Top Banner
Title : Frequency Modulation - Demodulation & Phase Modulation Objectives : 1. To understand the concept of frequency modulation (FM) and phase modulation (PM). 2. To learn the working mechanism of DL 2501 and DL 2513C boards. Introduction : Frequency and Phase Modulation Information can be transmitted by adequately varying (modulating) one or more parameters of a carrier signal. These parameters are amplitude, frequency, and phase. When the frequency of a carrier signal is varied in a system with respect to the modulating signal variations, frequency modulation (FM) is obtained. Similarly, by varying the phase of carrier signal, so-called phase modulation (PM) is obtained. FM and PM are not independent, since the frequency cannot be varied independently from the signal phase, and vice versa. The selection of the frequency or phase modulation for a given application in the communication field is almost fully depends on the reception methods that are required to be used. In fact, the generation and the processing of phase or frequency modulated signals is essentially similar, while the reception methods required for information retrieval are significantly different.Both FM and PM systems offer the advantage of high noise immunity. This is especially true for pulsed noises, provided that the receivers are designed to be insensitive to amplitude variations. Apparatus : 1. 1 DL 2501 board 2. 1 DL 2513C board 3. 1 DL 2555AL power supply module 4. 1 function generator
10

Frequency Modulation - Demodulation & Phase Modulation

Jan 15, 2016

Download

Documents

Frequency Modulation - Demodulation & Phase Modulation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Frequency Modulation - Demodulation & Phase Modulation

Title : Frequency Modulation - Demodulation & Phase Modulation

Objectives :

1. To understand the concept of frequency modulation (FM) and phase modulation (PM).

2. To learn the working mechanism of DL 2501 and DL 2513C boards.

Introduction :

Frequency and Phase Modulation

Information can be transmitted by adequately varying (modulating) one or more

parameters of a carrier signal. These parameters are amplitude, frequency, and phase.

When the frequency of a carrier signal is varied in a system with respect to the modulating

signal variations, frequency modulation (FM) is obtained. Similarly, by varying the phase of

carrier signal, so-called phase modulation (PM) is obtained. FM and PM are not independent,

since the frequency cannot be varied independently from the signal phase, and vice versa.

The selection of the frequency or phase modulation for a given application in the

communication field is almost fully depends on the reception methods that are required to be

used. In fact, the generation and the processing of phase or frequency modulated signals is

essentially similar, while the reception methods required for information retrieval are

significantly different.Both FM and PM systems offer the advantage of high noise immunity.

This is especially true for pulsed noises, provided that the receivers are designed to be

insensitive to amplitude variations.

Apparatus :

1. 1 DL 2501 board

2. 1 DL 2513C board

3. 1 DL 2555AL power supply module

4. 1 function generator

Page 2: Frequency Modulation - Demodulation & Phase Modulation

Procedures :

Study of the Varicap FM Modulator

1. The board is connected to the power supply. The current’s polarity is aware.

2. The output of the audio generator is connected to the input of the modulator using a short

cable. The oscilloscope is connected with the probe ground connected to the lower

terminal of the secondary winding of L1. The probe must be connected to upper terminal.

3. It is suggested that the same lower terminal of the secondary winding of L1 is grounded,

to provide a better protection against noises, therefore obtaining a sharper display on the

oscilloscope.

4. The amplitude of the connected audio signal is set to a minimum and the power supply is

switched on. The oscilloscope is adjusted until a sharp display is obtained.

5. The amplitude of the frequency generator is gradually increased to obtain a clear display

of the frequency modulated signal. The shadowed area on the oscilloscope is composed of

a bundle of different sine wave which is all synchronized from the left end of the display.

6. The bundle amplitude corresponds to the frequency deviation of the modulator. The latter,

on its turn, depends on the amplitude of the connected modulating signal.

7. It can be immediately checked that the varying the amplitude of the modulating signal the

span of the bundle is proportionally varied.

8. At high modulation levels a small amplitude modulation normally occurs, superposed to

the high frequency modulation.

9. The maximization criterion of the measurable signal is at the expense of modulation

linearity. A square wave of about 500 Hz with an amplitude variable between 0 and about

8 V peak to peak is connected to the “AF IN” in order to measure the modulator linearity.

10. The reason of using a rectangular waveform instead of a sine wave in this experiment is

that sine waves corresponding to the landing levels of the modulating signal can be better

displayed on the oscilloscope screen. Therefore the frequency measurement can be made

easier.

11. The external square wave generator and the oscilloscope are connected to the output of

the modulator. A signal of amplitude variable is connected with 500 mV steps from 0 to

8V peak-to-peak. The output frequency deviation is measured.

12. The frequency deviation can be measured by adjusting the time scale of the oscilloscope

so that at least 3 full cycles are displayed on the oscilloscope. The bindle span in

correspondence of the third period is detected and divided by 3.

13. The difference is therefore obtained between the maximum and minimum frequencies and

the frequency was calculated. The reason why it is recommended to measure the

frequency deviation using 3 or more cycles is higher accuracy solution can be obtained.

Study of Phase Modulator

1. The tuned load L1 is excited by the current C3. To this load the current is quadrature, of

controllable intensity, and can be subtracted (or added, as a function of the references).

2. The current in quadrature is exactly equal to the current that could be subtracted (or

added) to a reactive component of value variable according to the modulating signal, in

parallel connected to L1.

Page 3: Frequency Modulation - Demodulation & Phase Modulation

3. The tuned load appears therefore the “detune” at the rate of the modulating signal. The

operating point of the circuit moves along the “bell” shaped curve of the tuned circuit and

the variable phase shifts results for the voltage signal.

4. The proposed exercise consists of functional checking of the circuit. As carrier

generators, the signal generated by the varicap modulator oscillator can be used.

5. The output of the transformer L1 and the varicap modulator was connected to the ground

(lower terminal) and to the input marked “RF IN” (upper terminal), respectively.

6. The ground of the oscilloscope probes was connected with the probe for channel 1 to the

input terminal (RF IN) and the probe for channel 2 to the output terminal (RF OUT).

7. The ground of the oscilloscope probes was connected to the same ground terminal of the

phase modulator circuit.

8. It is suggested to use short and rational connections for the measurements to be accurately

performed.

9. The output of the low frequency audio generator must be connected to the input labelled

AF IN of the phase modulator.

10. The equipment synchronize the oscilloscope was switched on using the RF input signal of

the modulator.

11. By varying the amplitude of the modulating signal, the corresponding phase variation on

the output signal of the modulator can be measured.

12. In the reactance modulator, very often an amplitude modulation of the signal occurs being

the DRAIN tuned circuit “detuned” by the out of phase currents appearing as generated

by reactive components in parallel connected to it.

13. As a function of the quality factor Q of the oscillating circuit a corresponding percent

phase variation occurs at a parity of modulating signal, and also a corresponding

amplitude modulation.

14. The phase modulator of DL 2501 is sized and adjusted to generate phase variations of

great amount, neglecting linearity features. This is to provide significant and easily

measurable deviations. The linearity characteristic of the modulator is measured by

connecting a DC signal to the AF IN input rather than the modulating signal from the

frequency generator.

15. By varying the DC signal between -6 and +6V, the consequent phase variation of the

output signal can be detected.

16. The same band measurements are used as performed in the varicap modulator.

17. The measurement has to be repeated for different amplitude values of the input signal and

at a parity of amplitude for different values of modulating frequency.

Study of Elementary FM Demodulator

1. The elementary FM demodulator on board DL 2501 consists of an amplifier-limiter

whose function is to limit the amplitude of the frequency modulated signals connected to

the input. The set of C1 and R1 is a derivative circuit that generates across R1 constant

area pulses for each transition of the input FM signal of the amplifier.

2. The positive peaks of this derivative signal are sent through the diode D1 to the low-pass

filter whose function is essentially to make an average of the pulsed signal. A slowly

variable signal is obtained whose level depends on the rate at which the equal area pulses

occur on the input side.

3. The detector of DL2501 board must operate in a frequency range between 500 kHz and

750 kHz and has to be able to provide an audio signal of adequate amplitude for relatively

small variations of the input FM signal frequency.

Page 4: Frequency Modulation - Demodulation & Phase Modulation

4. The functional study of the elementary demodulator is performed by connecting its input

to the output of the varicap modulator and the signal from the audio generator on board

DL 2501 as the modulating signal.

5. The oscilloscope probe is connected between the output terminals of the low-pass filter of

the demodulator and ground. The demodulated signal can be displayed.

6. When the amplitude levels of the modulating signals are low, the waveform is

reconstructed with fidelity. When the amplitude is increased, deformations and linearity

losses occur, due to linearity loss in the modulator and output filter of the demodulator,

because of excessive frequency variation bringing the operating point outside the linear

zone of the filter falling edge.

Results :

Signal/

Parameter

Volt/div

(V/div)

Time/div

(ms/div)

Voltage,

V (V)

Period, T

(ms)

Frequency, f

(Hz)

Wavelength, λ

(m)

VM 0.20 1.000 5.2 8.000 125.00 2.4(106)

VFM 0.05 0.001 0.7 0.008 1.25(105) 2400.0

Signal

through

Demodulator

(before diode)

0.50 0.005 11.0 0.004 2.50(105) 1200.0

Signal

through

Demodulator

(after diode)

0.05 0.500 1.0 4.000 250.00 1.2(106)

Table 1

Page 5: Frequency Modulation - Demodulation & Phase Modulation

Signal through Modulating Signal

Generator (Vm )

Signal through Varactor Reactance

Modulator (VFM )

Page 6: Frequency Modulation - Demodulation & Phase Modulation

Signal through Demodulator

(before diode)

Signal through Demodulator (after

diode)

Page 7: Frequency Modulation - Demodulation & Phase Modulation

Signal through Phase Modulator

for channel 1 (VC)

Signal through Phase Modulator

for channel 2, (VM)

Signal through Phase Modulator

channel add, (VPM)

Page 8: Frequency Modulation - Demodulation & Phase Modulation

Discussion (Questions):

Study of the Varicap FM Modulator

a) The frequency deviation for FM.

∆f = 125 Hz – 120Hz =5 Hz

The modulation index for FM can be calculated by using formula.

M = ∆f / fm=5 / 125=0.04

frequency modulatingf

deviation frequency f :where

m

b) Obtain the numerical results in tabular form and plot a graph. For the graph, the horizontal

axis is the peak-to-peak voltages of the modulating signal, while the vertical axis is the

frequency deviations measured on the modulated signal.

The graph that we should obtain is somewhat like below, but as we doesn’t varies the

value, the graph is likely to be constant

The basic principle behind FM is that the amplitude of an analog baseband signal can be

represented by a slightly different frequency of the carrier. The modulation index affects

the modulated sinusoid in that the larger the modulation index, the greater the

instantaneous frequency can be from the carrier. The instantaneous frequency range of the

modulated signal is much smaller with a smaller FM deviation.

c) Comment the results. The most interesting result is a flattening of the modulation

characteristics of the circuit in correspondence of the higher amplitude values of the

modulating signal.

The most interesting result is a flattening of the modulation characteristics of the

circuit in correspondence of the higher amplitude values of the modulating signal.

Page 9: Frequency Modulation - Demodulation & Phase Modulation

From the result that generated by the machine, signal through modulating signal

generator, Vm has more high in frequency but lower in the amplitude compared to the

signal through reactance modulator, VFM that has the result in vice versa.

Study of Phase Modulator.

a) Differences between FM and PM

FM PM

Amplitude of modulated wave kept

fixed, but frequency is varied by

modulating signal.

The spectrum is more complex, not

easy to analyses.

In digital oscillator, FM was added to

the frequency before the phase

integration.

Modulation index,

Amplitude modulated wave kept fix, but

phase was shifted by the modulation signal.

The spectrum is clear and easy to analyses.

In digital oscillator, PM was added to the

phase after the phase integration [1]

.

Modulation index, ,

b) Function of varicap modulator Varicap is actually known as varactor diode. It is a diode that has variable capacitance

which is a function of the voltage that is impressed on its terminals. The varactor diode are

operated reversed-biased, and therefore no current flows.

Study of Elementary FM Demodulator

1. What is the significance of having low-pass filter compared to high-pass filter?

A low pass filter only allows signals with low frequencies to go through and a

high pass filter only allows high frequency signals to go through. A high-pass filter

allows for easy passage of high-frequency signals from source to load, and difficult

passage of low-frequency signals.

2. What is the contribution of the FM demodulator to the aircraft system?

FM signals can only travel as far as the horizon, which has the advantage of

reducing interference, and coverage is therefore more stable than with AM. It is used

in aircraft system as to communicate with air traffic tower since it is more stable and

less interference. Therefore, the information can be transmitted and processed

quickly.

Conclusions :

Page 10: Frequency Modulation - Demodulation & Phase Modulation

As a conclusion, the following objectives are achieved:

1. Students are able to understand the concepts of frequency modulation (FM) and phase

modulation (PM).

2. Students are to learn the working mechanism of DL 2501 and DL 2513C boards.

References :

1. FM Demodulation/Detection. Retrieved May 25, 2015, from Radio-Electronics.com.:

http://www.radio-electronics.com/info/rf-technology-design/fm-reception/fm-

demodulation-detection-overview.php 2. What is FM: Frequency Modulation Tutorial, Poole, I., (n.d.).Retrieved 1

st May 2015 from

http://www.radio-electronics.com/info/rf-technology-design/fm-frequency-modulation/what-

is-fmtutorial.php

3. What is PM, Phase Modulation, Poole, I., (n.d.). Retrieved 1stMay 2015 from

http://www.radio-electronics.com/info/rf-technology-design/pm-phase-modulation/what is-

pmtutorial.php

4. Varactor Diode Modulator. Retrieved May 25, 2015, from DAEnotes:

http://www.daenotes.com/electronics/communication-system/varactor-diode-modulator

5. Filters. Retrieved May 25, 2015, from DAFX: Digital Audio Effects:

http://www.music.mcgill.ca/~ich/classes/FiltersChap2.pdf