Top Banner
FRICTION STIR WELDING MADAN PATNAMSETTY KHASHAYAR KHANLARI
29
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Friction stir welding

FRICTION STIR WELDING

MADAN PATNAMSETTY

KHASHAYAR KHANLARI

Page 2: Friction stir welding

FRICTION

• FRICTION is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other

• when surfaces in contact move relative to each other, the friction between the two surfaces converts kinetic and heat energy

Page 3: Friction stir welding

FRICTION WELDING

• The process that use machines that are designed to convert mechanical energy into heat at the joint to be welded.

• This process accomplishes welding by bringing atoms of the materials being joined to equilibrium spacing principally through plastic deformation due to the application of pressure at temperatures below the melting point of the base materials, without the addition of filler that melts.

• This process rely on friction to cause heating and bring atoms or molecules together by microscopic plastic deformation to produce a weld

Page 4: Friction stir welding

INTRODUCTION

• FRICTION STIR WELDING (FSW) TECHNIQUES,

INVENTED AT THE WELDING INSTITUTE OF THE

UNITED KINGDOM IN 1991

• A CYLINDRICAL TOOL WITH A PIN LIKE

ATTACHMENT IS ROTATED AND SLOWLY INSERTED

INTO THE RIGIDLY CLAMPED JOINT TO BE WELDED.

• THE FRICTIONAL AND DEFORMATIONAL EFFECTS

DUE TO THE ROTATING TOOL SURFACE IN

CONTACT WITH THE WORK PIECE CAUSE

PLASTICIZATION OF THE METALS TO BE JOINED.

• THUS IT MAY BE CALLED AS DEFORMATION

PROCESS USED TO JOIN METALS.

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082747.jpg

Page 5: Friction stir welding

ZONES AFFECTED

• THE TOOL ROTATION DIRECTION HAS

SIMILAR SENSE TO THE TOOL

TRANSLATION DIRECTION, IS KNOWN

AS THE ADVANCING SIDE OF THE

WELD

• THE TOOL ROTATION IS OPPOSITE TO

THE TOOL TRANSLATION DIRECTION,

IS KNOWN AS THE RETREATING SIDE

OF THE WELD

• ZONE IN CONTACT WITH SHOULDER

IS SHOULDER EFFECTED ZONE AND

ZONE IN CONTACT WITH PIN IS PIN-

AFFECTED ZONE

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082748.jpg

Page 6: Friction stir welding

THERMAL ASPECTS

• THE WELDING CYCLE IS SPLIT IN FOUR STAGES DURING WHICH THE HEAT FLOW AND THERMAL PROFILE WILL BE VARIED.

1. DWELL: THE MATERIAL IS PREHEATED BY A STATIONARY, ROTATING TOOL TO ACHIEVE A SUFFICIENT TEMPERATURE AHEAD OF THE TOOL TO ALLOW THE TRAVERSE. THIS PERIOD MAY ALSO INCLUDE THE PLUNGE OF THE TOOL INTO THE WORK PIECE.

2. TRANSIENT HEATING: WHEN THE TOOL BEGINS TO MOVE THERE WILL BE A TRANSIENT PERIOD WHERE THE HEAT PRODUCTION AND TEMPERATURE AROUND THE TOOL WILL ALTER IN A COMPLEX MANNER UNTIL AN ESSENTIALLY STEADY-STATE IS REACHED.

3. PSEUDO STEADY-STATE: ALTHOUGH FLUCTUATIONS IN HEAT GENERATION WILL OCCUR THE THERMAL FIELD AROUND THE TOOL REMAINS EFFECTIVELY CONSTANT, AT LEAST ON THE MACROSCOPIC SCALE.

4. POST STEADY-STATE: NEAR THE END OF THE WELD HEAT MAY "REFLECT" FROM THE END OF THE PLATE LEADING TO ADDITIONAL HEATING AROUND THE TOOL.

• HEAT IS GENERATED PRIMARILY FROM TWO SOURCES

1. FRICTIONAL

2. PLASTIC DEFORMATION

• FRICTIONAL COMPONENT IS AN OUTCOME OF ROTATIONAL MOVEMENT OF TOOL SHOULDER AND PIN SURFACE AND IS ALSO THE PRIMARY HEAT SOURCE.

• THE FRICTIONAL HEAT PRODUCED SOFTENS THE METAL WHICH CAUSES PLASTIC DEFORMATION.

• DURING PSEUDO-STEADY STEADY STATE WELDING BOTH FRICTIONAL AND PLASTIC DEFORMATION CONTRIBUTE TO OVER ALL HEAT GENERATION.

Page 7: Friction stir welding

HEAT GENERATION

• The heat generation is assumed to occur predominantly under the shoulder,

due to its greater surface area, and to be equal to power required

to overcome the contact forces between the tool and work piece.

• The contact condition under the shoulder can be described by sliding friction,

using a friction coefficient μ and interfacial pressure P, based on the interfacial

shear strength at an appropriate temperature and strain rate.

• The mathematical equation for total heat generated by the tool shoulder is Qtotal

have been developed from

• Q1 = Heat generated at the tool shoulder,

• Q2 = Heat generated at the tool pin,

• Q3 = Heat generated at the tool pin tip

Page 8: Friction stir welding

HEAT GENERATIONdQ = ω r dF

Where Q1 = 2π(1 + tan α )τshear (R3shoulder- R3

pin )

Q2 = 2 π τshear R2pin ω

Q3 = 2/3. π. τshear ω R3pin

Qtotal = Q1+Q2+Q3

α is the inclination of conical surface of the shoulder

Image courtesy from P.S. De, N. Kumar, J.Q. Su, and R.S. Mishra, Fundamentals of Friction Stir Welding

Page 9: Friction stir welding

MATERIAL FLOW

• With respect to all the thermal aspects in FSW, Plastic flow plays an important role in

heat generation.

• Experiments on Material flow in FSW are categorised as

1. Marker studies: A small quantity of dissolvable materials are placed in grooved along

the welding path and thus the FSW tool passing displaces the markers from which the

material is reconstructed

2. Dissimilar welding: Materials those are differently etched are welded together, with the

material flow is reconstructed by post welding etching. And also the microstructural

changes after the FSW are used to understand the material movement.

• The basic material flow characteristics from the above kind of experiments are

1. Near the shoulder the atoms from retreating side are diffused or dragged towards the

centre weld line and deposited on advanced side

2. Atoms from the line intersecting pin diffuses and deposit behind the tool through the

retreating side for not more than 1 pin diameter, exception with welds of lower

thickness for which the shoulder has its domination.

3. Flow pattern similar to shoulder area is visible at pin bottom but at very low scale(area).

4. Tool run out can vary material flow in addition to causing periodic variation in welding

Page 10: Friction stir welding

MATERIAL FLOW

• Distribution showing the position of AA5454-O markers (white region) in AA2195-T8 alloy after the passage of friction stir tool pin. The markers placed perpendicular to the weld path moved backward by a distance equal to the chord length intersecting the pin circle, and oriented parallel to welding direction. The double arrow gives a measure of the pin diameter

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082750.jpg

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082751.jpg

• Difference in grain size within the ring patterns observed in the horizontal-section microstructure of a bead-on-plate run of cast A356 alloy. The tool advance per revolution (APR) was 0.1 mm (0.004 in)

• Onion rings type of bands are formed alternating with different grain size and particle size distribution in the weld nugget.

• Bands are separated by an equal distance or less than tool advance per revolution.

Page 11: Friction stir welding

MATERIAL FLOW

A schematic view of the material transport in the shoulder/work piece interface region(a, b) and the pin/work piece interface region (c, d)

Image courtesy P.S. De, N. Kumar, J.Q. Su, and R.S. Mishra, Fundamentals of Friction Stir Welding

Page 12: Friction stir welding

FRICTIONAL COEFFICIENT

• According to Schmidt and Hattel’s simulation, during the pseudo- steady-state

period, the contribution of friction to generate heat is reduced by 25% of total

heat generated, Thus for an accurate FSW process simulation, a proper

assessment of frictional heat contribution is essential.

• Frictional forces are classified into two types:

1. Coulomb’s frictional force: The frictional force may be expressed as

σ = μP

And μ is Coulomb’s co-efficient of friction and p is pressure applied.

2. constant shear Force: The frictional stress for constant shear model is

σ = m(σ0/√3)

m = ionic factor and σ0 = flow stress of the material

Page 13: Friction stir welding

FRICTIONAL COEFFICIENT

• But after the modification of the same theory there are three conditions assumed to be

existed. They are sticking, sliding, and partial sliding/sticking

conditions.

• For sliding condition m value is 0 and for sticking condition the m value is 1, at times the

co-efficient of friction is greater than 1 (1.3)

Variation of coefficient of friction with torque for AA5182- and F-357-type aluminium alloys

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082753c.jpg

Page 14: Friction stir welding

DEFECTS• Defects mainly occur due to flow related or geometric.

• There are various types pf defects which includes

1. wormhole or voids: is the tunnel of inadequately consolidated and forged material running in the longitudinal direction which is formed due to excessive heat input due to high rotational speed low transverse feed

2. Lack of penetration:

3. Lack of fusion:

4. Surface lack of fill: due to insufficient forge pressure

5. Root-flow defect :

6. Nugget collapse: A unique defect which is caused high welding speed and excessive metal flow to stir zone and excessive hot weld.

7. Surface galling: sticking of material at the tip of the pin causes surface galling which is tearing of metal on top surface of weld.

8. Ribbon flashing: excessive expulsion of material on the surface of welding

9. Scalloping: defect in which the series of small voids located in the advancing side interleaving the stir zone along the weld

Page 15: Friction stir welding

DEFECTS

Image courtesy from 6A, ASM Handbook, ASM International, 2011, p 186–200

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082754.jpg

Page 16: Friction stir welding

STRAIN AND STRAIN RATE

• Since the plastic deformation its is obvious to experience the strain and strain rate through the process.

• There is a continuous rise in strain and strain rate as it approaches the shear zone with a maximum strain of at the shear zone boundary

• The deformation in FSW is similar to torsional which leads to an expression for strain rate.

έ = Rm.2πre/Le C.I. CHANG, C.J. LEE, AND J.C. HUANG, SCR. MATER., VOL 51, 2004, P 509–514

Where Rm is average material flow rate re is the radius of the dynamically recrystallized zone, and le is the depth of the dynamically recrystallized zone.

• The strain in shear zone is expressed as

ε = ln(l/APR)+|ln(APR/l)| T. LONG, W. TANG, AND A.P. REYNOLDS, SCI. TECHNOL. WELD. JOIN., VOL 12, 2007, P

311–317

Where l = 2 r Cos-1[(r-x)/r] and APR is advance per revolution of tool

R, r and x are the radius of pin and distance of the streamline from

the retreating side of the tool

Page 17: Friction stir welding

STRAIN AND STRAIN RATE

• The estimated strain distribution in

the processed zone for an APR of 0.5

mm/rev and a pin diameter of 10 mm

is presented in where strain on the

retreating side is observed to be zero

and reaches a maximum (~8) on the

advancing side

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082762.jpg

• The calculated average strain and

strain rate variation with tool

rotation is presented in where

both the parameters increases

with increase in tool rotational rate

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082763.jpg

Page 18: Friction stir welding

MICROSTRUCTURAL FEATURES

• The microstructure depends on alloy

composition, initial

material temperature, welding parameter,

tool geometry, and cooling rate

• The asymmetric nature of FSW resulted in high

characteristic microstructure, the zone can be

broken up as, with different microstructures in

each zone

1. THE STIR ZONE (NUGGET): The zone which

experiences extreme deformation and is a

consequence of rotating tool. And under some

processing conditions, an onion ring structure

develops. The interface between the parent

material is relatively diffusive and it’s a quite

sharp towards the advancing side.

2. THERMO-MECHANICALLY AFFECTED

ZONE (TMAZ): A special zone in between nugget

and HAZ which experiences both temperature

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082764.jpg

Typical macrograph showing various microstructural zones in friction stir welded 7075Al-T651.

Page 19: Friction stir welding

MICROSTRUCTURAL FEATURES

• THE STIR ZONE (also nugget, dynamically

recrystallized zone) heavy deformation is

occurred and fine-grained microstructure is formed.

And this region is also named as dynamically

recrystallized zone. And the grains found are

equi-axed

• The THERMO-MECHANICALLY AFFECTED ZONE (TMAZ)

in this zone the grains deform in an upwards pattern

around the nugget. and the full recrystallization

doesn’t occur due to insufficient deformation strain.

The grains are highly dense in sub boundaries

• The HEAT-AFFECTED ZONE (HAZ) is common to all

welding processes. As indicated by the name, this

region is subjected to a thermal cycle but is not

deformed during welding. The temperatures are lower

than those in the TMAZ(Or lower than solidus

temperature) but may still have a significant effect if

the microstructure is thermally unstable. In fact, in

age-hardened aluminium alloys this region commonly

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082765.jpg

Grain structure variations across friction stir welded 7050-T651 aluminium alloy. (a) Unaffected parent material. (b) Heat-affected zone. (c) Thermo mechanically affected zone. (d) Nugget zone.

Page 20: Friction stir welding

MICROSTRUCTURAL FEATURES

MaterialGrain size

μm

7xxx 0.1–7.5

6xxx 5.9–17.8

5xxx 3.5–6

2xxx 0.5–12

1xxx 0.5–20

Al-Cu-Mg-Ag-T6 5

Al-Li-Cu 9

Al-4Mg-1Zr 1.5

Al-Zn-Mg-6.7Sc 0.68

AZ31 0.085–50

AZ91 15

Mg-6Al-3Ca-0.5Re-0.2Mn 0.9

Mg-5.5Y-4.3Zn 1

• GRAIN SIZE IN NUGGET ZONE OF

FRICTION STIR WELDED ALUMINIUM AND

MAGNESIUM ALLOYS

NUGGET GRAIN SIZE: • Grain size in nugget zone is influenced by

processing parameters, tool geometry, composition of work piece, temperature of the work piece, vertical pressure, and active cooling.

• So variation in grain size(finer) can be achieved by external cooling

Page 21: Friction stir welding

NUGGET ZONE MICRO STRUCTURE

• The microstructure is not uniform

in this zone

• The grain size tend to increase in

the top side and tend to decrease

in either side of the centre line,

this is due to the variation in

temperature.

Grain size distribution in various locations of a 7050Al weld nugget

http://products.asminternational.org/hbk/content/V06A/D03/graphics/inline/i0082766.jpg

Page 22: Friction stir welding

INFLUENCING WELDING PARAMETERS

• TOOL ROTATION AND TRAVERSE SPEEDS:

1. Increase in rotation speed and decrease in traverse speed the result will be hotter

weld and for a better weld it is necessary to maintain a proper heat which cause

better diffusion.

2. The high heat may also loose the weld properties.

3. The tool may break the tool in extreme cases(if its exposed to cooler environment).

• TOOL TILT AND PLUNGE DEPTH

1. The plunge depth may be defined as the lowest depth the tool is permitted to

penetrate and plunging the tool shoulder below the surface increases the pressure

below the tool and thus adequate forging is done inside the material at rear side of

tool

2. Tilting about 2-4 degrees such the rear part of tool is lower than the front will

assist a good kind and gives the torsion elliptically.

3. The high load may create weld deflections thus the plunge depth to adjusted

accordingly.

Page 23: Friction stir welding

INFLUENCING WELDING PARAMETERS

• TOOL DESIGN:

• the tool to be designed with sufficient strength, toughness and hard wearing at

welding temperatures.

• To be good corrosion resistance and low thermally conductive material

AlloyThickness

mm Tool materials

Aluminium alloys <12 Tool steel, WC-Co

<26MP159(nickel cobalt based multi phased alloy)

Manganese alloys <6 Tool steel, WC

Copper and copper alloys <50 Nickel alloys, tungsten alloys

<11 Tool steel

Titanium alloys <6 Tungsten alloys

Stainless steels <6 PCBN, tungsten alloys

low carbon steels <10 WC, PCBN

nickel steels <6PCBN(Poly crystalline cubic boron nitrides)

Page 24: Friction stir welding

TOOL DESIGN

Tool Cylindrical Whorl™ MX triflute™ Flared triflute™

A-skew™ Re-stir™

Schematics

Tool pin shape

Cylindrical with threads

Tapered with threads

Threaded, tapered with three flutes

Tri-flute with flute ends flared out

Inclined cylindrical with threads

Tapered with threads

Ratio of pin volume to cylindrical pin volume

1 0.4 0.3 0.3 1 0.4

Swept volume to pin volume ratio

1.1 1.8 2.6 2.6 Depends on pin angle

1.8

Rotary reversal

No No No No No Yes

Application Butt welding; fails in lap welding

Butt welding with lower welding torque

Butt welding with further lower welding

Lap welding with lower thinning of upper plate

Lap welding with lower thinning of upper plate

When minimum asymmetry in weld

R.S. Mishra, Z.Y. Ma / Materials Science and Engineering R 50 (2005) 1–78

Page 25: Friction stir welding

ADVANTAGES AND LIMITATIONS

ADVANTAGES

• Good mechanical properties in the as-welded condition

• Improved safety due to the absence of toxic fumes or the spatter of molten material.

• No consumables — a threaded pin made of conventional tool steel, e.G., Hardened H13, can weld over 1 km (0.62 mi) of aluminium, and no filler or gas shield is required for aluminium.

• Easily automated on simple milling machines — lower setup costs and less training.

• Can operate in all positions (horizontal, vertical, etc.), As there is no weld pool.

• Generally good weld appearance and minimal thickness under/over-matching, thus reducing the need for expensive machining after welding.

• Low environmental impact.

DISADVANTAGES

• Exit hole left when tool is withdrawn.

• Large down forces required with heavy-duty clamping necessary to hold the plates together.

• Less flexible than manual and arc processes (difficulties with thickness variations and non-linear welds).

• Often slower traverse rate than some fusion welding techniques, although this may be offset if

fewer welding passes are required.

Page 26: Friction stir welding

APPLICATIONS

• SHIPBUILDING AND OFFSHORE: HULLS AND SUPERSTRUCTURES, HELICOPTER LANDING PLATFORMS

• AEROSPACE: WINGS, FUSELAGES, EMPENNAGES, CRYOGENIC FUEL TANKS FOR SPACE VEHICLES

• AUTOMOTIVE: Aluminium engine cradles and suspension struts for stretched Lincoln town car(Ford car) were the first automotive parts that were friction stir at Tower Automotive

• RAILWAY ROLLING STOCK: RAILWAY TANKERS AND GOODS WAGONS, ROLLING STOCK OF RAILWAYS, UNDERGROUND CARRIAGES, TRAMS

• FABRICATION: FAÇADE panels and ATHODE sheets are friction stir welded at AUSTRIA

METALL AG and HAMMERER Aluminium Industries including friction stir lap welds of copper to aluminium

• ROBOTICS: KUKA ROBOT group has adapted its kr500-3mt heavy-duty robot for friction stir welding via the deltan fs tool

• PERSONAL COMPUTERS: Apple applied friction stir welding on the 2012 i-Mac to effectively join the bottom to the back of the device

Page 27: Friction stir welding

https://www.youtube.com/watch?v=aNbQH8XBgxQ

COURTESY BY CRIQ

Page 28: Friction stir welding
Page 29: Friction stir welding

REFERENCES• IMAGE COURTESY: HTTP://SEMINARLINKS.BLOGSPOT.FI/2014/04/FRICTION-STIR-WELDING-FSW-

SEMINAR.HTML

• IMAGE COURTESY : HTTP://GIPHY.COM/SEARCH/WELDING?SORT=RECENT

• IMAGE COURTESY : HTTP://WWW.PICGIFS.COM/JOB-GRAPHICS/WELDER/

• HTTPS://WWW.YOUTUBE.COM/WATCH?V=ANBQH8XBGXQ

• HTTP://EN.WIKIPEDIA.ORG/WIKI/FRICTION_STIR_WELDING

• HTTP://EN.WIKIPEDIA.ORG/WIKI/FRICTION_WELDING

• P.S. DE, N. KUMAR, J.Q. SU, AND R.S. MISHRA, FUNDAMENTALS OF FRICTION STIR WELDING,

• R.S. MISHRA, Z.Y. MA / MATERIALS SCIENCE AND ENGINEERING R 50 (2005) 1–78

• ASM HANDBOOK ONLINE VOLUME 6A