Top Banner
GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C.P. 62210, Mexico
19

GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Dec 18, 2015

Download

Documents

Branden Lewis
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

GaAs band gap engineering by colloidal PbS quantum dots

Bruno Ullrich

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C.P.

62210, Mexico

Page 2: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Acknowledgements

• Joanna Wang (WPAFB)• Akhilesh Singh (UNAM)• Puspendu Barik (UNAM)• DGAPA-UNAM PAPIIT project

TB100213-RR170213 (PI Bruno Ullrich)

Page 3: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Motivation

• Work in 2009 showed that PbS quantum dots (QDs) notably alter the emission of GaAs• Tailored photonic applications?• Ullrich et al., J. Appl. Phys. 108,

013525 (2010)

Page 4: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Presentation’s outline

Essentially, two points will be covered:

a) Optical properties of colloidal PbS QDs on GaAs

b) Absorption edge engineering of GaAs with PbS QDs

Page 5: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Sample preparation

Oleic acid capped PbS QDs are dispersed on GaAs either by a supercritical CO2 method*) or by spin coating.

*)Wang et al., Mat. Chem. Phys. 141, 195 (2013).

Page 6: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Why PbS, why GaAs?

• PbS possesses a large Bohr radius (20 nm). Emission covers the attractive range for optical fibers• GaAs is “fast” and meanwhile a main

player in optoelectronics

Page 7: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

SEM image of a typical sample

20 nm

Particle size:2.00.4 nm

Page 8: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

We are dealing with a size-hybrid

• Sample can be considered – to a certain extend – as free standing (regularly arranged) energy confinement potentials with similarities to superlattices. • Indeed, electronic states of the QDs

are coupled via tunneling.

Page 9: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Photoluminescence

0

50

100

150

200

250

0.9 1.0 1.1 1.2 1.3 1.4

PL

inte

nsi

ty (

arb

. uni

ts)

Energy (eV)

120 W/cm2

90 W/cm2

72 W/cm2

60 W/cm2

48 W/cm2

30 W/cm2

18 W/cm2

12 W/cm2

6 W/cm2

5 K

Page 10: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Experimental setup

Page 11: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Photo-doping

1.155

1.160

1.165

1.170

1.175

1.180

0 20 40 60 80 100 120 140

EP

L (

eV)

Iex

(W/cm2)

Page 12: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Burstein-Moss effect• Doping by excited charge carriers

increases the QD band gap• Generation of at least one electron-hole

pair per QD• Reversible band gap alteration

proportional to Iex2/3

• Ullrich et al., J. Appl. Phys. 115, 233503 (2014)

Page 13: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Transmittance

0

1

2

3

4

1.0 1.1 1.2 1.3 1.4 1.5 1.6

Tra

nsm

itta

nce

(nor

mal

ized

)

Energy (eV)

300 K

200 K

100 K

10 K

GaAsPbS/GaAs

Page 14: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Absorption edge manipulation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 1.1 1.2 1.3 1.4 1.5 1.6

TR

(n

orm

aliz

ed)

Energy (eV)

10 KRT

Eg

PbS/GaAs

GaAs

Page 15: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Slope of the edge

-1.10

-1.00

-0.90

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

0 50 100 150 200 250 300 350

Nor

mal

ized

slo

pe (

1/eV

)

Temperature (K)

GaAs

PbS/GaAs

Page 16: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Band gap shift

-80

-70

-60

-50

-40

-30

-20

-10

0

1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42

dTR

/dE

(1/

ev)

Energy (eV)

2.0 nm QDs(CO

2)

3.0 nm QDs(Spin-coating)

SI-GaAsPbS/GaAs

RT

Page 17: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

?Reasons?• Charge transfer (Urbach tail alteration)• Superposition of absorption spectra• Interfacial impurities• Vibronic mode manipulation• Influence of preparation method and

doping of the substrate (currently ongoing studies)• Change of reflectance

Page 18: GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,

Conclusion and future• QDs alter the optical properties of the host• Concentration on the emission properties

for technological applications (emission from the interface?)

• Possible influence of the QD size on the optical properties of the host

• Formation of opto-electronically active junctions