being formed by heat accumulation.

Die dreipolige Kurzschlussverbindung so ausführen, dass der Nennstrom der Maschine keine nennenswer-ten Erwärmungen ergibt (Richtwert 1 A/mm²). Kurz-schlussverbindung möglichst unmittelbar an den Ge-neratorklemmen anbringen. Liegen zwischen Genera-tor

The three-phase short-circuit link should be designed so that the rated current of the machine does not cause the link to be noticeably heated (typical value 1 A/mm²). Connect the short-circuit link as close as pos-sible to the generator terminals. If circuit-

und Kurzschlussverbindung Leistungs- oder Trenn-schalter, muss verhindert werden, dass diese während des Trocknens geöffnet werden können. In diesem Falle käme die Maschine sofort auf Spannung. Im Be-reich der kurzgeschlossenen Wicklung liegende Span-nungswandler oder Kondensatoren abklemmen, da sie die Messung des Isolationswiderstandes verfälschen.

breakers or isolating breakers are in circuit between the generator and the short-circuit link, measures must be taken to ensure that they cannot be opened during the drying process. If this did occur, voltage would immediately appear at the generator terminals. Volt-age transformers or capacitors in the region of the short-circuited winding should be disconnected since they introduce errors into the insulation resistance measurement.

Bei der praktischen Durchführung der Kurzschluss-trocknung ist auf folgendes zu achten:

During the short-circuit drying of windings the following should be observed:

Spannungsreglerumschalter auf „Hand“ schalten. Bei Transipolerregung jeden Strang der Sekundärwicklung der Übertragerdrosseln einzeln kurzschließen. Verbin-dung der Oberspannungswicklung des Erregertrans-formators zur Generatorleitung unterbrechen und Se-kundärwicklung des Erregertransformators von Fremdnetz einspeisen. Vorsicht, Rückspannung!

Switch the voltage regulator changeover switch to "Manual". With Transipol excitation each phase of the secondary winding of the air-gap reactor is individually short-circuited. Break the connection between the ex-citation transformer higher-voltage winding and the air-gap reactors and feed the secondary winding of the excitation transformer from an external system. Beware - danger of feedback voltage.

In den ersten sechs bis acht Stunden (abhängig von Maschinengröße) Ständerstrom von etwa 0,5 JN an so weit steigern, dass 60°C Wicklungstemperatur nicht überschritten werden. Kühlwassermenge entspre-chend einstellen.

In the first 6 to 8 hours (depending on the size of the machine) increase the stator current from about 0.5 IN to a value such that the winding temperature does not exceed 60°C. Set the cooling-water flow accordingly.

Nennstrom nicht überschreiten. Überstromschutz ein-schließlich Entregungseinrichtung in Betrieb nehmen. Liegt Kurzschluss im Differentialschutzbereich, strom-durchflossene Stromwandlerkreise kurzschließen. Stündlich Nuttemperatur, Zu- und Ablufttemperatur und Generatorstrom notieren.

Do not exceed the rated current. Energize the overcur-rent protection including the de-excitation equipment. If the short circuit is in the zone of the differential pro-tection, short-circuit the current circuit of the current transformers. Record the slot temperature, inlet and outlet temperatures and the generator current every hour.

Page 100: Generator Manual

s

1074 Seite/Page 7

Der Fortgang der Trocknung ist durch wiederholte Messungen des Isolationswiderstandes - 3 Stränge gegen geerdetes Gehäuse - unter Beobachtung der Wicklungstemperatur zu überwachen (siehe Beispiel Fig. 1). Die Wicklung muss für diese Messung span-nungsfrei sein.

Monitor the progress of the drying process by re-peated measurement of the insulation resistance - three phases to earthed frame -while observing the winding temperature (see example Fig. 1). For this measurement the winding must be isolated.

Kurzschlusstrocknung von Asynchronmaschinen Short-circuit drying of induction machines Das Trocknen von asynchronen Schleifringläufermoto-ren im Kurzschluss erfordert besondere Vorkehrungen, da Kurzschluss hier die Einspeisung bei stillstehendem Läufer bedeutet. Der Läufer ist unmittelbar an den Schleifringen kurzzuschließen (z. B. mit Schraubzwin-gen) und gegen Drehung zu sichern. Bei den meisten Motoren bis 6,3 kV Nennspannung bietet sich eine Trocknung durch Speisung der Ständerwicklung aus dem Niederspannungs-Drehstromnetz an (220, 380 bzw. 500 V), falls dieses Netz stark genug ist. Auch wenn der sich einstellende Strom geringer als der hal-be Nennstrom ist, ist auf entstehende Wärmenester zu achten, da die Maschine still steht. Für einen ständigen Luftaustausch muss gesorgt werden. Der Läufer selbst soll etwa stündlich um 90° gedreht werden.

Special arrangements must be made when drying slipring induction motors by short-circuiting because in this case short circuit means feeding the rotor at standstill. The rotor must be short-circuited directly at the sliprings, for example by bolted clamps, and also mechanically locked to prevent rotation. Most motors up to 6.3 kV rated voltage can be dried by feeding the stator winding from a three-phase LV supply (220, 380 or 500 V) if the supply system can take the load. Even when the current setting is lower than half the rated current, make sure that hot spots are not formed due to the machine being stationary. Ensure that continu-ous air circulation is provided. The rotor should be turned through 90° about every hour.

Damit die feuchte Luft austreten kann, ggf. vorhandene Deckel, Verschlüsse oder ähnliches öffnen. Etwa vor-handene Kondens-Wasserlöcher auf der Unterseite des Motors öffnen.

In order to allow the moisture to escape, covers or the like should be opened. Where a drain plug is provided for water condensation on the underside of the motor this should be opened.

Ist ein Drehstromgenerator vorhanden, kann mit die-sem die Ständerwicklung des Schleifringläufermotors gespeist werden. Der Strom in der Ständerwicklung ist dann so einzustellen, dass ca. 60°C innerhalb von vier bis acht Stunden erreicht werden. Käfigläufermotoren können unter Beachtung der obigen Hinweise auf die-selbe Art getrocknet werden.

If a three-phase generator is available this can be used to supply current to the stator winding of the slipring motor. The current should be set so that a temperature of about 60°C is reached in a period of four to eight hours. Cage motors can also be dried by the abovementioned procedure.

Trocknen mit Schweißumformer Drying with welding sets Werden für die Erwärmung einer Maschinenwicklung Schweißumformer verwendet, dürfen diese nicht ohne weiteres parallelgeschaltet werden. Es ist nachzumes-sen, ob die Gleichspannung bei Leerlauf gleich ist. Die Erregerwicklung F1 – F2 aller parallel zu schaltenden Schweißumformer mit einem zusätzlichen Schalter gemeinsam ein- bzw. ausschalten, nachdem die Um-former drehstromseitig angelassen bzw. ausgeschaltet sind

If m.g. welding sets are to be used for drying machine windings certain precautions must be taken before connecting them in parallel. Measure the open circuit DC voltages to ensure that they are all equal. Connect the excitation windings F1 – F2 of all the welding sets required to operate in parallel through an additional switch. This allows all the field windings to be switched on or off together depending on whether the three-phase motors of the m.g. sets have been started or stopped.

Zulässigen Strom im Strang der Wicklung höchstens 50 % des Nennstromes einstellen, da die Lüftung fehlt. Strom und Spannung jedes Umformers messen (zu-lässige Grenzleistung beachten). Die einzelnen Strän-ge der Wicklung in Reihe oder parallel schalten. Bei Reihenschaltung der einzelnen Stränge diese unsym-metrisch (z. B. Plus an U1, U2 an V1 V2 an W1 W2 an Minus) schalten, um den axialen magnetischen Fluss in der Welle gering zu halten. Bei nicht herausgeführ-tem Sternpunkt müssen zwangsläufig zwei Stränge parallel in Reihe zum dritten Strang geschaltet werden.

Because there is no ventilation, adjust the maximum permissible current per winding phase to 50 % of the rated current. Measure the current and voltage of each m.g. set (observe permissible limits). Connect the indi-vidual phases of the winding either in series or paral-lel. With series connection connect the individual phases unsymmetrically (e.g. plus to U1, U2 to V1 V2 to W1 W2 to minus) in order to keep the axial magnetic flux in the shaft low. Where the neutral point is not brought out, two phases must inevitably be paralleled and connected in series to the third phase.

Anschlüsse etwa stündlich wechseln, damit sich die Wicklung gleichmäßig erwärmt. Bei offenem Stern-punkt stündlich den Isolationswiderstand jedes Stran-ges gegen Gehäuse messen.

Change the connection order about every hour so that the winding is evenly heated. With the neutral point open, measure the insulation resistance of each phase to frame hourly.

Gleichstrom vor dem Abschalten langsam herunter-steuern, da andernfalls wegen der Wicklungsinduktivi-tät starke Lichtbögen auftreten können.

Before switching off a direct current, the current should be gradually reduced, otherwise the winding induc-tance will cause heavy arcing.

Page 101: Generator Manual

s

1074 Seite/Page 8

Da bei stehender Maschine die Temperaturverteilung nicht der Verteilung bei Lüftung entspricht, 60°C Wick-lungstemperatur nicht überschreiten. Läufer (falls ein-gebaut) stündlich um 90° drehen.

Since the temperature distribution of a machine at standstill is different from that in the running condition, a winding temperature of 60° must not be exceeded. If the rotor is in position, turn it through 90° every hour.

Trocknen mit Warmluft Drying with hot air Falls die Verfahren 1 und 2 nicht anwendbar sind, muss mit Warmluft getrocknet werden, die von einer äußeren Energiequelle zur Verfügung gestellt wird.

If methods 1 and 2 cannot be applied, the machine must be dried with hot air obtained from an external heat source.

Naturgemäß kommt dieses Trocknungsverfahren hauptsächlich für Synchronmotoren und Gleichstrom-motoren in Betracht, bei denen eine Erwärmung über die eigenen Stromwärmeverluste nicht möglich ist oder die Schweißumformer nicht eingesetzt werden können.

This method of drying is usually adopted for synchro-nous motors and DC motors where direct heating by means of current losses is not possible or when an m.g. welding set cannot be used.

Die Heizkörper sind so anzuordnen, dass einerseits durch geeignete Abdeckungen die zu trocknende Wicklung im Warmluftstrom steht, andererseits aber nicht durch Wärmestau Wärmenester mit zu hohen Temperaturen entstehen, d. h. es muss eine Luftbe-wegung mit Luftaustausch zustande gebracht werden.

The heaters should be arranged so that by means of suitable covers the winding being heated is in the hot-air stream without concentrating the heat to the extent that excessive temperatures are reached. This requires that a continuous circulation and replacement of the air takes place.

Die Warmluft soll 80°C nicht überschreiten, beim Aus-tritt aus der Maschine soll sie noch 10 K über der Um-gebungstemperatur liegen..

The air inlet temperature should not exceed 80°C and the outlet temperature should be at least 10 K above the ambient air temperature.

Taupunktunterschreitung in der Maschine ist zu ver-meiden, d. h. am Austritt darf sich keine Feuchtigkeit niederschlagen.

Do not allow the air temperature within the machine to drop below the dew point, i.e. there must be no mois-ture condensation forming at the outlet.

Dieses Verfahren der Trocknung erfordert mehr als die beiden anderen Verfahren ständige Überwa-chung, da Brandgefahr besteht.

Because of the risk of fire this method of drying requires constant monitoring to a much larger ex-tent than the other two methods

Auch hier ist darauf zu achten, dass der Läufer stünd-lich um ca. 90° weitergedreht wird.

This method also requires that the rotor be turned through 90° about every hour.

© Siemens AG Bestell-Nr./Order-No. D 1074g-0312 de-enAll Rights ReservedAlle Rechte vorbehalten Printed in Germany

Page 102: Generator Manual

Siemens Electric Machines s.r.o.

Product documentation – Tightening torques 1F. v1.2 page 1/1 P 2-035 (09/06/05)

Tightening torques Synchronous generator Unless other specific information is given, the following tightening torques are valid for normal connections of fastening screws, bolts and nuts. Tightening torques in Nm a tolerance of ± 10% Tightening torques for bolts with strength class 8.8 (or A4-70) connecting components with high

material strength (e.g. grey cast, steel, cast steel) Size of a thread M4 M5 M6 M8 M10 M12 M16 M20 M24 M30 M36

Tightening torques (Nm)

3 5 8 20 40 70 170 340 600 1200 2000

Tightening torques for bolts with strength class 5.6 or for bolts connecting components with low

material strength (e.g. aluminum) Size of a thread M4 M5 M6 M8 M10 M12 M16 M20 M24 M30 M36

Tightening torques (Nm)

1,3 2,6 4,5 10 20 34 83 160 280 570 990

Tightening torques for electrical connection where permissible torque is usually limited by the bolts materials and/or the load capability of the

insulators Size of a thread M4 M5 M6 M8 M10 M12 M16 Tightening torques (Nm)

1,2 2,5 4 8 13 20 40

Special parts: Diode mounting torque (D170U25C, D170S25C) ............... 20 Nm Terminals in main terminal box M10 40 Nm (Connection elements – strength class 8.8) M12 70 Nm M16 155 Nm

Page 103: Generator Manual

Instructions

For Installation and Operation

RH - EFZEI - E - 10.00

Slide Bearings TYPE EF

with external oil supply

Page 104: Generator Manual

Installation and Operation

2 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

RENK AKTIENGESELLSCHAFTWerk HannoverWeltausstellungsallee 21D - 30539 HannoverTelephone: (0511) 8601-0Telefax: (0511) 8601-266e-mail: [email protected]:\\www.renk.de

All rights reserved. Copy or reproduction without prior permission of RENK Aktiengesellschaft Hannoverprohibited.

Page 105: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 3

Contents

Bearing Coding .......................................................................................................................................... 5

General Drawing of the EF Slide Bearing with External Oil Supply ........................................................... 7

General Drawing of the Thrust Part with Circular Tilting Pads (RD-Thrust Pads)...................................... 9

General Drawing of the Loose Oil Ring.................................................................................................... 11

General Drawing of the Floating Labyrinth Seal with Seal Carrier........................................................... 13

General Drawing of the Rigid Labyrinth Seal ........................................................................................... 15

General Drawing of the Baffle .................................................................................................................. 17

General Drawing of the Dust flinger ......................................................................................................... 19

1 Considerations for Use .......................................................................................................................... 21

2 Safety Instructions.................................................................................................................................. 22

3 Preparatory Work.................................................................................................................................... 23

3.1 Tools and equipment......................................................................................................................... 23

3.2 Use of lifting equipment .................................................................................................................... 23

3.3 Dismantling of the bearing................................................................................................................. 25

3.3.1 Dismantling of the shaft seal - outboard side ............................................................................ 25

3.3.2 Dismantling of the housing......................................................................................................... 26

3.3.3 Dismantling of the shaft seal - machine-side............................................................................. 26

3.4 Cleaning of the bearing ..................................................................................................................... 27

3.5 Checks............................................................................................................................................... 27

3.6 Assembly of the circular tilting pads (RD-thrust pads)...................................................................... 28

4 Assembly of the Bearing ........................................................................................................................ 31

4.1 Assembly of the the machine seal..................................................................................................... 31

4.2 Fitting the bottom half of the housing into the machine shield ......................................................... 32

4.3 Fitting in the bottom half of the shell ................................................................................................. 32

4.4 Assembly of the shaft seal - machine-side ....................................................................................... 33

4.5 Installation of the loose oil ring.......................................................................................................... 35

4.6 Fitting in the top half of the shell ....................................................................................................... 36

4.7 Assembly of the top half of the housing............................................................................................ 37

5 Assembly of the Seals - Outboard Side................................................................................................ 39

5.1 Floating labyrinth seal (Type 10)........................................................................................................ 39

5.2 Floating labyrinth seal with dust flinger (Type 11) ............................................................................. 43

5.3 Floating labyrinth seal with baffle ( Type 12) ..................................................................................... 44

5.4 Rigid labyrinth seal (Type 20)............................................................................................................. 44

5.5 Rigid labyrinth seal with dust flinger (Type 21) .................................................................................. 46

5.6 Rigid labyrinth seal with baffle (Type 22)........................................................................................... 47

Page 106: Generator Manual

Installation and Operation

4 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

6 Instructions for Assembly of Peripheral Equipment ........................................................................... 48

6.1 Assembly of the oil supply equipment .............................................................................................. 48

6.2 Temperature measurement ............................................................................................................... 50

6.3 Water supply...................................................................................................................................... 50

7 Bearing Insulation................................................................................................................................... 51

8 Operation................................................................................................................................................. 51

8.1 Filling up with lubricating oil .............................................................................................................. 51

8.2 Trial run.............................................................................................................................................. 52

9 Glossary................................................................................................................................................... 53

Page 107: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 5

Bearing Coding

Page 108: Generator Manual

Installation and Operation

6 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

Type

E

Housing

F - flange mountedbearing

Heat Dissipation

Z - lubrication by oil circulation withexternal oil cooling

X - lubrication by oil circulation withexternal oil cooling whenoil throughput is high

U - circulating pump and naturalcooling

T - circulating pump and watercooling (finned tubes inoil sump )

Shape of Bore and Type ofLubrication

C - plain cylindrical borewithout oil ring

L - plain cylindrical bore withloose oil ring

Y - two-lobe bore (”lemon bore”)without oil ring

V - four-lobe borewithout oil ring

Thrust part

Q - without thrust part(non locating bearing )

B - plain sliding surfaces(locating bearing)

E - taper land faces for one sense of rotation(locating bearing)

K - taper land faces for bothsenses of rotation(locating bearing)

A - elastically supported circulartilting pads (locating bearing)

Size - Diameter

9 80≤D≤100

1 100≤D≤125

14 125≤D≤160

18 160≤D≤200

22 200≤D≤250

28 250≤D≤315

Example for bearing coding:

E F Z L K 22-200 Type EF slide bearing with flange-mounted housing, lubrication by oil circulation with external oil cooling, plain cylindrical bore with loose oil ring,locating bearing with taper land faces for both senses of rotation, size 22, dia meter 200.

Shaft seals Type 10 - floating labyrinth seal (IP 44)Type 11 - floating labyrinth seal with dust flinger (IP 54)Type 12 - floating labyrinth seal with baffle (IP 55)

Type 20 - rigid labyrinth seal (IP 44)Type 21 - rigid labyrinth seal with dust flinger (IP 54)Type 22 - rigid labyrinth seal with baffle (IP 55)

Page 109: Generator Manual

external oil supply

RENK AG Werk Hannover RH-EFZE/WI-E Version: 26 Oktober, 2000 7

General Drawing of the

EF Slide Bearing

with external oil supply

Page 110: Generator Manual

5

3

4

6 7 8 9

10

11

12

28

29

30

31

1

213

14

15

20

21

22

23

24

2627

19

17

18

16

25

xxx

xxx x

Page 111: Generator Manual

1 Top half of the housing

2 Hole for positioning pin

3 Positioning pin

4 Connection hole for the oil supply of the thrust part

5 Top sight glass

6 Eye bolt

7 Screw (not included in delivery)

8 Screw

9 Tapped hole ( in the top and bottom halves of the shell, up size 14 )

10 Machine seal

11 Top half of the shell

12 Screw (split line of the housing)

13 Bottom half of the shell

14 Spherical seating

15 Engraved number - shell

16 Spigot

17 Tapped hole

18 Screw (not included in delivery)

19 Screw (split line of the shell)

20 Engraved numbers - housing

21 Bottom half of the housing

22 Tapped hole for temperature measurement of the journal part

23 Oil inlet connection hole

24 Tapped hole for the oil sump temperature measurement

25 Outlet/Inlet cooling water (Type E.T..)

26 Cooler ( Type E.T..)

27 Hexagon head plug (Oil drain plug)

28 Metal tabs ( optional for EFZL. )

29 Oil outlet connection hole

30 Oil outlet pipe with lock nut and lead seal

31 Marking

Page 112: Generator Manual
Page 113: Generator Manual

external oil supply

RENK AG Werk Hannover RH-RDZE/WI-E Version: 26 Oktober, 2000 9

General Drawing of the

Thrust Part with Circular Tilting Pads

(RD-Thrust Pads)

Page 114: Generator Manual

37

38

39

43

42

41

40

Page 115: Generator Manual

37 Carrier ring

38 Location groove

39 Shroud ring top half

40 Screw

41 Shroud ring bottom half

42 Circular tilting pad (RD-thrust pad)

43 Anti - Rotation pin

Page 116: Generator Manual
Page 117: Generator Manual

external oil supply

RENK AG Werk Hannover RH-LSZE/WI-E Version: 26 Oktober, 2000 11

General Drawing of the

Loose Oil Ring

Page 118: Generator Manual

44

45

46

47

Page 119: Generator Manual

44 Loose Oil Ring

45 Dowel pin

46 Hole

47 Screw

Page 120: Generator Manual
Page 121: Generator Manual

external oil supply

RENK AG Werk Hannover RH-SSZE/WI-E Version: 26 Oktober, 2000 13

General Drawing of the

Floating Labyrinth Seal

with Seal Carrier

Page 122: Generator Manual

48

49

50

54

56

57

58

52

53

51

55

Bearing side

Outer view

Page 123: Generator Manual

48 Seal carrier - top half

49 Garter spring

50 Groove

51 Seal carrier - bottom half

52 Bottom half of the seal

53 Top half of the seal

54 Anti - rotation pin

55 Screw

56 Engraved number

57 Groove ( Type 11 )

58 Engraved number

Page 124: Generator Manual
Page 125: Generator Manual

external oil supply

RENK AG Werk Hannover RH-KDZE/WI-E Version: 26 Oktober, 2000 15

General drawing of the

Rigid Labyrinth Seal

Page 126: Generator Manual

59

60

61 (2x)

62

63

64

65

Page 127: Generator Manual

59 Rigid labyrinth seal - top half

60 Screw

61 Screw (split line)

62 Groove ( Type 21 )

63 Rigid labyrinth seal - bottom part

64 Engraved number

65 Engraved number

Page 128: Generator Manual
Page 129: Generator Manual

external oil supply

RENK AG Werk Hannover RH-DSZE/WI-E Version: 26 Oktober, 2000 17

General Drawing of the

Baffle

Page 130: Generator Manual

66

67

68

Page 131: Generator Manual

66 Baffle - top half

67 Screw

68 Baffle - bottom half

Page 132: Generator Manual
Page 133: Generator Manual

external oil supply

RENK AG Werk Hannover RH-LRZE/WI-E Version: 26 Oktober, 2000 19

General Drawing of the

Dust Flinger

Page 134: Generator Manual

69

70 (2x)

Page 135: Generator Manual

69 Dust flinger

70 Screw (split line)

Page 136: Generator Manual
Page 137: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 21

1 Considerations for Use

The instructions for installation and operation are addressed to qualified technical personnel(fitters, mechanic installers, mechanical engineers).

Read these instructions carefully before starting assembly.

Slide bearings of type EF are almost universally used in the engineering industry. Therefore it is notpossible to provide detailed information on all possible types and range of applications for thesebearing types. For instance, the position of the connection points for supply and monitoringequipment is determined by the place of application ( in the following called " installation " ).Please keep ready the guidelines with the technical documentation before starting assembly andoperation of the slide bearings.

Additional technical documentation with detailed information is supplied in the case of specialdesign bearings. Please contact RENK Export or Domestic Department for supplementaryinformation on bearings. Please indicate the bearing coding and the full reference number, too.

Following indications should be observed when reading these instructions.

Safety instructions are marked as follows:

Danger!Warning of dangers for personnel.Example: Warning of injury

Attention!Warning of damage for the bearing or installation.

Useful recommendations and additional information are framed.

This is how chapters, instructions or recommendations are marked when referring to a single typeor size of a bearing.

Example: Slide bearing type EF without thrust part ( non-locating bearing )

- Instruction follows.

• Beginning of an enumeration.

( ) This is how the different parts of a bearing as described in the general drawings ( numbers ) are marked in the text.

− Use the enclosed check-list before starting assembly or operation. Copies available on request.The check list provides the experienced mechanical fitters of RENK bearings with thenecessary instructions for installation and operation.

EF...Q

Page 138: Generator Manual

Installation and Operation

22 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

2 Safety Instructions

Danger!The maintenance and inspection of the slide bearings should be carried out by:• persons nominated by the safety representative• persons correspondingly trained and instructed• persons with knowledge on appropriate standards, regulations and accident

prevention rules• persons with knowledge on first-aid measures and local rescue centers.

Warning of injury!Before starting work on the bearing:- Switch off the installation.- Make sure the installation is not in operation.Never lift or transport machines, etc.by the bearing eye bolts. These are only intendedfor assembly and dismantling of the bearing !

Warning of injury!Do not grab such heavy bearing parts as the housing during assembly or dismantlingwork. This could result in bruising or injury to hands !

Attention! All metal parts of a slide bearing consisting of top and bottom part such as the housing, shells,shaft seals are marked by engraved numbers. Fit together only the parts with the same number.

Attention! In case • the admissible bearing temperature exceeds by 15 K,

• inadmissible vibrations occur,• unusual noises or odours are noticed,• monitoring equipment triggers alarm,

shut down the installation and inform the maintenance personnel in charge.

Attention!Do not operate the bearing below the transition speed values indicated in the bearing calculation,thus avoiding inadmissible operating conditions, which could lead to damage to the bearing.

Page 139: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 23

3 Preparatory Work

3.1 Tools and equipment

− Following tools and equipment are necessary:

• Allan key set• Wrenching key set• Open-jawed spanner set• Feeler gauges ( up 0,05 mm )• Caliper gauge• Emery paper, plain scraper• Oil stone• Lifting equipment• Permanent sealing compound ( e.g. Curil T )• Clean (close weave) rags• Oil with the correct viscosity ( see bearing type plate )• Detergents• Liquid screw locking compound ( e.g. LOCTITE 242 )• Liquid sealing compound and Teflon-tape

3.2 Use of lifting equipment

Warning of injury!

Before transport or lifting, check if the eye bolts are tight ! Insecure eye bolts couldresult in bearing becoming loose.

Before moving the bearing by the eye bolts make sure that the split line screws aretightened, otherwise the bottom half of the bearing could become detached.

Make sure that the eye bolts are not exposed to bending stress, otherwise the boltscould break.

Follow exactly the instructions for the use of lifting equipment.

− Use lifting equipment for assembly or transport of the following items:

Transport/Assembly of: Use lifting equipment for the following bearing sizes

Whole bearing unit 9-28

Top half of the housing 14-28

Bottom half of the housing 11-28

Shells 14-28

Page 140: Generator Manual

Installation and Operation

24 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Following steps are to be observed before using the lifting equipment:

Whole bearing unit

− Check if the screws are tight (12):

Bearing size 9 11 14 18 22 28

Torque [Nm] 69 69 170 330 570 1150

− Check if the eye bolts (6) are tight.− Connect the lifting equipment to the eye bolts (6).

Top half of the housing

− Check if the eye bolts (6) are tight.− Connect the lifting devices to the eye bolts (6).

Bottom half of the housing

− Screw two eye bolts (6) with suitable threads tight into the cross-placed opposite tapped holes(17).

Bearing size 9 11 14 18 22 28

Tapped hole M 12 M 12 M 16 M 20 M 24 M 30

− Connect the lifting equipment to the eye bolts (6).

Shells

− Screw two eye bolts or screw hooks with suitable threads tight into the tapped holes (9):

Bearing size 14 18 22 28

Tapped hole M 8 M 12 M 12 M 16

− Connect the lifting equipment to the eye bolts or to the screw hooks.

Page 141: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 25

3.3 Dismantling of the bearing

AttentionMake sure that the work place and the parts to be assembled are clean. Contamination anddamage to the bearing, especially to the working surfaces, have a negative influence on theoperating quality and could lead to premature failure.

3.3.1 Dismantling of the shaft seal - outboard side

− Dismantle the shaft seals of the bearing. Proceed according to the sealing type:

Floating labyrinth seal (Type 10) Floating labyrinth seal with dust flinger (Type 11)

− Loosen and remove all screws (55).− Simultaneously take away in axial direction both top half (48) and bottom half (51) of the seal

carrier from the housing.− Lift off the top half of the seal carrier (48) and take out the floating labyrinth seal from the

bottom half of the seal carrier (51).− Remove the protective cardboard (for transport protection) from the floating labyrinth seal.− Proceed as indicated for sizes • 9-11

•14-28

− Take hold of the floating labyrinth seal with both hands. Press out the protective cardboard withboth thumbs.

− Take both halves of the seal (52), (53) by the split line. Pull both halves apart, till you can pressout the protective cardboard. Remove carefully by pressing along the edge of the split line.

Warning of injury!During dismantling of the floating labyrinth seal hold on tight to the tensioned garterspring (49) which otherwise could bounce back and lead to injury.

− Take both seal halves (52), (53) and pull them apart by approximately 20 mm.− Open the garter spring (49).

Floating labyrinth seal with baffle ( Type 12 ):

− Disconnect the top half of the baffle (66) and the bottom (68). To do so, loosen the screws (67).− Further proceed as in the case of type 10 and 11 seal.

Rigid labyrinth seal (type 20) Rigid labyrinth seal with dust flinger (type 21)

− Untighten all screws (60) and remove them.− Simultaneously remove in axial direction both top and bottom (59), (63) halves of the rigid

labyrinth seal.− Remove the screws (61).− Separate the top half of the rigid labyrinth seal (59) from the bottom half (63) and take out the

protective cardboard (used for safe transport).

Rigid labyrinth seal with baffle (type 22)

− Separate the top and bottom half (66), (68) of the baffle, by untightening the screws (67).− Further proceed as in the case of types 20 and 21.

Type10 Type 11

Size 9 -11

Size 14-18

Type12

Type20 Type 21

Type22

Page 142: Generator Manual

Installation and Operation

26 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

3.3.2 Dismantling of the housing

− Unscrew the screw plug with the welded-on positioning pin.

− Unscrew the screws (12) and lift the top half of the housing (1).− Take out both top (11) and bottom (13) halves of the shell from the bottom half of the housing

(21).

Attention!Do not damage the thrust and radial working surfaces!

− Unscrew the screws (19) and separate the top and bottom halves of the shell (11), (13) withoutusing any tools or other devices.

Attention!If the bottom half of the shell (13) is provided with metal tabs (28) do not remove them. Theyregulate the oil level in the oil pockets.

The cooler (26) is already assembled and does not have to be removed for cleaning purposes.

3.3.3 Dismantling of the shaft seal - machine-side

The machine side seal is of Type 10, floating labyrinth seal.

− Remove the floating labyrinth seal from the bottom half of the housing.− Notice the anti-rotation pin at the split line of the bottom half of the housing.− Remove the protective cardboard (for transport protection) from the floating labyrinth seal.− Proceed as indicated for sizes • 9-11

•14-28

− Take hold of the floating labyrinth seal with both hands. Press out the protective cardboard withboth thumbs.

− Take both halves of the seal (52), (53) by the split line. Pull both halves apart, till you can pressout the protective cardboard. Remove carefully by pressing along the edge of the split line.

Warning of injury!During dismantling of the floating labyrinth seal hold on tight to the tensioned garterspring (49) which otherwise could bounce back and lead to injury.

− Take both seal halves (52), (53) and pull them apart by approximately 20 mm.− Open the garter spring (49).

EF.V.

EFT..

Size 9 -11

Size 14-18

Page 143: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 27

3.4 Cleaning of the bearing

Attention!Use only non-aggressive detergents, such as for instance:

• VALVOLINE 150.• Alcaline cleaning compounds (pH-value 6 to 9, short reaction time).

Warning of injury!Please observe the instructions for the use of the detergents.

Attention!Never use cleaning wool or fibrous cloth. Residues of such materials left in the bearing could leadto excessive temperatures.

− Clean the following parts thoroughly, to remove all residues of preservation :

• inside the top half of the housing (1)• inside the bottom half of the housing (21)• all plain parts of the top and bottom half of the housing (1), (21)• top half of the shell (11)• bottom half of the shell (13)• sealing surfaces of the top (48) and bottom (51) half of the seal carrier or of the rigid labyrinth

seal

• loose oil ring (44).

3.5 Checks

− Please check if there is any visible damage. Check the split line and the working surfaces inparticular.

The loose oil ring (44) should show absolutely no burrs or have no shoulders.

− Check the insulating layer of the spherical seating (14).

− If necessary, change the damaged parts.

EF.L.

EF.L.

Insulated Bearings

Page 144: Generator Manual

Installation and Operation

28 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

3.6 Assembly of the circular tilting pads (RD-thrust pads)

− Clean both top (39) and bottom (41) halves of the shroud ring and all RD-thrust pads (42).Proceed as described under chapter 3.4 (Cleaning of the bearing).

Bearing size Diameter Number of RD-thrust pads per bearing [Pieces]

9

80

90

100

14

16

20

11

100

110

125

16

18

22

14

125

140

160

18

20

24

18

160

180

200

18

20

24

22

200

225

250

18

20

24

28

250

280

300

18

20

24

− Check if the parts show any visible damage.

Carry out the assembly of both thrust parts of the top (11) and bottom (13) half of the shellaccording to the following instructions:

One RD-thrust pad on both sides of the top half of the shell has a bore for the insertion of athermo sensor (thrust part temperature measurement).

EF..A

Page 145: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 29

To mount the RD-thrust pad into the correct position proceed as follows:

− Find the position of the location groove (38) on the top half of the shroud ring (39). Insert theRD-thrust pad (42) with the anti-rotation pin (43) into the corresponding thrust pad location hole(37).

− Insert all other RD-thrust pads (42) into the corresponding thrust pad holes (37)of the top and bottom half of the shell (11), (13).

Illustration 1: Assembly of the RD-thrust pads

− Place the top half of the shroud ring (39) into the the top half of the shell (11) by inserting theanti-rotation pin (43) into the location hole (38). Match the split line of the top half of the shell(11) with the split line of the top half of the shroud ring (39) in true alignment.

Illustration 2: Assembly of the shroud ring

42

37

39

43

42

38

Page 146: Generator Manual

Installation and Operation

30 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Tighten the screws (40) to the following torque rates:

Bearing size 9 11 14 18 22 28

Tapped hole M 4 M 4 M 5 M 6 M 8 M 10

Torque [Nm] 1,4 1,4 2,7 8 20 40

− Place the bottom half of the shroud ring (41) into the bottom half of the shell (13). Match thecorresponding split lines in true alignment. Tighten the screws (40) to the same torque rates asspecified for the top half of the shell (11).

− Check the mobility of all RD-thrust pads (42).If the RD-thrust pads jam, realign the top (39) and bottom half (41) of the shroud ring.

Attention!Insufficient mobility of the RD-thrust pads will cause damage of the bearing.

Both top and bottom halves of the shells are prepared for assembly.

Page 147: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 31

4 Assembly of the Bearing

Attention!Remove all impurities or other objects such as screws, nuts, etc. from inside the bearing.If leftinside they could lead to damage to the bearing. Cover up the opened bearing during work breaks.

Attention!Carry out all assembly operations without making use of force.

Attention!Secure all screws of the housing, at the split line and flange with a liquid screw locking compound(e.g. LOCTITE 242).

4.1 Assembly of the the machine seal

Before assembly of the bearing screw the split and non-split machine seal (10) into the machineshield. The non-split machine seal must be assembled before starting the assembly of the shaft.

− Fit the machine seal with the recess onto the machine shield.− In the case of a split machine seal insert the split line screws and tighten them hand tight.− Tighten the screws (7) to the following torque rates:

Bearing size 9 11 14 18 22 28

Tapped hole M 6 M 6 M 6 M 8 M 8 M 8

Torque [Nm] 8 8 8 20 20 20

Page 148: Generator Manual

Installation and Operation

32 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

4.2 Fitting the bottom half of the housing into the machine shield

Attention!The lifting equipment should not come to contact with the seal and working surfaces of the shaft.

− Lift the shaft high enough to give room for the assembly operations.− Protect the shaft against unintended movement.− Place the bottom half of the housing with the spigot (16) into the mounting recess of the

machine shield.− Tighten the flange screws to the following torque rates.

− In case the bearings type EF are operating under high axial loads tighten the third flange screwmounted on the inner part of the machine shield into the bottom half of the housing to thefollowing torque rates.

− Use only 8.8 quality screws.

Bearing size 9 11 14 18 22 28

Suitable flange screws M 10 M 12 M 16 M 20 M 24 M 30

Torque [Nm] for µ tot(lightly oiled)

69 69 170 330 570 1150

4.3 Fitting in the bottom half of the shell

Attention!Mounting the bottom half of the shell (not marked with an arrow) correctly will ease the assemblyof the top half shell (marked with an arrow) (see chapter 4.6).

− Apply some lubricant to the spherical seating (14) in the bottom half of the housing (21) and tothe working surfaces of the shaft. Use the same type of lubricant as indicated for bearingoperation (see type plate ).

− Place the bottom half of the shell (13) on the working surface of the shaft. Turn the bottom halfof the shell (13) into the bottom half of the housing (21) with the split line surfaces of both halvesin true alignment.

In case the bottom half of the shell doesn`t turn in easily, check the position of the shaft and thealignment of the housing

Attention!These operations should be carried out most carefully. The thrust parts of the bottom shell mustnot be damaged.

− Lower down the shaft till it sits on the bottom half of the shell (13).

EF..A

EF..E

EF..B, EF..K EF..E EF..A

Page 149: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 33

4.4 Assembly of the shaft seal - machine-side

The machine-side shaft seal is, as standard, a floating labyrinth seal. The integrated seal groove isin the top and bottom halves of the housing.

Warning of injury!During assembly hold the garter spring ends securely to avoid them suddenlyreleasing and causing possible injury !

Check the movement of the floating labyrinth seal on the shaft in the seal area outside the housing.

− Put the garter spring (49) around the shaft and hook both ends into each other.− Put both halves of the seal (52),(53) in their place on the shaft.− Put the garter spring (49) into the groove (50).− Turn the floating labyrinth seal on the shaft.

Attention!The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheatingduring operation and even to shaft wear.If the floating labyrinth seal jams,- dismantle the seal and- remove the worn parts of the seal carefully, by using emery paper or a plain scraper.

− Dismantle the floating labyrinth seal.− Apply Curil T to the guide surfaces of the integrated seal groove in the bottom half of the

housing.

Illustration 3: Application of Curil T to the integrated seal groove

21

Page 150: Generator Manual

Installation and Operation

34 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Apply a uniform layer of Curil T to the guide surfaces and to the split line surfaces of bothhalves of the seal (52), (53).

52

Illustration 4: Application of Curil T to the floating labyrinth seal

Please observe the instructions for the use of Curil T.

− Place the bottom half of the seal (52) with the labyrinths onto the shaft.− The oil return holes at the bearing side must be clear and open.− Turn the seal in opposite direction from the anti-rotation pin into the groove of the housing until

the split lines of the bottom half of the housing and the bottom half of the seal match eachother.

− Remove the residue of Curil T.− Push the garter spring into the integrated seal groove between the bottom half of the housing

and the seal until both ends jut out from the split line.− Place the top half of the seal with the cam facing the inside of the bearing on the bottom half of

the seal.− Stretch the garter spring till both ends can be hooked.

Page 151: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 35

4.5 Installation of the loose oil ring

− Open both split lines of the loose oil ring (44) by untightening and removing the screws (47).Separate both halves of the loose oil ring (44) carefully without using any tools or other devices.

Illustration 5: Opening of the loose oil ring

− Place both halves of the loose oil ring into the shell groove around the shaft. Press thepositioning pin (45) of each split line into the corresponding hole (46).

− Adjust both halves of the loose oil ring till the split lines match each other.

Illustration 6: Installation of the loose oil ring

− Tighten the screws (47) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 1,4 1,4 1,4 2,7 2,7 2,7

II

44 44

I

44

47

EF.L.

44

45

44

21

13

Page 152: Generator Manual

Installation and Operation

36 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

4.6 Fitting in the top half of the shell

− Apply some lubricant to the working surfaces of the shaft. Use the same type of lubricant asindicated for bearing operation (see type plate).

− Check if the engraved number (15) on the bottom half of the shell corresponds with theengraved number (15) on the top half of the shell.

− Place the top half of the shell (11) on the shaft; both engraved numbers (15) should be on oneside.

Attention!An incorrectly placed shell could jam the shaft thus leading to the damage of both shaft andbearing.

Attention!Place the top half of the shell carefully on the shaft. The thrust parts of the top half of the shellmust not be damaged.

In the case of bearings arranged for insulation monitoring, connect the black cable for insulationmonitoring to the shell.

According to the bearing type, there are two possibilities of connection.

1. The black cable is provided with a cable connector.

− Plug the cable with the cable connector into the counterpart available on the top of the shell.− Lead the cable through the cable gland in the bottom half of the housing and out of the

bearing.− Tighten the cable gland oil-tight.

2. The black cable is provided with an eyelet.

− Fasten the cable with the eyelet to the split line of the shell, by using one of the shell joint bolts.− Lead the cable through the cable gland in the bottom half of the housing and out of the

bearing.− Tighten the cable gland oil-tight.

− Tighten up the screw (19) at the split line of the shell to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 8 8 20 69 69 170

− Check the split line of the shell by using a feeler gauge. The split line gap should be less than0,05 mm. If the split line is greater than this, dismantle both top (11) and bottom (13) halves ofthe shell. Rework the split line surfaces of the top (11) and bottom (13) half of the shell with anoil stone.

− Check the mobility of the loose oil ring (44).

A guide bush in the top half of the shell secures the function of the loose oil ring.

− Check the mobility of the loose oil ring (44) in the guide bush.

EF..B, EF..K, EF..E, EF..A

insulatedbearings

Marinebearings

EF.L.

Page 153: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 37

Shells with taper land faces suitable only for one direction of rotation are marked with an arrow onthe top half shell, which indicates the sense of rotation of the shaft.

The arrow indicates the allowed direction of shaft rotation after completion of the bearingassembly.

− Before mounting the top half of the housing check that the proposed direction of rotation of theshaft corresponds to the direction indicated by the arrow on the top half of the shell.

− If the directions match, continue the assembly of the bearing.− If the directions do not match, the shell must be disassembled, re-aligned and mounted again.

Attention! A wrongly placed shell, without observance of the direction of rotation of the shaft, impairs theoperational safety of the bearing.

4.7 Assembly of the top half of the housing

− Check the true alignment of the split lines of the shell (11), (13) and bottom (21) half of thehousing.

The positioning pin (3) in the top half of the housing fits in the corresponding hole (2) in the shell.

− Check if the engraved numbers (20) on the top and bottom halves of the housing correspond.− Clean the split line surfaces of the top and bottom halves of the housing.− Apply Curil°T over the whole surface of the split line of the bottom half (21) of the housing.

Please observe the instructions for the use of Curil T.

− Place the top half of the housing carefully into the machine shield, without touching the seals orthe shell.

− Lower the top half of the housing (1) vertically on the bottom half of the housing (21). Lower thetop half of the housing (1) till the split line of the housing is not visible any more.

− Gently hit the bottom half of the housing (21) with a nylon hammer, thus ensuring the alignmentof the spherical seating.

− Insert the screws (12) at the split line of the housing. Tighten them hand-tight.− Insert the screws (8). Tighten them to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 69 69 170 330 570 1150

− Insert the screws (12) at the split line of the housing. Tighten them crosswise to the sametorque rates.

− Tighten the screw plug with the welded-on positioning pin into the top half of the housing (1).

EF..E

EF.C. EF.L. EF.Y.

EF.V.

Page 154: Generator Manual

Installation and Operation

38 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

Insulation monitoring

In the case of electric insulated bearings provided with insulation monitoring, the cable coming outof the housing must be connected in a professional manner.

According to the type supplied, please follow the assembly instructions given below.

a) The cable is very short and provided with a further cable connector at the end of it.This cable is ready for connection to the housing.The bottom half of the housing is provided with the counterpart.

− Plug the cable connector into the counterpart.

Attention! This connection bypasses the electrical insulation of the bearing. In the case of electric machines, make sure at least one bearing is electrically insulated.

To check the electrical insulation, interrupt the connection cable - housing. Check the electricalresistance with a suitable measuring instrument. Make sure that both bearings and the couplingare electrically insulated.

b) The cable has a free end. In this case the customer has to make the connection.

Attention! If only one bearing is insulated, the end of the cable must not be earthed.

Any further connection depends on the customer’s requirements related to the insulationmonitoring and can not therefore be described here.

insulatedbearings

Page 155: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 39

5 Assembly of the Seals - Outboard Side

− Assemble the outboard side seals.Proceed according to the seal type used.

• Floating labyrinth seal (Type 10) Chapter 5.1• Floating labyrinth seal with dust flinger (Type 11) Chapter 5.2• Floating labyrinth seal with baffle (Type 12) Chapter 5.3

• Rigid labyrinth seal (Type 20) Chapter 5.4• Rigid labyrinth seal with dust flinger (Type 21) Chapter 5.5• Rigid labyrinth seal with baffle (Type 22) Chapter 5.6

5.1 Floating labyrinth seal (Type 10)

Warning of injury!During assembly hold the garter spring ends securely to avoid them suddenlyreleasing and causing possible injury !

Check the movement of the floating labyrinth seal on the shaft.

− Put the garter spring (49) around the shaft and hook both ends into each other.− Put both halves of the seal (52),(53) in their place on the shaft.− Put the garter spring (49) into the groove (50).− Turn the floating labyrinth seal on the shaft.

Attention!The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheatingduring operation and even to shaft wear.If the floating labyrinth seal jams,- dismantle the seal and- remove the worn parts of the seal carefully, by using emery paper or a plain scraper.

− Dismantle the floating labyrinth seal.

Type10

Page 156: Generator Manual

Installation and Operation

40 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Apply a uniform layer of Curil T to the guide surfaces and to the split line surfaces of bothhalves of the seal (52), (53).

Please observe the instructions for the use of Curil T.

Illustration 7: Application of Curil T to the floating labyrinth seal

− Press the bottom half of the seal (52) against the shaft.− Place the top half of the seal (53) on the shaft and align both halves of the seal to each other.− Place the garter spring (49) into the groove (50) and stretch until both ends can be hooked.

Illustration 8: Assembly of the floating labyrinth seal

52

49 52 21

15354

Page 157: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 41

− Place in true alignment the split line of the floating labyrinth seal and the split line of the sealcarrier.

− Check that both engraved numbers (56) and (58) on top and bottom halves of the seal carrier(48), (51) correspond.

− Clean the following parts:

• the seal surfaces of the top (48) and bottom (51) half of the seal carrier (the groove of thefloating labyrinth seal, the flange surfaces)

• the split line surfaces of the top (48) and bottom half (51) of the seal carrier• the flange surfaces of the housing.

− Apply a uniform layer of Curil T to:• the lateral surfaces of the groove at the top (48) and bottom half (51) of the seal carrier• the flange surfaces of the top (48) and bottom (51) half of the seal carrier• the split line surfaces of the bottom half of the seal carrier (51).

Please observe the instructions for the use of Curil T.

Ilustration 9: Application of CurilT to the seal carrier

51

Page 158: Generator Manual

Installation and Operation

42 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Place the top half of the seal carrier (48) on the top half of the seal (53). Press the bottom half(51) of the seal carrier against it. Push the shaft seal completely into the housing.

Illustration 10 Assembly of the seal carrier

− Place in true alignment the split lines of the seal carrier and the housing.− Tighten up the screws (55) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 8 8 8 20 20 20

48

54

53

Page 159: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 43

5.2 Floating labyrinth seal with dust flinger (Type 11)

− Assemble the floating labyrinth seal with dust flinger as described in Chapter 5.1, Floatinglabyrinth seal type 10.

− Place both halves of the dust flinger (69) in front of the shaft seal around the shaft. Looselyscrew in the screws (70) of the flinger.

Illustration 11: Clearance between dust flinger and seal carrier

− Push the dust flinger (69) into the groove (57) of the seal carrier.− Set the clearance "e" at the following figure around the whole unit:

maximum longitudinal extension of the shaft in operation + 1 mm

(Parameters indicated in the Technical Documentation of the Installation).

− Tighten up both screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

− Push the dust flinger (69) into the groove (57) of the seal carrier.− Set the clearance "e"at 1 mm around the whole unit.− Tighten both screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

Type11

e

69 48

57

EF..Q

EF..B, EF..K, EF..E, EF..A

Page 160: Generator Manual

Installation and Operation

44 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

5.3 Floating labyrinth seal with baffle ( Type 12)

− Assemble the floating labyrinth seal with baffle as described in Chapter 5.1, type10.− Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of

the baffle.− Screw • the top half of the baffle (66) to top half of the seal carrier (48)

• the bottom half of the baffle (68) to bottom half of the seal carrier (51).− Tighten the screws (67) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 4 10

5.4 Rigid labyrinth seal (Type 20)

− Check if the engraved numbers (64) and (65) on the bottom half (63) and top half (59) of the rigidlabyrinth seal correspond.

− Clean

• the flange surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal• the split line surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal• the flange surfaces of the housing.

− Apply a uniform layer of Curil T to the following parts:• the flange surfaces of the top (59) and bottom half (63) of the rigid labyrinth seal• the split lines of the bottom half (63) of the rigid labyrinth seal.

Illustration 12: Application of Curil T to the rigid labyrinth seal

Type12

Type20

63

Page 161: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 45

− Place the top half (59) of the rigid labyrinth seal on the shaft and press slightly the bottom half (63)of the rigid labyrinth seal from below against it. Lightly push the rigid labyrinth seal completely intothe housing.

− Tighten the screws (61) at the split line of the labyrinth seal.− Place in parallel alignment the split line of the rigid labyrinth seal and the split line of the housing.

Press the rigid labyrinth seal slightly from below against the shaft. Adjust the rigid labyrinth seal insuch a way that the clearance "f" between the shaft and the rigid labyrinth seal at both split lineshas the same figure.

Illustration 13: Alignment of the rigid labyrinth seal

− Tighten the screws (60) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 8 8 8 20 20 20

f f

1

21

59

63

Page 162: Generator Manual

Installation and Operation

46 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

5.5 Rigid labyrinth seal with dust flinger (Type 21)

− Assemble the rigid labyrinth seal with dust flinger as described in Chapter 5.4, type 20.− Place both halves of the dust flinger (69) round the shaft, in front of the rigid labyrinth seal.

Mount both screws (70) loose.

Illustration 14: Clearance between dust flinger and rigid labyrinth seal

− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal.− Set the clearance "e" at the following figure around the whole unit.

maximum longitudinal extension of the shaft in operation + 1 mm

(Parameters are indicated in the Technical Documentation of the Installation).

− Tighten both screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal.− Set the clearance "e" at 1 mm around the whole unit.− Tighten both screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

Type21

e

69 59

62

EF..Q

EF..B, EF..K, EF..E, EF..A

Page 163: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 47

5.6 Rigid labyrinth seal with baffle (Type 22)

− Assemble the rigid seal with baffle as described in Chapter 5.4, type 20.− Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of

the baffle.− Screw

• the top half of the baffle (66) to the top half (59) of the rigid labyrinth seal• the bottom half of the baffle (68) to the bottom half (63) of the rigid labyrinth seal.

− Tighten the screws (67) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 4 10

Type22

Page 164: Generator Manual

Installation and Operation

48 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

6 Instructions for Assembly of Peripheral Equipment

6.1 Assembly of the oil supply equipment

The oil supply equipment together with the pressure, temperature and flow measuring instrumentsare usually provided by the user. The oil quantity and viscosity necessary for the operation of thebearing are specified in the bearing calculations. This manual contains only indications on theconnection points with the bearing. The connection bores for the oil inlets and outlets are on bothlateral sides of the bearing, closed with screw plugs. Remove only those plugs where pipes are tobe connected.

Connection conditions

Pipelines Flow speed Indications

Inlet Precision steel pipeDIN 2391

Steel pipe DIN 2448

about 1,5 m/s Place the throttle valve in the inletpipeline directly in front of the bearing

Outlet Steel pipe DIN 2448 max. 0,15 m/s • 15° inclination

• if 15° inclination is not possibleenlarge correspondingly the crosssections of the pipeline directlybehind the bearing.

Too low inclination or / and too smallcross-section lead to oil backpressure in the bearing.Leakage or overflowing are theconsequences.

− Before starting assembly pickle all pipes which • have been welded• have been bent hot• are contamined and rusty inside.

Warning of injury!

Please observe the instructions for the use of the pickling fluid. Wear rubbergloves, rubber apron, rubber boots and safety glasses.

Page 165: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 49

Rinsing of the oil circuit

− Rinse the whole oil circuit to remove all impurities. The bearing must not be connected to theoil circuit during rinsing operations. The rinsing should be done before connecting the oilsupply to the bearing or the bearing should be disconnected from the oil circuit. If this is notpossible, dismantle the top half of the housing and remove the shells.

To avoid damage to the fittings:

− Remove all measuring and switching fittings.− Close all connections (see also the Technical Documentation of the Installation).− Fill up the oil supply system with lubricant. Use the type with the viscosity indicated on the

bearing type plate.− Start operating the oil supply system.Collect the first charge of high contamined oil separately.

Continue rinsing until the lubricant contains no impurities.− Drain off the oil supply system completely. Clean the oil tank and the filters.

Warning of environmental pollution!Please observe the instructions for the use of the lubricant. The manufacturer could provideinformation on waste oil disposal.

− Assemble all fittings.

Oil inlet

− Connect the inlet pipe to the tapped hole (23) for the oil inlet. Seal with Teflon tape or liquidsealing compound.

− Depending on the bearing size, the tapped hole has the following threads:

Bearing size 9 11 14 18 22 28

Tapped hole /Oil inlet (23)

G 3/8 G 3/8 G 3/8 G 1/2 G 3/4 G 3/4

If the bearing calculation specifies a separate supply source for the thrust parts:

− connect the inlet pipes to the tapped hole of the thrust part supply (4) on the lateral side of thebearing. Seal with Teflon tape or liquid sealing compound.

Page 166: Generator Manual

Installation and Operation

50 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

Oil outlet

− Apply sealing compound (i.e. Loctite 572) to the thread of the oil outlet.− Screw the oil outlet with special nut and lead sealing ring (30) into the oil outlet connection hole

(29).− Tighten the special nut with the lead sealing ring.− Connect the oil outlet pipe to the flange.− Depending on the bearing size the connection hole for the oil outlet (29) has the following

standard threads (larger threads are possible):

Bearing size 9 11 14 18 22 28

Tapped hole for oiloutlet (29)

G 1 1/4 G 1 1/4 G 1 1/2 G 1 1/2 G 2 G 2 1/2

− Apply sealing compound (i.e. Loctite 572) to the thread of the oil outlet.− Screw the oil outlet with special nut and lead sealing ring (30) into the corresponding hole (29)

with the marking (31) at top dead centre. Tighten the special nut with the lead sealing ring. Thespillover oil weir then ensures the minimum oil level for the emergency lubrication by means ofthe loose oil ring. Connect the oil outlet pipe to the flange.

− Screw in the outlet pipe to the selected oil sump temperature measurement connection hole(24) and seal with Teflon tape or liquid sealing compound.

6.2 Temperature measurement

− Fix suitable thermo sensors:

• into one of the tapped holes (22) for temperature measurements of the journal parts• into one of the tapped holes (24) for temperature measurements of the oil sump• into one of the tapped holes (optional) for temperature measurement of the thrust parts.

Proceed as follows:

− Take out the screw plugs from the connection holes.− Place the thermo sensor into the bore by using Teflon tape or sealing compound.− Connect the thermo sensor at the temperature monitoring equipment of the installation

(see the Technical Documentation of the Installation for connecting and adjustement).

6.3 Water supply

Following requirements should be observed before connecting the cooler (26):

• water velocity of maximum 1,5 m/s in the cooling water inlet• water pressure of maximum 5 bar• adjusting tap on inlet• outlet of cooling water is under no pressure.

The direction of the cooling water passage in the cooler (26) is arbitrary.

EFZ.., EFX..

EF.L.

EFU.., EFT..

EFT..

Page 167: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 51

7 Bearing Insulation

These bearings are delivered insulated. The electrical insulation is assured by:

• plastic coating of the spherical seatings (14)• shaft seals made of non-conducting materials• insulated positioning pin (3)• insulated screwed connections for thermometers.

It is not necessary to insulate the pipelines.

− Mark the insulated bearing with the delivered plate "Insulated shells". Install the plate in avisible place by using two grooved drive studs.

8 Operation

8.1 Filling up with lubricating oil

Attention!Make sure that no impurities get into the bearing.

− Tighten all screw plugs in the tapped holes (22), (23), (24),(27) to the necessary torque rates:

Screw plug threads G 3/8 G 1/2 G 3/4 G 1 G 1 1/4 G 1 1/2 G 2 G 2 1/2

Torque [Nm] for plugswith injection-mouldedplastic sealing ring

30 40 60 110 160 230 320 500

Torque [Nm] for plugswith flexible sealing ring

34 60 85 130 240 300 330 410

− Check that• the top sight glass (5) is tight, the screws should be hand-tight.

− Retighten the screws for oil inlet and outlet, and for the thrust parts (if existing). The necessarytorque rates depend on the screw connections used.

In case thermo sensor or/and oil sump thermometer are used:

− Check if they are tight (according the the manufacturer's instructions).− Fill up the oil supply system with lubricant. Use a lubricant with a viscosity as indicated for the

specific bearing operation.− Start operating the oil supply system in order to fill the bearing with lubricant.

− Remove the protective layer from the top sight glass (5).Continue as already mentioned above.

EF.C., EF.L., EF.Y.

Page 168: Generator Manual

Installation and Operation

52 RH-EFZEI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

8.2 Trial run

− Before the trial run, check the following:

• the way the oil supply system functions (see also the Technical Documentation of theInstallation).The lubricant quantity at the bearing oil inlet must correspond to the valuesindicated in the EDP-calculations.

• that the temperature monitoring equipment works.

• that the water cooling installation works.

Attention!Not enough lubricant leads to• temperature rises and thus damage of the bearing.

Too much lubricant leads to• leakages.

The bearing is ready for operation.

− Supervise the bearing during the trial run (5-10 operating hours).Pay special attention to:

• the way the oil supply installation works (necessary lubricant quantity, lubricant temperature,lubricant pressure before entering the bearing)

• bearing temperature• sliding noises of the shaft seals• tightness• occurrence of inadmissible vibrations.

Attention!If the bearing temperature exceeds the calculated value by 15 K (see bearing calculation) stop theinstallation immediately. Carry out an inspection of the bearing as described under Instructions forService and Inspection of the Slide Bearings Type EF with External Oil Supply.

EFT..

Page 169: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZEI-E Version: 26 Oktober, 2000 53

9 Glossary

Baffle With bearing types 10 and 20 the baffles are assembled externally in front of the shaftseals. The baffle, made of reinforced polyamide, protects the bearing from dust andwater.

Rigid labyrinth seal The rigid labyrinth seal (type 20) is used with slide bearings type E with high oilthroughput.It corresponds to the protective system IP44 and is made of an aluminiumalloy.The rigid labyrinth seal is built of two halves, flanged at the housing.The labyrinths thatwipe out the lubricant are arranged into two groups.The first two labyrinths , installedinside keep back most of the lubricant. Five further labyrinths protect the bearing fromoutside.They prevent the lubricant overflow and the ingress of impurities.The overflowlubricant is collected into a chamber between the both groups of labyrinths.Throughthe return bores the lubricant flows back into the bearing.

Spherical seating The spherical seating is a special feature enabling the alignment of the shell in thehousing.The shell is seated on two spherical seatings. The advantages of the sphericalseating are:• easy at assembly• good heat transfer from the shell to the housing• suitable for such applications with high thrust or journal loads.

Dust flinger In the case of bearing types 10 and 20 a light alloy ring is clamped on the shaft in frontof the shaft.This ring fits into a groove in the seal carrier or the rigid labyrinth seal, thusbuilding a labyrinth. The labyrinth protects the shaft exit against low pressure that couldotherwise " absorb " the lubricant. Low pressure occurs for instance in the case ofrotating discs, such as couplings or cooling discs.

Floating labyrinth The floating labyrinth seal (type 10) in the seal carrier is used as a shaft seal in the caseseal of bearings type E operating under normal conditions. It prevents the lubricant and

lubricant mist coming out and the ingress of impurities. The floating seal has a highcapacity of resistance to wear. It is made of a high-performance, high temperaturestability and electrically insulated plastic material.The floating seal consists of twohalves held together by a garter spring. Both ends of the spring are hooked together. Inthe case of slide bearings type EM the floating seal is mounted into a two-piece sealcarrier. The groove allows for radial movement of up to 1 mm. The seal is thusinsensitive to shaft radial displacement or deflection. The sealing effect is produced bythe baffles wiping off the lubricant from the shaft. The lubricant flows back into thebearing via oil return opening.

Machine seal In the case of the flange mounted bearings, the machine seal reduces the influence ofpositive and negative pressure in the machine thus preventing leakages at the innerseal area. The space between the machine seal and the bearing housing must alwaysbe vented to atmospheric pressure. The size of the gap between shaft and machineseal influences the sealing effect.

Page 170: Generator Manual

Instructionsfor Maintenance and Inspection

RH - EFZWI - E - 10.00

Slide Bearings Type EF

with external oil supply

Page 171: Generator Manual

Maintenance and Inspection

2 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

RENK AKTIENGESELLSCHAFTWerk HannoverWeltausstellungsallee 21D - 30539 HannoverTelephone: (0511) 8601-0Telefax: (0511) 8601-266e-mail: [email protected]:\\www.renk.de

All rights reserved. Copy or reproduction without prior permission of RENK Aktiengesellschaft Hannoverprohibited.

Page 172: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 3

Contents

Bearing Coding................................................................................................................................................ 5

General Drawing of the EF Slide Bearing with External Oil Supply................................................................. 7

General Drawing of the Thrust Part with RD-Thrust Pads .............................................................................. 9

General Drawing of the Loose Oil Ring ......................................................................................................... 11

General Drawing of the Floating Labyrinth Ring with Seal Carrier................................................................ 13

General Drawing of the Rigid Labyrinth Seal ................................................................................................ 15

General Drawing of the Baffle ....................................................................................................................... 17

General Drawing of the Dust Flinger ............................................................................................................. 19

1 Considerations for Use .......................................................................................................................... 21

2 Safety Instructions.................................................................................................................................. 22

3 Operating Instructions after Standstill ................................................................................................. 23

4 Maintenance Schedule........................................................................................................................... 24

5 Oil Change ............................................................................................................................................... 25

6 Dismantling of the Bearing .................................................................................................................... 26

6.1 Tools and equipment......................................................................................................................... 26

6.2 Use of lifting equipment .................................................................................................................... 26

6.3 Preparation for dismantling ............................................................................................................... 28

6.4 Dismantling of the shaft seal - outboard side ................................................................................... 28

6.4.1 Floating labyrinth seal (Type 10)................................................................................................. 29

6.4.2 Floating labyrinth seal with dust flinger (Type 11) ...................................................................... 29

6.4.3 Floating labyrinth seal with baffle (Type 12) ............................................................................... 29

6.4.4 Rigid labyrinth seal (Type 20) ..................................................................................................... 29

6.4.5 Rigid labyrinth seal with dust flinger (Type 21)........................................................................... 29

6.4.6 Rigid labyrinth seal with baffle (Type 22).................................................................................... 29

6.5 Dismantling of the top half of the housing ........................................................................................ 30

6.6 Removal of the top half of the shell................................................................................................... 30

6.6.1 Dismantling of the loose oil ring ................................................................................................. 30

6.6.2 Dismantling the machine side shaft seal.................................................................................... 31

6.7 Removal of the bottom half of the shell ............................................................................................ 31

6.8 Dismantling of the machine seal ....................................................................................................... 31

7 Cleaning and Checking of the Bearing................................................................................................. 32

Page 173: Generator Manual

Maintenance and Inspection

4 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

8 Assembly of the Bearing ........................................................................................................................ 34

8.1 Fitting in the bottom half of the shell ................................................................................................. 34

8.2 Assembly of the shaft seal - machine-side ....................................................................................... 35

8.3 Installation of the loose oil ring.......................................................................................................... 37

8.4 Fitting in the top half of the shell ....................................................................................................... 38

8.5 Closing of the bearing ....................................................................................................................... 39

8.6 Assembly of the Seals - Outboard Side ............................................................................................ 41

8.6.1 Floating labyrinth seal (Type 10)................................................................................................. 41

8.6.2 Floating labyrinth seal with dust flinger (Type 11) ...................................................................... 45

8.6.3 Floating labyrinth seal with baffle (Type 12) ............................................................................... 46

8.6.4 Rigid labyrinth seal (Type 20) ..................................................................................................... 46

8.6.5 Rigid labyrinth seal with dust flinger (Type 21)........................................................................... 48

8.6.6 Rigid labyrinth seal with baffle (Type 22).................................................................................... 48

9 Starting Operation after Inspection ...................................................................................................... 49

10 .. Corrosion Protection for Longer Standstill Periods............................................................................ 50

11 .. Transport Protection .............................................................................................................................. 50

12 .. Glossary................................................................................................................................................... 51

Page 174: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 5

Bearing Coding

Page 175: Generator Manual

Maintenance and Inspection

6 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

Type

E

Housing

F - flange mountedbearing

Heat Dissipation

Z - lubrication by oil circulation withexternal oil cooling

X - lubrication by oil circulation withexternal oil cooling whenoil throughput is high

U - circulating pump and naturalcooling

T - circulating pump and watercooling (finned cooler inoil sump)

Shape of Bore and Type ofLubrication

C - plain cylindrical borewithout oil ring

L - plain cylindrical bore withloose oil ring

Y - two-lobe bore (”lemon bore”)without oil ring

V - four-lobe borewithout oil ring

Thrust part

Q - without thrust part(non locating bearing )

B - plain sliding surfaces(locating bearing)

E - taper land faces for one sense of rotation(locating bearing)

K - taper land faces for bothsenses of rotation(locating bearing)

A - elastically supported circulartilting pads (locating bearing)

Size - Diameter

9 80≤D≤100

11 100≤D≤125

14 125≤D≤160

18 160≤D≤200

22 200≤D≤250

28 250≤D≤315

Example for bearing coding:

E F Z L K 22-200 Type E slide bearing with flanged mounted housing, lubrication byoil circulation with external oil cooling, plain cylindrical bore with looseoil ring, locating bearing with taper land faces, size 22, diameter 200.

Shaft seals Type 10 - floating labyrinth seal (IP 44)Type 11 - floating labyrinth seal with dust flinger (IP 54)Type 12 - floating labyrinth seal with baffle (IP 55)

Type 20 - rigid labyrinth seal (IP 44)Type 21 - rigid labyrinth seal with dust flinger (IP 54)Type 22 - rigid labyrinth seal with baffle (IP 55)

Page 176: Generator Manual

external oil supply

RENK AG Werk Hannover RH-EFZE/WI-E Version: 26 Oktober, 2000 7

General Drawing of the

EF Slide Bearing

with external oil supply

Page 177: Generator Manual

5

3

4

6 7 8 9

10

11

12

28

29

30

31

1

213

14

15

20

21

22

23

24

2627

19

17

18

16

25

xxx

xxx x

Page 178: Generator Manual

1 Top half of the housing

2 Hole for positioning pin

3 Positioning pin

4 Connection hole for the oil supply of the thrust part

5 Top sight glass

6 Eye bolt

7 Screw (not included in delivery)

8 Screw

9 Tapped hole ( in the top and bottom halves of the shell, up size 14 )

10 Machine seal

11 Top half of the shell

12 Screw (split line of the housing)

13 Bottom half of the shell

14 Spherical seating

15 Engraved number - shell

16 Spigot

17 Tapped hole

18 Screw (not included in delivery)

19 Screw (split line of the shell)

20 Engraved numbers - housing

21 Bottom half of the housing

22 Tapped hole for temperature measurement of the journal part

23 Oil inlet connection hole

24 Tapped hole for the oil sump temperature measurement

25 Outlet/Inlet cooling water (Type E.T..)

26 Cooler ( Type E.T..)

27 Hexagon head plug (Oil drain plug)

28 Metal tabs ( optional for EFZL. )

29 Oil outlet connection hole

30 Oil outlet pipe with lock nut and lead seal

31 Marking

Page 179: Generator Manual
Page 180: Generator Manual

external oil supply

RENK AG Werk Hannover RH-RDZE/WI-E Version: 26 Oktober, 2000 9

General Drawing of the

Thrust Part with Circular Tilting Pads

(RD-Thrust Pads)

Page 181: Generator Manual

37

38

39

43

42

41

40

Page 182: Generator Manual

37 Carrier ring

38 Location groove

39 Shroud ring top half

40 Screw

41 Shroud ring bottom half

42 Circular tilting pad (RD-thrust pad)

43 Anti - Rotation pin

Page 183: Generator Manual
Page 184: Generator Manual

external oil supply

RENK AG Werk Hannover RH-LSZE/WI-E Version: 26 Oktober, 2000 11

General Drawing of the

Loose Oil Ring

Page 185: Generator Manual

44

45

46

47

Page 186: Generator Manual

44 Loose Oil Ring

45 Dowel pin

46 Hole

47 Screw

Page 187: Generator Manual
Page 188: Generator Manual

external oil supply

RENK AG Werk Hannover RH-SSZE/WI-E Version: 26 Oktober, 2000 13

General Drawing of the

Floating Labyrinth Seal

with Seal Carrier

Page 189: Generator Manual

48

49

50

54

56

57

58

52

53

51

55

Bearing side

Outer view

Page 190: Generator Manual

48 Seal carrier - top half

49 Garter spring

50 Groove

51 Seal carrier - bottom half

52 Bottom half of the seal

53 Top half of the seal

54 Anti - rotation pin

55 Screw

56 Engraved number

57 Groove ( Type 11 )

58 Engraved number

Page 191: Generator Manual
Page 192: Generator Manual

external oil supply

RENK AG Werk Hannover RH-KDZE/WI-E Version: 26 Oktober, 2000 15

General drawing of the

Rigid Labyrinth Seal

Page 193: Generator Manual

59

60

61 (2x)

62

63

64

65

Page 194: Generator Manual

59 Rigid labyrinth seal - top half

60 Screw

61 Screw (split line)

62 Groove ( Type 21 )

63 Rigid labyrinth seal - bottom part

64 Engraved number

65 Engraved number

Page 195: Generator Manual
Page 196: Generator Manual

external oil supply

RENK AG Werk Hannover RH-DSZE/WI-E Version: 26 Oktober, 2000 17

General Drawing of the

Baffle

Page 197: Generator Manual

66

67

68

Page 198: Generator Manual

66 Baffle - top half

67 Screw

68 Baffle - bottom half

Page 199: Generator Manual
Page 200: Generator Manual

external oil supply

RENK AG Werk Hannover RH-LRZE/WI-E Version: 26 Oktober, 2000 19

General Drawing of the

Dust Flinger

Page 201: Generator Manual

69

70 (2x)

Page 202: Generator Manual

69 Dust flinger

70 Screw (split line)

Page 203: Generator Manual
Page 204: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 21

1 Considerations for Use

The instructions for maintenance and inspection are addressed to qualified technical personnel(fitters, mechanic installers, mechanical engineers).

Read these instructions carefully before starting assembly.

Slide bearings of type EF are almost universally used in the engineering industry. Therefore it is notpossible to provide detailed information on all possible types and range of applications for thesebearing types. For instance, the position of the connection points for supply and monitoringequipment is determined by the place of application ( in the following called " installation " ).Please keep ready the guidelines with the technical documentation before starting assembly andoperation of the slide bearings.

Additional technical documentation with detailed information is supplied in the case of specialdesign bearings. Please contact RENK Export or Domestic Department for supplementaryinformation on bearings. Please indicate the bearing coding and the full reference number, too.

Following indications should be observed when reading these instructions.

Safety instructions are marked as follows:

Danger!Warning of dangers for personnel.Example: Warning of injury

Attention!Warning of damage for the bearing or installation.

Useful recommendations and additional information are framed.

This is how chapters, instructions or recommendations are marked when referring to a single typeor size of a bearing.

Example: Slide bearing type EF without thrust part ( non-locating bearing )

- Instruction follows.

• Beginning of an enumeration.

( ) This is how the different parts of a bearing as described in the general drawings ( numbers ) are marked in the text.

− Use the enclosed check-list before starting assembly or operation. Copies available on request.− The check list provides the experienced mechanical fitters of RENK bearings with the

necessary instructions for installation and operation.

EF..Q

Page 205: Generator Manual

Maintenance and Inspection

22 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

2 Safety Instructions

Danger!The maintenance and inspection of the slide bearings should be carried out by:• persons nominated by the safety representative• persons correspondingly trained and instructed• persons with knowledge on appropriate standards, regulations and accident

prevention rules• persons with knowledge on first-aid measures and local rescue centres.

Warning of injury!Before starting work on the bearing:- Switch off the installation.- Make sure the installation is not in operation.Never lift or transport machines, etc.by the bearing eye bolts. These are only intendedfor assembly and dismantling of the bearing !

Warning of injury!Do not grab such heavy bearing parts as the housing during assembly or dismantlingwork. This could result in bruising or injury to hands !

Attention!All metal parts of a slide bearing consisting of top and bottom part such as the housing, shells,shaft seals are marked by engraved numbers. Fit together only the parts with the same number.

Attention!In case • the admissible bearing temperature exceeds by 15 K

• inadmissible vibrations occur• unusual noises or odours are noticed• monitoring equipment triggers alarm

shut down the installation and inform the maintenance personnel in charge.

Attention!Do not operate the bearing below the transition speed values indicated in the bearing calculation,thus avoiding inadmissible operating conditions, which could lead to damage of the bearing.

Page 206: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 23

3 Operating Instructions after Standstill

− Clean the external parts of the bearing. Dust and dirt impede the radiation of the heat.− Check with the instructions to determine if an oil change is necessary. Depending on the

duration of the standstill an oil change is either prescribed or recommended. Carry out the oilchange as indicated in Chapter 5.

− Retighten the screws (8), (18), (12) at the split line and flange to the following torque rates:

Bearing Size 9 11 14 18 22 28

Torque [Nm] forµtot = 0,1 (lightly oiled)

69 69 170 330 570 1150

− Check that the top sight glass (5) is firmly in position.− Retighten the connection holes for oil inlets and outlets, the oil supply hole for the thrust part

(optional). The necessary torque rates depend on the used pipe joints.− In case a thermo sensor or/and an oil sump thermometer are used:− Check that they are correctly fitted (see also the manufacturer's instructions).− Retighten all screw plugs in the connection holes (22), (24), (27), (29) to the necessary torque

rates:

Screw plug threads G 3/8 G 1/2 G 3/4 G 1 G 1 1/4 G 1 1/2 G 2 G 2 1/2

Torque [Nm] for plugswith injection-mouldedplastic sealing ring

30 40 60 110 160 230 320 500

Torque [Nm] for plugswith flexible sealing ring

34 60 85 130 240 300 330 410

− Start operating the oil supply system and check its functioning ( see also the TechnicalDocumentation of the Installation ). The supplied oil quantity at the bearing oil inlet mustcorrespond to the values indicated in the EDP-calculations.

− Check that the temperature monitoring equipment is functioning correctly

− Check that the cooler is functioning correctly.

The bearing is now ready to work.

EFT..

Page 207: Generator Manual

Maintenance and Inspection

24 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

4 Maintenance Schedule

Maintenance work Deadline

Exterior cleaning of the bearing every 100-1000 hours

Oil change Bearing in reversing operation every 5000 operating hours.Bearing in continuous operation every 20.000 operating hours(please observe also the indications for the use of thelubricating oil).

Bearing inspection During prevention maintenance work for the installation.Immediately if:

• the bearing temperature exceeds 15 K over the indicatedvalue (see the EDP-calculations)

• unusual operating noises occur

• unusual changes of the lubricating oil become visible

• increased oil level in the case of bearing type EFT....

Page 208: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 25

5 Oil Change

Risk of pollution!Please observe the instructions for the use of the lubricating oil. The manufacturer can provideinformation on waste oil disposal.

− Shut down the installation and secure it against unintended operation.− Shut down the oil supply system.− Take all necesarry measures to collect the whole quantity of the lubricating oil.− Drain off the lubricating oil while still in a warm condition. Impurities and residues will thus be

scavenged. Go ahead as follows:− Drain off and collect the lubricating oil of the oil supply system.− Unscrew the hexagon head plug (27). Drain off the lubricating oil and collect it.

Attention! In case where the lubricating oil contains unusual residues or is visibly changed, eliminate thecauses. If necessary, carry out an inspection.

− Tighten the hexagon head plug (27) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 30 30 30 40 60 60

− Clean the oil tank.− Fill up the oil supply system with lubricating oil. Use a lubricant with the viscosity indicated on

the bearing type plate.− Start the oil supply system in order to fill up the bearing with lubricating oil.

The bearing is ready to work when the quantity of oil supplied at the bearing oil inlet correspondsto the values indicated in the EDP-calculations.

Page 209: Generator Manual

Maintenance and Inspection

26 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

6 Dismantling of the Bearing

6.1 Tools and equipment

− Following tools and equipment are necessary:

• Allan key set• Wrenching key set• Open-jawed spanner set• Feeler gauges (up 0,05 mm)• Caliper gauge• Emery paper, plain scraper• Oil stone• Lifting equipment• Permanent sealing compound (e.g. Curil T)• Clean (close weave) rags• Oil with the viscosity indicated (see bearing type plate)• Detergents• Liquid screw locking compound (e.g.LOCTITE 242)• Liquid sealing compound and Teflon tape.

6.2 Use of lifting equipment

Risk of injury!

Before transport or lifting check if the eye bolts are tight! Insecure eye bolts couldresult in bearing becoming loose.

Before moving the bearing by the eye bolts make sure that the split line screws aretightened, otherwise the bottom half of the bearing could become detached.

Make sure that the eye bolts are not exposed to bending stress, otherwise the boltscould break.

Follow exactly the instructions for the use of the lifting equipment.

− Use lifting equipment for following assembly and transport works:

Transport/Assembly of: Use lifting equipment for the following bearing sizes

Whole bearing unit 9-28

Top half of the housing 14-28

Bottom half of the housing 11-28

Shells 14-28

Page 210: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 27

− Following steps are to be observed before using the lifting equipment:

Whole bearing unit

− Check if the screws are tight (12):

Bearing size 9 11 14 18 22 28

Torque value [Nm] forµtot = 0,1 (lightly oiled)

69 69 170 330 570 1150

− Check if the eye bolts are tight (6).− Connect the lifting equipment to the eye bolts (6).

Top half of the housing

− Check if the eye bolts are tight (6).− Connect the lifting equipment to the eye bolts (6).

Bottom half of the housing

− Screw two eye bolts (6) with suitable threads tight into the cross-placed opposite tapped holes(17).

Bearing size 9 11 14 18 22 28

Tapped hole M 12 M 12 M 16 M 20 M 24 M 30

− Connect the lifting equipment to the eye bolts (6).

Shells

− Screw two eye bolts or screw hooks with suitable threads tight into the tapped holes (9):

Bearing size 14 18 22 28

Tapped hole M 8 M 12 M 12 M 16

− Connect the lifting equipment to the screw hooks.

Page 211: Generator Manual

Maintenance and Inspection

28 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

6.3 Preparation for dismantling

Attention!Make sure that the work place is clean. Contamination and damage to the bearing, especially tothe working surfaces, have a negative influence on the operating quality and could lead topremature failure.

Attention!Do not use any violence or force!

− Shut down the installation and ensure it against unintended operation.− Shut down the oil supply system.

− Interrupt the cooling water supply.

− Disconnect all thermo sensors from the tapped holes.− Take all necessary measures to collect the lubricating oil.− Unscrew the hexagon head plug (27) and collect the lubricating oil.

Risk of pollution!Please observe the instructions for the use of the lubricating oil. The manufacturer can providenecessary information on waste oil disposal.

− Tighten the hexagon head plug (27) to the following torque rates

Bearing size 9 11 14 18 22 28

Torque (Nm] 30 30 30 40 60 60

− Inform yourself about maintenance and inspection of the oil supply system ( see also theTechnical Documentation Oil Supply System ). Carry out all necessary maintenance andinspection works.

6.4 Dismantling of the shaft seal - outboard side

− Dismantle the outboard side seals of the bearing.Proceed correspondingly to the seal type:

• Floating labyrinth seal (Type 10) Chapter 6.4.1• Floating labyrinth seal with dust flinger (Type 11) Chapter 6.4.2• Floating labyrinth seal with baffle (Type 12) Chapter 6.4.3

• Rigid labyrinth seal (Type 20) Chapter 6.4.4• Rigid labyrinth seal with dust flinger (Type 21) Chapter 6.4.5• Rigid labyrinth seal with baffle (Type 22) Chapter 6.4.6

EFT..

Page 212: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 29

6.4.1 Floating labyrinth seal (Type 10)

− Loosen all screws (55) and take them out.− Remove simultaneously in axial direction both top half (48) and bottom half (51) of the seal

carrier from the housing.− Shift a little (about 20 mm) the top half (53) of the seal. Tilt it over carefully until the garter spring

(49) unbends.

Warning of injury!During dismantling of the floating labyrinth seal hold tight the garter spring (49) whichis under tension and could bounce back and lead to injury.

− Open the garter spring (49) and remove the bottom half of the seal (52) from the shaft.

6.4.2 Floating labyrinth seal with dust flinger (Type 11)

− Dismantle the dust flinger (69). Loosen the screws (70) and take out the dust flinger (69) fromthe groove (57) of the seal carrier.Remove both halves of the dust flinger.

− Go on as indicated for type 10 (see Chapter .4.1).

6.4.3 Floating labyrinth seal with baffle (Type 12)

− Disconnect both top 66) and bottom (68) halves of the baffle by untightening the screws (67).− Go on as indicated for type 10 (see Chapter 6.4.1).

6.4.4 Rigid labyrinth seal (Type 20)

− Loosen all screws (60) and take them out.− Take out the screws (61).− Remove simultaneously in axial direction both top (59) and bottom (63) halves of the rigid

labyrinth seal.

6.4.5 Rigid labyrinth seal with dust flinger (Type 21)

− Dismantle the dust flinger (69). Loosen the screws (70) and take out the dust flinger (69) fromthe groove (62) of the rigid seal. Remove both halves of the dust flinger.

− Go on as indicated for type 20 (see Chapter 6.4.4).

6.4.6 Rigid labyrinth seal with baffle (Type 22)

− Unscrew the top half (66) and the bottom half (68) of the baffle by untightening the screws (67).− Go on as indicated for type 20 (see Chapter 6.4.4).

Type10

Type11

Type12

Type20

Type21

Type22

Page 213: Generator Manual

Maintenance and Inspection

30 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

6.5 Dismantling of the top half of the housing

− Unscrew the screw plug with the welded-on positioning pin.− Remove the screws (8).− Remove the screws (12).− Lift the top part of the housing (1) until the top part of the housing can be moved in axial line

over the shell, without touching it.

6.6 Removal of the top half of the shell

− Unscrew the screws (19) and lift the top half of the shell (11).

Attention!Do not damage the thrust and radial working surfaces.

Attention! In the case of insulated housings (white plastic insulating foil) avoid any jamming of the top half ofthe shell when you lift it up. Jamming could lead to damage of the insulating foil in the bottom half of the housing.

6.6.1 Dismantling of the loose oil ring

− Open both split lines of the loose oil ring (44) by untightening and taking out the screws (47).Separate both halves of the loose oil ring (44) carefully without using any tools or other devices.

Illustration 1 Opening of the loose oil ring

To check the geometry of the loose oil ring put it together as follows:

− Press the positioning pin (45) into the holes (46).− Adjust both halves of the loose oil ring till the split lines match each other.− Tighten the screws (47).

EF.V.

EF.L.

II

44 44

I

44

47

Page 214: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 31

6.6.2 Dismantling the machine side shaft seal

− Shift a little (about 20 mm) the top half (53) of the seal. Tilt it over carefully until the garter spring(49) unbends.

Warning of injury!During dismantling of the floating labyrinth seal hold tight the garter spring (49) whichis under tension and could bounce back and lead to injury.

− Open the garter spring (49) and turn the bottom half of the seal (52) in opposite direction fromthe anti-rotation pin out of the integrated seal groove of the bottom half of the housing.

6.7 Removal of the bottom half of the shell

Attention!Make sure that all bearings mounted on a shaft line are opened. Loosen the screws at the split lineof the housings.

Attention!The lifting equipment should not come into contact with the seal and working surfaces of the shaft.

− Lift the shaft up to the point where shaft and bottom half of the shell (13) do not touch eachother any more. Protect the shaft against unintended movement.

− Turn the bottom half of the shell (13) out of the bottom half of the housing (21) and remove itfrom the shaft.

Attention!If the bottom half of the shell (13) is provided with metal tabs (28) do not remove them. Theyregulate the oil level in the oil pockets.

6.8 Dismantling of the machine seal

Usually it is not necessary to dismantle the machine seal (10) if maintenance works are carried out.

If due to certain reasons the split machine seal must be dismantled please observe that thisoperation can be carried out only from the inner part of the machine. Loosen the screws at thesplit line of the machine seal and remove the screws (7).

Non-split machine seals can be dismantled only after dismantling the machine shield or the shaftcompletely.

In the case the machine seal is equipped with a hamp packing, some visible changes can benoticed, such as : tallow excess, black colour of the seal due to temperature development. Even insuch cases it is not necessary to renew the hamp packing. Colour changes will appear with a newhamp packing too, until the seal clearance adjusts during operation.

Page 215: Generator Manual

Maintenance and Inspection

32 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

7 Cleaning and Checking of the Bearing

Attention!Use only non-aggressive detergents such as for instance

• VALVOLINE 150• Alcaline cleaning compounds (pH-value 6 to 9, short reaction time).

Warning of injury!Please observe the instructions for the use of the detergents.

Attention!Never use cleaning wool or cloth. Residues of such materials left in the bearing could lead toexcessive temperatures.

− Clean the following parts thoroughly:

• top half of the housing (1)

• bottom half of the housing (21)

• top half of the shell (11)

• bottom half of the shell (13)

• sealing surfaces of the top half (48) and bottom half (51) of the seal carrier or of the rigidlabyrinth seal

• loose oil ring (44).

− Check the condition of the cooler (26).

In case the cooler (26) is incrusted with oil sludge:

− Dismantle the cooler. Remove the incrustation by using for instance a wire brush.− Install the cooler (26) into the bearing.

EF.L.

EFT..

Page 216: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 33

− Carry out a visual check of the wear condition of all bearing parts. The following table providesinformation on the parts that must be replaced in case of wear.The right evaluation of the wearcondition, especially of the working surfaces of the shell, implies a lot of experience. If in doubt,replace the worn part with new ones.

Bearing part Wear condition

Maintenance procedure

Shell Scoring Bearing temperature before inspection:• not increased - no new shells• increased - new shells

White metal lining damaged New shell

Bow wave ridges New shells

Shaft seal Baffles broken or damaged New shaft seal

Loose oil ring Geometrical form ( roundness,flatness ) visibly changed

New loose oil ring

− Check the projection of the positioning pin (3) according to the rates indicated below:

Bearing size 9 11 14 18 22 28

Projection of thepositioning pin (4) mm

7 8 10 12 14 16

In case the projection is less than indicated,

− drive the positioning pin (3) into the top half of the housing (1) until the indicated value isreached.

− Check the insulating layer of the spherical seating (14) of the top half (1) and bottom half (21) ofthe housing. In case of damage contact the RENK-sales agency in charge.

− Check the mobility of all RD-thrust pads (42).

EF.C. EF.L. EF.Y. Size9-14

insulatedbearings

EF..A

Page 217: Generator Manual

Maintenance and Inspection

34 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

8 Assembly of the Bearing

Attention!Remove all impurities or other objects such as screws, nuts, etc. from inside the bearing. If leftinside they could lead to damage of the bearing. Cover up the opened bearing during work breaks.

Attention!Carry out all assembly operations without making use of force.

Attention!Secure all screws at the split line, of the housing and flange with a liquid screw locking compound(e.g.LOCTITE 242).

8.1 Fitting in the bottom half of the shell

Attention!Mounting the bottom half of the shell (not marked with an arrow) correctly will ease the assemblyof the top half shell (marked with an arrow) (see chapter 8.4).

− Apply some lubricant to the spherical seating (14) in the bottom half of the housing (21) and tothe working surfaces of the shaft. Use the same type of lubricant as indicated for bearingoperation( see type plate ).

− Place the bottom half of the shell (13) on the working surface of the shaft. Turn the bottom halfof the shell (13) into the bottom half of the housing (21) with the split line surfaces of both halvesin true alignment.

In case the bottom half of the shell doesn`t turn in easily, check the position of the shaft and thealignment of the housing

Attention!These operations should be carried out most carefully. The thrust parts of the bottom shell mustnot be damaged.

− Lower down the shaft till it sits on the bottom half of the shell (13).

EF..E

EF..B, EF..K, EF..E, EF..A

Page 218: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 35

8.2 Assembly of the shaft seal - machine-side

The machine-side shaft seal, as standard, a floating labyrinth seal. The integrated seal groove is inthe top and bottom halves of the housing.

Warning of injury!During assembly hold the garter spring ends (49) securely to avoid them suddenlyreleasing and causing possible injury!

Check the movement of the floating labyrinth seal on the shaft in the seal area outside the housing:

− Put the garter spring (49) around the shaft and hook both ends into each other.− Put both halves of the seal (52), (53) in their place on the shaft.− Put the garter spring (49) into the groove (50).− Turn the floating labyrinth seal on the shaft.

Attention!The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheatingduring operation and even to shaft wear.If the floating labyrinth seal jams,- dismantle the seal and- remove the worn parts of the seal carefully, by using emery paper or a plain scraper.

− Dismantle the floating labyrinth seal.− Apply Curil T to the guide surfaces of the integrated seal groove in the bottom half of the

housing.

Illustration 2: Applikation of Curil T to the integrated seal groove

21

Page 219: Generator Manual

Maintenance and Inspection

36 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Apply a uniform layer of Curil T to the seal surfaces and to the split line surfaces of both halvesof the seal (52), (53).

Illustration 3: Application of Curil T to the floating labyrinth seal

Please observe the instructions for the use of Curil T.

− Place the bottom half of the seal (52) with the labyrinths onto the shaft.− The oil return holes at the bearing side must be clear and open.− Turn the seal in opposite direction from the anti-rotation pin into the groove of the housing until

the split lines of the bottom half of the housing and the bottom half of the seal match eachother.

− Remove the residue of Curil T.− Push the spring hook into the integrated groove between the bottom half of the housing and

the seal until both ends jut out from the split line.− Place the top half of the seal with the cam facing the inside of the bearing on the bottom half of

the seal.− Stretch the garter spring till both ends can be hooked.

52

Page 220: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 37

8.3 Installation of the loose oil ring

− Open both split lines of the loose oil ring (44) by untightening and removing the screws (47).Separate both halves of the loose oil ring (44) carefully without using any tools or other devices.

Illustration:4 Opening of the loose oil ring

− Place both halves of the loose oil ring into the shell groove (13) around the shaft. Press thepositioning pin (45) of each split line into the corresponding hole (46).

− Adjust both halves of the loose oil ring till the split lines match each other.

Illustration 5: Installation of the loose oil ring

− Tighten the screws (47) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 1,4 1,4 1,4 2,7 2,7 2,7

EF.L.

II

44 44

I

44

47

44

45

21

44

18

Page 221: Generator Manual

Maintenance and Inspection

38 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

8.4 Fitting in the top half of the shell

− Apply some lubricant to the working surfaces of the shaft. Use the same type of lubricant asindicated for bearing operation (see type plate).

− Check if the engraved numbers (15 ) on the bottom and top halves of the shell correspond.− Place the top half of the shell (11) on the shaft; both engraved numbers (15) should be on the

same side.

Attention!An incorrectly placed shell could jam the shaft thus leading to the damage of both shaft andbearing.

Attention!Place the top half of the shell carefully on the shaft. The thrust parts of the top half of the shellmust not be damaged.

In the case of bearings arranged for insulation monitoring, connect the black cable for insulationmonitoring to the shell.

According to the bearing type, there are two possibilities of connection.

1. The black cable is provided with a cable connector.

− Plug the cable with the cable connector into the counterpart available on the top of the shell.− Lead the cable through the cable gland in the bottom half of the housing and out of the

bearing.− Tighten the cable gland oil-tight.

2. The black cable is provided with an eyelet.

− Fasten the cable with the eyelet to the split line of the shell, by using one of the shell joint bolts.− Lead the cable through the cable gland in the bottom half of the housing and out of the

bearing.− Tighten the cable gland oil-tight.

− Tighten up the screws (19) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 8 8 20 69 69 170

− Check the split line of the shell by using a feeler gauge. The split line gap should be less than0,05 mm. If the split line is greater than this, dismantle both top and bottom (11), (13) halves ofthe shell. Rework the split line surfaces of the top half (11) and bottom half (13) of the shell withan oil stone.

− Check the mobility of the loose oil ring (44).

A guide bush in the top half of the shell secures the function of the loose oil ring.

− Check the mobility of the loose oil ring (44) in the guide bush.

EF..B, EF..K, EF..E, EF..A

insulatedbearings

EF.L.

EF.L. MarineBearing

Page 222: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 39

Shells with taper land faces suitable only for one direction of rotation are marked with an arrow onthe top half shell, which indicates the sense of rotation of the shaft.

The arrow indicates the allowed direction of shaft rotation after completion of the bearingassembly.

− Before mounting the top half of the housing check that the proposed direction of rotation of theshaft corresponds to the direction indicated by the arrow on the top half of the shell.

− If the directions match, continue the assembly of the bearing.− If the directions do not match, the shell must be disassembled, re-aligned and mounted again.

Attention! A wrongly placed shell, without observance of the direction of rotation of the shaft, impairs theoperational safety of the bearing.

8.5 Closing of the bearing

− Check the true alignment of the shell (11), (13) and bottom half (21) of the housing.

The positioning pin (3) in the top half of the housing fits in the corresponding hole (2). The shell isthus placed into its right position.

− Check if the engraved numbers (20) on the top and bottom halves of the housing correspond.− Clean the split line surfaces of the top and bottom halves (1), (21) of the housing.− Apply Curil T to the whole surface of the split line of the bottom half (21) of the housing.

Please observe the instructions for the use of Curil T.

− Place the top half of the housing carefully into the machine shield, without touching the seals orthe shell.

− Lower the top half of the housing (1) vertically on the bottom half of the housing (21). Lower thetop half of the housing (1) till the split line of the housing is not visible any more.

− Gently hit the bottom half of the housing (21) with a nylon hammer, thus ensuring the alignmentof the spherical seating.

− Insert the screws (12). Tighten them hand-tight.− Insert the screws (8). Tighten them to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm]µtot = 0,1 (lightly oiled)

69 69 170 330 570 1150

− Tighten the screws (12) of the housing crosswise to the same torque rates.

− Tighten the screw plug with the welded-on positioning pin into the top half of the housing.

EF..E

EF.C. EF.L. EF.Y.

EF.V.

Page 223: Generator Manual

Maintenance and Inspection

40 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

Insulation monitoring

In the case of electric insulated bearings provided with insulation monitoring, the cable coming outof the housing must be connected in a professional manner.

According to the type supplied, please follow the assembly instructions given below.

a) The cable is very short and provided with a further cable connector at the end of it.This cable is ready for connection to the housing.The bottom half of the housing is provided with the counterpart.

− Plug the cable connector into the counterpart.

Attention! This connection bypasses the electrical insulation of the bearing. In the case of electric machines, make sure at least one bearing is electrically insulated.

To check the electrical insulation, interrupt the connection cable - housing. Check the electricalresistance with a suitable measuring instrument. Make sure that both bearings and the couplingare electrically insulated.

b) The cable has a free end. In this case the customer has to make the connection.

Attention! If only one bearing is insulated, the end of the cable must not be earthed.

Any further connection depends on the customer’s requirements related to the insulationmonitoring and can not therefore be described here.

insulatedbearings

Page 224: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 41

8.6 Assembly of the Seals - Outboard Side

− Assemble the outboard side seals.Proceed according to the seal type used:

• Floating labyrinth seal (Type 10) Chapter 8.6.1• Floating labyrinth seal with dust flinger (Type 11) Chapter 8.6.2• Floating labyrinth seal with baffle (Type 12) Chapter 8.6.3

• Rigid labyrinth seal (Type 20) Chapter 8.6.4• Rigid labyrinth seal with dust flinger (Type 21) Chapter 8.6.5• Rigid labyrinth seal with baffle (Type 22) Chapter 8.6.6

8.6.1 Floating labyrinth seal (Type 10)

Warning of injury!During assembly hold the garter spring ends (49) securely to avoid them suddenlyreleasing and causing possible injury!

Check the movement of the floating labyrinth seal on the shaft in the seal area outside the housing.

− Put the garter spring (49) around the shaft and hook both ends into each other.− Put both halves of the seal (52), (53) in their place on the shaft.− Put the garter spring (49) into the groove (50).− Turn the floating labyrinth seal on the shaft.

Attention!The floating labyrinth seal should turn easily on the shaft. A jammed seal could lead to overheatingduring operation and even to shaft wear.If the floating labyrinth seal jams,- dismantle the seal and- remove the worn parts of the seal carefully, by using emery paper or a plain scraper.

− Dismantle the floating labyrinth seal.

Type10

Page 225: Generator Manual

Maintenance and Inspection

42 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Apply a uniform layer of Curil T to the seal surfaces and to the split line surfaces of both halvesof the seal (52), (53).

Please observe the instructions for the use of Curil T.

Illustration 6: Application of Curil T to the floating labyrinth seal

− Press the bottom half of the seal (52) against the shaft.− Place the top half of the seal (53) on the shaft and align both halves of the seal to each other.− Place the garter spring (49) into the groove (50) and stretch until both ends can be hooked.

Illustration 7: Assembly of the floating labyrinth seal

52

49 52 21

15354

Page 226: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 43

− Place in true alignment the split line of the floating labyrinth seal and the split line of the sealcarrier.

− Check that both engraved numbers (56) and (58) on top and bottom halves of the seal carrier(48), (51) correspond.

− Clean the following parts:

• the seal surfaces of the top (48) and bottom (51) half of the seal carrier (the groove of thefloating labyrinth seal, the flange surfaces)

• the split line surfaces of the top (48) and bottom (51) half of the seal carrier• the flange surfaces of the housing.

− Apply a uniform layer of Curil T to:

• the lateral surfaces of the groove at the top (48) and bottom (51) half of the seal carrier• the flange surfaces of the top (48) and bottom (51) half of the seal carrier• the split line surfaces of the bottom half of the seal carrier (51).

Please observe the instructions for the use of Curil T.

Illustration 8: Application of Curil T to the seal carrier

51

Page 227: Generator Manual

Maintenance and Inspection

44 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Place the top half of the seal carrier (48) on the top half of the seal (53). Press the bottom half(51) of the seal carrier against it. Push the shaft seal completely into the housing.

Illustration 9: Assembly of the seal carrier

− Place in true alignment the split lines of the seal carrier and the housing.− Tighten up the screws (55) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 8 8 8 20 20 20

48

54

53

Page 228: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 45

8.6.2 Floating labyrinth seal with dust flinger (Type 11)

− Assemble the floating labyrinth seal with dust flinger as described in Chapter 8.6.1, Floatinglabyrinth seal type 10.

− Place both halves of the dust flinger (69) in front of the shaft seal around the shaft. Looselyscrew in the screws (70).

Illustration 10: Clearance between dust flinger and seal carrier

− Push the dust flinger (69) into the groove (57) of the seal carrier.− Set the clearance "e" at the following figure around the whole unit:

maximum longitudinal extension of the shaft in operation + 1 mm

(Parameters indicated in the Technical Documentation of the Installation).

− Tighten up the screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

− Push the dust flinger (69) into the groove (57) of the seal carrier.− Set the clearance "e" at 1 mm around the whole unit.− Tighten the screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

Type11

e

69 48

57

EF..Q

EF..B, EF..K, EF..E, EF..A

Page 229: Generator Manual

Maintenance and Inspection

46 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

8.6.3 Floating labyrinth seal with baffle (Type 12)

− Assemble the floating labyrinth seal with baffle as in Chapter 8.6.1, Type 10.− Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of

the baffle.− Screw • the top half of the baffle (66) to the top half of the seal carrier (48)

• the bottom half of the baffle (68) to the bottom half of the seal carrier (51).− Tighten the screws (67) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 4 10

8.6.4 Rigid labyrinth seal (Type 20)

− Check if the engraved numbers (64) and (65) on the bottom half (63) and top half (59) of the rigidlabyrinth seal correspond.

− Clean

• the flange surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal• the split line surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal• the flange surfaces of the housing.

− Apply a uniform layer of Curil T to the following parts:

• the flange surfaces of the top half (59) and bottom half (63) of the rigid labyrinth seal• the split lines of the bottom half (63) of the rigid labyrinth seal.

Please observe the instructions for the use of Curil T.

Illustration 11: Application of Curil T to the rigid labyrinth seal

Type12

Type20

63

Page 230: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 47

− Place the top half (59) of the rigid labyrinth seal on the shaft and press slightly the bottom half(63) of the rigid labyrinth seal from below against it. Lightly push the rigid labyrinth sealcompletely into the housing.

− Tighten the screws (61).− Place in parallel alignment the split line of the rigid labyrinth seal and the split line of the

housing. Press the rigid labyrinth seal slightly from below against the shaft. Adjust the rigidlabyrinth seal in such a way that the clearance "f" between the shaft and the rigid labyrinth sealat both split lines has the same figure.

Illustration 12: Alignment of the rigid labyrinth seal

− Tighten the screws (60) to the following torque rates:

Bearing size 9 11 14 18 22 28

Torque [Nm] 8 8 8 20 20 20

f f

1

21

59

63

Page 231: Generator Manual

Maintenance and Inspection

48 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

8.6.5 Rigid labyrinth seal with dust flinger (Type 21)

− Assemble the rigid labyrinth seal with dust flinger as indicated in Chapter 8.6.4, Type 20.− Place both halves of the dust flinger (69) round the shaft, in front of the rigid labyrinth seal.

Mount the screws (70) loose.

Illustration 13: Clearance between dust flinger and rigid labyrinth seal

− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal.− Set the clearance "e" at the following figure around the whole unit:

maximum longitudinal extension of the shaft in operation + 1 mm

(Parameters are indicated in the Technical Documentation of the Installation).

− Tighten the screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

− Push the dust flinger (69) into the groove (62) of the rigid labyrinth seal.− Set the clearance "e" at 1 mm around the whole unit.− Tighten the screws (70) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 7 18

8.6.6 Rigid labyrinth seal with baffle (Type 22)

− Assemble the rigid labyrinth seal with baffle as described in Chapter 8.6.4.− Apply a uniform layer of Curil T to the flange surfaces of the top half (66) and bottom half (68) of

the baffle.− Screw • the top half of the baffle (66) to the top half (59) of the rigid labyrinth seal.

• the bottom half of the baffle (68) to the bottom half (63) of the rigid labyrinth seal.− Tighten the screws (67) to the following torque rates:

Seal diameter [mm] 80-140 >140

Torque [Nm] 4 10

Type21

e

69 59

62

EF..Q

EF..B, EF..K, EF..E, EF..A

Type22

Page 232: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 49

9 Starting Operation after Inspection

− Fit the thermo sensors for:• temperature measurement of the journal part in the tapped holes (22)• temperature measurement of the thrust part in the tapped holes (optional).

− Retighten all screw plugs in the tapped holes (22), (24), (27), (29) to the following torque rates:

Screw plug threads G 3/8 G 1/2 G 3/4 G 1 G 1 1/4 G 1 1/2 G 2 G 2 1/2

Torque [Nm] for plugswith injection-mouldedplastic sealing ring

30 40 60 110 160 230 320 500

Torque [Nm] for plugswith flexible sealing ring

34 60 85 130 240 300 330 410

− Check that the top sight glass (5) is tight.− Retighten the connection holes for oil inlet and oil outlet and the holes for the thrust part oil

supply system (optional). The torque depends on the threaded joints used.

− Carry out a visual check of the assembled bearing.

− Fill up the oil supply system with lubricant. Use the same type of lubricant as indicated on thetype plate.

− Start operating the oil supply system in order to fill up the bearing with lubricant.

− Check

• the way the oil supply system functions ( see also the Technical Documentation of theInstallation).The lubricant quantity at the bearing oil inlet must correspond to the valuesindicated in the EDP-calculations.

• that the temperature monitoring equipment functions.

Attention!• Not enough lubricant leads to temperature rises and thus to damage to the bearing.• Too much lubricant leads to leakages.

− Start operating the cooling water supply system and check its functioning.

The bearing is ready for operation.

EFT..

Page 233: Generator Manual

Maintenance and Inspection

50 RH-EFZWI-E Version: 26 Oktober, 2000 RENK AG Werk Hannover

− Supervise the bearing during the trial run ( 5 - 10 operating hours ).Pay special attention to:

• the way the oil supply system works (necessary lubricant quantity, lubricant pressure beforeentering the bearing)

• bearing temperature

• sliding noises of the shaft seals

• tightness

• occurrence of inadmissible vibrations.

Attention!If the bearing temperature exceeds the calculated value by 15 K (see the EDP-bearingcalculations) stop the installation immediately. Carry out an inspection of the bearing and find outthe causes.

10 Corrosion Protection for Longer Standstill Periods

If you want to protect the bearing mounted on an installation against corrosion proceed as follows:

− Dismantle the bearing (see Chapter 6).− Clean the bearing (see Chapter 7).− Paint or spray the top half of the shell (11), the bottom half of the shell (13) and the shaft with

TECTYL 511.− Assemble the bearing (see Chapter 8).− Close all tapped holes with screw plugs.− Seal the gaps between • shaft seal and housing

• shaft seal and shaftby using a self-adhesive, permanent tape.

− Remove the top sight glass (5). Spray some anti-corrosive such as TECTYL 511 or VALVOLINEinto the bearing.

− Put a bag of dessicant (silicate gel) inside. The dessicant absorbs the humidity and prevents theformation of condensation water inside the bearing.

− Close the bearing tight with the top sight glass (5).

In case the standstill period is longer than 1/2 year:

− Repeat the preservation procedures.− Put a new bag of dessicant into the bearing.

In case the standstill period lasts more years:

− Dismantle the shells.− Preserve and store the bearing parts.

11 Transport Protection

In case of a machine equipped with slide bearings of type EF:

− Carry out the corrosion protection as described in Chapter 10 and apply enough lubricant onthe working surfaces of the bearing.

− Secure the shaft against thrust and radial movements during transport.

Page 234: Generator Manual

EF with external oil supply

RENK AG Werk Hannover RH-EFZWI-E Version: 26 Oktober, 2000 51

12 Glossary

Baffle With bearing types 10 and 20 the baffles are assembled externally in front of the shaftseals. The baffle, made of reinforced polyamide, protects the bearing from dust andwater.

Rigid labyrinth seal The rigid labyrinth seal (type 20) is used with slide bearings type E with high oilthroughput.It corresponds to the protective system IP44 and is made of an aluminiumalloy.The rigid labyrinth seal is built of two halves, flanged at the housing.The labyrinths thatwipe out the lubricant are arranged into two groups.The first two labyrinths , installedinside keep back most of the lubricant. Five further labyrinths protect the bearing fromoutside.They prevent the lubricant overflow and the ingress of impurities.The overflowlubricant is collected into a chamber between the both groups of labyrinths.Throughthe return bores the lubricant flows back into the bearing.

Spherical seating The spherical seating is a special feature enabling the alignment of the shell in thehousing.The shell is seated on two spherical seatings. The advantages of the sphericalseating are:• easy at assembly• good heat transfer from the shell to the housing• suitable for such applications with high thrust or journal loads.

Dust flinger In the case of bearing types 10 and 20 a light alloy ring is clamped on the shaft in frontof the shaft.This ring fits into a groove in the seal carrier or the rigid labyrinth seal, thusbuilding a labyrinth. The labyrinth protects the shaft exit against low pressure that couldotherwise " absorb " the lubricant. Low pressure occurs for instance in the case ofrotating discs, such as couplings or cooling discs.

Floating labyrinth The floating labyrinth seal (type 10) in the seal carrier is used as a shaft seal in the caseseal of bearings type E operating under normal conditions. It prevents the lubricant and

lubricant mist coming out and the ingress of impurities. The floating seal has a highcapacity of resistance to wear. It is made of a high-performance, high temperaturestability and electrically insulated plastic material.The floating seal consists of twohalves held together by a garter spring. Both ends of the spring are hooked together. Inthe case of slide bearings type EM the floating seal is mounted into a two-piece sealcarrier. The groove allows for radial movement of up to 1 mm. The seal is thusinsensitive to shaft radial displacement or deflection. The sealing effect is produced bythe baffles wiping off the lubricant from the shaft. The lubricant flows back into thebearing via oil return opening.

Machine seal In the case of the flange mounted bearings, the machine seal reduces the influence ofpositive and negative pressure in the machine thus preventing leakages at the innerseal area. The space between the machine seal and the bearing housing must alwaysbe vented to atmospheric pressure. The size of the gap between shaft and machineseal influences the sealing effect.

Page 235: Generator Manual
Page 236: Generator Manual
Page 237: Generator Manual
Page 238: Generator Manual
Page 239: Generator Manual
Page 240: Generator Manual
Page 241: Generator Manual

We recommend to order spare parts by SIEMENS only. When ordering spare parts, please state the Type and Serial No. of the generator in question.

LIST OF RECOMMENDED SPARE PARTS

Turbo Generator: Type: 1DT 4138-8AD02-Z Serial No: 1219294/100 Project No: 3488017

Item

Description Quantity

Location Type Manufacturer

1 Slide Bearing Shell 1 set DE Bearing EFZLK 22-250 Renk

2 Slide Bearing Shell 1 set NDE Bearing EFZLQ 22-225 Renk

3 Bearing Thermometer for remote reading/alarm 1 DE Bearing 2PT100/B-235X6S-G1/2-3/0-N,

L=235 mm Dosch

4 Bearing Thermometer for remote reading/alarm 1 NDE Bearing 2PT100/B-250X6S-G1/2-3/0-N,

L=250 mm Dosch

5 Space Heater Element 1 NDE DEW 8,5-400-460V/1000W SN70621 Doebeln Elektrowaerme

6 Silicon Diode 1 set / 6 pcs.

V1-V6 / Rectifier Wheel,

D660N-18T SN72544 Eupec

7 Protective Varistor 1 set / 6 pcs.

U / Bus Rings at Rectifier Wheel

Varistor disc C13/180V SN72543 Langlade & Picard

8 Hot/cold air temperature detectors 3 Cooler housing M12, 2XPT100A, PT35/70 MM Ravet

9 Leakage relay 1 Auxiliary terminal box RM4 L32MW, 24 Vdc Telemecanique

10 Brush 2 Shaft earthing BRE 25, MK75, SN73005 Schunk

11 PROXPAC PROXIMITY TRANDUSER ASSEMBLY 1 set DE Bearing 330880-16-15-061(154mm)-03(M20)-02 Bently Nevada

12 PROXPAC PROXIMITY TRANDUSER ASSEMBLY 1 set NDE Bearing 330880-16-15-066(168mm)-03(M20)-02 Bently Nevada

Page 242: Generator Manual

Part Number 131236-01 Revision E, August 2003

PROXPAC® PROXIMITY TRANSDUCER ASSEMBLY Manual

Page 243: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Copyright © 1995 – 2003 Bently Nevada LLC All Rights Reserved.

The information contained in this document is subject to change without notice.

The following are trademarks of Bently Nevada LLC in the United States and other countries:

ACM™, Actionable Information®, Actionable Information to the Right People at the Right Time®, ADRE, ™, Asset Condition Management™, Asset Condition Monitoring™, Bently ALIGN™, Bently BALANCE®, Bently DOCUVIEW™, Bently LUBE™, Bently Nevada, Bently PERFORMANCE™, Bently RELIABILITY™, CableLoc™, ClickLoc™, Data Manager, Decision SupportSM, DemoNet™, Dynamic Data Manager, Engineer Assist™, FieldMonitor™, flexiTIM™, FluidLoc, Helping You Protect and Manage All Your Machinery, HydroScan, HydroView™, Key ∅, Keyphasor, Machine Condition Manager™ 2000, MachineLibrary™, Machine Manager™, MicroPROX, Move Data, Not People, Move Information, Not Data™, NSv™, Prime Spike™, PROXPAC, Proximitor, REBAM, RuleDesk™, SE™, Seismoprobe, Smart Monitor, Snapshot™, System 1™, System Extender™, TDXnet™, TDIXconnX™, The Plant Asset Management CompanySM, TipLoc™, TorXimitor, Transient Data Manager, Trendmaster, TrimLoc™, Velomitor Bently Nevada’s orbit logo and other logos associated with the trademarks in bold above, are also all trademarks or registered trademarks of Bently Nevada in the United States and other countries.

The following ways of contacting Bently Nevada are provided for those times when you cannot contact your local Bently Nevada representative:

Mailing Address 1631 Bently Parkway South Minden, NV 89423 USA

Telephone 1 775 782 3611 1 800 227 5514

Fax 1 775 215 2876 Internet www.bently.com

ii

Page 244: Generator Manual

Related Documents The following documents contain additional information that you may find helpful when you install the transducer. This manual refers to these documents by document number.

Installing the Transducer Proximity Probes and Related Accessories (Bently Nevada application note AN028).

Guidelines for Grounding Bently Rotating Machinery Information Systems (Bently Nevada application note AN013).

Installation of Electrical Equipment in Hazardous Areas (Bently Nevada application note AN015).

Electrical and Mechanical Runout "Glitch": Definition of and Methods for Correction, including Shaft Burnishing to Remove Electrical Runout (Bently Nevada application note AN002).

API 670, third edition, Section 4.1.1.2: Machine Shaft Requirements for Electrical and Mechanical runout. (Available from the American Petroleum Institute, Publications and Distribution, 1220 L Street N.W., Washington D.C., 20005. Phone: (202) 682-8375.)

Reference Performance Specifications for the PROXPAC® Proximity Transducer Assembly (Bently Nevada document number 158735).

Bently Nevada Glossary (Bently Nevada document L1014).

European CE mark for the Bently Nevada PROXPAC® Transducer Assembly

In this Document is a list of the PROXPAC® transducer assemblies that have the CE mark, applicable standards used for certification, and installation instructions required for compliance.

Proximity Transducer Systems are electronic devices typically used in industrial applications. The PROXPAC® Transducer has been certified using the same Technical Construction File (TCF) and declaration of conformity as the 3300 8mm transducer system because they are similar in design and application. The PROXPAC® Transducer Assembly consists of a Proximitor® Sensor and a 3300 8mm reverse mount proximity probe built into a probe housing.

iii

Page 245: Generator Manual

Proxpac Proximity Transducer Assembly Manual

TCF through TÜV Rheinland of North America A Technical Construction File has been prepared through TÜV Rheinland of North America (TÜV Rheinland File Number: P9472350.02). The certificate of compliance is for Directive 89/336/EEC (EMC Directive). The applicable Generic Norms are: EN50081-2 and EN50082-2.

Installation Instructions (Reference Figure 0-1) These instructions are an addition to the Installation Instructions Section of the manual.

Compliant Systems and Component Part Numbers # Model Names Model Numbers

10 PROXPAC® Transducer

330800, 330801, 132306, 330105, 330106, and any PROXPAC® Assembly manufactured from these standard modules**

Includes all options and all approval versions of the base model numbers listed.

**--any proximity transducer, proximity probe, or extension cable which works correctly with the listed modules.

Testing and Test Levels Title EN

55011

(EN55022)

Emission

EN

61000-4-2

(IEC 801-2)

ESD

ENV50140

(IEC 801-3)

Rad. RFI

ENV50140

Rad. RFI

EN 61000-4-4

(IEC 801-4)

EFT

ENV50142

(IEC 801-5)

Surge

ENV50141

(IEC 801-6)

Cond. RFI

EN 61000-4-8

(IEC 1000-4-8)

Mag. Fields

Test Levels Emission Class A

4kV; 8kV

10V/m

10V/m

1kV

0.5kV

10V

30A/m, 50Hz

Criteria N/A A A A A A B A

These notes listed below apply only to the table “Testing and Test Levels”

discharge method: Contact; Air

80-1000 MHz sweep with 80% 1 kHz sine wave amplitude modulation

900 MHz dwell with 100% 200 Hz square wave modulation

I/O lines tested with conduit removed

150 kHz-80 MHz sweep with 80% 1 kHz sine wave amplitude modulation, conduit removed.

Bently Nevada Technical Publication The PROXPAC® Transducer is immune to EMI at levels as specified by EN50082-2 (i.e. 10 V/m signal level from 80 - 1000 MHz except for ITU broadcast frequency bands of 87 - 108 MHz, 174 - 230 MHz, and 470 - 790 MHz where the level shall be 3 V/m). Vibration readings due to EMI interference will be less than 1.0 mil pp.

iv

Page 246: Generator Manual

Proximity Probes All probes must be mounted in an EMI shielded environment (i.e. typically inside a machine casing).

Field Wiring All field wiring must include a foil or braided shield that is connected to ground.

EMI Shielding With Conduit All field wiring, from the PROXPAC® enclosure to a receiving unit (i.e. monitor), must be shielded from EMI energy. Acceptable EMI shielding includes either rigid or flexible metal conduit. The EMI shield, in this example conduit, is grounded through the PROXPAC® at the point of entrance to the PROXPAC® enclosure. Grounding at any subsequent junction enclosure is also required.

EMI Shielding Without Conduit Acceptable wiring includes a multi-conductor cable with both a foil and a braided shield. The shield must be grounded to the metal liner inside the PROXPAC® enclosure. Using the nut on one of the hole plugs to ground the shield is acceptable. The shield must be maintained around the wiring as it is grounded to the enclosure. Grounding at any subsequent junction enclosure is also required. Grounding the cable shield at the PROXPAC® is not acceptable if intrinsic safety barriers are being used. Grounding the cable shield at both ends may cause errors due to current flowing in the wiring shield if the grounds are not at the same potential.

EMI Suppression Ferrite An EMI suppression ferrite must be clipped onto the field wiring close to the Proximitor® Sensor's terminal strip. Remove jacket, foil and braided shield from the field wiring where the EMI suppression ferrite is placed.

Non Grounded Bearing Housings When the PROXPAC® is installed on a bearing housing which is isolated from ground, mount the PROXPAC® on an insulated bushing to maintain the housing isolation and ground the PROXPAC® at the conduit fitting.

v

Page 247: Generator Manual

Proxpac Proximity Transducer Assembly Manual

1 ME

TE

R C

AB

LE LE

NG

TH

3300 8mm

PR

OB

E O

NLY

MA

DE

IN U

.S.A

.O

UT

VT

CO

M

Figure 0-1: Front view with cover removed. (1) PROXPAC® Enclosure (2) Field Wiring (3) EMI Suppression Ferrite (p/n 02200068) (4) Plug (5) Conduit (6) To Monitor

vi

Page 248: Generator Manual

Contents

Related Documents ...........................................................................................................................iii Installing the Transducer...............................................................................................................iii Electrical and Mechanical Runout ................................................................................................iii Reference ......................................................................................................................................iii

European CE mark for the Bently Nevada PROXPAC® Transducer Assembly .............................iii In this Document...........................................................................................................................iii Proximity Transducer Systems .....................................................................................................iii TCF through TÜV Rheinland of North America .......................................................................... iv Installation Instructions................................................................................................................. iv Compliant Systems and Component Part Numbers ...................................................................... iv Testing and Test Levels ................................................................................................................ iv

Bently Nevada Technical Publication............................................................................................... iv Proximity Probes............................................................................................................................ v Field Wiring ................................................................................................................................... v EMI Shielding With Conduit ......................................................................................................... v EMI Shielding Without Conduit .................................................................................................... v EMI Suppression Ferrite ................................................................................................................ v Non Grounded Bearing Housings .................................................................................................. v

Section 1 — System Description ......................................................... 1 Receiving, Inspecting, and Handling the System............................................................................... 1 Customer Service ............................................................................................................................... 1

Section 2 — Installation........................................................................ 3 Installing the Probe Sleeve and Housing ........................................................................................... 3 Checking the Resonant Frequency of the Probe Sleeve..................................................................... 3 Connecting the Field Wiring.............................................................................................................. 8 Removing and Reinstalling Gapped Probes....................................................................................... 8

Section 3 — Maintenance and Troubleshooting .............................. 11 Scale Factor Verification ................................................................................................................. 12 Troubleshooting ............................................................................................................................... 14 Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc....................................................................... 15 Fault Type 2: VSIG = 0 Vdc ............................................................................................................. 17 Fault Type 3: -1 Vdc < VSIG < 0 Vdc .............................................................................................. 18 Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc ............................................................................. 20 Fault Type 5: VSIG = VXDCR ............................................................................................................. 21

Section 4 — Ordering Information..................................................... 23 Notes: ........................................................................................................................................... 23 PROXPAC® Proximity Transducer, English .............................................................................. 23 PROXPAC® Proximity Transducer, Metric................................................................................ 24 Accessories .................................................................................................................................. 25

Section 5 — Specifications ................................................................ 29 Electrical .......................................................................................................................................... 29 Hazardous Area Approvals .............................................................................................................. 30 Mechanical ....................................................................................................................................... 31 Environmental Limits ...................................................................................................................... 32

Effects of 60 Hz Magnetic Fields up to 420 Gauss:..................................................................... 33 Patents .......................................................................................................................................... 33

vii

Page 249: Generator Manual

Proxpac Proximity Transducer Assembly Manual

viii

Page 250: Generator Manual

Section 1 — System Description

Section 1 — System Description The PROXPAC® Proximity Transducer Assembly is similar in external appearance and mounting detail to our 31000/32000 Proximity Probe Housing Assemblies. It offers the same advantages and features as these conventional housings for external adjustment of, and access to, proximity probes. However, the PROXPAC® Assembly also contains its own Proximitor® Sensor inside the housing’s cover. This design makes the PROXPAC® Assembly a completely self-contained proximity probe system, and eliminates the need for an extension cable between the probe and its associated Proximitor® Sensor. It also eliminates the need for a separate Proximitor® housing. For short cable runs, field wiring is connected directly between the monitors and PROXPAC® Assemblies. For longer cable runs, a junction box is often mounted at or near the machine skid to house terminal strips. The field wiring is connected to terminal strips in the junction box, providing access to Proximitor® signals at a convenient location near the machine.

The PROXPAC® housing is made of Polyphenylene Sulfide (PPS) which is an advanced, molded thermoplastic. It was chosen specifically to replace previous steel and aluminum housings offered by Bently Nevada, and incorporates glass and conductive fibers in the PPS for added strength and electrostatic dissipation. The PROXPAC® housing is rated for Type 4X and for IP66 environments for extra protection in severe environments.

Receiving, Inspecting, and Handling the System Application Alert: Although the terminals and connector on the Proximitor Sensor have protection against electrostatic discharge, take reasonable precautions to avoid electrostatic discharge when handling the Proximitor® Sensor.

Carefully remove all equipment from the shipping containers and inspect the equipment for shipping damage. If shipping damage is apparent, file a claim with the carrier and submit a copy to the nearest Bently Nevada office. Include part numbers and serial numbers on all correspondence. If no damage is apparent and the equipment is not going to be used immediately, return the equipment to the shipping containers and reseal until ready for use.

Store the equipment in an environment free from potentially damaging conditions such as high temperature or a corrosive atmosphere. See Specifications Section for environmental specifications.

Customer Service Bently Nevada maintains numerous Sales and Service offices worldwide. To locate the office nearest you, visit our website at www.bently.com <http://www.bently.com>. Here, you can also find specifications on all standard product offerings.

Support for products and services should be directed to one of these departments:

For product quotations, product applications, product ordering, scheduling on-site Services, and questions regarding existing orders, please contact your nearby Bently Nevada Sales and Service Office.

1

Page 251: Generator Manual

Proxpac Proximity Transducer Assembly Manual

For general product pricing, delivery, or other ordering information, contact your local BNC office or contact Customer Service Department, Minden, Nevada, USA Phone: 1-775-782-9913 Fax: 1-775-782-9259.

For technical questions or problems regarding installed BNC products, contact our Technical Support Staff at:

[email protected] <mailto:[email protected]>

or at the following locations:

Technical Support (North America)

Phone: 1-775-782-1818 Fax: 1-775-782-1815

Technical Support (UK)

Phone: (44) 1925 818504 Fax: (44) 1925 817819

2

Page 252: Generator Manual

Section 2 — Installation

Section 2 — Installation This section shows how to:

• Install the probe sleeve and housing

• Connect the field wiring

• Install replacement components

Installing the Probe Sleeve and Housing The following figures show the minimum values for side clearance and target configuration for the 3300 8mm reverse mount probe used in the PROXPAC® Proximity Transducer Assembly.

8.9 mm 8.9 mm(0.35 in)(0.35 in)

17.8 mm(0.70 in)

6.4 mm(0.25 in)

15.2 mm(0.6 in)

15.2 mm(0.6 in)

35.6 mm(1.4 in)

Shaft

Shaft

Shaft

Checking the Resonant Frequency of the Probe Sleeve

The probe sleeve length is defined as the probe penetration depth plus the standoff adapter length. The probe sleeve will vibrate unless proper stiffening supports are used. Evaluate each machine installation to be sure the vibration of the sleeve is within acceptable levels. The resonant frequency of the probe sleeve for various lengths is shown below.

3

Page 253: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Probe Sleeve Resonant Frequency

The resonant frequency (Hz) should be at least three times the machine running speed in Hz.

60rpmHz =

Refer to document AN028 for more information on mounting brackets and adapters or contact your nearest Bently Nevada office for a copy of the Bently Nevada catalog.

The figure below shows the installation procedure for the PROXPAC® housings. Although only one possible mounting configuration is shown, the plastic housing can mount on top of the outer sleeve through any one of the four holes in its sides. The retaining chain can be fastened to any one of the four corner holes in either the housing or the cover to allow for the most convenient positioning.

The retaining nut slides through any of the four holes in the side of the housing so that the probe can be gapped before attaching the housing to the outer sleeve. This nut contains a thread locking patch which creates a resistance to turning that is strong enough to resist loosening under vibration and to require a wrench to turn the nut.

By following the installation procedures outlined on the next page, the probe can be fully gapped before the plastic housing and its attached cover are installed and conduit or armored cable is connected. The numbers in the figure refer to the steps in the procedure.

4

Page 254: Generator Manual

Section 2 — Installation

6

5

4

2

1

7Probe Cable

Connector Protector

Probe Sleeve with Wrench Flats

Locknut

Vertical Installation

Retaining Plate

Conduit FittingHousing

Captive Screws

Proximitor® Sensor

Housing Cover

Retaining Nut

Outer Sleeve

Machine Case

5

Page 255: Generator Manual

Proxpac Proximity Transducer Assembly Manual

1. Install the outer sleeve on the machine.

2. Install the probe sleeve and adjust the probe gap using the figure below. Tighten the probe sleeve locknut to the recommended torque (see specifications). Apply medium strength, removable threadlocking compound (Loctite 242) or use equivalent means to prevent the probe sleeve locknut from loosening.

3. Seal unused holes in the housing with blanking plugs. Tighten the blanking plug nut to 0.5 N•m (5 in lb).

4. Place the housing on the outer sleeve and slide the retaining plate under the retaining nut. Tighten the retaining nut to 29.5 N•m (260 in lb).

5. Attach conduit or cable gland as necessary. Install the conduit such that liquid will not enter PROXPAC® housing.

6. Connect the field wiring, probe cable, and connector protector.

7. Fasten the cover in place.

Torque Nut To0.5 N-M (5 IN-LB)

Backplate

Blanking Plug Body

Rubber Seal

6

Page 256: Generator Manual

Section 2 — Installation

-9 Vdc 24 Vdc

Mechanical Method

Voltage at the centerof the linear range(typically –9Vdc).

10 kΩ

1.27 mm(50 mil)

Electrical Method

3300, 8mm1metre probe

Proximitor® SensorSpacer

Power SupplyVoltmeter

Shaft Shaft

7

Page 257: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Connecting the Field Wiring Use the following wiring diagrams to connect the field wiring between the Proximitor® Sensor and the monitoring instruments (refer to application notes AN013 and AN015 for more information).

No Barriers

Transducer PowerCommon

Input Signal

External Barriers

Connect shield to single point ground at monitor.

External Barrier

Cable Shield

Cable Shield

Transducer PowerCommon

Input Signal

Monitor Terminal

Strip

Cable Shield

Monitor Terminal

Strip

Proximitor® Sensor

Proximitor® Sensor

To Probe

To Probe

See the frequency response graph, Figure 5-1, at the end of the Specifications section of this document as a guideline for determining maximum field wiring length for 18 gauge wire.

Removing and Reinstalling Gapped Probes

Caution: The Housing could be under high pressure. Removing the cover could result in injury or permanent eye damage. Make sure the pressure is equalized before removal.

In some instances you may need to remove an externally mounted probe for maintenance or replacement. If the probe has been gapped, the reinstallation of the probe sleeve can be quickened by marking the location of the probe sleeve locknut before removing the probe sleeve from the outer sleeve. Mark the probe sleeve locknut position with an indelible marking pen, by temporarily locking it with a second jamnut, or by other similar means. This will allow you to screw

8

Page 258: Generator Manual

Section 2 — Installation

the probe sleeve back in to its approximate position. Take care to avoid turning the probe into the shaft. Do not use this method as a substitute for gapping probes. Proper installation always requires that the gapping procedures be followed.

When the probe sleeve is removed, the outer sleeve will be left with an opening into the machine case. This opening can be sealed using Bently Nevada part number 104968-01(english version) or 104968-02 (metric version) to prevent fluid leakage from the machine case or contamination of lube oil. This seal is effective to 3.4 bar (50 psi).

9

Page 259: Generator Manual

Proxpac Proximity Transducer Assembly Manual

10

Page 260: Generator Manual

Section 3 — Maintenance and Troubleshooting

Section 3 — Maintenance and Troubleshooting

This section shows how to verify that the system is operating properly and identify parts of the system that are not working properly.

The transducer system does not require verification at regular intervals. You should, however, verify operation by using the scale factor verification on the following page if any of the following conditions occur:

• components of the system are replaced or disturbed

• the performance of the system changes or becomes erratic

• you suspect that the transducer is not calibrated correctly

The scale factor verification and the adjustment procedure require the following instruments:

- digital multimeter

- power supply

- spindle micrometer

- fixed resistor, 10 kΩ

The scale factor verification uses the test setup shown in the following figure:

Digital Multimeter Power Supply

-24 VdcVin Com

10 kΩ

11

Page 261: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Scale Factor Verification 1. Compensate for mechanical backlash and adjust the spindle micrometer for electrical

zero.

2. Adjust gap to electrical zero by moving the probe.

3. Compensate for mechanical backlash in the micrometer and adjust to the start of the

linear range.

4. Record voltages in the following table and calculate Incremental Scale Factors

(ISFs) and Average Scale Factor (ASF) using the equations.

12

Page 262: Generator Manual

Section 3 — Maintenance and Troubleshooting

Increments:250 µmor10 mil

Adjust Micrometer to…

Record Voltages

Calculate Scale Factor

N µmn miln Vdcn ISFn

(Incremental Scale Factor)

ASF

(Average Scale Factor)

1 250 10

2 500 20

3 750 30

4 1000 40

5 1250 50

6 1500 60

7 1750 70

8 2000 80

9 2250 90

ISFVdc Vdc

0.25n (mV / m)

n - 1 nµ =

ASF Vdc Vdc

2(mV / m)

250 m 2250 mµ

µ µ=

13

Page 263: Generator Manual

Proxpac Proximity Transducer Assembly Manual

ISFVdc Vdc

0.01n (mV / mil)

n - 1 n=

ASF Vdc Vdc

0.08(mV / mil)

10 mil 90 mil=

Troubleshooting This section shows how to interpret a fault indication and isolate faults in an installed transducer system. Before beginning this procedure, be sure the system has been installed correctly and all electrical connections have been secured properly in the correct locations.

When a malfunction occurs, locate the appropriate fault, check the probable causes for the fault indication and follow the procedure to isolate and correct the fault. Use a digital voltmeter to measure voltage and resistance. If you find faulty transducers, contact your local Bently Nevada Corporation office for assistance.

The troubleshooting procedures use measured voltages as shown in the following figure and table:

VXDCRVPS

Transducer PowerCommon (ground)

Input Signal

Instrumentterminal strip

VSIG

Note: VXDCR, VSIG, and VPS are all negative voltage values.

Table 3-1: Symbols for Measured Voltages Symbol Meaning Voltage measured

between…

VXDCR Transducer input voltage VT and COM

VSIG Signal voltage from the transducer

OUT and COM

VPS Power supply voltage Power Source and Common

14

Page 264: Generator Manual

Section 3 — Maintenance and Troubleshooting

Table 3-2: Definitions Symbol Defintion Example

A > B

A < B

A = B

"A" value is more positive than "B"

"A" value is more negative than "B"

"A" same value (or very close) to "B"

-21 > -23

-12 < -5

-24.1 = -24.0

Connect

Disconnect

Inspect

Record

Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc Possible causes

• Faulty power source

• Faulty field wiring

• Faulty Proximitor® Sensor

15

Page 265: Generator Manual

Proxpac Proximity Transducer Assembly Manual

VPS

No

YesFaulty PowerSupply

Measure VPS:

VPS > 23 Vdc or VPS < -26 Vdc?

VXDCR

No

YesFaulty Fieldwiring

Measure VXDCR:

VXDCR > 23 Vdc or VXDCR < -26 Vdc?

Faulty Proximitor® Sensor

16

Page 266: Generator Manual

Section 3 — Maintenance and Troubleshooting

Fault Type 2: VSIG = 0 Vdc Possible causes:

• Incorrect power source voltage

• Short circuit in field wiring

• Short circuit at Proximitor® Sensor terminal connection

• Faulty Proximitor® Sensor

Does fault condition type 1 exist?

No

VSIG

Yes

No Incorrect power source voltage or short in field wiring or short at Proximitor® Sensor terminal connection.

Measure VSIG:

VSIG = 0 Vdc ?

Faulty Proximitor® Sensor

17

Page 267: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Fault Type 3: -1 Vdc < VSIG < 0 Vdc Possible causes:

• Probe is incorrectly gapped (too close to target)

• Incorrect power source voltage

• Faulty Proximitor Sensor

• Probe is detecting other material than target

• Short or open circuit in a connector (dirty or wet) or loose connectors

• Short or open circuit in the probe

Yes

No Re-gap the probe.Retest the system.

Verify the probe gap in the machine.

Is the probe gapped correctly?

Does fault condition type 1 exist?

No

Step 2 Step 1

Original probe

Known good probe with correct integral length cable (open gap) VSIG

18

Page 268: Generator Manual

Section 3 — Maintenance and Troubleshooting

Yes

No Faulty Proximitor® Sensor or probe is being loaded.

Measure VSIG:

-1.1 Vdc < VSIG < 0 Vdc ?

Inspect the connector.

Is there a dirty, rusty, or poor connection?

Yes

No

Clean connector (using isopropyl alcohol or electronic terminal cleaner), reassemble, and retest the original system.

RPROBE

Yes

No

Retest the original system.

Measure the resistance. Is RPROBE within specifications?

1m probe: 7.58 Ω ± 0.5 Ω

Faulty Probe

19

Page 269: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc Possible causes:

• Faulty Proximitor Sensor

• Probe is incorrectly gapped (too far from target)

Does fault condition type 1 exist?

No

VSIG

Yes

No Faulty Proximitor® Sensor

Measure VSIG:

-1.2 Vdc < VSIG < -0.3 Vdc ?

Reconnect system Regap the probe Retest system

20

Page 270: Generator Manual

Section 3 — Maintenance and Troubleshooting

Fault Type 5: VSIG = VXDCR Possible causes:

• Incorrect power source voltage

• Faulty Proximitor Sensor

• Faulty field wiring (between Out and VT)

Does fault condition type 1 exist?

No

VSIG

No

Yes Faulty Proximitor® Sensor

Measure VSIG:

VSIG = VXDCR ?

Faulty field wiring (short between OUT and VT)

If a faulty Proximitor® Sensor is indicated, replace the Proximitor® Sensor and housing lid as a unit (the replacement part number is printed on the Proximitor® Sensor). Do not remove the Proximitor® Sensor from the lid. There are no user serviceable parts inside.

21

Page 271: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Bently Nevada performs failure analysis on all returned transducers. The information gained during analysis of failed products is used to improve our current and future products. If you encounter a part that has failed, return the part with a brief description of the product application and symptoms observed to our corporate headquarters in Minden, Nevada for analysis:

Bently Nevada, LLC Attn: Product Repair Department 1631 Bently Parkway South Minden, Nevada 89423 USA

22

Page 272: Generator Manual

Section 4 — Ordering Information

Section 4 — Ordering Information Notes: Order -00 or -000 for all options to receive just a spare housing with Proximitor® Sensor.

When ordering probe separate from PROXPAC® Transducer, order a separate Connector Protector, Part Number 03839420 for the probe.

PROXPAC® Proximity Transducer, English 330800-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option

0 0 No probe; Proximitor® Sensor without approvals 0 1 No probe; Proximitor® Sensor with Multiple Approvals 1 6 3300 XL 8 mm probe 2 8 3300 XL 8 mm probe with Multiple Approvals

B: Standoff Adapter Option (B Dimension) Order in increments of 0.5 in (13 mm ).

Minimum length: 1.5 in (38 mm)

Maximum length: 7.5 in (191 mm )

Examples: 0 0 = No standoff adapter

1 5 = 1.5 in (38 mm)

C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 1.0 and 2.0 inches, counter bore may be required in machine case to reduce probe side view and/or rear view effects.

Order in increments of 0.1 in (2 mm).

Minimum length: 1.0 in (25 mm)

Maximum length: 30 in (762 mm )

Examples: 0 0 0 = No probe sleeve

0 3 7 = 3.7 in (94 mm)

2 2 4 = 22.4 in (569 mm)

D: Fittings Option Note: For 1/2-14 NPT fittings, order option -03 or spare 26650-01 reducers for either option -01 or -02.

0 0 No fittings; two plugs and two washers

0 1 One 3/4-14 NPT fitting, two plugs

0 2 Two 3/4-14 NPT fittings, one plug

0 3 One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs

E: Mounting Thread Option

230 0 No outer sleeve assembly

Page 273: Generator Manual

Proxpac Proximity Transducer Assembly Manual

0 2 3/4-14 NPT (Required if ordering Standoff Adapter Option.)

0 5 7/8-14 UNF-2A

PROXPAC® Proximity Transducer, Metric 330801-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option

0 0 No probe; Proximitor® Sensor without approvals

0 1 No probe; Proximitor® Sensor with Multiple Approvals

1 6 3300 XL 8 mm probe

2 8 3300 XL 8 mm probe with Multiple Approvals

B: Standoff Adapter Option (B Dimension) Order in increments of 10 mm.

Minimum length: 40 mm

Maximum length: 200 mm

Examples: 0 0 = No standoff adapter

0 4 = 40 mm

2 0 = 200 mm

C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 25 and 50 mm, counter bore may be required in machine case to reduce probe side view and/or rear view effects.

Order in increments of 1 mm.

Minimum length: 25 mm

Maximum length: 760 mm

Examples: 0 0 0 = No probe sleeve

0 5 0 = 50 mm

7 6 0 = 760 mm

D: Fittings Option (supplied as a kit) 0 0 No fittings; two plugs and two washers

0 1 One M25 fitting, two plugs

0 2 Two M25 fittings, one plug

0 3 One M20 fitting, two plugs

0 5 One PG21 to PG11 reducer, two plugs

0 6 One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs

0 7 One PG21 x M20 fitting, two plugs

0 8 Two PG21 x M20 fittings, one plug

Note: Conduit fittings are necessary when hardline conduit or metal piping is brought into the housing. If using flexible conduit, it should be ordered with integral 3/4-14 NPT fittings so that additional conduit

24

Page 274: Generator Manual

Section 4 — Ordering Information

fittings are not required with the housing. If using flexible conduit, order the D = 00 option.

E: Mounting Thread Option 0 0 No outer sleeve assembly

0 1 M24 X 3

0 2 3/4-14 NPT (required if ordering Standoff Adapter Option)

Accessories 02200068

Spare EMI Suppression Ferrite. This snap-on ferrite part covers a portion of the field wiring inside the PROXPAC® Transducer housing. It reduces the effect of Electro-Magnetic Interference (EMI) on the transducer signal. The ferrite part is required for CE approved installations, primarily found in Europe.

158735 Performance Specification

131236-01 Operation Manual

132306-01 Spare Proximitor® Sensor and Housing Cover, non-approved

132306-02 Spare Proximitor® Sensor and Housing Cover, approved

330105-02-12-10-02-00 Spare 3300 XL 8 mm probe, English, non-approved

330105-02-12-10-02-05 Spare 3300 XL 8 mm probe, English, approved

330106-05-30-10-02-00 Spare 3300 XL 8 mm probe, metric, non-approved

330106-05-30-10-02-05 Spare 3300 XL 8 mm probe, metric, approved

132501-AXX Field Wiring Cable 1.0 mm² (18 AWG), 3 conductor, twisted, shielded cable. Terminal ring lugs are installed at each end including an extra shield ring lug at the monitor end.

Option Description A: Cable length option in feet. Order in increments of 1.0 ft (0.3 m).

Minimum length: 2 ft (0.6 m).

Maximum length: 99 ft (30 m).

Examples: 1 5 = 15 feet (4.57 metres)

2 0 = 20 feet (6.10 metres) 25

Page 275: Generator Manual

Proxpac Proximity Transducer Assembly Manual

103537-01

Terminal Mounting Block The block includes mounting screws and is easily installed in a Proximitor® Housing. The block accepts ring lugs used on the Field Wiring Cable.

02120015 Bulk Field Wire 1.0 mm² (18 AWG), 3-conductor, twisted shielded cable with drain wire. Specify length in feet.

01651632 Terminal Ring Lug Extra ring lugs can be attached to Bulk Field Wire to assemble the exact length of cable needed.

37948-01 Probe Support / Oil Sleeve Provides seal along probe sleeve. May be used as a probe sleeve support in certain installations.

40113-02 Connector Protector Kit Installs a connector protector onto a probe that has been ordered separately.

English Probe Sleeve (Spare) 108883 –AXXX

This is the measured probe sleeve length. Order in increments of 0.1 in (3 mm). Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length:

AXXX: = Standoff Adapter Option from original housing (330800 option B) + Probe penetration option from original housing (330800 option C) + 0 2 5. Example: original part number is 330800-16-15-035-03-02. AXXX: option for replacement sleeve is (015 + 035 + 025) = 075.

Minimum Probe Sleeve Length: 3.5 in (89 mm)= 0 3 5 Maximum Probe Sleeve Length: 32.5 in (826 mm) = 3 2 5

Metric Probe Sleeve (Spare) 108882 –AXXX

This is the measured probe sleeve length. Order in increments of 1 mm. Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length:

AXXX: = Standoff Adapter Option from original housing (330801 option B) * 10 + Probe penetration option from original housing (330801 option

26

Page 276: Generator Manual

Section 4 — Ordering Information

C) + 0 6 3. Example: original part number is 330801-16-08-205-03-02. AXXX: option for replacement sleeve is (080 + 205 + 063) = 348.

Minimum Probe Sleeve Length: 88 mm (3.5 in) = 0 8 8

Maximum Probe Sleeve Length: 823 mm (32.4 in) = 8 2 3

English Standoff Adapter (Spare) Hex = 1 3/8 in; threads = 3/4-14 NPT 109319 –AXXX

Order in increments of 0.5 in (13 mm).

Minimum length: 1.5 in (38 mm)

Maximum length: 7.5 in (191mm)

Example: 0 2 0 = 2 in (51 mm)

Metric Standoff Adapter (Spare) Wrench flats = 35 mm; threads = 3/4-14 NPT. 109318 –AXX

Order in increments of 10 mm.

Minimum length: 40 mm

Maximum length: 200 mm

Example: 0 5 = 50 mm

104968-01 English Sleeve Plug Threaded, 303 stainless steel.

104968-02 Metric Sleeve Plug Threaded, 303 stainless steel.

Plugs fill opening when sleeve is removed from machine case.

104288-01 English Blanking Plug

104288-02 Metric Blanking Plug.

Blanking plugs are included with the Fittings Option "D". Spare plugs fill conduit holes in plastic housing where needed.

Heavy Duty Cable Fittings

03813103 Chrome-plated Zinc Conduit Fitting, 3/4-14 NPT

03818100 AISI 316 Stainless Steel Conduit Fitting, 3/4-14 NPT

27

Page 277: Generator Manual

Proxpac Proximity Transducer Assembly Manual

03818101 AISI 316 Stainless Steel Conduit Fitting, PG21 x M25

03818102 AISI 316 Stainless Steel Conduit Fitting, PG21 x M20

03818111 Nickel-plated Brass Conduit Fitting, PG21 x M20

26650-01 AISI 303 Stainless Steel Reducer 3/4-14 NPT to 1/2-14 NPT

Sealtite® Flexible Conduit

14847-AXX 1/2-14 NPT assembly

14848-AXX 3/4-14 NPT assembly

Option Description A: Length Option

Order in increments of 1 ft (0.3 m).

Minimum length: 1 ft (0.3 m).

Maximum length: 99 ft (30.2 m)

Example: 0 5 = 5 ft (1.5 m).

28

Page 278: Generator Manual

Section 5 — Specifications

Section 5 — Specifications

Unless otherwise noted, the following specifications apply from +18°C to +27°C (+64°F to +80°F) with a -24 Vdc power supply, a 10 kΩ load, a Bently Nevada supplied AISI 4140 steel target and a probe gapped at 1.27 mm (50 mils).

Electrical Input:

Accepts one noncontacting 3300 XL 8 mm Proximity Probe with a one (1) metre cable length installed in the probe sleeve.

Power: Requires -17.5 Vdc to -26 Vdc without barriers at 12 mA maximum consumption. -23 Vdc to -26 Vdc with barriers. Operating at a more positive voltage than -23.5 Vdc may result in reduced linear range.

Supply Sensitivity: Less than 2 mV change in output voltage per volt change in input voltage.

Output resistance: 50 Ω

Probe dc resistance (nominal) (RPROBE): 7.58 ± 0.5 Ω

Field Wiring: Recommend using three-conductor shielded triad cable. Maximum length of 305 metres (1,000 feet) between the PROXPAC® Sensor and the monitor. See the frequency response graph (Figure 5-1) for signal rolloff at high frequencies when using longer field wiring lengths.

Linear Range: 2.0 mm (80 mils). Linear range begins at approximately 0.25 mm (10 mils) from the target and is from 0.25 mm to 2.3 mm (10 to 90 mils) (approximately -1 to -17 Vdc).

Recommended Gap Setting: 1.27 mm (50 mils).

Incremental Scale Factor (ISF): 7.87 mV/µm (200 mV/mil) ±5.5% typical including interchangeability errors when measured in increments of 0.25 mm (10 mils) over the linear range.

Deviation from best fit straight line (DSL): Less than ±23 µm (±0.9 mil) typical including interchangeability errors over the linear range when referenced to a 7.87 mV/µm (200 mV/mil) best fit straight line.

29

Page 279: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Probe Temperature Stability: Over probe temperature range of -35°C to +120°C (-30°F to +250°F), typical Incremental Scale Factor (ISF) remains within ±10% of 7.87 mV/µm (200 mV/mil) while deviation from straight line remains within ±50µm (±2 mils).

Minimum Target Size: 15.2 mm (0.6 in) diameter (flat target).

Shaft Diameter: Minimum: 50.8 mm (2 in).

Recommended minimum: 76.2 mm (3 in). Measurements on shaft diameters smaller than 50 mm (2 in) usually require close spacing of radial vibration or axial position transducers with the potential for their electromagnetic emitted fields to interact with one another (cross-talk), resulting in erroneous readings. Care should be taken to maintain minimum separation of transducer tips, generally at least 40 mm (1.6 in) for axial position measurements or 74 mm (2.9 in) for radial vibration measurements. Radial vibration or position measurements on shaft diameters smaller than 76.2 mm (3 in) will generally result in a change in scale factor. Consult Performance Specification 158735 for additional information.

Frequency Response: 0 to 8 kHz: +0, -3 dB, at 50 mils probe gap with up to 305 metres (1000 feet) of field wiring. See Figure 5-1 below.

Hazardous Area Approvals CSA/NRTL/C:

Exia for Class I, Division 1, Groups A, B, C and D, when installed with intrinsically safe zener barriers per drawing 132484 or when installed with galvanic isolators. Class I, Division 2, Groups A, B, C and D non-incendive when installed without barriers per drawing 132484. T6 @ Ta=+100°C, T5 @ Ta=-35 to +85°C.

BASEEFA / CENELEC: EExia for Zones 0, 1 and 2, Group IIC, LCIE certificate number 98 ATEX 6011X, when installed with intrinsically safe zener barriers or galvanic isolators per drawing 132484, T5 @ Ta=100°C.

ExN for Zone 2, Groups IIA, IIB and IIC, BASEEFA certificate number Ex 97Y4175X, T4 @ Ta=100°C.

30

Page 280: Generator Manual

Section 5 — Specifications

Mechanical Housing Ratings:

For North America, Type 4X water-proof and corrosion-resistant rating certified by Canadian Standards Association. IP66 rating verified by CSA report number SC 115582-1. CENELEC standard EN50014 rating for electrostatic dissipation of a plastic material located in a hazardous area.

Probe Tip Material: Polyphenylene Sulfide (PPS)

Probe Case Material: AISI 304 stainless steel

Probe Cable: 1 metre length, 75 Ω triaxial, fluoroethylene propylene (FEP) insulated.

Probe Connector: Gold-plated brass ClickLoc™ connector with connector protector attached.

Probe Tensile Strength: 330 N (75 lb) between probe cable and case, maximum.

Housing Material: Ultraviolet (UV) resistant, glass-reinforced polyphenylene sulfide (PPS) thermoplastic containing conductive fibers.

Sleeve Material and Retaining Chain: AISI 304 stainless steel

Outer Sleeve and Retaining Screws: AISI 303 stainless steel

Sleeve O-Ring Material: Neoprene®

Grounding Liner and Retaining Plate Material: AISI 304 Stainless Steel

Recommended Torque

Retaining Nut: 29.5 N·m (260 in·lb)

Probe Sleeve Locknut:

39.3 N·m (350 in·lb)

Housing Strength (typical): Outer sleeve was mounted on a test stand with its axis parallel to horizontal and the housing mounted on the outer sleeve through an end hole. The housing supported 912 N (205 lb) placed approximately 38 mm (1.5 in) from the unsupported end with the cover fastened in place and grounding liner installed.

31

Page 281: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Housing Impact Strength: Certified by BASEEFA to withstand two separate 4 Joule (5.4 ft·lb) impacts at -39°C (-38°F) and at 115°C (239°F). Samples of the housing and cover were verified by CSA to withstand a 7 Joule (9.5 ft·lb) impact at ambient room temperature.

Total System Weight: 1.4 kg (3.1 lb) typical with 0.3 metre (12 in) sleeve length.

Environmental Limits Probe Temperature Range

Operating and Storage Temperature:

-51°C to +177°C (-60°F to +350°F).

Note: Exposing the probe to temperatures below -34°C (-30°F) may cause premature failure of the pressure seal.

Probe Housing and Proximitor® Sensor

Operating Temperature:

-34°C to +100°C (-30°F to +212°F).

Storage Temperature: -34°C to +105°C (-30°F to +221°F).

Relative Humidity (PROXPAC® Sensor and probe): 100% condensing, non-submersible when connectors are protected. When properly sealed, moisture should not enter the housing. Precautions should be taken to prevent moisture from traveling through the conduit into the housing.

Hot Water and Steam Exposure Effects: (Specification not guaranteed) Brief periods (up to one week) of contact with hot water 95°C (203°F) and/or condensing steam should not significantly affect the strength of the plastic housing. Contact with these beyond this length of time may eventually cause the strength of the plastic housing to permanently decrease during the first 6 to 8 weeks of exposure, and then level at approximately half of its initial value. Tests of actual housing performance after contact with hot water and condensing steam have not been conducted.

Probe Pressure: The PROXPAC® is designed to seal differential pressure between the probe tip and the housing main body when used with a 3300 XL 8 mm probe. The sealing material internal to the probe case consists of a Viton® O-ring; the O-ring between the sleeve and the housing is a Neoprene® O-ring. The plastic housing is certified to seal against hose-directed water according to Type 4X and IP66 standards but is not designed to resist

32

Page 282: Generator Manual

Section 5 — Specifications

internal or external pressure. Probes are not pressure tested prior to shipment.

Contact our custom design department if you require a test of the pressure seal for your application.

Note: It is the responsibility of the customer or user to ensure that all liquids and gases are contained and safely controlled should leakage occur from the PROXPAC® transducer. Solutions with high or low pH values may erode the tip assembly of the probe, causing media leakage into surrounding areas. Bently Nevada Corporation will not be held responsible for any damages resulting from leaking Proximity Probe Housing Assemblies. In addition, PROXPAC® transducers will not be replaced under the service plan due to probe leakage.

Effects of 60 Hz Magnetic Fields up to 420 Gauss: Output voltage in mil pp/gauss: Gap: Proximitor® Sensor Probe 90 mil (worst case) 0.0179 0.0045

Patents 5,016,343; 5,126,664; 5,351,388; and 5,685,884

Components or procedures described in the patents apply to this product

-6

-5

-4

-3

-2

-1

0

1

10 100 1000 10000

Frequency in Hz

Mag

nitu

de (d

B)

305 m (1000 ft) 610 m (2000 ft)3660 m (12000 ft) 152 m (500 ft) with external barriers

Figure 5-1: Typical Frequency Response at 50 mils Gap

33

Page 283: Generator Manual

Proxpac Proximity Transducer Assembly Manual

34

Page 284: Generator Manual

3/110

3

Presentation 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

FunctionsThese devices monitor the levels of conductive liquids.

They control the actuation of pumps or valves to regulate levels and are also suitable

for protecting submersible pumps against running empty, or protecting tanks from

"overflow". They can also be used to control dosing of liquids in mixing processes

and to protect heating elements in the event of non immersion.

They have a transparent, hinged flap on their front face to avoid any accidental

alteration of the settings. This flap can be directly sealed.

Compatible liquids:

! spring, town, industrial and sea water,

! metallic salt, acid or base solutions,

! liquid fertilizers,

! non concentrated alcohol (< 40 %),

! liquids in the food-processing industry: milk, beer, coffee, etc.

Non-compatible liquids:

! chemically pure water,

! fuels, liquid gasses (inflammable),

! oil, concentrated alcohol (> 40 %),

! ethylene, glycol, paraffin, varnish and paints.

DescriptionRM4 LG01 RM4 LA32

Width 22.5 mm Width 22.5 mm

1 Fine adjustment of time delay (as % of setting range max. value).

2 Fine adjustment of response sensitivity (as % of setting range max. value).

3 Function selector switch:

- empty or fill .

4 Switch combining:

- selection of the response sensitivity range,

- selection of time delay on energisation or on de-energisation of the

relay.

RM4 LG01

RM4 LA32

2

3RU

1

2

4

RU

3

R Yellow LED: indicates relay state.

U Green LED: indicates that supply to the RM4 is on.

Table showing details for switch 4

Switch position Time delay Sensitivity

500 On-delay High = 500 kΩ range

500 Off-delay High = 500 kΩ range

50 On-delay Medium = 50 kΩ range

50 Off-delay Medium = 50 kΩ range

5 On-delay Low = 5 kΩ range

5 Off-delay Low = 5 kΩ range

References :page 3/112

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Setting-up :page 3/115

561

07

85

610

79

Page 285: Generator Manual

3/111

3

Presentation (continued) 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

The operating principle is based on a change in the resistance measured between immersed

or non-immersed electrodes. Low resistance between electrodes: liquid present. High

resistance between electrodes: no liquid present. The electrodes may be replaced by other

sensors or probes which transmit values representing variations in resistance.

The a.c. measuring voltage which is < 30 V and galvanically insulated from the supply

and contact circuits, ensures safe use and the absence of any electrolysis phenomena.

RM4 relays may be used:

For detection of a liquid level, operating with 2 electrodes, one reference electrode and

one high level electrode, or an LA9 RM201 probe. Example: prevention of tank overflow.

For regulating a liquid level between a minimum and a maximum level, operating

with 3 electrodes, one reference electrode, one low level electrode and one high level

electrode, or two LA9 RM201 probes.

Example: water tower.

The state of the output relay can be configured:

Empty function : the output relay is energised when high level electrode B2 is

immersed and is de-energised when low level electrode B3 is "dry" (1).

Fill function : the output relay is energised when the low level electrode is "dry"

and is de-energised when high level electrode is immersed (1).

On model RM4 LA32 a time delay can be set on energisation or de-energisation of

the output relay in order to raise the maximum level function or to lower the

minimum level function .

This function also makes it possible to avoid pulsing of the output relay (wave effect)

when operating with 2 electrodes .

Operating principle

Function diagrams

Empty function

!"Maximum level detection (2 electrodes or 1 probe LA9 RM201)

!"Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201)

Full function

!"Maximum level detection (2 electrodes or 1 probe LA9 RM201)

!"Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201)

B1 : reference electrode B2 : high level electrode B3 : low level electrode

(1) When operating with 2 electrodes, the high level electrode performs both high and low level functions.

tt

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/18

LA32

LA32

LG01 Ð 15/16

B1 B2B1 B2B1 B2TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

t t

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/1815/16

B1 B3 B2B1 B3 B2B1 B3 B2B1 B3 B2

LA32

LA32

LG01 Ð

TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

LA32

LA32

LG01 Ð

tt

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/1815/16

B1 B2B1 B2B1 B2TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

tt

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/1815/16

B1 B3 B2B1 B3 B2B1 B3 B2B1 B3 B2

LA32

LA32

LG01 Ð

TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

References :page 3/112

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Setting-up :page 3/115

Page 286: Generator Manual

3/112

3

References 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

Liquid level control relaysTime delay Sensitivity

scaleWidth Output

relayBasic reference, to be completed by adding the voltage code (1)

Weight

kΩ mm kg

Without 5…100 22.5 1 C/O RM4 LG01 0.165

Adjustable 0.1...10 s

0.25 ...5 22.5 2 C/O RM4 LA32 0.165

2.5 ...50

25 ...500

Level control probe for liquid Type of installation Maximum operating

temperatureReference Weight

°C kg

Suspended by cable 100 LA9 RM201 0.100

(1) Standard supply voltages

RM4 LG01 Volts 24 110...130 220...240 380...415

50/60 Hz B F M Q

RM4 LA32 Volts 24...240 24 110...130 220...240 380...415

50/60 Hz MW B F M Q

! MW – – – –

RM4 LG01

RM4 LA32

LA9 RM201

Presentation :pages 3/110 and 3/111

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Setting-up :page 3/115

56

10

87

56

10

89

561

08

8

Page 287: Generator Manual

3/113

3

Characteristics 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

Power supply circuit characteristicsRelay type RM4 LG01 RM4 LA32

Rated supply voltage (Un) 50/60 Hz V 24 110...130 220...240 380...415 24...240 24 110...130 220...240 380...415

! V – – – – 24...240 – – – –

Average consumptionat Un

VA 1.9 2.6 2.4 2.9 2.7 3.1 2.7 2.6 3.4

! W – – – – 2.4 – – – –

Output relay and operating characteristicsNumber of C/O contacts 1 2

Output relay state Can be configured by switch: empty / fill

Electrode circuit characteristics (1)

Sensitivity scale kΩ 5…100 (adjustable) 0.25…5 2.5…50 25…500

Maximum a.c. electrode voltage(peak to peak)

V 24 24

Maximum current in the electrodes mA 1

Maximum cable capacity nF 10 200 25 4

Maximum cable length m 100 1000 100 20

(1) The electrodes may also be incorporated in the probes. The probes are normally designed for fixing to a tank by means of a bracket with a seal (closed tanks) or suspended by their own electrical connecting cable (boreholes, etc.). See page 3/115 “Setting-up” Probe LA9-RM201.

Presentation :pages 3/110 and 3/111

References :page 3/112

Dimensions, schemes :page 3/114

Setting-up :page 3/115

Page 288: Generator Manual

3/114

3

Dimensions,schemes 3

Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

DimensionsRM4 LG01, LA32

Rail mounting Screw fixing

Probe LA9 RM201

Connection schemesRM4 LG01 RM4 LA32

A1-A2 B1, B2, B3

Supply voltageElectrodes(see table opposite)

Electrodes and level controlled

B1 Reference or tank earth electrode

15-18 1st C/O contactof the output relay15-16 B2 High level

25-28 2nd C/O contactof the output relay25-26 B3 Low level

22,5

78

80 89,5

82Ø4

66

78

150

16

B1 B2

A1 15

B3

18 16 A2

18

15

16

B3

B2

B1

A2

A1

B1 B2

A1 15

B3

25

18 16 A2

28 26

18

15

16

B3

26

28

25

B2

B1

A2

A1

Presentation :pages 3/110 and 3/111

References :page 3/112

Characteristics :page 3/113

Setting-up :page 3/115

Page 289: Generator Manual

3/115

3

Setting-up 3 Zelio Control - industrial measurement and control relays 3

Liquide level control relays RM4 L

Select the empty /fill function according to the sequence to be performed.

If necessary, set potentiometer 1 to minimum (time delay).

Set potentiometer 2 to minimum; on RM4-LA, select the lowest sensitivity range

using potentiometer 4 (5 or 5 ).

With all the electrodes immersed, turn the sensitivity potentiometer towards

maximum until the relay is energised ( function) or de-energised ( function),

then exceed the threshold by about 10 % to compensate for variation in the supply

voltage.

If the relay is not able to energise, a higher sensitivity scale must be used (selector 4

on RM4 LA32) or relay RM4 LG must be replaced by an RM4 LA32 relay and the

adjustment procedure must be started again.

Then check that the relay de-energises ( function) or energises ( function) as

soon as electrodes B3 and B2 are out of the liquid. If the relay does not de-energise,

select a lower sensitivity scale.

This probe is of the "suspension" type. It is coaxial, i.e. in addition to the normal

(central) electrode, the stainless steel skirt can also act as earth (reference

electrode), which means that there is no need to install a separate reference probe.

In this way, for controlling one level, only one probe is required instead of 2; for

controlling 2 levels, only 2 probes are required instead of 3.

Setting-up

The electrode connection point must be

protected against corrosion by sticking or sealing.

In areas where thunderstorms are likely to occur,

measures must also be taken to protect the

electrode lines.

Note: the high level can be raised by means of the

adjustable time delay from 0.1 to 10 seconds with

function .

The low level can be lowered by means of this

same time delay with function .RM4 LG01 RM4 LA32

2

3RU

1

2

4

RU

3

Probe LA9 RM201

The connecting cable must be of the

"2-conductor" type, with common cylindrical PVC

sheath, having a maximum diameter of 6.3 mm.

The skirt also acts as a "calming chamber", so

avoiding inaccuracy due to an agitated surface of

the liquid (waves).

Maximum operating temperature: 100 °C.

Probe LA9 RM201 can also be fixed on various

containers (cisterns, tanks, ...) by means of a

bracket or other suitable fixing device.

LA9 RM201

2-conductor cable in cylindrical sheath(max Ø 6.3 mm)

Level electrode

Reference electrode(skirt)

Connection examples

Control by electrodes

Control by probes

B3

B2

B1

A1 B2 B3B1

A2

High level

Low level

Sup

ply

vo

ltag

e

B1

B2

B3

B2

B1

RM4 LG01

2 levels 1 level

Presentation :pages 3/110 and 3/111

References :page 3/112

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Page 290: Generator Manual

WERKHANNOVER

Spare Parts List

Part Designation RENK ID - No. Qty.

Filename Page Si. Date Appr. Date RENK ID - No Revisions

L785592e 1 / 2 Gre 11.07.08 L785592 A

BEARING EFZLK 22-250

DRAWING-NO.: 27126419 A

1 HOUSING EF22 785162 1

2 HEXAGON SOCKET HEAD CAP SCREW M24X90 350943 4

3 RING BOLT M24 158013 2

4 POSITIONING PIN 22 350913 1

5 SIGHT GLASS BSP11/2“ 694050 1

6 OIL SIGHT GLASS BSP2“ 725953 1

7 SCREW PLUG BSP3/4“ 351006 4

8 SCREW PLUG BSP1/2“ 351005 4

9 SCREW PLUG BSP1/4“ 351003 1

10 SCREW PLUG 3/4NPT 248318 2

11 OIL OUTLET DN50 722352 1

12 PIPE NUT BSP2“ 142209 1

13 SEALING RING 60X70X4 142041 1

14 SHELL EZLK 22-250 785160 1

15 HEXAGON SOCKET HEAD CAP SCREW M12X35 346924 2

16 LOOSE OIL RING 22-2 698779 1

17 HEXAGON SOCKET HEAD CAP SCREW M5X20 142900 2

18 LABYRINTH SEAL 250-R 758532 1

19 LABYRINTH SEAL 280-R 757103 1

20 SEAL CARRIER 22-280 785987 1

21 HEXAGON SOCKET HEAD CAP SCREW M8X20 158532 8

22 BAFFLE 280 785989 1

23 HEXAGON SOCKET HEAD CAP SCREW M6X30 142948 8

24 WASHER 6 350445 8

25 EXTENSION PIECE BSP1/2-BSP1/4 721758 1

26 SEALING RING A21X26 168405 1

27 PIPING FOR HYDROSTATIC JACKING 22 745822 1

28 CARTRIGDE OF NON-RETURN VALVE RVP13 350603 1

Page 291: Generator Manual

WERKHANNOVER

Spare Parts List

Part Designation RENK ID - No. Qty.

Filename Page Si. Date Appr. Date RENK ID - No Revisions

L785592e 2 / 2 Gre 11.07.08 L785592 A

29 CABLE 2.5X450 500002 1

30 WASHER 12 350461 1

31 CABLE GLAND PG7 142151 1

Page 292: Generator Manual

WERKHANNOVER

Spare Parts List

Part Designation RENK ID - No. Qty.

Filename Page Si. Date Appr. Date RENK ID - No Revisions

L784934e 1 / 1 Gre 11.07.08 L784934 A

BEARING EFZLQ 22-225

DRAWING-NO.: 27126034 A

1 HOUSING EF22 785157 1

2 HEXAGON SOCKET HEAD CAP SCREW M24X90 350943 4

3 RING BOLT M24 158013 2

4 POSITIONING PIN 22 350913 1

5 SIGHT GLASS BSP11/2“ 694050 1

6 OIL SIGHT GLASS BSP2“ 725953 1

7 SCREW PLUG BSP3/4“ 351006 4

8 SCREW PLUG BSP1/2“ 351005 4

9 SCREW PLUG BSP1/4“ 351003 1

10 SCREW PLUG 3/4NPT 248318 2

11 OIL OUTLET DN 50 709758 1

12 LOCK NUT BSP2” 350394 1

13 SEALING RING 60X70X4 142041 1

14 SHELL EZLB 22-225 738717 1

15 HEXAGON SOCKET HEAD CAP SCREW M12X35 346924 2

16 LOOSE OIL RING 22-1 698762 1

17 HEXAGON SOCKET HEAD SCREW M5X20 142900 2

18 LABYRINTH SEAL 250-R 758532 1

19 END COVER 22 350379 1

20 HEXAGON SOCKET HEAD CAP SCREW M8X16 142601 8

21 EXTENSION PIECE BSP1/2”-BSP1/4” 721758 1

22 SEALING RING 21X26 168405 1

23 PIPING FOR HYDROSTATIC JACKING 22 745822 1

24 CARTRIDGE OF NON- RETURN VALVE RVP13 350603 1

Page 293: Generator Manual

s

Operating Instructions

Synchronous generator

Page 294: Generator Manual

s

Operating manual: Edition: Project code: Fenirol Type: 1DT 4138-8ADO2-Z

Contract-No.: 1219294 Works Order No.: 178553 Documentation List:

Register No. Document

1. Technical data Text of dimension drawing TK.930276-1219294

Electrical data Page 5

2. Drawings Generator description TK.930276-1219294

Dimensions drawing (07 2070 0023)

Instrument wiring diagram 577287 A

577291

Shaft calculation drawing 2 132 z294w/A

Rotor withdrawal 592481

Generator foundation 573436A

3. Reports Quality inspection certificate

4. Instructions and Additional documents a) Synchronous generator

b) Logbook

c) Brushless exciter

d) Anti-condensation heating

e) Air-to-Water Cooler

f) Cooler-Coiltech, Operation and Maintenance instruction

g) Cooling data

h) Cooler dimension

i) Drawing of DE- Bearing - EFZLK 22k-250H7

j) Drawing of NDE- Bearing - EFZLQ 22k-225H7

k) Drying of Windings

l) Bolt tightening torques

m) Slide Bearing Type EF RH-EFZEI-E-10.00

n) Slide Bearing Type EF RH-EFZWI-E-10.00

o) Lubricants for Slide Bearings Recommendation RH-2005

p) List of recommended spare parts

Page 295: Generator Manual

s

Revision

Page Revised Rev.

Page 296: Generator Manual

s Dimension Drawing Text Type : 1DT 4138-8ADO2-Z W.-No. : 178553 Contract-No. : 1219294 Code : FENIROL Drawing-No. : TK.930276-1219294

Page 297: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 4

CONTENTS

1. Technical data .................................................................................................................................... 5

1.1 Electrical data ............................................................................................................................. 5

1.2 Degree of protection ................................................................................................................... 6

1.3 Weights ....................................................................................................................................... 6

2. Text part - legend............................................................................................................................... 7

3. Operation of cooler ............................................................................................................................ 9

4. Temperature monitoring devices ..................................................................................................... 10

5. Machine monitoring......................................................................................................................... 11

6. Shaft end .......................................................................................................................................... 12

7. Direction of rotation......................................................................................................................... 13

8. Foundation load ............................................................................................................................... 14

9. Rating plate ...................................................................................................................................... 15

10. Outlet box ........................................................................................................................................ 16

11. Sleeve bearing - DE ......................................................................................................................... 17

12. Sleeve bearing - NDE ...................................................................................................................... 18

13. Oil lubrication inlet.......................................................................................................................... 19

14. Axial bearing clearance ................................................................................................................... 20

15. Rotary rectifier - brushless excitation components.......................................................................... 21

16. Anti-condensation heater ................................................................................................................. 22

17. Shaft earthing................................................................................................................................... 23

18. External earthing ball point and earth terminals.............................................................................. 24

19. Thermal expansion........................................................................................................................... 25

20. Displacement ................................................................................................................................... 25

21. Relative vibration sensor PROXPAC 330800 type Bently Nevada .............................................. 26

22. Shaft vibration monitoring system................................................................................................... 27

23. Lifting instruction ............................................................................................................................ 28

24. Service covers .................................................................................................................................. 29

25. Outdrawal space for heat exchanger................................................................................................ 30

26. Protection against corosion.............................................................................................................. 31

Page 298: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 5

1. Technical data

1.1 Electrical data

Rated output SN : 12 500 kVA

Rated voltage UN : 6 600 V

Rated current IN : 1 093 A

Power factor : 0.8

Rated frequency f : 50 Hz

Rated speed nN : 1 500 min-1

Excitation current IFN : 413 A*)

Excitation voltage UFN : 149 V*)

Exciter:

Excitation current IFRG : 9,5 A*)

Excitation voltage UFRG : 62 V*)

Type of construction : IM 1005

Cooling method : IC81W

Ambient temperature : 40 °C

Necessary volume of cooling air : 8,5 m3/s

Losses to dissipate : 272 kW

Thermal class : F

Stator winding temperature rise (res. method) : acc.to Th.-Cl. F

Xd’’ saturated value : 16,5 %*)

Page 299: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 6

1.2 Degree of protection

Machine : IP 54 EN60034-5

Terminal : IP 54 EN60034-5

1.3 Weights

Total weight : 31 000 kg

Rotor complete : 9 150 kg

Cooler top housing : 2 200 kg

Moment of inertia rotor cpl. : 1 007 kg.m2

(Shaft drawing No. 2 132 z573w/A )

*) Calculated values

Dynamic analysis and check of the shafting acc. to VDI-3840 recommended. Transient torques and

shaft calculation data will be supplied on request.

Page 300: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 7

2. Text part - legend Machine parts listed in the following text are supplied by SEM Siemens Electric Machines s.r.o., unless otherwise stated.

1 Cooler housing There is a flexible connection between the Cooler housing and the Stator frame. Their dynamic behaviors are different. Any rigid connection between them is not allowed (for example water piping connected to the Cooler and to the Stator frame)

2 Closed circuit cooler see page 9

Type: QLKE-234-110-3-2-4-23-3-8-X

X= 0,15 mm fins.

Quantity: 2 Cooling data: Register 2

3 DE-bearing EFZLK 22-250 see page 17 Lubricants see recommendation of manufacturer Renk see register 4 Axial bearing clearance see page 20

4 NDE-bearing EFZLQ 22-225 see page 18 Floating bearing. see register 4

5 Outlet box see page 16

6 Anti-condensation-heater see page 22 Terminal diagram see register 2

7 Leakage-water detector see page 11

Type: GEA 11 19 1259 01 Quantity: 2

8 Leakage-monitoring

Type: RM4 LA32 MW Quantity: 1

9 Centre of gravity

10 Covers on servicing openings

11 External earthing ball point see page 24 Quantity: 2

12 Grounding terminal see page 24

13 Aux. terminal box for anti-condensation heater, exciter, thermometers. Terminal diagram see register 2

14 Lifting lugs for lifting complete machine. For lifting a suitable lifting beam must be used. see page 28

Page 301: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 8

15 Exciter see page 21 Type: 1JG3300-8HV06-Z Terminal diagram see register 2

16 Vent plug

17 Water drain plug

18 Bearing temperature sensors. Each bearing has 1 double resistance thermometer 2xPT100

Type DE: 2PT100/B-235X6S-G1/2-3/0-N

NDE: 2PT100/B-250X6S-G1/2-3/0-N Manufacturer Fa. Dosch Terminal diagram see register 2 Location see page 11 PT100s are lead out into aux. terminal box.

19 Foundation load see page 14

20 Cold-air resistant thermometer Type: 2xPT 100

Quantity: 2 Location see page 11 Terminal diagram see register 2

21 Hot-air resistant thermometer Type: 2xPT 100 (100 Ohm at 0°C, DIN IEC 751)

Quantity: 1 Location see page 11 Terminal diagram see register 2

22 Slot resistance thermometer in stator winding Type: PT 100 (100 Ohm at 0°C, DIN IEC 751) Quantity: 9 Setting see page 10 Location see page 11

Terminal diagram see register 2

23 Foundation screws M 56 Quantity: 8

24 Oil lubrication inlet see page 19

25 DE shaft end see page 12

26 Earthing of shaft see page 23

27 Water inlet 2 ½”ANSI B16,5; 150LB

28 Water outlet 2 ½”ANSI B16,5; 150LB

29 Vibration monitoring see page 26,27

Page 302: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 9

3. Operation of cooler Air-water single-tube cooler

Water-cooler data:

Water cooler composed of : 2 Elements

Cooler resistance (water side) : 0,8 bar

Max. operating gauge pressure : 6 bar

Required water flow rate: 1 cooler operation : 22,7 m3 / h

2 coolers operation : 33,7 m3 / h

at a water inlet temperature of : 32 °C

Water outlet temperature : 39 °C

Connection flange for cooling water : 2 ½”ANSI B 16,5; 150LB Core tubes : CuNi10Fe

Cooling fins : Al Tube plates water side : CuZn38SnAl Tube plates air side : CuZn38SnAl Water boxes : CS + Rilsan Side walls : CS galvanized

To obtain noise-damping and vibration isolation it is necessary to use expansion-joints for cooler connection.

In case of one cooler failure, it is necessary to reduce generator power output

to 50% of nominal power.

Page 303: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 10

4. Temperature monitoring devices

Slot resistance thermometer in stator winding Position in Stator core viewed from drive end. Thermometer in slot 3 is located at top of the stator core. Arrangement clockwise

Temperature limits. Max. continuous operating temperature

Sensor Terminal Quantity Type Location

Max. continuous

operating

temperature

Stator winding XT2 9 PT 100 Stator core slots 145°C

Bearings XT3 2 2xPT 100 Bearing shell 95 °C

Cold air XT7 2 2xPT 100 Cooler housing 45°C

Hot air XT7 1 2xPT 100 Cooler housing 78°C

Leakage sensor XT5 2 GEA 11 19 1259 01 Cooler housing -

Guide values for adjustment of tripping temperatures:

1. Switch point (Warning) 5 K above the measured max. operating temperature.

2. Switch point (Cut out) 10 K above the measured max. operating temperature.

No. Thermometer with connection in slot in phase 1 2:1 – 2:3 3 U 2 2:4 – 2:6 15 V 3 2:7 – 2:9 27 W 4 2:10 – 2:12 39 U 5 2:13 – 2:15 51 V 6 2:16 – 2:18 63 W 7 2:19 – 2:21 57 U 8 2:22 – 2:24 69 V 9 2:25 – 2:27 9 W

Page 304: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 11

5. Machine monitoring

Page 305: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 12

6. Shaft end

Type of flange: K-31310-2 MODEL LS3

Page 306: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 13

7. Direction of rotation

Direction of rotation facing drive end.

The generator is only suitable for CLOCKWISE direction of rotation.

Connection of the system phases in the positive sequence to the machine terminals U1 V1 W1.

Page 307: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 14

8. Foundation load

2k Peak torque produced by maximum asymetric short-circuit currents Stosskurzschlussfaktor 8,4

Mn The following applies for the three-phase generator Mn=9,55*Sn/n Für den Drehstromgenerator gilt Sn in [kVA] 79,6 kNm

M(2k) max Peak torque produced by maximum asymetric short-circuit currents Mn*2k Max. Stosskurzschlussmoment 668,64 kNm *

The vibration caused by maximum asymetric short-circuit currents can be calculated from the following equation Die Stosskurzschlussschwingung verläuft nach der Gleichung

ωN Angular frequency of the system [1/s] Netzfrequenz

Tg Time constant of d.c. component Zeitkonstante des Gleichstromgliedes 0,199 s

T(2k) Time constant of initial asymetric short-circuit current Zeitkonstante des Stosskurzschlusswechselstromes 0,365 s

Fmax =±

371,46 kN

G Force produced by the machine weight Gewichtskraft durch das Eigengewicht 304,1 kN

A Foundation load +F+G/2 Fundamentbelastung 523,4 kNm

B Foundation load -F+G/2 Fundamentbelastung -219,3 kNm

*

By neglection of fadeout process. Bei Varnachlässigung des Abklingvorganges.

The foundation is to be calculated and constructed ba the civil-engineering contractor. Transfer of vibration from adjacent machine sets to be prevented by an adequate design of the foundation. Die Berechnung und Ausführung des Fundamentes ist Angelegenheit der ausführenden Baufirma. Eine Schwingungsübertragung vonNachbaraggregaten muss durch entsprechende Fundamentgestal tung vermieden werden.

DYNAMIC LOAD STATIC LOAD

DYNAMISCHE BELASTUNG RUHENDE BELASTUNG

Page 308: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 15

9. Rating plate

Page 309: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 16

10. Outlet box

Cable outlet of each phase is provided by 2 cables SIAF 150, 13,8 kV.

Page 310: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 17

11. Sleeve bearing - DE

Suplier : Renk

Bearing type : EFZLK

Size : 22-250

Oil viscosity grade : ISO VG 46

Power dissipation : 4,1 kW

Flow rate : 14 l/min

Min. oil inlet temperature : -4 °C

Max. allowed oil inlet temperature : 45 °C

Min. pressure in oil supply pipe : 1, 5 Bar

Max. pressure in oil supply pipe : 6 Bar

Oil reservoir capacity : 23 l

Lubrication by oil circulation and with oil ring lubrication.

Bearing is shipped without oil.

Axial clearance see page 20.

Lubricant - see recommendations by bearing manufacturer.

The bearing is insulated. Insulation of the drive end bearing is bridged with stranded copper conductor.

The generator shall only be driven while being bridged.

Lubrication for sleeve bearings

Forced lubrication

Flow rate: 14 l/min

Viscosity of oil(ISO VG) 46

Oil reservoar capacity 23 l

Page 311: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 18

12. Sleeve bearing - NDE

Supplier : Renk

Bearing type : EFZLQ

Size : 22-225

Oil viscosity grade : ISO VG 46

Power dissipation : 3,5 kW

Flow rate : 5 l/min

Min. oil inlet temperature : -4 °C

Max. allowed oil inlet temperature : 45 °C

Min. pressure in oil supply pipe : 1, 5 Bar

Max. pressure in oil supply pipe : 6 Bar

Oil reservoir capacity : 23 l

Lubrication by oil circulation and with oil ring lubrication.

Bearing is shipped without oil.

Lubricant - see recommendations by bearing manufacturer.

The bearing is insulated. Insulation of the NDE bearing may not be bridged.

Lubrication for sleeve bearings

Forced lubrication

Flow rate: 5 l/min

Viscosity of oil(ISO VG) 46

Oil reservoar capacity 23 l

Page 312: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 19

13. Oil lubrication inlet

1. Throttle valve Type: VRFB 90°, Fa. Hydrocom

2. Oil-flow meter Type: DKM/A-1/24 MS G3/4”, Fa. Meister

with minimal flow contact

3. Shut-off valve EMIL01C, Fa. MTC

4. Pressure gauge MGN63R006, Type: 304G, 0-6 Bar

5. Oil inlet Flange class 150 ANSI B16,5-3/4”

6. Hydrostatic inlet Hydrostatic connection G ¼”

7. Oil outlet Flange class 150 ANSI B16,5-2”

Lubricant oil circuit

Terminals from Oil-flow meter switch are lead out into aux. terminal box.

Hydrostatic values DE NDE Starting pressure 8,5 Mpa (85 Bar) Starting pressure 8 Mpa (80 Bar)

Operation pressure 5 Mpa (50 Bar) Operation pressure 4,5 Mpa (45 Bar)

Oil flow 0,8 l/min Oil flow 0,8 l/min

ON/OFF speed limit(cold) 40 rpm ON/OFF speed limit(cold) 40 rpm

ON/OFF speed limit(warm) 90 rpm ON/OFF speed limit(warm) 90 rpm

Page 313: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 20

14. Axial bearing clearance

All measurements are in mm.

Page 314: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 21

15. Rotary rectifier - brushless excitation components

Page 315: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 22

16. Anti-condensation heater

Quantity : 1

Type : DEW 8,5-400-380/1000W/3Y

Voltage : 380 V / 50 Hz

No. of phases : 3

Power rating : ca. 1000 W

Page 316: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 23

17. Shaft earthing

Page 317: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 24

18. External earthing ball point and earth terminals

Type: 754 200 DIN VDE 0683-1, DIN 48088-1 Ø 20 mm

Earthing ball points are placed on the both side of the generator.

Earthing ball point is galvanized – Do not paint!!

Earth protective terminals are placed in diagonal corners of the generator.

Page 318: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 25

19. Thermal expansion

Vertical development ∆ l = 0,34 mm

Horizontal development ∆ h = 0,54 mm

20. Displacement

Vertical displacement sx = 0,064 mm

Horizontal displacement sy = 0,086 mm

Note: Values are calculated for rated operation conditions.

Page 319: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 26

21. Relative vibration sensor PROXPAC 330800 type Bently Nevada

Page 320: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 27

22. Shaft vibration monitoring system Manufacturer : Bently Nevada

Type shaft vibration DE : 330880-16-15-061(154mm)-03(M20)-02

Type shaft vibration NDE : 330880-16-15-066(168mm)-03(M20)-02

Recommended values for the set points:

1. operating data (alarm) (max.80 µ p.t.p.)

2. operating data (trip) (max.110 µ p.t.p.)

The amplitude of oscillation which is measured at normal operation

Operating data: measured value at normal operation

Page 321: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 28

23. Lifting instruction

The lifting capacity of the beam must be min 32 ton s.

Page 322: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 29

24. Service covers Service cover no.1 dismantle in case of maintenance of rectifier or for cold air temperature detector

exchange. Service cover no. 2 dismantle for hot air detector exchange and cover no. 3 for cold air

detector exchange.

Do not use for emergency cooling !

Page 323: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 30

25. Outdrawal space for heat exchanger

Page 324: Generator Manual

s

Datum: 15.12.2008 W-No.: 178553 Name: KOLÁŘ No. Code: FENIROL Dimension Drawing Text

Siemens Electric Machines s.r.o

Stat. Notice Date Name s Type: 1DT 4138-8ADO2-Z

TK.930276-1219294 Page 31

26. Protection against corosion

Inside Outside

Total thickness : 30 µm 60 µm

Number of coats : 1 2

Primary coat : 30 µm 30 µm

Colour RAL 3012 Colour RAL 3012

Top coat : - 30 µm

Colour RAL 7002

Tolerance per coat : ±10 µm

Page 325: Generator Manual
Page 326: Generator Manual
Page 327: Generator Manual
Page 328: Generator Manual
Page 329: Generator Manual
Page 330: Generator Manual
Page 331: Generator Manual
Page 332: Generator Manual
Page 333: Generator Manual

s

Operating instructions

Siemens Electric Machines s.r.o. Drásov 126 CZ 664 24 Drásov

Synchronous Generator

G 3~

Page 334: Generator Manual

s

Product documentation v3.5.a page 2/31 2-032 (21/2/05)

Dear customers, Now you become the owners of a synchronous generator produced by the Siemens Electric Machine, s.r.o. It is a product of the company with many-years' tradition that was produced on the basis of operational experience by a team of experts and skilled workers and which incorporates the latest know-how and advanced technology. We produce the series of synchronous generators with power output from about 20 to 12 000 kVA, LV and HV options for all usual applications. We will fulfil your special demands on a generator for special use or arrangement.

Team of company employees

Page 335: Generator Manual

s

Product documentation v3.5.a page 3/31 2-032 (21/2/05)

Contents page 1 Generally 1.1 Significant (relevant) safety terms...................................................................... 6 1.2 General safety information................................................................................. 6 1.3 Type marking of generators...............................................................…............ 8 2 Description 2.1 Technical description, variants........................................................................... 9 2.2 Electric characteristics....................................................................................... 10 2.3 Use.... ..............................................................................................……....... 11 2.4 Warranties......................................................................................................... 11 2.5 Standards.............................................................................................……...... 11 3 Transport and storage 3.1 Safety recommendations.................................................................................... 12 3.2 Storage conditions.... ................................................................................. 13 3.3 Inspection during storage time........................................................................... 13 4 Installation and operation 4.1 Safety recommendations.................................................................................... 14 4.2 Preparation........................................................................................................ 14 4.3 Electric installation............................................................................................ 17 4.4 First start up and operation.. ................................................................. 18 4.5 Diagnostics of defects …………….............................................................. 22 5 Maintenance 5.1 Safety recommendations.................................................................................... 25 5.2 Inspection of insulation condition...................................................................... 25 5.3 Cleaning............................................................................................................ 26 5.4 Bearing maintenance........................................................................................ 26 6 Disassembly and regressive assembly 6.1 Dismantling (disassembling)............................................................................... 27 6.2 Regressive assembly (assembly)......................................................................... 27 7 Regulation 7.1 General description, principle of regulation........................................................ 28 7.2 Range of voltage regulation............................................................................... 29 7.3 Regulation accuracy.......................................................................................... 29 7.4 Dynamic state of voltage................................................................................... 29 7.5 Parallel operation.............................................................................................. 30

Page 336: Generator Manual

s

Product documentation v3.5.a page 4/31 2-032 (21/2/05)

page

8 Neutral point 8.1 Generally....................................................................................................... 31 9 Generator disposal after lifetime expiration ................................... 31 List of enclosures Enclosed Enclosure No. 1: Technical data………………………..….. Enclosure No. 2: Machine name plate…………………...… Enclosure No. 3: Direction of rotation………………….…. Enclosure No. 4: Load of foundation by generator…….…. Enclosure No. 5: List of bearings with relubricating plan… Enclosure No. 6: Operational logbook of generator ……… Enclosure No. 7: Voltage regulators ……………………….. Enclosure No. 8: Regulator VAR/Power factor…………... Enclosure No. 9: Regulator RÜW 10……………………… Enclosure No. 10: Test certificate…..……………………… Enclosure No. 11: Connection diagram…………………… Enclosure No. 12: Dimensions drawing……………………

Page 337: Generator Manual

s

Product documentation v3.5.a page 5/31 2-032 (21/2/05)

1. Generally Herein submitted operational instructions refer only to standard type. Possible dissimilarities from standard model (special models) are described in enclosures or supplements of operational instructions. NOTICE: Contents of operational instructions and production documentation is not the part of previous or current agreements promises or juridical relations or is not to change above mentioned. All obligations of SIEMENS result from existing purchase contract that also contains complete and valid delimitation of warranties. These contractual warranty contracts are neither limited nor extended by elaboration of these instructions and documentation.

Therefore the workers responsible for safety operation of a device have to secure the following:

- only qualified operators have to be authorised to attend these machines

- these operators and the others must always have submitted operational instructions and the other production documentation at their disposal in the course of all corresponding operations and have to adhere to this documentation consistently.

- unqualified people are forbidden to operate the machines and keep in their surrounding.!!!

Danger Electric machines are operational devices to be used in industrial heavy-current machinery. In the course of operation these operational devices have dangerous voltage, conductive bare parts, moving or rotating parts. Therefore they can cause the worst injuries or damage to properties in case of inadmissible removing of covers, unprofessional handling, incorrect manipulating or insufficient maintenance.

Page 338: Generator Manual

s

Product documentation v3.5.a page 6/31 2-032 (21/2/05)

1.1 Significant (relevant) terms Warning terms such as DANGER, WARNING, CAUTION and RECOMMENDATION which are mentioned in this operational instructions are used to inform about danger or extraordinary information that require special marking. DANGER means that in case a person does not adhere to it, his life can be jeopardised or he may cause damage to property. WARNING means that in case a person does not adhere to it, he may induce difficult injury or cause damage to property. CAUTION means hat in case a person does not adhere to it, he may induce an injury or cause damage to property. RECOMMENDATION means that there are extraordinary and special technical connections that are not obvious even for experts. Regardless, it is also necessary to adhere to recommendations that are not specially emphasized, regarding transport, operation and maintenance as well as technical data (which are given in operational instructions, production documentation and on the machine itself) to prevent breakdown which can either directly or indirectly induce difficult injuries of people or cause damage to property. Qualified staff are operators who were in charge of safety of device, who are able to perform all necessary activities and at the same time recognize and prevent possible danger. These operators have to perform above mentioned as the result of their education, experience, previous training as well as acquiring knowledge of standards, provisions, regulations, safety of work and working relations. Above all qualification of staff providing service and maintenance has to correspond to the laws concerning work on heavy-current devices of a particular country which the device is operated in. Besides, knowledge of provisions of first aid and local rescue devices is necessary as well. Concerning work on heavy-current devices, restriction of employing unqualified people is determined in e.g. VBG 4 or ČSN 33 2000-4-41 or IEC 364-4-443. 1.2 General safety information Herein mentioned machines are parts of heavy-current devices for industrial extent of use. They are produced in compliance with corresponding and acknowledged technical regulations. WARNING: It is supposed that basic planned operations with a device as well as all operations concerning transport, assembly, installation, launching, maintenance and repairs will be performed by qualified staff or checked by responsible experts.

Page 339: Generator Manual

s

Product documentation v3.5.a page 7/31 2-032 (21/2/05)

Concurrently it is necessary to take the following into consideration:

- Technical data and data of admissible use (assembly connection terms, environmental terms and operational terms), which are, among others, stated in a catalogue, in operational instructions, orders, name plates and in the other technical documentation.

- General establishing and safety provisions.

- Local provisions and requirements which are specific for the device.

- Qualified use of tools, lifting and transport devices.

- Use of personal protective devices.

- Duty of responsible people to take part in training on safety of employees in

accordance with SAFETY PROVISIONS as well as keeping to the laws of a country in which the device is operated. Above all the laws, concerning protection of environment, handling with waste, safety use of substances that are dangerous for lives or environment e.g. cleaners, lubricants, adhesives, varnishes etc. Detailed information about these special products can be found in a “list of safety data” provided by producers or importer of a product.

Operational instructions cannot contain all detailed information concerning different construction variants and cannot take into consideration every possible occurrence of installation, operation or maintenance owing to the loss of lucidity. Therefore operational instructions designed for qualified operators (see above mentioned) contain such recommendations that are necessary if a machine is used in accordance with provisions in the extent of industrial operation. If there are special requirements concerning nonindustrial area (e.g. protection against dangerous touch of children fingers and so on), these conditions have to be secured on the device by means of supplementary protective provisions. If there are any discrepancies, especially missing information which specify a product, sales department of SIEMENS is in charge of providing necessary explanation. Concerning this matter we ask you to mention mainly type and production number of a machine, please. Concerning planning, assembly, launching and service we recommend using the promotion and services of appropriate service centre of SIEMENS. RECOMMENDATIONS: Other detailed information concerning general works e.g. checking of delivered coils (damages which can be caused during transport), long term storage and preserving of machines, checking of footing, connection stretching, erection (setting) and (seating), levelling of a machine and others could be found in our “Assembly materials” or (newly) in “Operational instructions”. These materials could be obtained in SIEMENS sales department.

Page 340: Generator Manual

s

Product documentation v3.5.a page 8/31 2-032 (21/2/05)

1.3 Type marking of generators

1FC2 353-4SB40-Z

Rotating electric machine 1 Synchronous machine F Basic design C Water cooler design J Air cooler design Q Military design R Low voltage, output up to 3 MVA 2 Low voltage, output above 3 MVA 3 Middle and high voltage 4 Axial height 180 mm 18 225 mm 22 280 mm 28 355 mm 35 450 mm 45 560 mm 56 630 mm 63 710 mm 71 800 mm 80 Power size 1 2 3 .

Number of poles 4 4 6 6 8 8 10 10 12 12

Page 341: Generator Manual

s

Product documentation v3.5.a page 9/31 2-032 (21/2/05)

2. Description 2.1 Technical description, variants Machines of type 1FC2 are three-phase synchronous generators for low voltage with a rotor with protruding poles in brushless design. They consist of alternative current generator (main machine) and exciter with rotating rectifier. Rotors of main machine and exciter together with rotating rectifier and fan are situated on one shaft. Parts that are used for voltage regulation can be found in terminal box. One construction unit consists of above mentioned parts, welded cover and bearings. Main machine has got a rotor with protruding poles. Three-phase winding is brought out on four terminals and connected in a star. The star is brought out. Rotor is equipped with damper winding to improve dynamic stability of asymmetric load. Exciter is an alternative generator with outer poles with steady exciter winding in stator. Rotor alternating winding feeds winding in the winding of main machine by means of rotating rectifier. Rotating rectifier is a diode module connected in a three-phase bridge that is equipped with overvoltage protection. Basic mechanical design is represented by two-bearing design with degree of protection IP 23 and feet that are pulled out. There are other variants such as footing-flange, one-bearing or other designs. Bundle of stator sheets is pressed into a solid welded box and it secured to prevent round moving. It is possible to adjust the height of footings towards generator axis. Generator rotor is a compact part of the machine with damper cage (amortiser) in magnet field. It is excited by means of integrated exciter. Stator of exciting machine (exciter) is situated in bearing shield on the non-drive-end. Bearing shields are produced of qualitative grey cast iron, may be welded. Rectifier and protective varistor are attached outside the machine on NS – side (front side). This solution can enable their easy replacement. In special designs it is situated even inside of the machine. There is a through system of cooling in the machine, which is optimal. Fans are made of aluminium up to axial height of 350 mm. Welded constructions are used for higher axial heights. Protective coverage is secured with ribbed sheets in the places where the air comes in and out. If generator operates in dusty areas, it can be equipped with a filter on the side where the air comes in. There is an option of supplying generators equipped with higher degree of protection than IP 23, and with water cooler or air cooler. Spacious terminal box is situated on the upper part of generator stator box. It contains all equipment that is needed for connection and operation of generator, including regulator. Terminals are arranged on 6-terminal bars. There is also an option of equipping a generator with thermal sensors in stator winding and bearings. Standard design of generator is supplied without drilled openings for outlet cables. There is an option of supplying inlet cable necks with PG – screw joints.

Page 342: Generator Manual

s

Product documentation v3.5.a page 10/31 2-032 (21/2/05)

2.2 Electric characteristics 2.2.1. Output and raise of the temperature Determined output that is stated on the name plate is intended for long-term operation with symmetrical load, prescribed frequency and voltage, power factor cosϕ = 0,8 to 1,0, ambient air temperature up to 40o C and altitude of machine location up to 1000 m. Simultaneously, the machine is used in compliance with temperature class F, if need H according to IEC 60034-1. 2.2.2. Short-term current overload Machines can bear short-term overload without harmful effect in compliance with the following table: Tab.2.3.a Current overload I/In 1,10 1,15 1,30 1,5 3,0 t 1 h 25 min 6 min 15s 5 s Above mentioned overload can occur only rarely and must be followed by running of machine for at least one hour at reduced output or at most at determined output. 2.2.3. Voltage Machines are standardly supplied with a star connection for voltage of 400 V at 50 Hz, or 450 V at 60 Hz (according to machine name plate). ATTENTION!! Machines that were supplied for voltage of 400V at 50 Hz, cannot be operated at voltage of 450 V and 60 Hz. 2.2.4. Shape of a voltage curve Time behaviour of terminal voltage during idle running and during symmetrical linear load is virtually sinusoid with upper frequency response according to ISO 8528, part 1, and at most 5 % of difference from the fundamental oscillation. 2.2.5. Asymmetric load Asymmetric load according to IEC 60034-1 article 22 Maximum I 2 / IN for permanent operation 0,08 Maximum ( I2 / IN )

2.t operation during breakdowns 20 2.2.6. Short-circuit current During symmetrical three-phase short-circuit the value of short-time short-circuit current makes minimally triple of nominal current. Short-circuit current must be switched off by 5 s.

Page 343: Generator Manual

s

Product documentation v3.5.a page 11/31 2-032 (21/2/05)

2.2.7. Radio interference elimination Generators correspond to interference elimination degree according to IEC 60034-1. 2.2.8. Currents in star neutral points If star neutral points of generators are connected mutually or with neutral points of transformers and appliances directly, then transient currents with triple determined frequency could appear in conductor among neutral points. To prevent thermal jeopardy of generators, transient currents should not exceed 50 % of nominal current of generator. Higher currents should be reduced outside of device by means of current limiting choke or similar devices. 2.3 Use Generators are used in land central offices and in naval shipboard networks for long-term or reserve operation. They can be driven by combustion engines, gas of water turbines or electromotors. They can run individually, parallelly with similar device or it is possible to connect them to public network. 2.4 Warranties Warranties refer to adhering of operational instructions and permissible operational terms. If these provisions are not adhered, it can result in refusing of warranty claims. During claim or with spare parts order it is necessary to provide factory (production) number and if need other data stated in output name plate. The user is obliged to keep the operational log, and he can dismantle the generator only if approved by the producer otherwise the producer shall be released from the obligations under its warranty. During the warranty and after the warranty period, the user must not make any external and internal intervention in the machine design. 2.5 Standards Generator design corresponds to standards IEC 60034-1 and also DIN EN 60034 (VDE 0530-1). If required, generators can meet requirements of other standards and regulations.

Page 344: Generator Manual

s

Product documentation v3.5.a page 12/31 2-032 (21/2/05)

3 Transport and storage 3.1 Safety recommendation ! WARNING. During any lifting or transport of an aggregate it is necessary to use only openings that are provided for lifting and transportation, gripping lugs or pins in foundation plate! Lifting should be performed at four axially symmetrical places at least (see picture 3a). Aggregates must not be lifted hanging on individual parts of a machine! Existing accessory lifting lugs e.g. on bearing shields, cooler superstructure etc. are provided only for lifting of these individual parts of the machine. Lifting capacity of applied lifting device should be taken into consideration! Lifting devices should be chosen with respect of the weight of machine. Appropriate guiding of ropes should be used with possible superstructures or extension.

Picture 3a. Transport of machine

Page 345: Generator Manual

s

Product documentation v3.5.a page 13/31 2-032 (21/2/05)

3.2 Storage conditions Generator and accessories must be professionally stored before installation. They must be protected from humidity, harmful environmental conditions and from other strange influences. If generator is placed in a transport box, it must be removed out of it before storage. Storage areas must be clean, dry, closed and protected from tremors. Temperature should not drop bellow 5oC. 3.3 Inspection during storage If storage takes more than 3 months, insulation resistance and preservative coats must be inspected. If the value of insulation resistance drops down bellow the value determined in point 4.3.1, table 1, generator must be desiccated immediately. You are obliged to record the start/end date of the storage period including all activities performed with the generator during this period to the operational log of the generator.

Page 346: Generator Manual

s

Product documentation v3.5.a page 14/31 2-032 (21/2/05)

4 Installation and operation 4.1 Safety recommendation ! WARNING Strictly adhere to ”General safety information”, please. In paragraph 1.2 of this Instructions, recommendations concerning admissible use of machine and recommendations concerning required professional knowledge that is necessary while operating heavy-current machinery. Coverings must not be opened during operation (see also paragraph 5). Covers prevent from touching of active or rotating parts or they are necessary for right routing of air and effective cooling . For safety reasons, the machine can be started until the coupling is inserted at the free shaft end or after dismantling the key at the free shaft end. No higher speeds cannot be adjusted because this is ensured by right designed controlling and checking of speeds. The only admissible speeds are these that are given according to output name plate. 4.2. Preparation 4.2.1 General inspection of machine Generator must be properly inspected prior to erection (installation) with the aim to find out if there are any damages caused during transport or storage. Any imperfections that are found out must be reported to a supplier or transport company and must be professionally repaired. Remove preservative coating from metal surfaces (feet, flange, free end, etc.) prior to machine seating and installation. Insulation resistance must be inspected. Record the data measured to the operational log. 4.2.2 Locating Generator must be located in the way that terminal box, bearings and accessories could be easily approachable. 4.2.3 Installation Generator must be placed on a solid foundation without any vibrations. Machine feet must stand on flat metal base. If need, contact surface must be carefully laid under to prevent deformation of stator body.

Page 347: Generator Manual

s

Product documentation v3.5.a page 15/31 2-032 (21/2/05)

When installed, it is recommended that the increase of the axial height of the loaded generator must be taken into account. The increase of the axial height is affected by the heat machine use (its classification), the method of ventilation, the generator size, etc. The most suitable way is to operate the drive until the steady operational temperature regime is achieved, then to switch off the machine and to make the axial height correction. The informative calculation of the above-mentioned increase can be done from the following formula: Height increase [µm] = 0.312 x vertical foot distance from the shaft axis. Keep a record in the operational log. 4.2.4 Cooling Space, in which generator is situated, must be sufficiently large and aired. Generator cannot suck warm air from other machine. For continuous operation, it is necessary to provide a steady cooling air ventilation with a volume rate of 0.55 m3s-1 for each 100 kW. ATTENTION Temperature on surface parts of electric machines (stator housing, shields) can reach over 100oC, therefore possibility of touching these surfaces must be prevented. At the same time it is forbidden to put or attach any parts that are temperature sensitive such as normal leads or parts of electronic equipment. 4.2.5 Coupling Flexible connections must be used to connect generator and driving machine mechanically. The coupling must transmit only torsion moment from driving machine that must get rid of impact peaks that are produced especially by combustion engines. Further, it must attenuate all axial and radial vibrations of driving machine. Coupling must be dynamically balanced, it itself must not be a source of any undesirable forces and vibrations. Shaft extensibility Due to motor heat dilatation the free end may extend to the clutch by 0.0012 fold motor stator length Shaft extension (mm) = 0.0012 x stator length (mm) That extension should be considered in motor clutch system design. For additional information see Annex, or contact us.

Page 348: Generator Manual

s

Product documentation v3.5.a page 16/31 2-032 (21/2/05)

Prior to assembly of connection on the generator shaft, preservative coat must be removed and the shaft should be slightly varnished with oil. Concerning actual assembly of a installation on the shaft, it is recommended to use assembly jig that will fit in a thread in generator shaft. If need, installation can be heated in oil bath with a temperature of up to 100oC. Installation must not be pulled on shaft by force. When pulling down the connection from the shaft, it is necessary to use pulling jig. Coupling of a set must be adjusted by means of two indicators or another appropriate device according to picture 4.2.5. Tolerance that is determined by a producer of connection should be reduced as much as possible because every slightest defect will cause disproportionate increase of burden on bearings and coupling. Check the coupling during the steady operational temperature regime, and record the parameters to the operational log. Picture 4.2.5: Points of measurement 4.2.6 Securing of mechanical position The right position of installed and fixed generator to the foundation must be secured in such a way that set axial alignment will not be changed in the course of operation. Feet must be plugged in into the foundation.

Page 349: Generator Manual

s

Product documentation v3.5.a page 17/31 2-032 (21/2/05)

4.3 Connection 4.3.1 Insulation resistance of winding Insulation resistance of stator winding must be measured prior to launching a new generator or in generator that was out of operation for longer period of time. In winding without defects the resistance must not drop bellow the values given in table 4.3.1. ! WARNING The terminals have partly dangerous voltage and it is dangerous to touch them during or just after measurement. If there is a possibility of connecting network line being under voltage, make sure that network line cannot be connected during measurement. Table 4.3.1. Nominal voltage

Insulation resistance at winding

temperature 25ºC

Insulation resistance at winding

temperature 75ºC

Measuring direct voltage

V MOhm MOhm V > 1000 1500

30 50

1,0 1,7

500 1)

500

1)the lowest measuring voltage 100V It takes about 1 min. to reach final value of insulation resistance. If a measured value of resistance is bellow determined value, generator must be dried out. Increased temperature of winding by 10oC results in decrease of value of insulation resistance by a half. If the temperature of winding drops bellow 5oC, measured value of insulation resistance must not be considered as to be ready for connection because this may result in false conclusions. Record the values measured to the operational log. 4.3.2 Desiccation The simplest method of desiccation is a dry area with 80oC clean warm air and with exhaust. Generator does not have to be disassembled. Concerning generators with high protection e.g. IP 54, the parts that secure protection must be disassembled. Time of desiccation depends on the degree of humidity. The other desiccation methods: - short-circuit operation at IN with foreign exciter - warming up by means of direct current Insulation resistance must be measured during desiccation. At the start it will drop down quickly and then it will raise again. Desiccation is finished when insulation resistance reaches corresponding value. If insulation resistance of generator is not improved after longer period of desiccation, then the low value is not caused by humidity in stator. There must be another defect. Record to the operational log that the drying has been done.

Page 350: Generator Manual

s

Product documentation v3.5.a page 18/31 2-032 (21/2/05)

Only qualified professionals can carry out cable lead to generator and its connection to switching and protective apparatus. And they have to adhere to valid regulations and standards. Cables must be thoroughly connected, and can stress connection terminals neither in tension nor in bending. Connection cables are connected in compliance with connection diagrams that can be found on inner side of terminal box cover. Terminal bolt must be properly tightened so as not to warm up and loose due to resistance during operation. Terminal box must be closed after the connection is finished. 4.3.3 Safeguarding Generator must be well protected by means of regressive protection to prevent dangerous operational situations and overcurrent defects. Generators must be safeguarded in compliance with nominal current that is determined in output name plate. 4.4 Launching and operation 4.4.1 Installation Prior to launching a driving machine, the following must be checked: - Generator load must be disconnected - Insulation resistance must be kept at least to minimal value - Safety regulations concerning operation of aggregate must be adhered - Protective wire must be connected When the check is over the whole aggregate can be launched according to operational instructions designed for the whole set. In case that the machine is not put out of operation for more than 3 months, only a short visual inspection is sufficient before the connection starts. 4.4.2 Change of rotating direction Change of rotating direction is possible only in generators equipped with a fan that can rotate in both directions. Change of direction is performed by switching over the terminals k and l of current transformer (picture 7.1.a). Change of rotating direction is accompanied with the change of phase sequence on the main terminals. Rotating direction cannot be changed in generators that have got only one-way fan. The fan must be exchanged.

Page 351: Generator Manual

s

Product documentation v3.5.a page 19/31 2-032 (21/2/05)

4.4.3 Operation ! WARNING If any changes occur that are different from normal operation (higher input, temperature or vibrations, unusual noise or smells, reaction of control devices etc.), it means that function is damaged. Maintenance staff must be called immediately to prevent breakdowns that can directly or indirectly jeopardize people or that can cause damage to property.

IN CASE OF ANY DOUBTS, IMMEDIATELY DISCONNECT APPROPRIATE DRIVING MECHANISM

Generator is able to be excited itself. But the following must be taken into consideration: - Required terminal voltage in the extent of UN ± 5% or according to technical specification can be set by external potentiometer after nominal revolutions are reached. - Generator can be fully loaded after nominal speeds are reached The following operational data must be checked again: - Current, generator cannot be overloaded - Symmetry of load of individual phases - Frequency - Increase of temperature in bearings, cooling of machine and mechanical operation To prevent resonance, take heed of the following: own electromechanical frequencies of generator must not be in accordance with mechanical exciting frequencies of driving machine. 4.4.4 Check of operation The function of generator must be continuously observed during operation so as to avoid a breakdown. Its course must be recorded in generator operational logbook, especially the changes that are unusual in the course of normal operation. Any found imperfections must be repaired immediately. Above all, generator must be clean, must be secured in accordance with the data on output name plate, running must be centred without vibrations, perfect condition of bearings and good tightening of connection terminals. During generator operation ventilation openings must not be covered in any way. If a generator was out of operation for longer period, insulation resistance of winding, condition of lubrication in bearings, tightening of terminal bolts and mechanical connection with driving machine must be inspected prior to putting the machine into operation.

Page 352: Generator Manual

s

Product documentation v3.5.a page 20/31 2-032 (21/2/05)

Intervals of preventive inspections Preventive inspection I. is carried out regularly in the course of common operation of the machine after 500 operational hours from the beginning. The inspection consists of:

a) Inspection of cleanliness of cooling surfaces of machine. b) Measurement of stator winding insulation resistance. c) Inspection of bearings operation if needed. d) Inspection of function of additional equipment if needed. Any found imperfections must be repaired prior to putting the machine into operation.

Preventive inspection II. is carried out regularly after 5000 operational hours from the beginning. The inspection consists of:

a) Inspection of cleanliness of cooling surfaces of machine. b) Measurement of stator winding insulation resistance. c) Measurement of rotor winding circuit insulation resistance. (measuring

voltage is 500 V) d) Measurement of voltage, current, temperature, bearings and oscillations. e) Inspection of bearings operation. f) Inspection of connection to the net and tightening of terminal bolts. g) Inspection of tightness of terminal box cover. h) Inspection of function of additional equipment. Any found imperfections must be repaired prior to putting the machine into operation.

Preventive inspection III. is carried out regularly after 15000 operational hours from the beginning. The inspection consists of:

a) Thorough cleaning. b) Thorough inspection. c) Reparation of any imperfections. d) Bearings relubrication. e) Assembly according to the instructions. f) Measurements. g) Tests.

Any found imperfections must be repaired prior to putting the machine into operation.

All inspections must be recorded in the generator operational logbook.

4.4.5 Putting out of operation

Page 353: Generator Manual

s

Product documentation v3.5.a page 21/31 2-032 (21/2/05)

Loading must be disconnected before generator is put out of operation. Next steps should follow operational instructions prescribed for the whole set.

4.4.6 Operational log The operational log serves for recording all events that relate to operation, maintenance and revisions of the generator. Keep the records starting from the storage period before putting the generator into operation. Record the current number of the operational hours to the "Operational hours" box starting from the first commissioning. Record also all events that are related to winding insulating resistance, drying, and record parameter values (e.g. voltage, current, bearing temperature, vibration, etc.) during both the commissioning and normal operation. The operational log is also used to record the results of all inspections and revisions. All machine modifications, part replacement, faults of generator, accessories, switching and breaking elements including their replacement are recorded to the operational log. Moreover, emergency events are also recorded (e.g. overload, short circuit, etc.) even if no generator failure occurred. The record in the operational log may refer to another document in which the activity is evidently recorded.

Page 354: Generator Manual

s

Product documentation v3.5.a page 22/31 2-032 (21/2/05)

4.5. Diagnostics of defects 4.5.1. Mechanical cause

Breakdown

Scr

atch

y no

ise

Bea

rings

are

ov

erhe

ated

E

xces

sive

te

mpe

ratu

re o

f ge

nera

tor

Rad

ial v

ibra

tion

Axi

al v

ibra

tion

Exc

essi

ve n

oise

Possible cause Remedy precaution

• Contact of rotor or shaft with solid

parts of machine appears Find and eliminate cause

• Limited access of air, excessive

amount of dust in winding, dust in cooler ducts

Perform check of access of air, pollution of winding, check cooler

• Polluted or blocked air filter (if it is

equipped) Filter exchange, if need to clean

• Cooler function gets worse (goes for

design with watercooler)

Clean cooler with regards to operational instructions, check amount of cooling

medium, vent cooler • Unbalance on rotor Contact producer and require balancing

• Unbalance in coupling Rebalancing

• Transfer of vibration from linked

machine Check of linked machine

• • Badly fixed generator in foundation or

changes in foundation Level machine, check foundation, and

tightening of generator

• • Resonance with foundation Strengthen foundation

• Lack of lubricant in bearing Check amount of lubricant in bearing

• Bearing is overloaded Check tightening, levelling and clamping of

machine

• Damaged or badly worn out bearing Perform exchange

Page 355: Generator Manual

s

Product documentation v3.5.a page 23/31 2-032 (21/2/05)

4.5.2 Electric cause

Breakdown

Gen

erat

or v

olta

ge <

UN

UN c

anno

t be

set b

y m

eans

of

pote

ncio

met

er V

OLT

Gen

erat

or v

olta

ge a

pp.0

,1

UN (

rem

anen

t vol

tage

)

Gen

erat

or v

olta

ge >> >>1

,1 U

N

cann

ot b

e se

t by

mea

ns o

f co

ntro

l dev

ice

Out

side

con

trol

dev

ice

with

no

func

tion

Cur

rent

and

vol

tage

drif

ting

Possible cause Remedy precaution

• Too high number of speeds Check speeds of drive

• Too low number of speeds Check speeds of drive

• Oscillation of number of speeds Check speeds of drive

• • Defect on rotating rectifier Check diodes, exchange diode

module • Defective varistor or diodes Exchange varistor or diodes • Break in circuit Check wires

• Break in regulator feeding

Check wires from auxiliary winding to regulator

(terminals X3-X4,voltage app 180-200 V)

• Defect on fuse F1 Exchange fuse

• Break in exciting circuit Check wires from regulator to

exciter

• • • Defective voltage regulator Exchange regulator

• Stability potentiometer reset New adjustment of potentiometer, stability according to operational

instructions of regulator

• Frequency potentiometer reset New adjustment of potentiometer, frequency according to operational

instructions of regulator

• Breakdown in circuit of planned

values, short-circuit in leads Eliminate short-circuit

• • Breakdown in circuit of planned

values, interruption in leads Eliminate interruption

• During operation of potentiometer

of planned values bridge 6-7 is missing

Input bridge 6-7 or attach external potentiometer with planned value

Page 356: Generator Manual

s

Product documentation v3.5.a page 24/31 2-032 (21/2/05)

Electric cause – follow-up

Breakdown

Gen

erat

or v

olta

ge <

UN

Une

ven

load

dis

trib

utio

n du

ring

para

llel o

pera

tion

Diff

eren

ce o

f vol

tage

am

ong

indi

vidu

al p

hase

s

Ove

rhea

ting

Par

t of w

indi

ng is

ove

rhea

ted

Flu

ctua

tion

of o

utpu

t

Possible cause Remedy precaution

• Overload Reduce load

• Break of outer wires Check outer wires

• Short-circuit of stator winding Measure winding and insulation

resistance, consult producer and repair • Overload Reduce load • Uneven load Adjust load

• Short-circuit of stator winding Measure winding and insulation

resistance, consult producer and repair • Fluctuation of turning moment Check driving machine

• Potentiometer of statics is reset In generator equipped with statics module-set potentiometer of statics

according to operational instructions

• Break or short-circuit of lead

from statics current transformer T1 to statics A2

Eliminate short-circuit, in case of a break check current transformer

Page 357: Generator Manual

s

Product documentation v3.5.a page 25/31 2-032 (21/2/05)

5 Maintenance 5.1 Safety recommendation ! WARNING Pay heed to strict adhering to “General safety information” in paragraph 1.2 of these instructions. Unconditionally pay heed to necessary professional knowledge that must be acquired while operating in heavy-current machinery. Before any work on machines is started, make sure that machine or unit is disconnected in accordance to regulations. This applies especially for opening of protective covers. Pay heed not only to main current circuits but also to possible supplementary auxiliary current circuits. This especially applies to heater in the course of stoppage of machine. There are “5 safety regulations’’ (e.g. according to EN 50110-1): - disconnection - securing that prevents new connection - make sure that machine is disconnected - earthing and short-circuit connection (for voltage above 1000 V), - block or cover (close) neighbouring active parts. NOTICE: Cross-section drawings and or detailed drawings that are a part of instructions, usually contain useful information on technical construction of normal machines and constructional groups. This information can be appreciated by experts and should be taken into consideration in a certain way. ATTENTION Special designs and constructional variants can differ from normal projections as far as technical details are concerned. We are here to solve any potential uncertainty, please, contact us and provide us with type and production number of a machine. Other possibility is to contact directly SIEMENS service centre and have maintenance works performed by the centre. WARNING. Any works that are performed on generator must be carried out on disconnected machine, apart from relubrication of bearings. In that particular case it is necessary to adhere to safety instructions. If the works are performed on the parts of machine or accessories under current , make sure that generator is always separated from the network. At the same time check if these parts are not under voltage. Protective wire must always be connected. 5.2 Inspection of insulation condition Condition of generator insulation must be inspected during every maintenance and prior to putting into operation in case of longer period of a shut down.

Page 358: Generator Manual

s

Product documentation v3.5.a page 26/31 2-032 (21/2/05)

5.3 Cleaning Generator and its accessories must be kept in clean condition. Cleaning must be carried out in dependence on operational requirements. The best way of cleaning is to use clean and dry pressed air (most 200 kpa). Collecting dust decreases cooling capacity and increases raise of temperature of machine. If generator is fitted with a filter in the inlet spot of cooling air, then it must be cleaned regularly. Cleaning intervals depend on conditions of ambient surrounding in which generator operates. Degree of contamination can be assessed in dependence on increase of temperature of stator winding which is normally equipped with resistance thermometer (concerning designs with a filter). Filter is disassembled and blown with pressed air. Keep a record of cleaning in the operational log. ! WARNING Pay heed to suitable exhaust and personal protective aids (protective goggles, filter, respirator etc.) in the course of pressure cleaning! When chemical cleaners are used, please, adhere to warning and safety recommendations that are stated in appropriate list of safety data (see paragraph 1.2). Chemical cleaners must be applicable for machine parts, especially parts made of plastics. 5.4 Bearing maintenance 5.4.1 Antifriction bearings Generator antifriction bearings are filled with lubricating grease and ready for operation. Generators are provided with bearings including relubrication equipment and grease amount regulator. Bearing type together with lubricant used are given complementary rating plate at each lubrication point. Relubrication intervals, if any, are given in Annex. Grease amount must be regularly checked in antifriction bearings and exchange, if necessary. New grease is to be filled during the preventive inspection III., no later than after 3 years. During maintenance the bearing part must be cleaned and new grease filled. Keep a record of additional lubrication in the operational log.

5.4.2 Sliding bearings Maintenance of sliding bearings is specified in manufacturer’s Manual which is enclosed. Take care of the following: - a regular oil exchange at specified intervals, - checks of screwed joints, - checks of temperature sensors.

Page 359: Generator Manual

s

Product documentation v3.5.a page 27/31 2-032 (21/2/05)

6 Disassembly and regressive assembly 6.1 Disassembly Disassembly can be carried out only in clean dustless and dry environment. Prior to actual disassembly, plate of cable inputs must be removed. Open terminal box and release exciting cables and wire of bearing thermometer. Release the bolts (01), and then it is possible to remove the cover of rotating rectifier. Exchange of three-phase bridge or varistor can be carried out, then.. Release the bolts 02) and (03), and then it is possible to pull down bearing covers by means of pulling device and thread openings in bearing shields. Afterwards, a check or bearing exchange can be carried out. Once the stator is removed, winding of stator and rotor of main and exciting machine can be inspected.

Picture 6.2 a: Generator longitudinal cross-section 6.2 Regressive assembly (assembly) Regressive assembly of generator is carried out as a reversed sequence of steps. Appropriate tools must be used in the course of regressive assembly to prevent any violent force. If a generator differs from basic design e.g. different arranging of feet with two bearings, disassembly and regressive assembly can differ. Variants equipped with air filter, air watercooler, with different design of protection degree than IP 23, with special shape or mechanical design are provided with complementary supplements enclosed to operational instructions. Keep a record of dismantling in the operational log.

Page 360: Generator Manual

s

Product documentation v3.5.a page 28/31 2-032 (21/2/05)

7 Regulation 7.1 General description, regulation principle Regulation is performed to keep constant terminal voltage of main machine independently of load and power factor. Apart from this voltage regulator measures voltage of generator and compares it with adjusted required value. Exciting winding of exciting machine gets necessary direct current by means of regulation body of voltage regulator that is fed by means of auxiliary winding that is inserted into the main machine stator. Three-phase winding of exciting machine feeds magnet wheel of main machine through rotating rectifiers. Overvoltage protection (varistor) limits arising voltage peaks to tolerable values. Generators are standardly equipped with voltage regulator AEC 63-7, pic. 7.1.a., or with power factor regulator (option) cos ϕ SCP 250 G , pic. 7.1.b. (producer Basler Electric Company). Voltage regulators in compact design are resistant against humidity and vibrations. Selfexcitation of generator is secured by sufficiently high remanence in stator of exciting machine.

Picture 7.1 a: Diagram of regulator without regulation cos ϕ

L2 L1 L3 LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)

L1 L2 L3 RIGHT ROTATION

1 PROPOJKA 50/60 Hz

A1 VOLTAGE REGULATOR F1 FUSE G1 MAIN MACHINE G2 EXCITER MACHINE H AUXILIARY WINDING T1 CURRENT TRANSFORMER FOR DROP COMPENSATION U VARISTOR V2 ROTATING RECTIFIERS 1 JUMPER FOR OPERATION 50 Hz OR 60 Hz

CONNECTION OF AN EXTERNAL POTENTIOMETER

SUPPLY CONNECTION

Page 361: Generator Manual

s

Product documentation v3.5.a page 29/31 2-032 (21/2/05)

Picture 7.1 b: Diagram of regulator with regulation cos ϕ 7.2 Range of voltage regulation Terminal voltage can be adjusted in the range of ±5,0% of nominal voltage by means of potentiometer that is situated on regulator. There is an option of supplying external potentiometer designed for remote control. Optionally it can be supplied with motor control. 7.3 Regulation accuracy Static accuracy of regulation is ±1% in the range from running without load up to full load as well as during constant output and change of revolutions of up to ±5,0%. Other information about regulation accuracy on demand. 7.4 Dynamic states of voltage Temporary drop of voltage that occurs during connection of full load with power factor cos ϕ makes normally up to 20%. This value depends on generator size. Time of reregulation makes about 1,5 - 2 s and depends on the size of regulator.

A1 VOLTAGE REGULATOR

A2 COS ϕ REGULATOR F1 FUSE G1 MAIN MACHINE G2 EXCITER MACHINE H AUXILIARY WINDING R1 VOLTAGE SETTING POTENTIOMETER S1 SWITCH

-FOR COS ϕ REGULATION : OPEN

-UNIT COS ϕ REGULATION : CLOSED T1 CURRENT TRANSFORMER FOR DROP COMPENSATION T2 CURRENT TRANSFORMER 1/5A U VARISTOR V2 ROTATING RECTIFIERS 1 JUMPER FOR OPERATION 50 Hz OR 60 Hz

L2 L1 L3 LEFT ROTATION (SWICH OVER TERMINALS k A l OF CURRENT TRANSFORMER)

L1 L2 L3 RIGHT ROTATION SUPPLY CONNECTION

Page 362: Generator Manual

s

Product documentation v3.5.a page 30/31 2-032 (21/2/05)

7.5 Parallel operation Synchronous generators 1FC2 are suitable for parallel operation with another generator and network. In the course of parallel operation, distribution of active load is determined by driving machines. To secure uniform distribution of active load, regulators of revolutions of parallely working driving machines must be adjusted at the same characteristics. They can even be equipped with electronic load regulator. Concerning parallel operation, generators are equipped with static regulator to secure good distribution of reactive load. Inclination (gradient) of reactive current characteristics can be changed by means of adjusting of resistance in static regulator. Statics is set by producer to a value of about 6% - possible range of adjustment is 10%. This adjustment enables voltage swing up to ±2,5% in parallel operation of network without exceeding maximum reactive generator current. If higher line voltage swing appears, it is necessary either to increase statics or and to regulate terminal voltage by means of power factor regulator.

Page 363: Generator Manual

s

Product documentation v3.5.a page 31/31 2-032 (21/2/05)

8 Neutral wire 8.1 Generally In the course of parallel operation of generators amongst themselves or with the line, differential currents can appear as the result of distribution harmonic oscillation of 3rd order. Differential currents are added to phase currents and can result in inadmissible raise of temperature of generators. Neutral current must not exceed 50% of nominal current. If currents are higher, it is necessary to adopt suitable remedies concerning limitation e.g. current limiting choke.

9 Generator disposal after lifetime expiration After expiration of the generator lifetime it is user’s responsibility to dispose it ecologically. It is recommended to use the service of an authorized company. It is necessary to disassemble the generator and separate individual materials. The machine disposal may produce environment-demanding waste, such as grease or insulation material remaining. For machine ecological disposal including unexpended parts of the machine (e.g. packing materials - plastic, wood, metal) obey the legal regulations in force in particular country.

Page 364: Generator Manual

s

Enclosure page 1/5

Enclosure Operational logbook

Operational logbook of generator

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 1

Date Count of

operation hours Records: Name Signature

Page 365: Generator Manual

s

Enclosure page 2/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 2

Date Count of

operation hours Records: Name Signature

Page 366: Generator Manual

s

Enclosure page 3/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 3

Date Count of

operation hours Records: Name Signature

Page 367: Generator Manual

s

Enclosure page 4/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 4

Date Count of

operation hours Records: Name Signature

Page 368: Generator Manual

s

Enclosure page 5/5

Type of generator

Voltage Power Production number

Entrepreneur:

Plant:

Workplace of generator Sheet 5

Date Count of

operation hours Records: Name Signature

Page 369: Generator Manual

D1973/7-74 0106 Seite/Page 1

RG-Erregermaschine Brushless exciter Betriebsanleitung / Instructions

Beschreibung Description Aufbau Construction Die RG-Erregermaschine, ausgeführt als Außenpol-generator, ist eine bürstenlose Erregereinrichtung. Der Läufer der Erregermaschine ist auf der Welle der Hauptmaschine angeordnet, während der Ständer an der Hauptmaschine befestigt wird.

The exciter, designed as stationary-field generator, is of the brushless type. The exciter rotor is on the main machine shaft, and the stator is secured to the main machine itself.

Eine statische Hilfserregereinrichtung, die an anderer Stelle beschrieben ist, erregt über einen Spannungs-regler das Feld des Außenpolgenerators. Der in der Läuferwicklung fließende Drehstrom wird in dem mit-rotierenden Gleichrichterrad von Siliziumdioden gleichgerichtet und über die Erregerleitung der Erre-gerwicklung der Hauptmaschine zugeführt.

A static auxiliary excitation unit described separately, is used for exciting the field of the external-pole via a voltage regulator. The three-phase current flowing in the rotor winding is rectified by silicon diodes in the rotating rectifier and fed into the field winding of the main machine through the excitation line of the field winding of the main machine.

Da sich die Erregermaschine innerhalb der Hauptma-schine befindet, benötigt sie keine Gehäuseabde-ckung.

As the exciter is situated inside the main machine, it needs no casing.

Läufer Rotor Der Läufer ist auf einen Wellenstumpf der Haupt-maschine aufgeschrumpft und in Umfangsrichtung durch eine Passfedern gesichert.

The rotor is shrunk onto the shaft of the main ma-chine and secured in the circumferential direction by a feather key.

Die Läufernabe ist als Blechpaket ausgeführt. The rotor hub is designed as laminated core. Die in die Nuten des Blechpaketes eingelegte Läufer-wicklung ist eine dreiphasige Drehstromwicklung in Sternschaltung. Sie ist als Einschicht-Wicklung aus i-soliertem Cu-Draht mit mehreren parallelen Leitern ausgeführt. Die Schaltenden der Einzelspulen liegen auf der A-Seite und sind mit den auf der gleichen Seite befindlichen Sammelringen W, U und V verbunden. Zur Sicherung gegen Fliehkräfte ist auf jedem Wickel-kopf eine Bandage angeordnet

The three-phase rotorwinding, inserted in the slots of the laminated core, is connected in star. It is a one-layer winding of insulated copper wire with multiple parallel conductors. The free ends of the individual windings are arranged at the D end and connected to the W, U and V and neutral bus rings arranged on the same side. The winding overhangs are provided with bandings to afford protection against centrifugal for-ces.

Die Läuferwicklung ist mit Epoxydharz imprägniert. The rotor winding is impregnated with epoxy resin.

Page 370: Generator Manual

s

D1973/7 Seite/Page2

Ständer Stator Der Ständer der RG-Erregermaschine besteht aus ei-nem gewalzten Jochring mit über Rippen ange-schweißtem Flansch. Im Jochring befinden sich die durch Schrauben befestigten Pole mit der Erreger-wicklung. Auf jeden Pol ist eine Spule aus isoliertem Cu-Draht gewickelt, die mit Harz verfestigt ist. Die Polspulen sind in Reihe geschaltet, wobei die Schal-tenden der Nordpole gekreuzt und die der Südpole ungekreuzt ausgeführt sind. Die Enden der Erreger-wicklung sind an eine Reihenklemme angeschlossen. Der Erregermaschinenständer wird im Gehäuse der Hauptmaschine mit Sechskantschrauben befestigt und zentriert.

The Stator frame of the brushless exciter consists of a rolled yoke ring with welded-on mounting feet. The pole pieces carrying the exciter winding are screwed to the in-side of the yoke ring. The coils wound on the pole pieces are of insulated copperwire and impreg-nated with resin. They are connected in series in such a way that the end leads of the north poles are crossed over, while those of the south poles are un-crossed. The exciter winding end leads are taken to a terminal block. The exciter frame is secured with hex-agonal-head screws directiy to the main machine and locked with tapered pins.

Belüftung Ventilation Die RG-Erregermaschine ist im Kaltluftstrom der Hauptmaschine angeordnet. Öffnungen im Läufer-blechpaket lassen die Kühlluft durch die Läufernabe strömen.

The brushless exciter is arranged in the cool air flow of the main machine. Openings in the laminated rotor core allow the cooling air to flow through the rotor hub

Gleichrichterrad Rotating rectifier Der Gleichrichterteil befindet sich auf dem Gleichrich-terrad und enthält je nach Höhe des Maschinenstro-mes drei oder sechs Diodeneinbausätze.

The rectifier section is located on the rotating rectifier and contains three or six diode assemblies, depend-ing on machine current magnitude.

Diodeneinbausätze Diode assemblies Jeder Dioden-Einbausatz besteht aus einem mit Kühl-rippen versehenen Leichtmetallkörper und enthält ei-ne Siliziumdiode, die durch eine Spannkappe gehal-ten wird und deren Einbaulage die Polarität bestimmt.

Each diode assembly consists of a light metal heat sink with cooling ribs and includes two silicon diodes that are fitted by means of clamping caps and ar-ranged according to polarity.

Da die Kühlkörper unter Spannung stehen, sind sie isoliert an der Läufernabe befestigt.

As the heat sinks are live, they are fitted to the rotor hub using insulated elements.

Die Verbindung zwischen den Kontaktbolzen, den Si-liziumdioden und den Gleichstromsammelringen er-folgt durch längsliegende Anschlusswinkel.

The connection between the contact pins of the silicon diodes and the DC bus rings is established via longi-tudinally arranged connecting angles.

Die Gleichstromsammelringe, an denen die Teile des Varistor-Schutzwiderstandes befestigt sind, sind iso-liert auf der A-Seite des Gleichrichterrades ange-schraubt.

The DC bus rings carry the components of the protec-tive varistor and are fastened to the rotating rectifier at the D-end using insulating screws.

Varistoren Varistors Als Schutz der Gleichrichter gegen energiereiche Ü-berspannungen in Störungsfällen ist ein spannungs-abhängiger Widerstand eingebaut. Dieser Schutzwi-derstand besteht aus sechs oder zwölf Varistorschei-ben, die parallel zwischen dem Plus- und Minussam-melring angeordnet sind. Jede Varistorscheibe wird von einer zentralen, isolierten Schraube gehalten. Der elektrische Kontakt zu den Sammelringen wird auf je-der Seite durch weichgeglühte Kupferscheiben herge-stellt.

The rectifier bridge is protected against such high-energy overvoltages as may occur in the event of faults by a voltage-dependent resistor consisting of six or twelve varistor disks arranged in parallel between the positive and negative bus ring. Each varistor disk is secured by a central insulating screw. The electrical connection to the bus rings is established on either side by two soft-an-nealed copper disks.

Page 371: Generator Manual

s

D1973/7 Seite/Page

3

Wartung Maintenance Die RG-Erregermaschine ist im wesentlichen war-tungsfrei. Es empfiehlt sich, die Maschine in gewis-sen Zeitabständen auf Staubablagerungen zu kon-trollieren und bei Bedarf, vor allem im Bereich der Kühlkörper, zu reinigen. Es genügt dafür Ausblasen der Maschine mit Pressluft (max. 4 bar).

The brushless exciter requires only a minimum of maintenance. It is advisable to inspect the machine for dust deposits at suitable internals and to clean it if necessary, above all the heat sinks. It will be suffi-cient for this purpose to blow out the machine with compressed air at a pressure of not more than 4 bar.

Die Demontage des Erregermaschinen-Ständers er-folgt gemeinsam mit dem BS-Gehäuse der Hauptma-schine. Dazu sind zunächst die Kabelverbindungen zu trennen. Das Gehäuse ist axial zu demontieren und dann auf die Gehäusewand zu legen. Der Aus-bau des Erregerständers geschieht nach lösen der Sechskantschrauben, in senkrechter Richtung.

Dismantling of the exciter machine Stator is achieved by removing the N end. housing of the main machine. Firstly, disconnect the cable joints, lift the housing ax-ial upwards and rest it on the housing panel. To re-move the exciter Stator vertically, remove the screws.

Bei einem eventuell erforderlichen Abziehen von Läu-fer und Gleichrichterrad von der Hauptmaschinenwel-le, sind vor dem Erwärmen der Naben mit einem Schweißbrenner, alle Diodeneinbausätze sowie die Gleichstromsammelringe auszubauen.

If the rotor is to be removed from the shaft of the main machine, detach all the diode assemblies and DC bus rings before the hub is heated by means of a welding torch.

Zum Aufschrumpfen können der komplett montierte Erregermaschinenläufer und das Gleichrichterrad in einem geeigneten Ofen erwärmt werden, wobei mit Rücksicht auf die Halbleiterbauelemente eine Ofen-temperatur von 100 C° nicht überschritten werden darf.

Before shrink titling, heat up the completely assem-bled rotor in a suitable oven and take care that a temperature of 100 °C is not exceeded so that the semiconductor elements are not damaged.

Zum Ausbau der Dioden sind die betroffenen Kon-taktverbindungen sowie die Spannkappen der Ein-bausätze zu lösen. Die einzelnen Dioden können dann entnommen werden.

To remove a diode assembly, undo the associated contact screws as well as the clamping caps of the assemblies. The individual diodes can then be with-drawn from the rotor.

HINWEIS NOTE Beim Einbau neuer Dioden auf alle damit in Verbin-dung stehenden Kontaktflächen, in dünner Schicht Kontaktöl (zB. Electrolube 2X, Produkt der Fa. Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 Ulm-Lehr), gleichmäßig auftragen. Anzugsmoment der Schrauben M6 an den Spannkappen 8 Nm. Schrau-ben über Kreuz anziehen.

When fitting new diodes, apply a thin coat of heat-con-ducting oil (e.g. Electroiube 2X, a product of Liqui Moly GmbH, Jerg-Wieland-Str. 4, D-89081 Ulm-Lehr), on all contact faces involved. Tighten the M6 screws at the clamping caps with a torque of 8 Nrn. These screws must be tightened diagonally.

Für die Wartungsarbeiten an der Erregermaschine ist der Bedienungsdeckel des BS-Gehäuses abzuneh-men. Die genannten Teile und deren Befestigungs-elemente sind dann für die Montage zugänglich.

To permit replacement of the varistor disks, the in-spection cover at the N end must be removed so that the parts mentioned above, including their fastening elements, become accessible.

Fehlersuche bei Diodenausfall Fault location on diode failure Fehlerhafte Dioden können mittels eines Gleichspan-nungs-Durchgangsprüfers (z.B. AVΩ-Multizet) ausfin-dig gemacht werden. Es sei jedoch darauf hingewie-sen, dass eine derartige Messung wegen der niedri-gen Mess-Spannung je nach Wahl des Messberei-ches am Instrument, besonders in Durchlassrichtung, sehr unterschiedliche Werte liefert und nur für einen größenordnungsmäßigen Vergleich der Widerstände in Sperr- und Durchlassrichtung geeignet ist.

Defective diodes can be located by means of a DC continuity tester (e.g. AVΩ -MULTIZET). It should be noted, however, that owing to the low measuring voltage de-pending on the measuring range selected, measurements carried out with Instruments of this type may pro-vide greatly differing results, particularly in the forward direction. The results can therefore only be used for comparing the Orders of magnitude of resistance in the blocking and forward directions.

Page 372: Generator Manual

s

D1973/7 Seite/Page4

Zur Messung des Widerstandes in Durchlassrichtung ist ein möglichst großer Messbereich zu wählen. Bei einwandfreien Dioden können unter Verwendung von 1,5 V Mess-Spannung die Widerstandswerte in Durchlassrichtung je nach Messbereich ca. 100 Ω bis 10 kΩ, in Sperr-Richtung einige hundert kΩ betra-gen. Um die Diodenbrücke auf fehlerhafte Dioden überprüfen zu können, sind die Anschlussleitungen aller Dioden von den Sammelringen zu lösen. Hin-sichtlich möglicher Störungen an der Diodenbrücke sind zwei Fälle zu unterscheiden:

For measuring the resistance in the forward direction, the measuring range should be as small as possible. With healthy diodes and with a measuring voltage of 1.5 V, the resistance in the forward direction may be about 100 Ω to 10 kΩ, depending on the measuring range, and a few hundred Kohms in the reverse di-rection. Diode bridges can be tested for faulty diodes after the leads of all the diodes have been discon-nected from the bus rings. Diode bridges are likely to give rise to two kinds of faults as follows:

Verlust der Sperrfähigkeit (Durchlegieren) Loss of blocking capability (diode breakdown) Beim Durchlegieren einer Diode fließt nur noch ein geringer Strom durch die Feldwicklung der Hauptma-schine, so dass die belastete Maschine übersynchron außer Tritt fallen wird. Die Maschine muss daher zur Behebung der Störung sofort entregt und stillgesetzt werden. Durchlegierte Dioden zeigen in beiden Rich-tungen einen extrem geringen Widerstand.

If a diode breaks down, only a low current flows through the field winding of the main machine, caus-ing the loaded machine to fall out of Step oversyn-chronously. To clear the fault, the machine must be de-excited and stopped immediately. Diodes that have broken down display an extremely low resis-tance in both directions.

Verlust der Leitfähigkeit in Durchlaßrichtung (Un-terbrechung)

Loss of blocking capability (diode failure)

Die Unterbrechung einer Diode tritt wesentlich selte-ner auf als das Durchlegieren, sie macht sich in der Weise bemerkbar, dass die von der Brücke abgege-bene Spannung um ca. 15 % zurückgeht. Wegen der Erregungsreserve kann die Hilfserregereinrichtung diesen Verlust an Erregerspannung voll ausgleichen, wobei die Maschine bei Nennleistung und Nennleis-tungsfaktor einen höheren Hilfserregerstrom benötigt. Dioden, bei denen eine Unterbrechung in Durchlass-richtung vorliegt, zeigen in beiden Richtungen extrem hohe Widerstandswerte.

Loss of diode conductivity occurs considerably less of-ten than diode breakdown and is indicated by a re-duction of the voltage delivered by the bridge of ap-prox. 15 %. Thanks to the excitation reserve, the aux-iliary excitation unit is able to fully compensate this loss of excitation voltage even though the machine requires a higher auxiliary excitation current at rated Output and nominal powerfactor. Diodes which have become blocked in the forward direction have ex-tremely high resistance values.

© Siemens AG Bestell-Nr./Order-No. D 1973/7-74 0106 All Rights Reserved Alle Rechte vorbehalten Printed in Germany

Page 373: Generator Manual

s

D 567-0502 de-en 567

Seite/Page 1

Stillstandsheizung Anti-condensation heating Baugruppen-Nr. 6590 Assembly Group No. 6590 Beschreibung Description Verwendung Application Verwendung In die elektrische Maschine ist eine Stillstands-heizung eingebaut.

The electrical machine is fitted with an anti-condensation heat-ing system.

Die Stillstandsheizung ist so ausgelegt, daß die aktiven Maschi-nenteile immer wärmer als ihre Umgebung sind und eine Betau-ung vermieden wird. Die erforderliche Heizleistung wird bei der Auslegung der elektrischen Maschine bestimmt.

This system is so designed that the temperature of the active parts of the machine is always higher than the ambient tempera-ture and that condensation is prevented. The heating power re-quired is determined when designing the electrical machine.

a) Heizkörper im oder am Gehäuse befestigt a) Heater 1 fitted inside the casing or to the casing

b) Heizkörper 1 im Außengehäuse oder am Grundrahmen befestigt b) Heater 1 fitted inside the outer casing or to the baseframe

1 1

1 1

1

1

c) Heizkörper im Fundament befestigt c) Heater 1 fitted inside the foundation

Fig. 1 Anordnung der Stillstandsheizung Fig. 2 Arrangement of anti-condensation heaters

Ausführung Design Die Stillstandsheizung besteht aus einem oder mehreren elektrisch zusammengeschalteten Rohrheizkörpern, die im Innern der Maschine an geeigneten Stellen so montiert sind, daß die aufsteigende Warmluft die aktiven Maschinen-teile berührt, die Wicklungsisolierung aber nicht durch die hohe Oberflächentemperatur der Heizkörper beschädigt wird.

The anti-condensation heating system consists of one or several heating tubes which are connected together and so arranged in the machine that the warm air rises to the active parts and that the winding insulation is not damaged by the high surface temperature of the heaters.

Abhängig von der Konstruktion der elektrischen Maschine sind mehrere Einbauvarianten möglich (Fig. 1).

Depending on the type of construction of the machine, the heaters can be arranged in various forms as shown in Fig.1.

Stillstandsheizungen für explosionsgeschützte Maschinen sind mit einem Temperaturregler und Temperaturbegrenzer ausgerüstet. Der Temperaturbegrenzer ist auf die der Zündgruppe entsprechende höchstzulässige Oberflächen-temperatur des Heizkörpers eingestellt und plombiert. Die-se Heizkörper entsprechen den VDE-Vorschriften 0170 und 0171 und sind bescheinigt.

Anti-condensation heaters for machines intended for use in explosive atmospheres are equipped with thermostats and cut-outs. The cut-out is set to the maximum surface tem-perature permitted for the particular ignition-temperature group and then sealed. These heaters comply with the VDE specifications 0170 and 0171. The heaters have been offi-cially approved.

Leistung und Anschlußspannung sind dem ,,Maßbild-Text" zu entnehmen.

For rating and supply voltage, please refer to the text in the ,,Dimension drawing”.

Page 374: Generator Manual

s

567 Seite/Page 2

Fig. 2 Ausführungsbeispiel von montierten Rohrheizkörpern Fig. 2 Tubular anti-condensation heaters (example)

Fig. 3 Heizkörper, eingebaut in einer explosionsgeschützten Ma-schine Fig. 3 Heater installed in a machine for use in explosive atmosphe-res

Montage Installation Anschluß Connection Die Anschlußleitungen sind in einem Sekundärklemmen-kasten oder an eine Klemmenleiste geführt. Der Anschluß der Netzleitungen ist nach dem gültigen Schaltplan vorzu-nehmen (s. a. ,,Maßbild").

The heater connecting leads are brought to a secondary terminal box or to a terminal block. The supply leads should be connected according to the applicable circuit diagram (also refer to the ,,Dimension drawing").

Werden die Heizkörper explosionsgeschützter Maschinen erst auf der Baustelle direkt angeschlossen, ist mittels Steckschlüssel der Anschlußkastendeckel zu öffnen und der Anschluß nach einliegendem Wirkschaltplan, unter Be-achtung der Betriebsanleitung des Heizkörperherstellers, vorzunehmen.

Should the heaters of machines for use in explosive atmos-pheres only be connected on site, this is to be done by opening the terminal box cover using a socket wrench and proceeding as indicated on the enclosed wiring diagram, following the operating instructions for the tubular heaters.

Achtung! Vorgesehene Standorterdung unbedingt an-schließen. Bei Drehstromanschluß ist darauf zu achten, daß auch die Steuerseite elektrisch angeschlossen wird.

Important: Connect to earthing system. With three-phase connection also make sure that the control circuit is cor-rectly connected.

Einschalten Switching on Die Stillstandsheizung darf während des Betriebes der e-lektrischen Maschine nicht eingeschaltet sein. Deshalb ist eine Verriegelung erforderlich, die verhindert, daß die Ma-schine bei eingeschalteter Heizung in Betrieb genommen werden kann.

The anti-condensation heater must be switched off when the machine is running. An interlocking circuit is therefore necessary which prevents the machine from being started while the heater is switched on.

Umgekehrt empfiehlt es sich, das Einschalten der Still-standsheizung vom Abschalten der Maschine abhängig zu machen.

On the other hand, it is recommended that switching on of the heater be made dependent on the shut-down of the machine.

Wartung Maintenance Austausch Replacement Bei einem Austausch defekter Stillstandsheizungen nur solche gleicher Ausführung verwenden.

When replacing defective heating tubes, only use tubes of the same type.

Achtung! Dies gilt insbesondere bei explosionsgeschützten Maschinen.

Important: This is of special importance with machines for use in explosive atmospheres.

Es wird empfohlen, Ersatzheizkörper vom Herstellerwerk der Maschinen zu beziehen. Bei Bestellung Maschinentyp und Fabriknummer angeben. Beide Angaben sind aus dem Leistungsschild ersichtlich.

lt is recommended that spare heating tubes be ordered from the machine manufacturer stating type and serial number which can be taken from the rating plate.

Beim Einbau darauf achten, daß explosionsgeschützte Heizkörper wieder in der gleichen Lage eingebaut und an-geschlossen werden, da sonst die Funktion der Regler und Begrenzer beeinträchtigt wird.

New heaters for use in explosive atmospheres must be in-stalled in the same position and connected in the same way as the old ones to ensure proper functioning of the thermo-stats and cut-outs.

Reinigung Cleaning Bei den entsprechenden Maschinenrevisionen ist eine Rei-nigung von Schmutz- und Staubablagerungen sowie eine Funktionsüberprüfung vorzunehmen.

Remove dirt and dust deposits from the heaters and test for proper functioning when machine inspections are carried out.

© Siemens AG Bestell-Nr./Order-No. D 567-0502 de-en All Rights Reserved Alle Rechte vorbehalten Printed in Germany

Page 375: Generator Manual

DW 8692-0106 74 Seite/Page 1

Luft-Wasser-Kühler Air-to-Water Cooler Betriebsanleitung / Instructions

Beschreibung Description Der Luft-Wasser-Kühler ist in der nachfolgenden Druckschrift der Herstellerfirma beschrieben. Die technischen Angaben sind im Maßbild-Text enthalten.

The air-to-water cooler is described in the following leaflet of the manufacturers. The technical data will be found in the legend of the dimension drawing.

Die Kühlerwerkstoffe sind optimal für die Wasserver-hältnisse gewählt, für die der Kühler bestellt wurde. Für andere Wasserverhältnisse kann er nicht ohne weiteres eingesetzt werden.

The materials of the cooler have been selected for the water conditions for which the cooler has been ordered. It cannot be used indiscriminately for other water conditions.

Montage Installation

Der Luft-Wasser-Kühler ist in den Gehäuseaufsatz eingeschoben und mit Spannlaschen befestigt. Unter dem Kühlerelement ist eine Auffangwanne für Kon-denswasser eingebaut. Durch je eine Bohrung an den Längsseiten der Maschine, die durch Sechskant-schrauben verschlossen sind, kann ein möglicher Kondenswasserstand kontrolliert werden.

The air-to-water cooler is inserted in the top-mounted casing and secured with clamping straps. Below the cooler is a collection tray for condensed water. The level of any eventual condensed water can be checked through a hole on each side of the machine which is closed by a hexagon screw plug.

Die Öffnung auf der dem Kühlereinschub gegenüber liegenden Seite ist gleich groß und durch einen Deckel verschlossen. Wird der Deckel abgenommen, kann die Wasserkammer demontiert werden.

The opening at the end opposite to the cooler insert is of equal size and closed by a cover. After removing this cover, the water box can be removed.

Korrosionsschutz Corrosion protection

Allgemeines General Rohre aus Kupfer und Kupferlegierungen müssen auf der Kühlwasserseite Schutzschichten aufbauen, damit eine ausreichende Korrosionsbeständigkeit erreicht wird.

Tubes made of copper and copper alloys must build up protective layers on the cooling-water side to achieve sufficient corrosion resistance.

Schutzschichtbildung und -erhaltung ist im wesent-lichen von der Inbetriebsetzung und den späteren Betriebsbedingungen abhängig. Nur eine dichte, fest-haftende Schutzschicht kann vor Korrosionsangriff schützen.

The formation and preservation of the protective layers depends essentially on the conditions prevailing during commissioning and subsequent operation. Protection against corrosion is only provided if the covering layers are dense and adhere well.

Page 376: Generator Manual

s

8692 Seite/Page

2

Inbetriebsetzung Commissioning Die Zeit der Inbetriebsetzung ist als Einfahrphase für die Schutzschichtbildung ausschlaggebend. Nach Mög-lichkeit soll für mindestens zwei Monate ein konti-nuierlicher Betrieb mit der Kühlwasser-Nennmenge erfolgen (siehe Maßbild-Text).

The commisioning period is decisive for the initial formation of the protective layer. If possible, there should be continuous operation with the nominal cooling water flow for at least two months (see dimension drawing legend).

Zur weitgehenden Verhinderung von Ablagerungen bzw. Störung der Schutzschichtbildung darf die im Maßbild-Text angegebene Kühlwassermenge nur um + 10% bzw. - 20% geändert werden.

In order to prevent deposits as far as possible and to avoid inhibiting the formation of protective layers, the cooling water flow rate given in the dimension drawing legend should not be varied by more than 10% or -20%.

Je aggressiver ein Kühlwasser ist (z. B. hoher Gehalt an Chloriden, Sulfaten, suspendierten Stoffen) um so notwendiger wird ein kontinuierlicher Betrieb für die homogene Schutzschichtbildung. Zur schnelleren Aus-bildung einer Schutzschicht ist ein möglichst hoher O2-Gehalt erforderlich. Da dies bei der Inbetriebsetzung einer Anlage nicht immer gewährleistet ist, empfiehlt es sich, den Kühler bereits vor Inbetriebnahme der Anlage mit Kühlwasser zu beaufschlagen und Schutzschichtbetrieb zu fahren.

The more corrosive the cooling water (e.g. high levels of chlorides, sulphates, suspended matter), the more necessary it is to have continuous operation in order to obtain a homogeneous protective layer. The highest possible level of O2 is necessary for rapid formation of the protective layer. Since this cannot always be ensured when a plant is being commissioned, it is recommended that cooling water be passed through the cooler before commissioning of the plant for the purpose of protective layer formation.

HINWEIS NOTE Sollten sich unvermeidbare Betriebsunterbrechungen ergeben, oder entsteht zeitlich ein Abstand zwischen dem Füllen mit Wasser und dem Normalbetrieb sind die beschriebenen Maßnahmen unter „Stillstand” zu beachten.

In the event of unavoidable interruptions of operation or should some time elapse before filling with water and the beginning of normal operation the measures described under ”Standstill periods” should be ob-served.

Es ist selbstverständlich, dass vor der Inbetriebsetzung eine sorgfältige Reinigung des Kühlwasserzulaufsys-tems zu erfolgen hat. Sollten Fremdkörper im Kühl-wasserzulaufsystem nicht mit Sicherheit vermeidbar sein, müssen die Rohre kontrolliert und bei Ansatz von Fremdkörpern gereinigt werden

It is obvious that the cooling water supply system must be thoroughly cleaned before commissioning. If the presence of foreign bodies in the water supply system cannot be excluded with certainty, the piping must be checked and then cleaned should foreign bodies be detected.

Dauerbetrieb Continuous operation Der Dauerbetrieb mit der im Maßbild-Text angege-benen Kühlwassermenge ist für den Erhaltungszustand optimal. Eine größere Kühlwassermenge oder eine örtliche Querschnittsverengung (z. B. Fremdkörper), die zu einer Erhöhung der Kühlwassergeschwindigkeit führen, zerstören die Schutzschichten durch Erosion, die zuerst auf der Kühlwassereintrittsseite der Kühlrohre in Erscheinung tritt.

Continuous operation with the cooling water flow rate given in the dimension drawing legend is optimal for proper care of the cooler. A higher cooling water flow rate or a local constriction (e.g. foreign bodies) which lead to an increase in the cooling water velocity, will result erosion of the protective layers which appears initially at the cooling water inlet of the cooling tubes.

Es soll auch nicht mit einer zu niedrigen Geschwindig-keit gefahren werden, da sonst die Gefahr von Ablage-rungen aus dem Kühlwasser besteht.

The velocity should not be too low to avoid deposits from the cooling water.

Ablagerungen in den Kühlrohren stören die Schutz-schichtbildung erheblich und können eine bereits vor-handene Schutzschicht durch Korrosion zerstören. Ab-lagerungen sind Abscheidungen fester Schwebstoffe aus dem Kühlwasser. Eine Reinigung mittels Handrei-nigungsbürste bzw. Hochdruckreinigungsmaschine ist erforderlich. Hinsichtlich der Dauer der Reinigungspe-rioden und der Intervalle sind die Betriebserfahrungen maßgebend. Allgemein gültige Richtlinien können deshalb nicht gegeben werden.

Deposits in the cooler tubes impair protective layer formation considerably and can also destroy an existing protective layer by corrosion. Deposits normally arise from suspended solid matter in the cooling water. The tubing must then be cleaned using a hand brush or a high-pressure cleaning machine. Operating experience will determine the duration and frequency of cleaning. Generally applicable guidelines cannot therefore be given.

Page 377: Generator Manual

s

8692 Seite/Page

3

Durch Kontrollieren der Berohrung bei Stillständen soll sich der Betreiber ein Bild über das Verhalten der Kühler machen und Erfahrungen mit dem zur Verfü-gung stehenden Kühlwasser sammeln.

The operator will have to form his own opinion as to the behaviour of the cooler by inspecting the tubing during standstill periods and by gathering experience with the available cooling water.

Häufig verschmutzen die Kühlrohre auch durch das Wachstum von Mikroorganismen, meist schleimigen Bakterien, die durch eine mechanische Rohrreinigung nicht immer beseitigt werden können, sondern z. B. eine Stoßchlorierung mit 2 bis 3 mg Cl2/l erfordern. In besonders hartnäckigen Fällen kann die Chlorkon-zentration ohne Gefährdung der Rohrwerkstoffe bis 10 mg Cl2/l erhöht werden.

The cooling tubes frequently become fouled also due to the growth of micro-organisms, mainly slimy bacteria, which cannot always be removed by mechanical cleaning but may require, for example, chlorinating with a concentration of 2 to 3 mg Cl2/l. In particularly stubborn cases, the chlorine concentration can be increased up to 10 mg Cl2/l.

Stillstände Standstill periods Stillstände sind für Rohre aus Kupfer und Kupfer-legierungen besonders gefährlich, wenn die Schutz-schicht sich noch nicht gebildet hat oder aber die Gefahr ihrer Zerstörung durch Korrosion unter Ab-lagerungen besteht.

Standstill periods are particularly dangerous for tubes made of copper and copper alloys if the protective layer has not yet been formed or if they are likely to be destroyed by corrosion under deposits.

Bei Betriebsunterbrechungen oder Ausfall der Kühl-wasserversorgung bis zu drei Tagen, können die Kühler mit Kühlwasser gefüllt bleiben, wenn

In the event of operational outages or failure of the cooling water supply for periods up to three days, the coolers may remain filled with cooling water when the following conditions are satisfied

Rohre frei von Ablagerungen sind. Tubes are free from deposits Absperrarmaturen zum Schließen vorhanden sind

und System entlüftet wurde. Shut-off valves are fitted and system has been

vented. keine Gefahr besteht, dass das Kühlwasser ge-

frieren könnte. Cooling water is not likely to freeze.

Werden die Bedingungen nicht erfüllt, muss When these conditions are not satisfied: das Kühlwasser abgelassen werden. Cooling water must be drained. das Rohrsystem gereinigt, mit sauberem Wasser

gespült und mit warmer, vorgetrockneter Luft getrocknet werden.

Tubing must be cleaned, flushed out with clean water and dried with hot, pre-dried air.

Bei Stillständen von mehr als drei Tagen sind die Kühler wie vorher bei nicht erfüllter Bedingung zu behandeln.

In the case of standstill periods lasting longer than three days, the coolers should be treated as described above for non-satisfied conditions.

Für Stillstände bis zu drei Tagen ist auch der Betrieb mit kleineren Kühlwassermengen bis 20% (Schleich-strömung) zulässig, damit Ablagerungen in den Rohren vermieden werden. Diese Maßnahme ist besser als ein absoluter Stillstand des Kühlwassers in den Rohren, da Fäulnisprodukte vom Ort ihrer Entstehung fortgespült werden.

In the case of standstill periods up to three days it is also permissible to operate with lower cooling water flow rates up to 20% to avoid the accumulation of deposits in the tubes. This measure is better than absolute standstill of the cooling water in the tubes since any products of decay are flushed away from where they originate.

© Siemens AG Bestell-Nr./Order-No. DW 8692-74 0106All Rights Reserved Alle Rechte vorbehalten Printed in Germany

Page 378: Generator Manual
Page 379: Generator Manual
Page 380: Generator Manual
Page 381: Generator Manual
Page 382: Generator Manual

2008-04-21

!"#$%$#$&

'(

)$%*+# ,-.+/0

/($%$%

8.10.1.0 bp

1

Motor/Generator Cooler from Coiltech

Id CZ 8012-22,7 one cooler.

______________________________________________________________________________________________Air Capacity 183 kW

Flow rate 8.5 m³/s (48°C)

Temperature in 67.5 °C

Temperature out 48.0 °C

Absolute pressure 1013 hPa

Pressure drop 106 Pa

Velocity 3.4 m/s

______________________________________________________________________________________________Cooling medium Water

Flow rate 22.7 m³/h (32°C)

Temperature in 32.0 °C

Temperature out 39.0 °C

Pressure drop 78 kPa

Velocity 2.3 m/s

______________________________________________________________________________________________Dimensions Overdesign 7 %

Tube length 2340 mm

Finned width 1100 mm

Nozzle size 2 1/2" ANSI B 16.5 150LB

No. of tube rows 3

Fin pitch 2.5 mm

Tube material Copper-Nickel

Fin material Aluminium

Removable header Rilsan coated steel

Casing material Galvanized steel

Tube plates Brass

Dry weight / Internal volume 242/41 kg/l

Copper content 116 kg

No of tubes 99

Cooling surface 162 m²

Max op. pressure 0.6 MPa

Test pressure 0.9 MPa

Max op. temperature 100 °C

______________________________________________________________________________________________

Ordering code QLKE-234-110-3-2-4-23-3-8-X

X= 0,15 mm fins.

Page 383: Generator Manual

2008-04-21

!"#$%$#$&

'(

)$%*+# ,-.+/0

/($%$%

8.10.1.0 bp

2

Motor/Generator Cooler from Coiltech

Id CZ 8012-22,7 one cooler.

______________________________________________________________________________________________

______________________________________________________________________________________________

Ordering code QLKE-234-110-3-2-4-23-3-8

Page 384: Generator Manual
Page 385: Generator Manual
Page 386: Generator Manual

s

D1074g-0312 de-en 1074 Seite/Page 1

Trocknen von Wicklungen Drying of Windings Allgemeines General Siemens-Isolierungen MICALASTIC® sind grundsätz-lich unempfindlich gegen Feuchte. Anschlussklemmen und während der Montage eingefügte Stäbe, Spulen oder Verbindungen, die nicht voll der Isoliertechnik der übrigen Wicklung entsprechen, können jedoch durch Feuchtigkeit gefährdet sein. Es kann sich auch durch Transport, Lagerung, Bauarbeiten oder durch längere Stillstandszeit innerhalb der Maschine ein Feuchtig-keitsfilm auf den Oberflächen gebildet haben, der vor einer Inbetriebnahme durch eine der nachfolgend be-schriebenen Trocknungsmethoden zu beseitigen ist.

Siemens MICALASTIC® insulation is basically not af-fected by moisture. Terminals as well as conductor bars, coils or connections fitted during the installation that are not insulated to the same degree as the rest of the winding can, however, be endangered by mois-ture. Shipping, storage, construction work or a long period of standstill can cause a film of moisture to form inside the machine on the surface of the insula-tion which must be dried before commissioning by one of the methods described here.

Da ein Feuchtigkeitsfilm auf der Isolierung im Innern von Maschinen visuell nicht immer festgestellt werden kann, sind zusätzliche Beurteilungskriterien - wie z. B. Isolationswiderstand und Nachladezahl -zu beachten.

Because a film of moisture on the insulation inside the machine cannot always be visually detected, other detection methods such as insulation resistance and polarization index must be used.

Der Isolationswiderstand ist in jedem Fall zu bestim-men, da aus den Messwerten Aussagen über den Zu-stand der Wicklung abgeleitet werden können. Die er-mittelten Werte protokollieren und - falls vorhanden - mit früheren Werten vergleichen.

The insulation resistance should always be deter-mined because information on the condition of the winding can be derived from this. Record the meas-ured values and compare them with earlier values, if available.

Bei der Trocknung wird durch Erwärmung der Wick-lung die unerwünschte Oberflächenfeuchtigkeit besei-tigt. Werden bei Maschinen einzelne Wicklungsteile (z. B. beim Schließen der Teilfuge) am Montageort einge-baut, sind diese vor dem Lackieren vorzutrocknen, vorzugsweise mit trockener Warmluft.

During the drying process the surface moisture is driven off by heating the windings. If individual por-tions of the windings are installed at site, for example after closing the stator joints, these parts must be dried before varnishing, preferably by hot, dry air.

Für Mikafolium-Isolierung wird nach längerer Still-standszeit immer eine Trocknung notwendig sein.

In the case of mica folium insulation, drying is always necessary after a long standstill.

Ist eine Stillstandsheizung vorhanden, so ist diese so-bald wie möglich in Betrieb zu nehmen, um Eindringen bzw. Niederschlagen von Feuchtigkeit zu verhindern.

Where anti-condensation heating is fitted, this should be switched on as early as possible in order to pre-vent the ingress or condensation of moisture.

Die Läuferwicklung wird normalerweise ausreichend durch die warme Umgebungsluft miterwärmt, wenn der Ständer bei der Trocknung Strom führt. Eine Trock-nung bei laufender Maschine ist einer solchen im Still-stand vorzuziehen.

The rotor winding is normally heated sufficiently by the surrounding air when the stator is heated by passing current through it. Drying the machine whilst running is preferable to drying at standstill.

Isolationswiderstand von Hochspannungswicklungen

Insulation resistance of HV windings

Der Isolationswiderstand gibt Aufschluss über Ober-Flächen-Feuchtigkeitsgehalt, Verschmutzung und evtl. Beschädigung der Wicklungen. Einzelheiten über die Durchführung der Messung sind in „Messen des Isolationswiderstandes elektrischer Maschinen“ 1075 enthalten.

The insulation resistance provides information about the surface moisture content, contamination and any damage to the windings. The measuring procedure is detailed in "Measuring the Insulation Resistance of Electrical Machines" 1075.

Bei Hochspannungswicklungen sollen folgende Werte gemessen werden:

With HV windings the following values should be measured:

1 Isolationswiderstand jedes Stranges gegen geer- detes Gehäuse und die anderen geerdeten Strän- ge.

1 Insulation resistance of each phase to earthed frame and to the other earthed phases.

2 Isolationswiderstand aller Wicklungsstränge gegen geerdetes Gehäuse.

2 Insulation resistance of all winding phases to earthed frame.

Der Isolationsmesser soll dabei eine Spannung von 500 bis 3000 V, vorzugsweise 1000 V, abgeben. Die Temperatur der Wicklung ist über die eingebauten Temperaturfühler (normalerweise Widerstandsthermometer) zu messen.

The insulation resistance tester should produce a voltage of 500 to 3000 V, preferably 1000 V. The temperature of the winding is measured by built-in sensors (normally resistance thermometers).

Nachladezahl Polarization index In Abhängigkeit von der Zeit sind nach Anlegen der Prüfspannung die Werte des Isolationswiderstandes bei 30s, 1 min und fortlaufend jede Minute bis 12 min zu notieren.

The insulation resistance is taken at 30s, 1 min and then at every minute up to 12 min after the test voltage has been applied.

Page 387: Generator Manual

s

1074 Seite/Page 2

Die lange Messdauer ist durch den Absorptionsstrom bedingt, der seine Ursache in der Polarisation des Die-lektrikums hat. Das dielektrische Absorptionsverhältnis wird auch zur Kennzeichnung des Zustandes der Isolation von Wicklungen herangezogen. Es ist das Verhältnis von zwei Ablesungen des Isolationswiderstandes nach verschiedenen Zeiten während der gleichen Messung, d. h. auch gleicher Temperatur (z. B. R60s Isolationswert nach 60 s abgelesen).

The length of the measurement period is determined by the absorption current which is caused by the po-larization of the dielectric. The dielectric polarization index is also used as an indication of the condition of the winding insulation. It is the ratio of two readings of the insulation resistance taken at specified time intervals during the same measurement, i.e. at the same temperature (R60s = insulation resistance reading 60 s after the test voltage has been applied).

s

s

RR

30

60 R 10minR 1min

s

s

RR

30

60 R 10minR 1min

PI oder N PI or N

Richtwerte

PI = Polarisationsindex N = Nachladezahl

Trocknen Comparative rating

PI or N = Polarization index

Drying

Gefährlich - < 1 ja Dangerous - <1 yes Schlecht < 1,1 1 bis 1,5 ja Poor <1.1 1 to 1.5 yes Fraglich 1,1 bis 1,25 1,5 bis 2 empfehlenswert Questionable 1, 1 to 1.25 1.5 to 2 recommended Brauchbar 1,25 bis 1,4 2 bis 3 nein Satisfactory 1.25 to 1.4 2 to 3 no Gut 1,4 bis 1,6 3 bis 4 nein Good 1.4 to 1.6 3 to 4 no Ausgezeichnet

> 1,6 >4 nein

Very good > 1.6 >4 no

Der Polarisationsindex oder die Nachladezahl soll -wenn die Wicklung getrocknet werden muss - vor und nach dem Trocknen bei gleicher Temperatur bestimmt werden, da eine gewisse Temperaturabhängigkeit bestehen kann.

The polarization index should be determined before and after drying - in the event that the winding requires drying - at the same temperature because to a certain extent the index is temperature dependent.

Mindestwert des Isolationswiderstandes Minimum value of the insulation resistance Der Isolationswiderstand soll einen gewissen Mindestwert haben, den die Fig. 1 für die gesamte Wicklung gegen Erde, in Abhängigkeit von der Wicklungstemperatur zeigt. Um die Abhängigkeit des Isolationswiderstandes von der Maschinengröße zu eliminieren, ist hier als Ordinate das (konstante) Produkt aus Wicklungskapazität und Isolationswiderstand, die sogenannte Isolationszeitkonstante τ = R10 x C in MΩ, µF = s aufgetragen. Der Isolationswiderstand ist dabei der 10-min-Wert, der als zeitlicher Endwert bei der Messung angesehen wird.

The insulation resistance of the complete winding to earth should have a certain minimum value which is shown in Fig. 1 as a function of the winding temperature. In order to eliminate the dependence of the insulation resistance on the size of the machine, the ordinate is formed by the (constant) product of the winding capacitance and the insulation resistance which is known as the insulation time constant τ = R10 x C in MΩ, µF = s The insulation resistance is the 10 min value which is considered to be the final measurement value.

Unterliegen Maschinen ausländischen Normen, müssen selbstverständlich darin enthaltene Mindestwerte eingehalten werden.

If machines are subject to foreign standards, the minimum values contained therein must be observed.

Page 388: Generator Manual

s

1074 Seite/Page 3

B U

mre

chnu

ngsf

akto

r für

Bez

ugst

empe

ratu

r 75°

C →

C

onve

rsio

n fa

ctor

for r

efer

ence

tem

pera

ture

of 7

5°C

Fig. 1 A Is

olat

ions

zeitk

onst

ante

/Insu

latio

n tim

e co

nsta

nt

10 =

R10

C

Mindestwert der Isolationszeitkonstante und Beispiel einer Trocknung

Nuttemperatur/Slot temperature Minimum value of the insulation time constant and example of a drying process

In bestimmten Fällen kann auch mit Hinweis auf die IEEE-Empfehlung St 43-1974 für den Mindestwert des Isolationswider-standes die Formel R is,min = kV + 1 M angewendet werden, wobei R is,min der Wert bei 40°C und kV die Maschinennennspannung ist.

In certain cases the formula R is,min = kV + 1 in M may also be used with reference to IEEE recommendation St 43-1974 for the minimum value of the insulation resistance where R is,min is the value at 40°C and kV is the rated machine voltage.

Die Wicklungskapazität C (alle 3 Stränge gegen Erde) wird einer evtl. durchgeführten tan-δ-Messung entnommen oder über die Stromaufnahme an 220 V Wechselspannung (50 Hz bzw. 60 Hz) oder mit einer C-Messbrücke bestimmt.

C = ω⋅U

J

The winding capacitance C (all three phases to earth) may be determined from a loss-tangent test if carried out, by measuring the current input at 220 V AC (50 Hz or 60 Hz) or by means of a capacitance measuring bridge.

C = ω⋅U

J

In der Praxis genügt es an kleinen und mittleren Maschinen, d. h. bis ca. 20 MVA, den Mindest-Isolationswiderstand nach der angegebenen IEEE-Formel anzusetzen. Der Messwert R 1 min (d.h. 1 min Messdauer) ist ausreichend.

In practice, it is sufficient with small and medium machines, i.e. up to approx. 20 MVA, to use the minimum insulation value in accordance with the IEEE formula given above. The measured value R 1 min (i.e. 1 minute value) is sufficient.

Für die Temperaturabhängigkeit des Isolationswiderstandes kann man in grober Annäherung mit der Faustformel arbeiten, dass 10 K Erwärmung den Widerstand halbieren bzw., dass nach Abfall der Temperatur um 10 K sich der Isolationswiderstand verdoppelt.

To determine the insulation resistance at other temperatures, the rule of thumb can be used, i.e. for 10 K temperature rise the insulation resistance is halved and for 10 K temperature drop it is doubled.

Die genaue Umrechnung ist aus Fig. 1 zu entnehmen (s.a. unter „Trocknungsmethoden“). Nach Erreichen des Mindest-Isolationswiderstandes kann die Trocknung beendet werden.

The exact conversion can be seen in Fig. 1 (see also "Drying Methods"). Drying can be stopped when the minimum insulation resistance is reached.

Falls eines der beiden Beurteilungskriterien - Polarisationsindex und Isolationswiderstand - zu niedrige Werte hat, sollte die Wicklung erst einmal visuell auf Feuchtigkeit, Verschmutzung und Beschädigung untersucht werden.

If either of the measurement methods - polarization index or insulation resistance - produces values that are too low, the winding should initially be visually examined for moisture, contamination or damage.

Page 389: Generator Manual

s

1074 Seite/Page 4

Können dabei Mängel nicht festgestellt oder nicht be-hoben werden, so muss eine Trocknung vorgenom-men werden. Eine Trocknung ist natürlich auch dann erforderlich, wenn trotz guten Polarisationsindexes und guten Isolationswiderstandes offensichtlich Feuchtig-keit an der Wicklung vorhanden ist.

If deficiencies cannot be detected or cannot be dealt with then the winding should be dried. Of course, dry-ing is also necessary when, in spite of good polariza-tion index and insulation resistance values, moisture is visible on the windings.

Niedrige Werte des Isolationswiderstandes bei neuen oder reparierten Wicklungen können allerdings auch durch noch unvollständig ausgehärtete Harzsysteme verursacht sein. Der endgültige hohe Isolationswider-stand wird dann erst nach längerer Betriebszeit (einige hundert Stunden) erreicht. Bei zweifelhaften Messer-gebnissen sind deshalb unbedingt die Ursachen der Abweichungen zu suchen.

Low insulation resistance values of new or repaired windings can also be caused by resin before it has completely cured. In this case the final insulation resis-tance value is only attained after an extended operat-ing period (several 100 hours). If doubtful measure-ment results are obtained, it is important to determine the cause.

Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und ggf. auch Trocknung durchgeführt werden.

In any case, whenever low insulation resistance val-ues are obtained, carry out thorough cleaning and also, if required, drying.

Isolationswiderstand von Erreger- und Nieder-spannungswicklungen

Insulation resistance of field and LV windings

Niederspannungswicklungen in MICALASTIC- Ausfüh-rung sind im wesentlichen genauso zu beurteilen wie Hochspannungs-Wicklungen. Hier kann der Isolati-onswiderstand bei höheren Temperaturen im kΩ -Bereich liegen; es ist deswegen ratsam, mit Span-nungen <500 V, z. B. 100 V, zu messen. Bei Läufer-wicklungen wird der Isolationswiderstand gegen die geerdete Welle gemessen.

For LV windings using MICALASTIC insulation, basi-cally the same applies as for HV windings. Here, the insulation resistance can be in the kΩ range at higher temperatures; it is therefore advisable to carry out the measurement with voltages less than 500 V, for ex-ample 100 V. The insulation resistance of rotor wind-ings is measured relative to the earthed shaft.

Polwicklungen von Synchronmaschinen Field windings of synchronous machines Erregerwicklungen von Synchronmaschinen sollen - besonders wenn es sich um einlagige Wicklungen handelt - während ihrer Betriebszeit bei Betriebstem-peratur einen Isolationswiderstand von 0,1 MΩ nicht unterschreiten; andernfalls sind die Wicklungen zu säubern bzw. zu trocknen. Besondere Sorgfalt ist den Polverbindungen und den Schleifringzuleitungen zu widmen.

During operation, the insulation resistance of the field windings of synchronous machines should not fall be-low a value of 0.1 MΩ at operating temperature - par-ticularly in the case of single-layer windings. If the in-sulation resistance does fall below this value the wind-ings must be cleaned and/or dried. Special attention should be paid to the pole connections and the slipring leads.

Im Neuzustand soll der Wert des Isolationswiderstan-des pro Pol bei Raumtemperatur Ris > 200 MΩ sein. Dementsprechend ergibt sich für die gesamte Wick-lung ein Mindestwert von Ris,min >

Polzahl200 MΩ. Nach

längerer Lagerung bzw. längerem Betrieb soll der Iso-lationswiderstand erst bei kleiner Spannung (500 V) gemessen werden, damit durch die Messspannung nicht Schäden an der (evtl. nachzubehandelnden) Iso-lierung entstehen.

When new, their insulation resistance per pole should be Ris > 200 M at room temperature. Accordingly, this results in a minimum value for the whole winding of Ris,min >

poles of No.200 MΩ. After prolonged storage or

after prolonged operation the insulation resistance should initially be measured with a low voltage (< 500 V) so that damage is not caused to the insula-tion as a result of the test voltage. If such damage does occur it must be repaired.

Gleichstrommaschinen DC machines Bei Gleichstromankern mit der Vielzahl der offen lie-genden Wicklungsenden und den daran angeschlos-senen Kommutatorlamellen gibt naturgemäß der ge-messene Isolationswiderstand in erster Linie den Zu-stand der zwischen den nicht isolierten Leiterteilen und Eisen liegenden Kriechstrecken auf der Isolationsober-fläche an. Das gilt auch für die Hauptstromwicklungen (Kompensations-, Wendepol- und Reihenschlusswick-lung) im Magnetgestell. Deswegen kann der Mindest-wert des Isolationswiderstandes nur im Neuzustand gefordert werden. Schon Transport und Lagerung kön-nen die Isolationswerte erheblich verringern. Nach län-geren Betriebs- bzw. Stillstandszeiten kann auch nach sorgfältiger Reinigung und Trocknung der ursprüngli-che Isolationswert nicht mehr erreicht werden; Folge-rungen auf den Zustand der Isolierung sind aus oben

The insulation resistance of DC armatures,which have a large number of open winding ends connected to commutator segments, is first and foremost a measure of the condition of the leakage paths over the insula-tion surface between the non-insulated conducting parts and the armature body. This is also true of the main windings (compensating, interpole and series windings) on the yoke. Thus the minimum value of the insulation resistance can only be specified in the new condition. Even shipment and storage can considera-bly reduce insulation resistance values. After extended periods of operation or standstill, the original value of the insulation resistance will no longer be attained even after careful cleaning and drying. Conclusions regarding the condition of the insulation are for the abovementioned reasons difficult.

Page 390: Generator Manual

s

1074 Seite/Page 5

oben genannten Gründen schwierig. Als grober Richtwert sollte bei Gleichstrommaschinen ein Isolationswiderstand von 1000 Ω/Volt Betriebs-spannung bei 75°C angestrebt werden (entspricht ca. 20 kΩ/V bei 25°C).

A typical value of roughly 1000 Ω/Volt of operating voltage should be expected for DC machines at 75°C (corresponds to approx. 20 kΩ/V at 25°C).

Einige Betreiber begnügen sich auch mit 500 Ω/Volt. Bei zu niedrigen Isolationswerten sollte jedoch immer eine gründliche Reinigung und gegebenenfalls auch Trocknung durchgeführt werden.

Some users are also satisfied with 500 ΩV. In any case, when poor insulation resistance values are ob-tained, carry out thorough cleaning and also, if re-quired, drying.

Die Feldwicklung der Gleichstrommaschine soll bei 75°C einen Isolationswiderstand von 1 MΩ nicht unter-schreiten.

The field winding insulation resistance of DC machines is not to fall below 1 MΩ at 75°C.

Trocknungsmethoden Drying methods Beim Trocknen von Wicklungen kann die Wärme auf drei Arten zugeführt werden:

For the purpose of drying windings, heat can be ap-plied in three ways:

1 Erzeugung von Verlustwärme in der Maschine selbst, d. h. im Kurzschlussbetrieb.

1 By producing heat losses in the machine itself, i.e. by operating the machine on short circuit.

2 Einspeisung von Strom aus fremden Energiequel-len zur Erzeugung von Verlustwärme in den Wick-lungen, z. B. mit Hilfe von Schweißumformern oder steuerbaren HochstromgIeichrichtern.

2 By feeding current from external energy sources to produce heat losses in the windings, e.g. with the aid of m.g. welding sets or controllable high-current rectifiers.

3 Warmluftzuführung nach entsprechender Abdeck- kung mit Zeltplanen, Holzverkleidungen usw.

3 By providing a flow of hot air after suitably covering with tarpaulins, wood cladding etc.

Bei allen Methoden muss natürlich darauf geachtet werden, dass ein Luftaustausch zum Abführen der Feuchtigkeit erfolgt.

With all these methods some air circulation must natu-rally be provided to allow the moisture to escape.

Als Beharrungstemperatur beim Trocknen ist eine Temperatur von ca. 60°C anzustreben.

A steady-state temperature of about 60°C is desirable for the drying process.

Dieser Wert soll jedoch erst nach ca. vier Stunden bei Micalastic und ca. acht Stunden bei Mikafolium von Beginn der Trocknung an erreicht werden. Die Strom-stärke in den Wicklungen bzw. die zugeführte Wär-memenge ist - angefangen von kleinen Werten unter Beachtung der Temperaturzunahme - so zu steigern bzw. einzustellen, dass diese Bedingung eingehalten wird.

However, this value should be reached not less then about four hours with Micalastic and about eight hours with micafolium after starting the drying process. The magnitude of the current in the winding or the quantity of heat applied should be controlled so as to fulfil this requirement, i.e. starting with low values and regulated according to the temperature rise.

(Bei wasserstoffgekühlten Maschinen wird wegen des Luftaustausches mit normaler Frischluft getrocknet, deswegen den Kurzschlussstrom wegen höherer Er-wärmung niedrig halten!)

(With hydrogen-cooled machines, normal fresh air is used for drying due to the air circulation. The short-circuit current must be kept low due to the increased temperature rise.)

Durchführungen und Stützer vor dem Trocknen mit trockenem Lappen säubern.

Bushings and post-type insulators should be cleaned with dry rags before drying.

Bei der Durchführung einer Trocknung wird entspre-chend der Fig. 1 nur der Isolationswiderstand der ge-samten Wicklung gegen Erde gemessen, und zwar der 10-min-Wert. Die Umrechnung des jeweiligen Isolati-onswiderstandes auf die Bezugstemperatur von 75°C erfolgt nach Kurve B.

During the drying process, only the insulation resis-tance of the whole winding to earth is measured, i.e. the 10 min value, according to Fig. 1. The insulation resistances are converted to the reference tempera-ture of 75°C from curve B.

Beispiel: Gemessen bei 40°C Ris,40 = 33 M, Ris,75 = 0,125 x 33 = 4,1 M

Example: Measured at 40°C Ris,40 = 33 M, Ris,75 = 0.125 x 33 = 4.1 M

Temperaturschwankungen während des Trockenbe-triebes vermeiden. Bei vollständig gekapselten Ma-schinen Abzugsmöglichkeit (Klappen, Deckel) für feuchte Luft schaffen und für saubere, möglichst tro-ckene Zuluft sorgen.

Avoid temperature variations during the drying proc-ess. With totally enclosed machines provision should be made (by removing covers, etc.) to permit the mois-ture to escape and for clean, dry air to enter.

Temperatur möglichst durch eingebaute Widerstands-thermometer (Nutthermometer) messen. Bei laufender Maschine zusätzlich Zu- und Abluft (Kalt- und Warm-luft) messen. Bei fehlenden Nutthermometern und in jedem Fall bei stehender Maschine, möglichst an den Wickelköpfen Alkoholthermometer befestigen. Maßge-bend ist die Temperatur an der räumlich höchsten Stel-le.

Measure the temperature, using the built-in resistance thermo-meters (slot thermometers) if possible. In addi-tion, in the case of running machines, measure the inlet and outlet (cold and hot air) temperatures. Where slot thermometers are not provided and, in any case, with stationary machines, install alcohol thermometers on the winding overhangs if possible. The most impor-tant measurement is the temperature at the highest point.

Page 391: Generator Manual

s

1074 Seite/Page 6

Quecksilberthermometer wegen Bruchgefahr nicht verwenden, bei Wechselstrom außerdem Fehlanzeige durch Wirbelströme. Unteres Ende der Thermometer zur besseren Wärmeübertragung mit Aluminiumfolie umwickeln und gegen Abkühlung mit Filz oder Watte bedecken. Bei Maschinen kann nicht von der Gehäu-setemperatur auf die Wicklungstemperatur geschlos-sen werden.

Mercury thermometers should not be used because of the danger of breakage and also because of incorrect readings resulting from AC induced eddy currents. Wind aluminium foil around the lower end of the ther-mometers to improve the thermal contact and cover with felt or cotton wadding to reduce the effects of cooling. Do not assume that the temperature of the machine housing is also the temperature of the wind-ing.

Die Temperaturerhöhung über der Umgebungstempe-ratur bei Maschinen ohne Widerstandsthermometer sollte außerdem aus der Zunahme des gemessenen Wicklungswiderstandes errechnet werden.

The rise in temperature above the ambient tempera-ture of machines without resistance thermometers should be calculated from the increase in the meas-ured winding resistance.

Faustregel: Je 10 K Temperaturerhöhung nimmt der Widerstand bei Cu um 4 % zu. Maschine nach been-detem Trockenbetrieb möglichst bald belasten, damit erneute Aufnahme von Feuchtigkeit verhindert wird. Falls eine Stillstandsheizung vorhanden, so ist diese natürlich nach beendeter Trocknung in Betrieb zu nehmen.

Rule of thumb: For every 10 K temperature rise the resistance of copper rises by 4 %. After completing the drying process, the machine should be loaded as soon as possible to prevent moisture from being re-absorbed. Where anti-condensation heating is pro-vided, this should naturally be put back into service after drying.

Kurzschlusstrocknung von Generatoren Short-circuit drying of generators Bei Generatoren sollte die Wicklung möglichst im Kurzschluss bei laufender Maschine getrocknet wer-den, damit keine Heißstellen durch Wärmestau entste-hen.

The windings of generators should preferably be dried with the machine running on short circuit to prevent hot spots being formed by heat accumulation.

Die dreipolige Kurzschlussverbindung so ausführen, dass der Nennstrom der Maschine keine nennenswer-ten Erwärmungen ergibt (Richtwert 1 A/mm²). Kurz-schlussverbindung möglichst unmittelbar an den Ge-neratorklemmen anbringen. Liegen zwischen Genera-tor

The three-phase short-circuit link should be designed so that the rated current of the machine does not cause the link to be noticeably heated (typical value 1 A/mm²). Connect the short-circuit link as close as pos-sible to the generator terminals. If circuit-

und Kurzschlussverbindung Leistungs- oder Trenn-schalter, muss verhindert werden, dass diese während des Trocknens geöffnet werden können. In diesem Falle käme die Maschine sofort auf Spannung. Im Be-reich der kurzgeschlossenen Wicklung liegende Span-nungswandler oder Kondensatoren abklemmen, da sie die Messung des Isolationswiderstandes verfälschen.

breakers or isolating breakers are in circuit between the generator and the short-circuit link, measures must be taken to ensure that they cannot be opened during the drying process. If this did occur, voltage would immediately appear at the generator terminals. Volt-age transformers or capacitors in the region of the short-circuited winding should be disconnected since they introduce errors into the insulation resistance measurement.

Bei der praktischen Durchführung der Kurzschluss-trocknung ist auf folgendes zu achten:

During the short-circuit drying of windings the following should be observed:

Spannungsreglerumschalter auf „Hand“ schalten. Bei Transipolerregung jeden Strang der Sekundärwicklung der Übertragerdrosseln einzeln kurzschließen. Verbin-dung der Oberspannungswicklung des Erregertrans-formators zur Generatorleitung unterbrechen und Se-kundärwicklung des Erregertransformators von Fremdnetz einspeisen. Vorsicht, Rückspannung!

Switch the voltage regulator changeover switch to "Manual". With Transipol excitation each phase of the secondary winding of the air-gap reactor is individually short-circuited. Break the connection between the ex-citation transformer higher-voltage winding and the air-gap reactors and feed the secondary winding of the excitation transformer from an external system. Beware - danger of feedback voltage.

In den ersten sechs bis acht Stunden (abhängig von Maschinengröße) Ständerstrom von etwa 0,5 JN an so weit steigern, dass 60°C Wicklungstemperatur nicht überschritten werden. Kühlwassermenge entspre-chend einstellen.

In the first 6 to 8 hours (depending on the size of the machine) increase the stator current from about 0.5 IN to a value such that the winding temperature does not exceed 60°C. Set the cooling-water flow accordingly.

Nennstrom nicht überschreiten. Überstromschutz ein-schließlich Entregungseinrichtung in Betrieb nehmen. Liegt Kurzschluss im Differentialschutzbereich, strom-durchflossene Stromwandlerkreise kurzschließen. Stündlich Nuttemperatur, Zu- und Ablufttemperatur und Generatorstrom notieren.

Do not exceed the rated current. Energize the overcur-rent protection including the de-excitation equipment. If the short circuit is in the zone of the differential pro-tection, short-circuit the current circuit of the current transformers. Record the slot temperature, inlet and outlet temperatures and the generator current every hour.

Page 392: Generator Manual

s

1074 Seite/Page 7

Der Fortgang der Trocknung ist durch wiederholte Messungen des Isolationswiderstandes - 3 Stränge gegen geerdetes Gehäuse - unter Beobachtung der Wicklungstemperatur zu überwachen (siehe Beispiel Fig. 1). Die Wicklung muss für diese Messung span-nungsfrei sein.

Monitor the progress of the drying process by re-peated measurement of the insulation resistance - three phases to earthed frame -while observing the winding temperature (see example Fig. 1). For this measurement the winding must be isolated.

Kurzschlusstrocknung von Asynchronmaschinen Short-circuit drying of induction machines Das Trocknen von asynchronen Schleifringläufermoto-ren im Kurzschluss erfordert besondere Vorkehrungen, da Kurzschluss hier die Einspeisung bei stillstehendem Läufer bedeutet. Der Läufer ist unmittelbar an den Schleifringen kurzzuschließen (z. B. mit Schraubzwin-gen) und gegen Drehung zu sichern. Bei den meisten Motoren bis 6,3 kV Nennspannung bietet sich eine Trocknung durch Speisung der Ständerwicklung aus dem Niederspannungs-Drehstromnetz an (220, 380 bzw. 500 V), falls dieses Netz stark genug ist. Auch wenn der sich einstellende Strom geringer als der hal-be Nennstrom ist, ist auf entstehende Wärmenester zu achten, da die Maschine still steht. Für einen ständigen Luftaustausch muss gesorgt werden. Der Läufer selbst soll etwa stündlich um 90° gedreht werden.

Special arrangements must be made when drying slipring induction motors by short-circuiting because in this case short circuit means feeding the rotor at standstill. The rotor must be short-circuited directly at the sliprings, for example by bolted clamps, and also mechanically locked to prevent rotation. Most motors up to 6.3 kV rated voltage can be dried by feeding the stator winding from a three-phase LV supply (220, 380 or 500 V) if the supply system can take the load. Even when the current setting is lower than half the rated current, make sure that hot spots are not formed due to the machine being stationary. Ensure that continu-ous air circulation is provided. The rotor should be turned through 90° about every hour.

Damit die feuchte Luft austreten kann, ggf. vorhandene Deckel, Verschlüsse oder ähnliches öffnen. Etwa vor-handene Kondens-Wasserlöcher auf der Unterseite des Motors öffnen.

In order to allow the moisture to escape, covers or the like should be opened. Where a drain plug is provided for water condensation on the underside of the motor this should be opened.

Ist ein Drehstromgenerator vorhanden, kann mit die-sem die Ständerwicklung des Schleifringläufermotors gespeist werden. Der Strom in der Ständerwicklung ist dann so einzustellen, dass ca. 60°C innerhalb von vier bis acht Stunden erreicht werden. Käfigläufermotoren können unter Beachtung der obigen Hinweise auf die-selbe Art getrocknet werden.

If a three-phase generator is available this can be used to supply current to the stator winding of the slipring motor. The current should be set so that a temperature of about 60°C is reached in a period of four to eight hours. Cage motors can also be dried by the abovementioned procedure.

Trocknen mit Schweißumformer Drying with welding sets Werden für die Erwärmung einer Maschinenwicklung Schweißumformer verwendet, dürfen diese nicht ohne weiteres parallelgeschaltet werden. Es ist nachzumes-sen, ob die Gleichspannung bei Leerlauf gleich ist. Die Erregerwicklung F1 – F2 aller parallel zu schaltenden Schweißumformer mit einem zusätzlichen Schalter gemeinsam ein- bzw. ausschalten, nachdem die Um-former drehstromseitig angelassen bzw. ausgeschaltet sind

If m.g. welding sets are to be used for drying machine windings certain precautions must be taken before connecting them in parallel. Measure the open circuit DC voltages to ensure that they are all equal. Connect the excitation windings F1 – F2 of all the welding sets required to operate in parallel through an additional switch. This allows all the field windings to be switched on or off together depending on whether the three-phase motors of the m.g. sets have been started or stopped.

Zulässigen Strom im Strang der Wicklung höchstens 50 % des Nennstromes einstellen, da die Lüftung fehlt. Strom und Spannung jedes Umformers messen (zu-lässige Grenzleistung beachten). Die einzelnen Strän-ge der Wicklung in Reihe oder parallel schalten. Bei Reihenschaltung der einzelnen Stränge diese unsym-metrisch (z. B. Plus an U1, U2 an V1 V2 an W1 W2 an Minus) schalten, um den axialen magnetischen Fluss in der Welle gering zu halten. Bei nicht herausgeführ-tem Sternpunkt müssen zwangsläufig zwei Stränge parallel in Reihe zum dritten Strang geschaltet werden.

Because there is no ventilation, adjust the maximum permissible current per winding phase to 50 % of the rated current. Measure the current and voltage of each m.g. set (observe permissible limits). Connect the indi-vidual phases of the winding either in series or paral-lel. With series connection connect the individual phases unsymmetrically (e.g. plus to U1, U2 to V1 V2 to W1 W2 to minus) in order to keep the axial magnetic flux in the shaft low. Where the neutral point is not brought out, two phases must inevitably be paralleled and connected in series to the third phase.

Anschlüsse etwa stündlich wechseln, damit sich die Wicklung gleichmäßig erwärmt. Bei offenem Stern-punkt stündlich den Isolationswiderstand jedes Stran-ges gegen Gehäuse messen.

Change the connection order about every hour so that the winding is evenly heated. With the neutral point open, measure the insulation resistance of each phase to frame hourly.

Gleichstrom vor dem Abschalten langsam herunter-steuern, da andernfalls wegen der Wicklungsinduktivi-tät starke Lichtbögen auftreten können.

Before switching off a direct current, the current should be gradually reduced, otherwise the winding induc-tance will cause heavy arcing.

Page 393: Generator Manual

s

1074 Seite/Page 8

Da bei stehender Maschine die Temperaturverteilung nicht der Verteilung bei Lüftung entspricht, 60°C Wick-lungstemperatur nicht überschreiten. Läufer (falls ein-gebaut) stündlich um 90° drehen.

Since the temperature distribution of a machine at standstill is different from that in the running condition, a winding temperature of 60° must not be exceeded. If the rotor is in position, turn it through 90° every hour.

Trocknen mit Warmluft Drying with hot air Falls die Verfahren 1 und 2 nicht anwendbar sind, muss mit Warmluft getrocknet werden, die von einer äußeren Energiequelle zur Verfügung gestellt wird.

If methods 1 and 2 cannot be applied, the machine must be dried with hot air obtained from an external heat source.

Naturgemäß kommt dieses Trocknungsverfahren hauptsächlich für Synchronmotoren und Gleichstrom-motoren in Betracht, bei denen eine Erwärmung über die eigenen Stromwärmeverluste nicht möglich ist oder die Schweißumformer nicht eingesetzt werden können.

This method of drying is usually adopted for synchro-nous motors and DC motors where direct heating by means of current losses is not possible or when an m.g. welding set cannot be used.

Die Heizkörper sind so anzuordnen, dass einerseits durch geeignete Abdeckungen die zu trocknende Wicklung im Warmluftstrom steht, andererseits aber nicht durch Wärmestau Wärmenester mit zu hohen Temperaturen entstehen, d. h. es muss eine Luftbe-wegung mit Luftaustausch zustande gebracht werden.

The heaters should be arranged so that by means of suitable covers the winding being heated is in the hot-air stream without concentrating the heat to the extent that excessive temperatures are reached. This requires that a continuous circulation and replacement of the air takes place.

Die Warmluft soll 80°C nicht überschreiten, beim Aus-tritt aus der Maschine soll sie noch 10 K über der Um-gebungstemperatur liegen..

The air inlet temperature should not exceed 80°C and the outlet temperature should be at least 10 K above the ambient air temperature.

Taupunktunterschreitung in der Maschine ist zu ver-meiden, d. h. am Austritt darf sich keine Feuchtigkeit niederschlagen.

Do not allow the air temperature within the machine to drop below the dew point, i.e. there must be no mois-ture condensation forming at the outlet.

Dieses Verfahren der Trocknung erfordert mehr als die beiden anderen Verfahren ständige Überwa-chung, da Brandgefahr besteht.

Because of the risk of fire this method of drying requires constant monitoring to a much larger ex-tent than the other two methods

Auch hier ist darauf zu achten, dass der Läufer stünd-lich um ca. 90° weitergedreht wird.

This method also requires that the rotor be turned through 90° about every hour.

© Siemens AG Bestell-Nr./Order-No. D 1074g-0312 de-enAll Rights ReservedAlle Rechte vorbehalten Printed in Germany

Page 394: Generator Manual

Siemens Electric Machines s.r.o.

Product documentation – Tightening torques 1F. v1.2 page 1/1 P 2-035 (09/06/05)

Tightening torques Synchronous generator Unless other specific information is given, the following tightening torques are valid for normal connections of fastening screws, bolts and nuts. Tightening torques in Nm a tolerance of ± 10% Tightening torques for bolts with strength class 8.8 (or A4-70) connecting components with high

material strength (e.g. grey cast, steel, cast steel) Size of a thread M4 M5 M6 M8 M10 M12 M16 M20 M24 M30 M36

Tightening torques (Nm)

3 5 8 20 40 70 170 340 600 1200 2000

Tightening torques for bolts with strength class 5.6 or for bolts connecting components with low

material strength (e.g. aluminum) Size of a thread M4 M5 M6 M8 M10 M12 M16 M20 M24 M30 M36

Tightening torques (Nm)

1,3 2,6 4,5 10 20 34 83 160 280 570 990

Tightening torques for electrical connection where permissible torque is usually limited by the bolts materials and/or the load capability of the

insulators Size of a thread M4 M5 M6 M8 M10 M12 M16 Tightening torques (Nm)

1,2 2,5 4 8 13 20 40

Special parts: Diode mounting torque (D170U25C, D170S25C) ............... 20 Nm Terminals in main terminal box M10 40 Nm (Connection elements – strength class 8.8) M12 70 Nm M16 155 Nm

Page 395: Generator Manual
Page 396: Generator Manual
Page 397: Generator Manual
Page 398: Generator Manual
Page 399: Generator Manual
Page 400: Generator Manual
Page 401: Generator Manual

We recommend to order spare parts by SIEMENS only. When ordering spare parts, please state the Type and Serial No. of the generator in question.

LIST OF RECOMMENDED SPARE PARTS

Turbo Generator: Type: 1DT 4138-8AD02-Z Serial No: 1219294/100 Project No: 3488017

Item

Description Quantity

Location Type Manufacturer

1 Slide Bearing Shell 1 set DE Bearing EFZLK 22-250 Renk

2 Slide Bearing Shell 1 set NDE Bearing EFZLQ 22-225 Renk

3 Bearing Thermometer for remote reading/alarm 1 DE Bearing 2PT100/B-235X6S-G1/2-3/0-N,

L=235 mm Dosch

4 Bearing Thermometer for remote reading/alarm 1 NDE Bearing 2PT100/B-250X6S-G1/2-3/0-N,

L=250 mm Dosch

5 Space Heater Element 1 NDE DEW 8,5-400-460V/1000W SN70621 Doebeln Elektrowaerme

6 Silicon Diode 1 set / 6 pcs.

V1-V6 / Rectifier Wheel,

D660N-18T SN72544 Eupec

7 Protective Varistor 1 set / 6 pcs.

U / Bus Rings at Rectifier Wheel

Varistor disc C13/180V SN72543 Langlade & Picard

8 Hot/cold air temperature detectors 3 Cooler housing M12, 2XPT100A, PT35/70 MM Ravet

9 Leakage relay 1 Auxiliary terminal box RM4 L32MW, 24 Vdc Telemecanique

10 Brush 2 Shaft earthing BRE 25, MK75, SN73005 Schunk

11 PROXPAC PROXIMITY TRANDUSER ASSEMBLY 1 set DE Bearing 330880-16-15-061(154mm)-03(M20)-02 Bently Nevada

12 PROXPAC PROXIMITY TRANDUSER ASSEMBLY 1 set NDE Bearing 330880-16-15-066(168mm)-03(M20)-02 Bently Nevada

Page 402: Generator Manual

Part Number 131236-01 Revision E, August 2003

PROXPAC® PROXIMITY TRANSDUCER ASSEMBLY Manual

Page 403: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Copyright © 1995 – 2003 Bently Nevada LLC All Rights Reserved.

The information contained in this document is subject to change without notice.

The following are trademarks of Bently Nevada LLC in the United States and other countries:

ACM™, Actionable Information®, Actionable Information to the Right People at the Right Time®, ADRE, ™, Asset Condition Management™, Asset Condition Monitoring™, Bently ALIGN™, Bently BALANCE®, Bently DOCUVIEW™, Bently LUBE™, Bently Nevada, Bently PERFORMANCE™, Bently RELIABILITY™, CableLoc™, ClickLoc™, Data Manager, Decision SupportSM, DemoNet™, Dynamic Data Manager, Engineer Assist™, FieldMonitor™, flexiTIM™, FluidLoc, Helping You Protect and Manage All Your Machinery, HydroScan, HydroView™, Key ∅, Keyphasor, Machine Condition Manager™ 2000, MachineLibrary™, Machine Manager™, MicroPROX, Move Data, Not People, Move Information, Not Data™, NSv™, Prime Spike™, PROXPAC, Proximitor, REBAM, RuleDesk™, SE™, Seismoprobe, Smart Monitor, Snapshot™, System 1™, System Extender™, TDXnet™, TDIXconnX™, The Plant Asset Management CompanySM, TipLoc™, TorXimitor, Transient Data Manager, Trendmaster, TrimLoc™, Velomitor Bently Nevada’s orbit logo and other logos associated with the trademarks in bold above, are also all trademarks or registered trademarks of Bently Nevada in the United States and other countries.

The following ways of contacting Bently Nevada are provided for those times when you cannot contact your local Bently Nevada representative:

Mailing Address 1631 Bently Parkway South Minden, NV 89423 USA

Telephone 1 775 782 3611 1 800 227 5514

Fax 1 775 215 2876 Internet www.bently.com

ii

Page 404: Generator Manual

Related Documents The following documents contain additional information that you may find helpful when you install the transducer. This manual refers to these documents by document number.

Installing the Transducer Proximity Probes and Related Accessories (Bently Nevada application note AN028).

Guidelines for Grounding Bently Rotating Machinery Information Systems (Bently Nevada application note AN013).

Installation of Electrical Equipment in Hazardous Areas (Bently Nevada application note AN015).

Electrical and Mechanical Runout "Glitch": Definition of and Methods for Correction, including Shaft Burnishing to Remove Electrical Runout (Bently Nevada application note AN002).

API 670, third edition, Section 4.1.1.2: Machine Shaft Requirements for Electrical and Mechanical runout. (Available from the American Petroleum Institute, Publications and Distribution, 1220 L Street N.W., Washington D.C., 20005. Phone: (202) 682-8375.)

Reference Performance Specifications for the PROXPAC® Proximity Transducer Assembly (Bently Nevada document number 158735).

Bently Nevada Glossary (Bently Nevada document L1014).

European CE mark for the Bently Nevada PROXPAC® Transducer Assembly

In this Document is a list of the PROXPAC® transducer assemblies that have the CE mark, applicable standards used for certification, and installation instructions required for compliance.

Proximity Transducer Systems are electronic devices typically used in industrial applications. The PROXPAC® Transducer has been certified using the same Technical Construction File (TCF) and declaration of conformity as the 3300 8mm transducer system because they are similar in design and application. The PROXPAC® Transducer Assembly consists of a Proximitor® Sensor and a 3300 8mm reverse mount proximity probe built into a probe housing.

iii

Page 405: Generator Manual

Proxpac Proximity Transducer Assembly Manual

TCF through TÜV Rheinland of North America A Technical Construction File has been prepared through TÜV Rheinland of North America (TÜV Rheinland File Number: P9472350.02). The certificate of compliance is for Directive 89/336/EEC (EMC Directive). The applicable Generic Norms are: EN50081-2 and EN50082-2.

Installation Instructions (Reference Figure 0-1) These instructions are an addition to the Installation Instructions Section of the manual.

Compliant Systems and Component Part Numbers # Model Names Model Numbers

10 PROXPAC® Transducer

330800, 330801, 132306, 330105, 330106, and any PROXPAC® Assembly manufactured from these standard modules**

Includes all options and all approval versions of the base model numbers listed.

**--any proximity transducer, proximity probe, or extension cable which works correctly with the listed modules.

Testing and Test Levels Title EN

55011

(EN55022)

Emission

EN

61000-4-2

(IEC 801-2)

ESD

ENV50140

(IEC 801-3)

Rad. RFI

ENV50140

Rad. RFI

EN 61000-4-4

(IEC 801-4)

EFT

ENV50142

(IEC 801-5)

Surge

ENV50141

(IEC 801-6)

Cond. RFI

EN 61000-4-8

(IEC 1000-4-8)

Mag. Fields

Test Levels Emission Class A

4kV; 8kV

10V/m

10V/m

1kV

0.5kV

10V

30A/m, 50Hz

Criteria N/A A A A A A B A

These notes listed below apply only to the table “Testing and Test Levels”

discharge method: Contact; Air

80-1000 MHz sweep with 80% 1 kHz sine wave amplitude modulation

900 MHz dwell with 100% 200 Hz square wave modulation

I/O lines tested with conduit removed

150 kHz-80 MHz sweep with 80% 1 kHz sine wave amplitude modulation, conduit removed.

Bently Nevada Technical Publication The PROXPAC® Transducer is immune to EMI at levels as specified by EN50082-2 (i.e. 10 V/m signal level from 80 - 1000 MHz except for ITU broadcast frequency bands of 87 - 108 MHz, 174 - 230 MHz, and 470 - 790 MHz where the level shall be 3 V/m). Vibration readings due to EMI interference will be less than 1.0 mil pp.

iv

Page 406: Generator Manual

Proximity Probes All probes must be mounted in an EMI shielded environment (i.e. typically inside a machine casing).

Field Wiring All field wiring must include a foil or braided shield that is connected to ground.

EMI Shielding With Conduit All field wiring, from the PROXPAC® enclosure to a receiving unit (i.e. monitor), must be shielded from EMI energy. Acceptable EMI shielding includes either rigid or flexible metal conduit. The EMI shield, in this example conduit, is grounded through the PROXPAC® at the point of entrance to the PROXPAC® enclosure. Grounding at any subsequent junction enclosure is also required.

EMI Shielding Without Conduit Acceptable wiring includes a multi-conductor cable with both a foil and a braided shield. The shield must be grounded to the metal liner inside the PROXPAC® enclosure. Using the nut on one of the hole plugs to ground the shield is acceptable. The shield must be maintained around the wiring as it is grounded to the enclosure. Grounding at any subsequent junction enclosure is also required. Grounding the cable shield at the PROXPAC® is not acceptable if intrinsic safety barriers are being used. Grounding the cable shield at both ends may cause errors due to current flowing in the wiring shield if the grounds are not at the same potential.

EMI Suppression Ferrite An EMI suppression ferrite must be clipped onto the field wiring close to the Proximitor® Sensor's terminal strip. Remove jacket, foil and braided shield from the field wiring where the EMI suppression ferrite is placed.

Non Grounded Bearing Housings When the PROXPAC® is installed on a bearing housing which is isolated from ground, mount the PROXPAC® on an insulated bushing to maintain the housing isolation and ground the PROXPAC® at the conduit fitting.

v

Page 407: Generator Manual

Proxpac Proximity Transducer Assembly Manual

1 ME

TE

R C

AB

LE LE

NG

TH

3300 8mm

PR

OB

E O

NLY

MA

DE

IN U

.S.A

.O

UT

VT

CO

M

Figure 0-1: Front view with cover removed. (1) PROXPAC® Enclosure (2) Field Wiring (3) EMI Suppression Ferrite (p/n 02200068) (4) Plug (5) Conduit (6) To Monitor

vi

Page 408: Generator Manual

Contents

Related Documents ...........................................................................................................................iii Installing the Transducer...............................................................................................................iii Electrical and Mechanical Runout ................................................................................................iii Reference ......................................................................................................................................iii

European CE mark for the Bently Nevada PROXPAC® Transducer Assembly .............................iii In this Document...........................................................................................................................iii Proximity Transducer Systems .....................................................................................................iii TCF through TÜV Rheinland of North America .......................................................................... iv Installation Instructions................................................................................................................. iv Compliant Systems and Component Part Numbers ...................................................................... iv Testing and Test Levels ................................................................................................................ iv

Bently Nevada Technical Publication............................................................................................... iv Proximity Probes............................................................................................................................ v Field Wiring ................................................................................................................................... v EMI Shielding With Conduit ......................................................................................................... v EMI Shielding Without Conduit .................................................................................................... v EMI Suppression Ferrite ................................................................................................................ v Non Grounded Bearing Housings .................................................................................................. v

Section 1 — System Description ......................................................... 1 Receiving, Inspecting, and Handling the System............................................................................... 1 Customer Service ............................................................................................................................... 1

Section 2 — Installation........................................................................ 3 Installing the Probe Sleeve and Housing ........................................................................................... 3 Checking the Resonant Frequency of the Probe Sleeve..................................................................... 3 Connecting the Field Wiring.............................................................................................................. 8 Removing and Reinstalling Gapped Probes....................................................................................... 8

Section 3 — Maintenance and Troubleshooting .............................. 11 Scale Factor Verification ................................................................................................................. 12 Troubleshooting ............................................................................................................................... 14 Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc....................................................................... 15 Fault Type 2: VSIG = 0 Vdc ............................................................................................................. 17 Fault Type 3: -1 Vdc < VSIG < 0 Vdc .............................................................................................. 18 Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc ............................................................................. 20 Fault Type 5: VSIG = VXDCR ............................................................................................................. 21

Section 4 — Ordering Information..................................................... 23 Notes: ........................................................................................................................................... 23 PROXPAC® Proximity Transducer, English .............................................................................. 23 PROXPAC® Proximity Transducer, Metric................................................................................ 24 Accessories .................................................................................................................................. 25

Section 5 — Specifications ................................................................ 29 Electrical .......................................................................................................................................... 29 Hazardous Area Approvals .............................................................................................................. 30 Mechanical ....................................................................................................................................... 31 Environmental Limits ...................................................................................................................... 32

Effects of 60 Hz Magnetic Fields up to 420 Gauss:..................................................................... 33 Patents .......................................................................................................................................... 33

vii

Page 409: Generator Manual

Proxpac Proximity Transducer Assembly Manual

viii

Page 410: Generator Manual

Section 1 — System Description

Section 1 — System Description The PROXPAC® Proximity Transducer Assembly is similar in external appearance and mounting detail to our 31000/32000 Proximity Probe Housing Assemblies. It offers the same advantages and features as these conventional housings for external adjustment of, and access to, proximity probes. However, the PROXPAC® Assembly also contains its own Proximitor® Sensor inside the housing’s cover. This design makes the PROXPAC® Assembly a completely self-contained proximity probe system, and eliminates the need for an extension cable between the probe and its associated Proximitor® Sensor. It also eliminates the need for a separate Proximitor® housing. For short cable runs, field wiring is connected directly between the monitors and PROXPAC® Assemblies. For longer cable runs, a junction box is often mounted at or near the machine skid to house terminal strips. The field wiring is connected to terminal strips in the junction box, providing access to Proximitor® signals at a convenient location near the machine.

The PROXPAC® housing is made of Polyphenylene Sulfide (PPS) which is an advanced, molded thermoplastic. It was chosen specifically to replace previous steel and aluminum housings offered by Bently Nevada, and incorporates glass and conductive fibers in the PPS for added strength and electrostatic dissipation. The PROXPAC® housing is rated for Type 4X and for IP66 environments for extra protection in severe environments.

Receiving, Inspecting, and Handling the System Application Alert: Although the terminals and connector on the Proximitor Sensor have protection against electrostatic discharge, take reasonable precautions to avoid electrostatic discharge when handling the Proximitor® Sensor.

Carefully remove all equipment from the shipping containers and inspect the equipment for shipping damage. If shipping damage is apparent, file a claim with the carrier and submit a copy to the nearest Bently Nevada office. Include part numbers and serial numbers on all correspondence. If no damage is apparent and the equipment is not going to be used immediately, return the equipment to the shipping containers and reseal until ready for use.

Store the equipment in an environment free from potentially damaging conditions such as high temperature or a corrosive atmosphere. See Specifications Section for environmental specifications.

Customer Service Bently Nevada maintains numerous Sales and Service offices worldwide. To locate the office nearest you, visit our website at www.bently.com <http://www.bently.com>. Here, you can also find specifications on all standard product offerings.

Support for products and services should be directed to one of these departments:

For product quotations, product applications, product ordering, scheduling on-site Services, and questions regarding existing orders, please contact your nearby Bently Nevada Sales and Service Office.

1

Page 411: Generator Manual

Proxpac Proximity Transducer Assembly Manual

For general product pricing, delivery, or other ordering information, contact your local BNC office or contact Customer Service Department, Minden, Nevada, USA Phone: 1-775-782-9913 Fax: 1-775-782-9259.

For technical questions or problems regarding installed BNC products, contact our Technical Support Staff at:

[email protected] <mailto:[email protected]>

or at the following locations:

Technical Support (North America)

Phone: 1-775-782-1818 Fax: 1-775-782-1815

Technical Support (UK)

Phone: (44) 1925 818504 Fax: (44) 1925 817819

2

Page 412: Generator Manual

Section 2 — Installation

Section 2 — Installation This section shows how to:

• Install the probe sleeve and housing

• Connect the field wiring

• Install replacement components

Installing the Probe Sleeve and Housing The following figures show the minimum values for side clearance and target configuration for the 3300 8mm reverse mount probe used in the PROXPAC® Proximity Transducer Assembly.

8.9 mm 8.9 mm(0.35 in)(0.35 in)

17.8 mm(0.70 in)

6.4 mm(0.25 in)

15.2 mm(0.6 in)

15.2 mm(0.6 in)

35.6 mm(1.4 in)

Shaft

Shaft

Shaft

Checking the Resonant Frequency of the Probe Sleeve

The probe sleeve length is defined as the probe penetration depth plus the standoff adapter length. The probe sleeve will vibrate unless proper stiffening supports are used. Evaluate each machine installation to be sure the vibration of the sleeve is within acceptable levels. The resonant frequency of the probe sleeve for various lengths is shown below.

3

Page 413: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Probe Sleeve Resonant Frequency

The resonant frequency (Hz) should be at least three times the machine running speed in Hz.

60rpmHz =

Refer to document AN028 for more information on mounting brackets and adapters or contact your nearest Bently Nevada office for a copy of the Bently Nevada catalog.

The figure below shows the installation procedure for the PROXPAC® housings. Although only one possible mounting configuration is shown, the plastic housing can mount on top of the outer sleeve through any one of the four holes in its sides. The retaining chain can be fastened to any one of the four corner holes in either the housing or the cover to allow for the most convenient positioning.

The retaining nut slides through any of the four holes in the side of the housing so that the probe can be gapped before attaching the housing to the outer sleeve. This nut contains a thread locking patch which creates a resistance to turning that is strong enough to resist loosening under vibration and to require a wrench to turn the nut.

By following the installation procedures outlined on the next page, the probe can be fully gapped before the plastic housing and its attached cover are installed and conduit or armored cable is connected. The numbers in the figure refer to the steps in the procedure.

4

Page 414: Generator Manual

Section 2 — Installation

6

5

4

2

1

7Probe Cable

Connector Protector

Probe Sleeve with Wrench Flats

Locknut

Vertical Installation

Retaining Plate

Conduit FittingHousing

Captive Screws

Proximitor® Sensor

Housing Cover

Retaining Nut

Outer Sleeve

Machine Case

5

Page 415: Generator Manual

Proxpac Proximity Transducer Assembly Manual

1. Install the outer sleeve on the machine.

2. Install the probe sleeve and adjust the probe gap using the figure below. Tighten the probe sleeve locknut to the recommended torque (see specifications). Apply medium strength, removable threadlocking compound (Loctite 242) or use equivalent means to prevent the probe sleeve locknut from loosening.

3. Seal unused holes in the housing with blanking plugs. Tighten the blanking plug nut to 0.5 N•m (5 in lb).

4. Place the housing on the outer sleeve and slide the retaining plate under the retaining nut. Tighten the retaining nut to 29.5 N•m (260 in lb).

5. Attach conduit or cable gland as necessary. Install the conduit such that liquid will not enter PROXPAC® housing.

6. Connect the field wiring, probe cable, and connector protector.

7. Fasten the cover in place.

Torque Nut To0.5 N-M (5 IN-LB)

Backplate

Blanking Plug Body

Rubber Seal

6

Page 416: Generator Manual

Section 2 — Installation

-9 Vdc 24 Vdc

Mechanical Method

Voltage at the centerof the linear range(typically –9Vdc).

10 kΩ

1.27 mm(50 mil)

Electrical Method

3300, 8mm1metre probe

Proximitor® SensorSpacer

Power SupplyVoltmeter

Shaft Shaft

7

Page 417: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Connecting the Field Wiring Use the following wiring diagrams to connect the field wiring between the Proximitor® Sensor and the monitoring instruments (refer to application notes AN013 and AN015 for more information).

No Barriers

Transducer PowerCommon

Input Signal

External Barriers

Connect shield to single point ground at monitor.

External Barrier

Cable Shield

Cable Shield

Transducer PowerCommon

Input Signal

Monitor Terminal

Strip

Cable Shield

Monitor Terminal

Strip

Proximitor® Sensor

Proximitor® Sensor

To Probe

To Probe

See the frequency response graph, Figure 5-1, at the end of the Specifications section of this document as a guideline for determining maximum field wiring length for 18 gauge wire.

Removing and Reinstalling Gapped Probes

Caution: The Housing could be under high pressure. Removing the cover could result in injury or permanent eye damage. Make sure the pressure is equalized before removal.

In some instances you may need to remove an externally mounted probe for maintenance or replacement. If the probe has been gapped, the reinstallation of the probe sleeve can be quickened by marking the location of the probe sleeve locknut before removing the probe sleeve from the outer sleeve. Mark the probe sleeve locknut position with an indelible marking pen, by temporarily locking it with a second jamnut, or by other similar means. This will allow you to screw

8

Page 418: Generator Manual

Section 2 — Installation

the probe sleeve back in to its approximate position. Take care to avoid turning the probe into the shaft. Do not use this method as a substitute for gapping probes. Proper installation always requires that the gapping procedures be followed.

When the probe sleeve is removed, the outer sleeve will be left with an opening into the machine case. This opening can be sealed using Bently Nevada part number 104968-01(english version) or 104968-02 (metric version) to prevent fluid leakage from the machine case or contamination of lube oil. This seal is effective to 3.4 bar (50 psi).

9

Page 419: Generator Manual

Proxpac Proximity Transducer Assembly Manual

10

Page 420: Generator Manual

Section 3 — Maintenance and Troubleshooting

Section 3 — Maintenance and Troubleshooting

This section shows how to verify that the system is operating properly and identify parts of the system that are not working properly.

The transducer system does not require verification at regular intervals. You should, however, verify operation by using the scale factor verification on the following page if any of the following conditions occur:

• components of the system are replaced or disturbed

• the performance of the system changes or becomes erratic

• you suspect that the transducer is not calibrated correctly

The scale factor verification and the adjustment procedure require the following instruments:

- digital multimeter

- power supply

- spindle micrometer

- fixed resistor, 10 kΩ

The scale factor verification uses the test setup shown in the following figure:

Digital Multimeter Power Supply

-24 VdcVin Com

10 kΩ

11

Page 421: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Scale Factor Verification 1. Compensate for mechanical backlash and adjust the spindle micrometer for electrical

zero.

2. Adjust gap to electrical zero by moving the probe.

3. Compensate for mechanical backlash in the micrometer and adjust to the start of the

linear range.

4. Record voltages in the following table and calculate Incremental Scale Factors

(ISFs) and Average Scale Factor (ASF) using the equations.

12

Page 422: Generator Manual

Section 3 — Maintenance and Troubleshooting

Increments:250 µmor10 mil

Adjust Micrometer to…

Record Voltages

Calculate Scale Factor

N µmn miln Vdcn ISFn

(Incremental Scale Factor)

ASF

(Average Scale Factor)

1 250 10

2 500 20

3 750 30

4 1000 40

5 1250 50

6 1500 60

7 1750 70

8 2000 80

9 2250 90

ISFVdc Vdc

0.25n (mV / m)

n - 1 nµ =

ASF Vdc Vdc

2(mV / m)

250 m 2250 mµ

µ µ=

13

Page 423: Generator Manual

Proxpac Proximity Transducer Assembly Manual

ISFVdc Vdc

0.01n (mV / mil)

n - 1 n=

ASF Vdc Vdc

0.08(mV / mil)

10 mil 90 mil=

Troubleshooting This section shows how to interpret a fault indication and isolate faults in an installed transducer system. Before beginning this procedure, be sure the system has been installed correctly and all electrical connections have been secured properly in the correct locations.

When a malfunction occurs, locate the appropriate fault, check the probable causes for the fault indication and follow the procedure to isolate and correct the fault. Use a digital voltmeter to measure voltage and resistance. If you find faulty transducers, contact your local Bently Nevada Corporation office for assistance.

The troubleshooting procedures use measured voltages as shown in the following figure and table:

VXDCRVPS

Transducer PowerCommon (ground)

Input Signal

Instrumentterminal strip

VSIG

Note: VXDCR, VSIG, and VPS are all negative voltage values.

Table 3-1: Symbols for Measured Voltages Symbol Meaning Voltage measured

between…

VXDCR Transducer input voltage VT and COM

VSIG Signal voltage from the transducer

OUT and COM

VPS Power supply voltage Power Source and Common

14

Page 424: Generator Manual

Section 3 — Maintenance and Troubleshooting

Table 3-2: Definitions Symbol Defintion Example

A > B

A < B

A = B

"A" value is more positive than "B"

"A" value is more negative than "B"

"A" same value (or very close) to "B"

-21 > -23

-12 < -5

-24.1 = -24.0

Connect

Disconnect

Inspect

Record

Fault Type 1: VXDCR > -23 Vdc or VXDCR < -26 Vdc Possible causes

• Faulty power source

• Faulty field wiring

• Faulty Proximitor® Sensor

15

Page 425: Generator Manual

Proxpac Proximity Transducer Assembly Manual

VPS

No

YesFaulty PowerSupply

Measure VPS:

VPS > 23 Vdc or VPS < -26 Vdc?

VXDCR

No

YesFaulty Fieldwiring

Measure VXDCR:

VXDCR > 23 Vdc or VXDCR < -26 Vdc?

Faulty Proximitor® Sensor

16

Page 426: Generator Manual

Section 3 — Maintenance and Troubleshooting

Fault Type 2: VSIG = 0 Vdc Possible causes:

• Incorrect power source voltage

• Short circuit in field wiring

• Short circuit at Proximitor® Sensor terminal connection

• Faulty Proximitor® Sensor

Does fault condition type 1 exist?

No

VSIG

Yes

No Incorrect power source voltage or short in field wiring or short at Proximitor® Sensor terminal connection.

Measure VSIG:

VSIG = 0 Vdc ?

Faulty Proximitor® Sensor

17

Page 427: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Fault Type 3: -1 Vdc < VSIG < 0 Vdc Possible causes:

• Probe is incorrectly gapped (too close to target)

• Incorrect power source voltage

• Faulty Proximitor Sensor

• Probe is detecting other material than target

• Short or open circuit in a connector (dirty or wet) or loose connectors

• Short or open circuit in the probe

Yes

No Re-gap the probe.Retest the system.

Verify the probe gap in the machine.

Is the probe gapped correctly?

Does fault condition type 1 exist?

No

Step 2 Step 1

Original probe

Known good probe with correct integral length cable (open gap) VSIG

18

Page 428: Generator Manual

Section 3 — Maintenance and Troubleshooting

Yes

No Faulty Proximitor® Sensor or probe is being loaded.

Measure VSIG:

-1.1 Vdc < VSIG < 0 Vdc ?

Inspect the connector.

Is there a dirty, rusty, or poor connection?

Yes

No

Clean connector (using isopropyl alcohol or electronic terminal cleaner), reassemble, and retest the original system.

RPROBE

Yes

No

Retest the original system.

Measure the resistance. Is RPROBE within specifications?

1m probe: 7.58 Ω ± 0.5 Ω

Faulty Probe

19

Page 429: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Fault Type 4: VXDCR < VSIG < VXDCR + 2.5 Vdc Possible causes:

• Faulty Proximitor Sensor

• Probe is incorrectly gapped (too far from target)

Does fault condition type 1 exist?

No

VSIG

Yes

No Faulty Proximitor® Sensor

Measure VSIG:

-1.2 Vdc < VSIG < -0.3 Vdc ?

Reconnect system Regap the probe Retest system

20

Page 430: Generator Manual

Section 3 — Maintenance and Troubleshooting

Fault Type 5: VSIG = VXDCR Possible causes:

• Incorrect power source voltage

• Faulty Proximitor Sensor

• Faulty field wiring (between Out and VT)

Does fault condition type 1 exist?

No

VSIG

No

Yes Faulty Proximitor® Sensor

Measure VSIG:

VSIG = VXDCR ?

Faulty field wiring (short between OUT and VT)

If a faulty Proximitor® Sensor is indicated, replace the Proximitor® Sensor and housing lid as a unit (the replacement part number is printed on the Proximitor® Sensor). Do not remove the Proximitor® Sensor from the lid. There are no user serviceable parts inside.

21

Page 431: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Bently Nevada performs failure analysis on all returned transducers. The information gained during analysis of failed products is used to improve our current and future products. If you encounter a part that has failed, return the part with a brief description of the product application and symptoms observed to our corporate headquarters in Minden, Nevada for analysis:

Bently Nevada, LLC Attn: Product Repair Department 1631 Bently Parkway South Minden, Nevada 89423 USA

22

Page 432: Generator Manual

Section 4 — Ordering Information

Section 4 — Ordering Information Notes: Order -00 or -000 for all options to receive just a spare housing with Proximitor® Sensor.

When ordering probe separate from PROXPAC® Transducer, order a separate Connector Protector, Part Number 03839420 for the probe.

PROXPAC® Proximity Transducer, English 330800-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option

0 0 No probe; Proximitor® Sensor without approvals 0 1 No probe; Proximitor® Sensor with Multiple Approvals 1 6 3300 XL 8 mm probe 2 8 3300 XL 8 mm probe with Multiple Approvals

B: Standoff Adapter Option (B Dimension) Order in increments of 0.5 in (13 mm ).

Minimum length: 1.5 in (38 mm)

Maximum length: 7.5 in (191 mm )

Examples: 0 0 = No standoff adapter

1 5 = 1.5 in (38 mm)

C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 1.0 and 2.0 inches, counter bore may be required in machine case to reduce probe side view and/or rear view effects.

Order in increments of 0.1 in (2 mm).

Minimum length: 1.0 in (25 mm)

Maximum length: 30 in (762 mm )

Examples: 0 0 0 = No probe sleeve

0 3 7 = 3.7 in (94 mm)

2 2 4 = 22.4 in (569 mm)

D: Fittings Option Note: For 1/2-14 NPT fittings, order option -03 or spare 26650-01 reducers for either option -01 or -02.

0 0 No fittings; two plugs and two washers

0 1 One 3/4-14 NPT fitting, two plugs

0 2 Two 3/4-14 NPT fittings, one plug

0 3 One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs

E: Mounting Thread Option

230 0 No outer sleeve assembly

Page 433: Generator Manual

Proxpac Proximity Transducer Assembly Manual

0 2 3/4-14 NPT (Required if ordering Standoff Adapter Option.)

0 5 7/8-14 UNF-2A

PROXPAC® Proximity Transducer, Metric 330801-AXX-BXX-CXXX-DXX-EXX Option Descriptions A: Probe and Approvals Option

0 0 No probe; Proximitor® Sensor without approvals

0 1 No probe; Proximitor® Sensor with Multiple Approvals

1 6 3300 XL 8 mm probe

2 8 3300 XL 8 mm probe with Multiple Approvals

B: Standoff Adapter Option (B Dimension) Order in increments of 10 mm.

Minimum length: 40 mm

Maximum length: 200 mm

Examples: 0 0 = No standoff adapter

0 4 = 40 mm

2 0 = 200 mm

C: Probe Penetration Option (C Dimension) Note: For penetration lengths between 25 and 50 mm, counter bore may be required in machine case to reduce probe side view and/or rear view effects.

Order in increments of 1 mm.

Minimum length: 25 mm

Maximum length: 760 mm

Examples: 0 0 0 = No probe sleeve

0 5 0 = 50 mm

7 6 0 = 760 mm

D: Fittings Option (supplied as a kit) 0 0 No fittings; two plugs and two washers

0 1 One M25 fitting, two plugs

0 2 Two M25 fittings, one plug

0 3 One M20 fitting, two plugs

0 5 One PG21 to PG11 reducer, two plugs

0 6 One 3/4-14 NPT fitting, one 3/4-14 NPT to 1/2-14 NPT SST reducer and two plugs

0 7 One PG21 x M20 fitting, two plugs

0 8 Two PG21 x M20 fittings, one plug

Note: Conduit fittings are necessary when hardline conduit or metal piping is brought into the housing. If using flexible conduit, it should be ordered with integral 3/4-14 NPT fittings so that additional conduit

24

Page 434: Generator Manual

Section 4 — Ordering Information

fittings are not required with the housing. If using flexible conduit, order the D = 00 option.

E: Mounting Thread Option 0 0 No outer sleeve assembly

0 1 M24 X 3

0 2 3/4-14 NPT (required if ordering Standoff Adapter Option)

Accessories 02200068

Spare EMI Suppression Ferrite. This snap-on ferrite part covers a portion of the field wiring inside the PROXPAC® Transducer housing. It reduces the effect of Electro-Magnetic Interference (EMI) on the transducer signal. The ferrite part is required for CE approved installations, primarily found in Europe.

158735 Performance Specification

131236-01 Operation Manual

132306-01 Spare Proximitor® Sensor and Housing Cover, non-approved

132306-02 Spare Proximitor® Sensor and Housing Cover, approved

330105-02-12-10-02-00 Spare 3300 XL 8 mm probe, English, non-approved

330105-02-12-10-02-05 Spare 3300 XL 8 mm probe, English, approved

330106-05-30-10-02-00 Spare 3300 XL 8 mm probe, metric, non-approved

330106-05-30-10-02-05 Spare 3300 XL 8 mm probe, metric, approved

132501-AXX Field Wiring Cable 1.0 mm² (18 AWG), 3 conductor, twisted, shielded cable. Terminal ring lugs are installed at each end including an extra shield ring lug at the monitor end.

Option Description A: Cable length option in feet. Order in increments of 1.0 ft (0.3 m).

Minimum length: 2 ft (0.6 m).

Maximum length: 99 ft (30 m).

Examples: 1 5 = 15 feet (4.57 metres)

2 0 = 20 feet (6.10 metres) 25

Page 435: Generator Manual

Proxpac Proximity Transducer Assembly Manual

103537-01

Terminal Mounting Block The block includes mounting screws and is easily installed in a Proximitor® Housing. The block accepts ring lugs used on the Field Wiring Cable.

02120015 Bulk Field Wire 1.0 mm² (18 AWG), 3-conductor, twisted shielded cable with drain wire. Specify length in feet.

01651632 Terminal Ring Lug Extra ring lugs can be attached to Bulk Field Wire to assemble the exact length of cable needed.

37948-01 Probe Support / Oil Sleeve Provides seal along probe sleeve. May be used as a probe sleeve support in certain installations.

40113-02 Connector Protector Kit Installs a connector protector onto a probe that has been ordered separately.

English Probe Sleeve (Spare) 108883 –AXXX

This is the measured probe sleeve length. Order in increments of 0.1 in (3 mm). Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length:

AXXX: = Standoff Adapter Option from original housing (330800 option B) + Probe penetration option from original housing (330800 option C) + 0 2 5. Example: original part number is 330800-16-15-035-03-02. AXXX: option for replacement sleeve is (015 + 035 + 025) = 075.

Minimum Probe Sleeve Length: 3.5 in (89 mm)= 0 3 5 Maximum Probe Sleeve Length: 32.5 in (826 mm) = 3 2 5

Metric Probe Sleeve (Spare) 108882 –AXXX

This is the measured probe sleeve length. Order in increments of 1 mm. Note that the individual probe sleeve length does not include the distance from the end of the sleeve to the probe tip or the gap from the probe tip to the target material. If only the part number of the original housing is known and the sleeve cannot be measured, use the following formula to determine the sleeve length:

AXXX: = Standoff Adapter Option from original housing (330801 option B) * 10 + Probe penetration option from original housing (330801 option

26

Page 436: Generator Manual

Section 4 — Ordering Information

C) + 0 6 3. Example: original part number is 330801-16-08-205-03-02. AXXX: option for replacement sleeve is (080 + 205 + 063) = 348.

Minimum Probe Sleeve Length: 88 mm (3.5 in) = 0 8 8

Maximum Probe Sleeve Length: 823 mm (32.4 in) = 8 2 3

English Standoff Adapter (Spare) Hex = 1 3/8 in; threads = 3/4-14 NPT 109319 –AXXX

Order in increments of 0.5 in (13 mm).

Minimum length: 1.5 in (38 mm)

Maximum length: 7.5 in (191mm)

Example: 0 2 0 = 2 in (51 mm)

Metric Standoff Adapter (Spare) Wrench flats = 35 mm; threads = 3/4-14 NPT. 109318 –AXX

Order in increments of 10 mm.

Minimum length: 40 mm

Maximum length: 200 mm

Example: 0 5 = 50 mm

104968-01 English Sleeve Plug Threaded, 303 stainless steel.

104968-02 Metric Sleeve Plug Threaded, 303 stainless steel.

Plugs fill opening when sleeve is removed from machine case.

104288-01 English Blanking Plug

104288-02 Metric Blanking Plug.

Blanking plugs are included with the Fittings Option "D". Spare plugs fill conduit holes in plastic housing where needed.

Heavy Duty Cable Fittings

03813103 Chrome-plated Zinc Conduit Fitting, 3/4-14 NPT

03818100 AISI 316 Stainless Steel Conduit Fitting, 3/4-14 NPT

27

Page 437: Generator Manual

Proxpac Proximity Transducer Assembly Manual

03818101 AISI 316 Stainless Steel Conduit Fitting, PG21 x M25

03818102 AISI 316 Stainless Steel Conduit Fitting, PG21 x M20

03818111 Nickel-plated Brass Conduit Fitting, PG21 x M20

26650-01 AISI 303 Stainless Steel Reducer 3/4-14 NPT to 1/2-14 NPT

Sealtite® Flexible Conduit

14847-AXX 1/2-14 NPT assembly

14848-AXX 3/4-14 NPT assembly

Option Description A: Length Option

Order in increments of 1 ft (0.3 m).

Minimum length: 1 ft (0.3 m).

Maximum length: 99 ft (30.2 m)

Example: 0 5 = 5 ft (1.5 m).

28

Page 438: Generator Manual

Section 5 — Specifications

Section 5 — Specifications

Unless otherwise noted, the following specifications apply from +18°C to +27°C (+64°F to +80°F) with a -24 Vdc power supply, a 10 kΩ load, a Bently Nevada supplied AISI 4140 steel target and a probe gapped at 1.27 mm (50 mils).

Electrical Input:

Accepts one noncontacting 3300 XL 8 mm Proximity Probe with a one (1) metre cable length installed in the probe sleeve.

Power: Requires -17.5 Vdc to -26 Vdc without barriers at 12 mA maximum consumption. -23 Vdc to -26 Vdc with barriers. Operating at a more positive voltage than -23.5 Vdc may result in reduced linear range.

Supply Sensitivity: Less than 2 mV change in output voltage per volt change in input voltage.

Output resistance: 50 Ω

Probe dc resistance (nominal) (RPROBE): 7.58 ± 0.5 Ω

Field Wiring: Recommend using three-conductor shielded triad cable. Maximum length of 305 metres (1,000 feet) between the PROXPAC® Sensor and the monitor. See the frequency response graph (Figure 5-1) for signal rolloff at high frequencies when using longer field wiring lengths.

Linear Range: 2.0 mm (80 mils). Linear range begins at approximately 0.25 mm (10 mils) from the target and is from 0.25 mm to 2.3 mm (10 to 90 mils) (approximately -1 to -17 Vdc).

Recommended Gap Setting: 1.27 mm (50 mils).

Incremental Scale Factor (ISF): 7.87 mV/µm (200 mV/mil) ±5.5% typical including interchangeability errors when measured in increments of 0.25 mm (10 mils) over the linear range.

Deviation from best fit straight line (DSL): Less than ±23 µm (±0.9 mil) typical including interchangeability errors over the linear range when referenced to a 7.87 mV/µm (200 mV/mil) best fit straight line.

29

Page 439: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Probe Temperature Stability: Over probe temperature range of -35°C to +120°C (-30°F to +250°F), typical Incremental Scale Factor (ISF) remains within ±10% of 7.87 mV/µm (200 mV/mil) while deviation from straight line remains within ±50µm (±2 mils).

Minimum Target Size: 15.2 mm (0.6 in) diameter (flat target).

Shaft Diameter: Minimum: 50.8 mm (2 in).

Recommended minimum: 76.2 mm (3 in). Measurements on shaft diameters smaller than 50 mm (2 in) usually require close spacing of radial vibration or axial position transducers with the potential for their electromagnetic emitted fields to interact with one another (cross-talk), resulting in erroneous readings. Care should be taken to maintain minimum separation of transducer tips, generally at least 40 mm (1.6 in) for axial position measurements or 74 mm (2.9 in) for radial vibration measurements. Radial vibration or position measurements on shaft diameters smaller than 76.2 mm (3 in) will generally result in a change in scale factor. Consult Performance Specification 158735 for additional information.

Frequency Response: 0 to 8 kHz: +0, -3 dB, at 50 mils probe gap with up to 305 metres (1000 feet) of field wiring. See Figure 5-1 below.

Hazardous Area Approvals CSA/NRTL/C:

Exia for Class I, Division 1, Groups A, B, C and D, when installed with intrinsically safe zener barriers per drawing 132484 or when installed with galvanic isolators. Class I, Division 2, Groups A, B, C and D non-incendive when installed without barriers per drawing 132484. T6 @ Ta=+100°C, T5 @ Ta=-35 to +85°C.

BASEEFA / CENELEC: EExia for Zones 0, 1 and 2, Group IIC, LCIE certificate number 98 ATEX 6011X, when installed with intrinsically safe zener barriers or galvanic isolators per drawing 132484, T5 @ Ta=100°C.

ExN for Zone 2, Groups IIA, IIB and IIC, BASEEFA certificate number Ex 97Y4175X, T4 @ Ta=100°C.

30

Page 440: Generator Manual

Section 5 — Specifications

Mechanical Housing Ratings:

For North America, Type 4X water-proof and corrosion-resistant rating certified by Canadian Standards Association. IP66 rating verified by CSA report number SC 115582-1. CENELEC standard EN50014 rating for electrostatic dissipation of a plastic material located in a hazardous area.

Probe Tip Material: Polyphenylene Sulfide (PPS)

Probe Case Material: AISI 304 stainless steel

Probe Cable: 1 metre length, 75 Ω triaxial, fluoroethylene propylene (FEP) insulated.

Probe Connector: Gold-plated brass ClickLoc™ connector with connector protector attached.

Probe Tensile Strength: 330 N (75 lb) between probe cable and case, maximum.

Housing Material: Ultraviolet (UV) resistant, glass-reinforced polyphenylene sulfide (PPS) thermoplastic containing conductive fibers.

Sleeve Material and Retaining Chain: AISI 304 stainless steel

Outer Sleeve and Retaining Screws: AISI 303 stainless steel

Sleeve O-Ring Material: Neoprene®

Grounding Liner and Retaining Plate Material: AISI 304 Stainless Steel

Recommended Torque

Retaining Nut: 29.5 N·m (260 in·lb)

Probe Sleeve Locknut:

39.3 N·m (350 in·lb)

Housing Strength (typical): Outer sleeve was mounted on a test stand with its axis parallel to horizontal and the housing mounted on the outer sleeve through an end hole. The housing supported 912 N (205 lb) placed approximately 38 mm (1.5 in) from the unsupported end with the cover fastened in place and grounding liner installed.

31

Page 441: Generator Manual

Proxpac Proximity Transducer Assembly Manual

Housing Impact Strength: Certified by BASEEFA to withstand two separate 4 Joule (5.4 ft·lb) impacts at -39°C (-38°F) and at 115°C (239°F). Samples of the housing and cover were verified by CSA to withstand a 7 Joule (9.5 ft·lb) impact at ambient room temperature.

Total System Weight: 1.4 kg (3.1 lb) typical with 0.3 metre (12 in) sleeve length.

Environmental Limits Probe Temperature Range

Operating and Storage Temperature:

-51°C to +177°C (-60°F to +350°F).

Note: Exposing the probe to temperatures below -34°C (-30°F) may cause premature failure of the pressure seal.

Probe Housing and Proximitor® Sensor

Operating Temperature:

-34°C to +100°C (-30°F to +212°F).

Storage Temperature: -34°C to +105°C (-30°F to +221°F).

Relative Humidity (PROXPAC® Sensor and probe): 100% condensing, non-submersible when connectors are protected. When properly sealed, moisture should not enter the housing. Precautions should be taken to prevent moisture from traveling through the conduit into the housing.

Hot Water and Steam Exposure Effects: (Specification not guaranteed) Brief periods (up to one week) of contact with hot water 95°C (203°F) and/or condensing steam should not significantly affect the strength of the plastic housing. Contact with these beyond this length of time may eventually cause the strength of the plastic housing to permanently decrease during the first 6 to 8 weeks of exposure, and then level at approximately half of its initial value. Tests of actual housing performance after contact with hot water and condensing steam have not been conducted.

Probe Pressure: The PROXPAC® is designed to seal differential pressure between the probe tip and the housing main body when used with a 3300 XL 8 mm probe. The sealing material internal to the probe case consists of a Viton® O-ring; the O-ring between the sleeve and the housing is a Neoprene® O-ring. The plastic housing is certified to seal against hose-directed water according to Type 4X and IP66 standards but is not designed to resist

32

Page 442: Generator Manual

Section 5 — Specifications

internal or external pressure. Probes are not pressure tested prior to shipment.

Contact our custom design department if you require a test of the pressure seal for your application.

Note: It is the responsibility of the customer or user to ensure that all liquids and gases are contained and safely controlled should leakage occur from the PROXPAC® transducer. Solutions with high or low pH values may erode the tip assembly of the probe, causing media leakage into surrounding areas. Bently Nevada Corporation will not be held responsible for any damages resulting from leaking Proximity Probe Housing Assemblies. In addition, PROXPAC® transducers will not be replaced under the service plan due to probe leakage.

Effects of 60 Hz Magnetic Fields up to 420 Gauss: Output voltage in mil pp/gauss: Gap: Proximitor® Sensor Probe 90 mil (worst case) 0.0179 0.0045

Patents 5,016,343; 5,126,664; 5,351,388; and 5,685,884

Components or procedures described in the patents apply to this product

-6

-5

-4

-3

-2

-1

0

1

10 100 1000 10000

Frequency in Hz

Mag

nitu

de (d

B)

305 m (1000 ft) 610 m (2000 ft)3660 m (12000 ft) 152 m (500 ft) with external barriers

Figure 5-1: Typical Frequency Response at 50 mils Gap

33

Page 443: Generator Manual

Proxpac Proximity Transducer Assembly Manual

34

Page 444: Generator Manual

3/110

3

Presentation 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

FunctionsThese devices monitor the levels of conductive liquids.

They control the actuation of pumps or valves to regulate levels and are also suitable

for protecting submersible pumps against running empty, or protecting tanks from

"overflow". They can also be used to control dosing of liquids in mixing processes

and to protect heating elements in the event of non immersion.

They have a transparent, hinged flap on their front face to avoid any accidental

alteration of the settings. This flap can be directly sealed.

Compatible liquids:

! spring, town, industrial and sea water,

! metallic salt, acid or base solutions,

! liquid fertilizers,

! non concentrated alcohol (< 40 %),

! liquids in the food-processing industry: milk, beer, coffee, etc.

Non-compatible liquids:

! chemically pure water,

! fuels, liquid gasses (inflammable),

! oil, concentrated alcohol (> 40 %),

! ethylene, glycol, paraffin, varnish and paints.

DescriptionRM4 LG01 RM4 LA32

Width 22.5 mm Width 22.5 mm

1 Fine adjustment of time delay (as % of setting range max. value).

2 Fine adjustment of response sensitivity (as % of setting range max. value).

3 Function selector switch:

- empty or fill .

4 Switch combining:

- selection of the response sensitivity range,

- selection of time delay on energisation or on de-energisation of the

relay.

RM4 LG01

RM4 LA32

2

3RU

1

2

4

RU

3

R Yellow LED: indicates relay state.

U Green LED: indicates that supply to the RM4 is on.

Table showing details for switch 4

Switch position Time delay Sensitivity

500 On-delay High = 500 kΩ range

500 Off-delay High = 500 kΩ range

50 On-delay Medium = 50 kΩ range

50 Off-delay Medium = 50 kΩ range

5 On-delay Low = 5 kΩ range

5 Off-delay Low = 5 kΩ range

References :page 3/112

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Setting-up :page 3/115

561

07

85

610

79

Page 445: Generator Manual

3/111

3

Presentation (continued) 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

The operating principle is based on a change in the resistance measured between immersed

or non-immersed electrodes. Low resistance between electrodes: liquid present. High

resistance between electrodes: no liquid present. The electrodes may be replaced by other

sensors or probes which transmit values representing variations in resistance.

The a.c. measuring voltage which is < 30 V and galvanically insulated from the supply

and contact circuits, ensures safe use and the absence of any electrolysis phenomena.

RM4 relays may be used:

For detection of a liquid level, operating with 2 electrodes, one reference electrode and

one high level electrode, or an LA9 RM201 probe. Example: prevention of tank overflow.

For regulating a liquid level between a minimum and a maximum level, operating

with 3 electrodes, one reference electrode, one low level electrode and one high level

electrode, or two LA9 RM201 probes.

Example: water tower.

The state of the output relay can be configured:

Empty function : the output relay is energised when high level electrode B2 is

immersed and is de-energised when low level electrode B3 is "dry" (1).

Fill function : the output relay is energised when the low level electrode is "dry"

and is de-energised when high level electrode is immersed (1).

On model RM4 LA32 a time delay can be set on energisation or de-energisation of

the output relay in order to raise the maximum level function or to lower the

minimum level function .

This function also makes it possible to avoid pulsing of the output relay (wave effect)

when operating with 2 electrodes .

Operating principle

Function diagrams

Empty function

!"Maximum level detection (2 electrodes or 1 probe LA9 RM201)

!"Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201)

Full function

!"Maximum level detection (2 electrodes or 1 probe LA9 RM201)

!"Regulation between a maximum and a minimum level (3 electrodes or 2 probes LA9 RM201)

B1 : reference electrode B2 : high level electrode B3 : low level electrode

(1) When operating with 2 electrodes, the high level electrode performs both high and low level functions.

tt

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/18

LA32

LA32

LG01 Ð 15/16

B1 B2B1 B2B1 B2TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

t t

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/1815/16

B1 B3 B2B1 B3 B2B1 B3 B2B1 B3 B2

LA32

LA32

LG01 Ð

TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

LA32

LA32

LG01 Ð

tt

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/1815/16

B1 B2B1 B2B1 B2TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

tt

15/18 25/2815/16 25/26

15/18 25/2815/16 25/26

15/1815/16

B1 B3 B2B1 B3 B2B1 B3 B2B1 B3 B2

LA32

LA32

LG01 Ð

TypeRM4-

Function switch 3

Time delay switch 4

U supplyA1/A2

References :page 3/112

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Setting-up :page 3/115

Page 446: Generator Manual

3/112

3

References 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

Liquid level control relaysTime delay Sensitivity

scaleWidth Output

relayBasic reference, to be completed by adding the voltage code (1)

Weight

kΩ mm kg

Without 5…100 22.5 1 C/O RM4 LG01 0.165

Adjustable 0.1...10 s

0.25 ...5 22.5 2 C/O RM4 LA32 0.165

2.5 ...50

25 ...500

Level control probe for liquid Type of installation Maximum operating

temperatureReference Weight

°C kg

Suspended by cable 100 LA9 RM201 0.100

(1) Standard supply voltages

RM4 LG01 Volts 24 110...130 220...240 380...415

50/60 Hz B F M Q

RM4 LA32 Volts 24...240 24 110...130 220...240 380...415

50/60 Hz MW B F M Q

! MW – – – –

RM4 LG01

RM4 LA32

LA9 RM201

Presentation :pages 3/110 and 3/111

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Setting-up :page 3/115

56

10

87

56

10

89

561

08

8

Page 447: Generator Manual

3/113

3

Characteristics 3 Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

Power supply circuit characteristicsRelay type RM4 LG01 RM4 LA32

Rated supply voltage (Un) 50/60 Hz V 24 110...130 220...240 380...415 24...240 24 110...130 220...240 380...415

! V – – – – 24...240 – – – –

Average consumptionat Un

VA 1.9 2.6 2.4 2.9 2.7 3.1 2.7 2.6 3.4

! W – – – – 2.4 – – – –

Output relay and operating characteristicsNumber of C/O contacts 1 2

Output relay state Can be configured by switch: empty / fill

Electrode circuit characteristics (1)

Sensitivity scale kΩ 5…100 (adjustable) 0.25…5 2.5…50 25…500

Maximum a.c. electrode voltage(peak to peak)

V 24 24

Maximum current in the electrodes mA 1

Maximum cable capacity nF 10 200 25 4

Maximum cable length m 100 1000 100 20

(1) The electrodes may also be incorporated in the probes. The probes are normally designed for fixing to a tank by means of a bracket with a seal (closed tanks) or suspended by their own electrical connecting cable (boreholes, etc.). See page 3/115 “Setting-up” Probe LA9-RM201.

Presentation :pages 3/110 and 3/111

References :page 3/112

Dimensions, schemes :page 3/114

Setting-up :page 3/115

Page 448: Generator Manual

3/114

3

Dimensions,schemes 3

Zelio Control - industrial measurement and control relays 3

Liquid level control relays RM4 L

DimensionsRM4 LG01, LA32

Rail mounting Screw fixing

Probe LA9 RM201

Connection schemesRM4 LG01 RM4 LA32

A1-A2 B1, B2, B3

Supply voltageElectrodes(see table opposite)

Electrodes and level controlled

B1 Reference or tank earth electrode

15-18 1st C/O contactof the output relay15-16 B2 High level

25-28 2nd C/O contactof the output relay25-26 B3 Low level

22,5

78

80 89,5

82Ø4

66

78

150

16

B1 B2

A1 15

B3

18 16 A2

18

15

16

B3

B2

B1

A2

A1

B1 B2

A1 15

B3

25

18 16 A2

28 26

18

15

16

B3

26

28

25

B2

B1

A2

A1

Presentation :pages 3/110 and 3/111

References :page 3/112

Characteristics :page 3/113

Setting-up :page 3/115

Page 449: Generator Manual

3/115

3

Setting-up 3 Zelio Control - industrial measurement and control relays 3

Liquide level control relays RM4 L

Select the empty /fill function according to the sequence to be performed.

If necessary, set potentiometer 1 to minimum (time delay).

Set potentiometer 2 to minimum; on RM4-LA, select the lowest sensitivity range

using potentiometer 4 (5 or 5 ).

With all the electrodes immersed, turn the sensitivity potentiometer towards

maximum until the relay is energised ( function) or de-energised ( function),

then exceed the threshold by about 10 % to compensate for variation in the supply

voltage.

If the relay is not able to energise, a higher sensitivity scale must be used (selector 4

on RM4 LA32) or relay RM4 LG must be replaced by an RM4 LA32 relay and the

adjustment procedure must be started again.

Then check that the relay de-energises ( function) or energises ( function) as

soon as electrodes B3 and B2 are out of the liquid. If the relay does not de-energise,

select a lower sensitivity scale.

This probe is of the "suspension" type. It is coaxial, i.e. in addition to the normal

(central) electrode, the stainless steel skirt can also act as earth (reference

electrode), which means that there is no need to install a separate reference probe.

In this way, for controlling one level, only one probe is required instead of 2; for

controlling 2 levels, only 2 probes are required instead of 3.

Setting-up

The electrode connection point must be

protected against corrosion by sticking or sealing.

In areas where thunderstorms are likely to occur,

measures must also be taken to protect the

electrode lines.

Note: the high level can be raised by means of the

adjustable time delay from 0.1 to 10 seconds with

function .

The low level can be lowered by means of this

same time delay with function .RM4 LG01 RM4 LA32

2

3RU

1

2

4

RU

3

Probe LA9 RM201

The connecting cable must be of the

"2-conductor" type, with common cylindrical PVC

sheath, having a maximum diameter of 6.3 mm.

The skirt also acts as a "calming chamber", so

avoiding inaccuracy due to an agitated surface of

the liquid (waves).

Maximum operating temperature: 100 °C.

Probe LA9 RM201 can also be fixed on various

containers (cisterns, tanks, ...) by means of a

bracket or other suitable fixing device.

LA9 RM201

2-conductor cable in cylindrical sheath(max Ø 6.3 mm)

Level electrode

Reference electrode(skirt)

Connection examples

Control by electrodes

Control by probes

B3

B2

B1

A1 B2 B3B1

A2

High level

Low level

Sup

ply

vo

ltag

e

B1

B2

B3

B2

B1

RM4 LG01

2 levels 1 level

Presentation :pages 3/110 and 3/111

References :page 3/112

Characteristics :page 3/113

Dimensions, schemes :page 3/114

Page 450: Generator Manual

WERKHANNOVER

Spare Parts List

Part Designation RENK ID - No. Qty.

Filename Page Si. Date Appr. Date RENK ID - No Revisions

L785592e 1 / 2 Gre 11.07.08 L785592 A

BEARING EFZLK 22-250

DRAWING-NO.: 27126419 A

1 HOUSING EF22 785162 1

2 HEXAGON SOCKET HEAD CAP SCREW M24X90 350943 4

3 RING BOLT M24 158013 2

4 POSITIONING PIN 22 350913 1

5 SIGHT GLASS BSP11/2“ 694050 1

6 OIL SIGHT GLASS BSP2“ 725953 1

7 SCREW PLUG BSP3/4“ 351006 4

8 SCREW PLUG BSP1/2“ 351005 4

9 SCREW PLUG BSP1/4“ 351003 1

10 SCREW PLUG 3/4NPT 248318 2

11 OIL OUTLET DN50 722352 1

12 PIPE NUT BSP2“ 142209 1

13 SEALING RING 60X70X4 142041 1

14 SHELL EZLK 22-250 785160 1

15 HEXAGON SOCKET HEAD CAP SCREW M12X35 346924 2

16 LOOSE OIL RING 22-2 698779 1

17 HEXAGON SOCKET HEAD CAP SCREW M5X20 142900 2

18 LABYRINTH SEAL 250-R 758532 1

19 LABYRINTH SEAL 280-R 757103 1

20 SEAL CARRIER 22-280 785987 1

21 HEXAGON SOCKET HEAD CAP SCREW M8X20 158532 8

22 BAFFLE 280 785989 1

23 HEXAGON SOCKET HEAD CAP SCREW M6X30 142948 8

24 WASHER 6 350445 8

25 EXTENSION PIECE BSP1/2-BSP1/4 721758 1

26 SEALING RING A21X26 168405 1

27 PIPING FOR HYDROSTATIC JACKING 22 745822 1

28 CARTRIGDE OF NON-RETURN VALVE RVP13 350603 1

Page 451: Generator Manual

WERKHANNOVER

Spare Parts List

Part Designation RENK ID - No. Qty.

Filename Page Si. Date Appr. Date RENK ID - No Revisions

L785592e 2 / 2 Gre 11.07.08 L785592 A

29 CABLE 2.5X450 500002 1

30 WASHER 12 350461 1

31 CABLE GLAND PG7 142151 1

Page 452: Generator Manual

WERKHANNOVER

Spare Parts List

Part Designation RENK ID - No. Qty.

Filename Page Si. Date Appr. Date RENK ID - No Revisions

L784934e 1 / 1 Gre 11.07.08 L784934 A

BEARING EFZLQ 22-225

DRAWING-NO.: 27126034 A

1 HOUSING EF22 785157 1

2 HEXAGON SOCKET HEAD CAP SCREW M24X90 350943 4

3 RING BOLT M24 158013 2

4 POSITIONING PIN 22 350913 1

5 SIGHT GLASS BSP11/2“ 694050 1

6 OIL SIGHT GLASS BSP2“ 725953 1

7 SCREW PLUG BSP3/4“ 351006 4

8 SCREW PLUG BSP1/2“ 351005 4

9 SCREW PLUG BSP1/4“ 351003 1

10 SCREW PLUG 3/4NPT 248318 2

11 OIL OUTLET DN 50 709758 1

12 LOCK NUT BSP2” 350394 1

13 SEALING RING 60X70X4 142041 1

14 SHELL EZLB 22-225 738717 1

15 HEXAGON SOCKET HEAD CAP SCREW M12X35 346924 2

16 LOOSE OIL RING 22-1 698762 1

17 HEXAGON SOCKET HEAD SCREW M5X20 142900 2

18 LABYRINTH SEAL 250-R 758532 1

19 END COVER 22 350379 1

20 HEXAGON SOCKET HEAD CAP SCREW M8X16 142601 8

21 EXTENSION PIECE BSP1/2”-BSP1/4” 721758 1

22 SEALING RING 21X26 168405 1

23 PIPING FOR HYDROSTATIC JACKING 22 745822 1

24 CARTRIDGE OF NON- RETURN VALVE RVP13 350603 1