Top Banner
ALP_Rotondaro EE5321/EE7321 1 EE5321/EE7321 Semiconductor Devices and Circuits Frequency Response Part1
48

Freq Response

Jul 13, 2016

Download

Documents

OzephSharif

Nice explanation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Freq Response

ALP_Rotondaro EE5321/EE7321 1

EE5321/EE7321Semiconductor Devices and Circuits

Frequency Response Part1

Page 2: Freq Response

ALP_Rotondaro EE5321/EE7321 2

Impedance network transfer function • Impedance network transfer function:

where H(ω), Vout(ω) and Vin(ω) are phasors

( ) ( )( )ωωω

in

out

VV H =

( ) ( )( ) C R j 1

1 C j

1 R

C j1

VV H

in

out

ωω

ωωωω

+=

+

==

Page 3: Freq Response

ALP_Rotondaro EE5321/EE7321 3

H(ωωωω) in polar coordinates• H(ω) is represented by its amplitude and phase• Amplitude |H(ω)|

• Phase ∠θ

• If H(ω) = N(ω) / D(ω) then:

Re[H(ω)] = Re[N(ω)·D*(ω)]

Im[H(ω)] = Im[N(ω)·D*(ω)]

( ) ( ) )(HH H * ωωω •=

( ) ( )[ ]( )[ ]

=

ωωωθ

HReHImarctan

Page 4: Freq Response

ALP_Rotondaro EE5321/EE7321 4

H(ωωωω) for the RC circuit• Amplitude

• Amplitude in Decibels

• For a -3dB reduction on the magnitude

( ) ( )

+

=•C R j1

1C R j1

1 HH *

ωωωω

( ) ( ) ( )

+=• 2

*

C R 11 HH

ωωω

( ) ( )[ ]ωω Hlog20 H dB •=

( )[ ]dB3Hlog20 3 ω•=− ( ) 0.7079H 3 =dBω

Page 5: Freq Response

ALP_Rotondaro EE5321/EE7321 5

Bode Plot RC circuit – Amplitude

( ) ( ) 0.7079 C R 1

1 H 23

3dB =

+=

dBωω CR

1 p3dB == ωω

( )

+

= 2

3

1

1 H

dBωω

ω For ω >> ω3dB ( )

≈ 2

3

1 H

dBωω

ω

( )ω

ωω dB3 H ≈

Amp drops by 2 when f doubles

Amp drops by 10 every decade

Page 6: Freq Response

ALP_Rotondaro EE5321/EE7321 6

Bode Plot RC circuit - Phase

• H(ω) phase ( ) ( )[ ]( )[ ]

=

ωωωθ

HReHImarctan

( ) 2

3dB

3dB

3dB

3dB

3dB3dB 1

j 1

j 1

j 1

j 1

1 j 1

1 H

+

−=

−•

+=

+=

ωω

ωω

ωω

ωω

ωω

ωωω

( ){ } 2

3dB

1

1 H Re

+

=

ωω

ω ( ){ } 2

3dB

3dB

1

H I

+

=

ωω

ωω

ωm

Page 7: Freq Response

ALP_Rotondaro EE5321/EE7321 7

Bode Plot RC circuit - Phase• And the Phase is given by:

( ) ( )[ ]( )[ ]

=

−=

=

3dB3dB

-arctanarctan HReHImarctan

ωω

ωω

ωωωθ

Page 8: Freq Response

ALP_Rotondaro EE5321/EE7321 8

RC circuit – sine wave• The output wave has amplitude and phase altered by

the circuit

In Out

( )C R j 1

1 Hω

ω+

=

Page 9: Freq Response

ALP_Rotondaro EE5321/EE7321 9

Bode Plots – 1 pole• RC circuit

( )ω

ωω dB3 H ≈

( )

=3dB

-arctan ωωωθ

CR1 p3dB == ωω

Page 10: Freq Response

ALP_Rotondaro EE5321/EE7321 10

SPICE SIM – RC circuit• Run AC Sweep with 1V amplitude and freq: 10Hz to

100MHz• Output DB[V2(C1)/V1(V1)] and P[V2(C1)]

Page 11: Freq Response

ALP_Rotondaro EE5321/EE7321 11

SPICE SIM – RC circuit• ωp = 1/RC = 10k → fp = 1.6kHz

Page 12: Freq Response

ALP_Rotondaro EE5321/EE7321 12

RC circuits in series – 2 poles• The combination of two RC circuits in series is going

to result in 2 poles

( )

p2p1

j 1

1

j 1

1 H

ωω

ωωω

+•

+= where: ωp1 = 1/R1C1 and

ωp2 = 1/R2C2

Page 13: Freq Response

ALP_Rotondaro EE5321/EE7321 13

RC circuits in series – 2 poles• Overall transfer function ( ) ( ) ( )ωωωωω p2p1 HHH •=

( ) ( )[ ] ( )[ ]p2p2p1p1 jexpH jexpH H ωωωω θθω •••=

( ) [ ]( )p2p1p2p1 jexpH H H ωωωω θθω +••=

( ) ( ) ( )( )ωθωω jexpH H •=

( ) ( ) p2p1p2p1 and H H H ωωωω θθωθω +=•=∴

Page 14: Freq Response

ALP_Rotondaro EE5321/EE7321 14

Amplitude Bode Plot – 2 poles• Second pole “accelerates” the amplitude reduction

20dB/Dec

40dB/Dec

( ){ } ( ) ( ){ } HH log20 H log20 21 pp ωωω ••=•

( ){ } ( ){ } ( ){ } H log20 H log20 H log20 21 pp ωωω •+•=•

Page 15: Freq Response

ALP_Rotondaro EE5321/EE7321 15

Phase Bode Plot – 2 poles• Second pole adds to the phase shift

( ) p2p1 ωω θθωθ +=

Page 16: Freq Response

ALP_Rotondaro EE5321/EE7321 16

2 poles circuit – 180° phase shift• A phase shift of 180° can be a problem

• If in a feedback loop, a 180° phase shift will turn a negative feedback into a positive feedback

• This results in an unstable system if the loop gain is > 1

Page 17: Freq Response

ALP_Rotondaro EE5321/EE7321 17

Bode Plots – 3 Superimposed Poles• The phase shift

is quite “fast” and “strong”

• When used in a feedback loop will probably result in an unstable circuit

Page 18: Freq Response

ALP_Rotondaro EE5321/EE7321 18

C R circuit – H(ωωωω)• Circuit has:

1 Zero at ω = 01 Pole at ω = 1/R C

( )

1/RC j 1

CRj C R j 1

C Rj C j

1 R

R H ωω

ωω

ω

ω+

=+

=

+

=

( ) ( )( )ωωω

in

out

VV H =

( ) ( )2C R 11C R H

ωωω

+•=

Page 19: Freq Response

ALP_Rotondaro EE5321/EE7321 19

C R circuit – Bode plot amplitude• At ω = 0 → |H(ω)| = 0 and since

-3dB

( ) ( )[ ]ωω Hlog20H dB •=

( ) ( ) ∞→

+••= -

C R 11C R log20 H 2dB ω

ωω

( ) ( ) 3dB- 1 1

11 log20 H 2dB=

+••=pω

( )( )

01log20

HdB

=•=

>> pωω

Page 20: Freq Response

ALP_Rotondaro EE5321/EE7321 20

SPICE SIM – C R circuit• ωp = 1/RC = 10k → fp = 1.6kHz

Page 21: Freq Response

ALP_Rotondaro EE5321/EE7321 21

Zero’s phase response• The phase response of a Zero depends on which

half plane the Zero is located

( )zss-1 sH = ( )

zss1 sH +=zz j-s ω=

Page 22: Freq Response

ALP_Rotondaro EE5321/EE7321 22

Zero’s gain response• For Zero in either half plane the amplitude

response is the same

0

( )2

z

1 H

+=

ωωω ( )

+•=

2

zdB 1 log10 H

ωωω

( )

dB/dec20

log20

H

z

dB

•≈

>>

ωω

ωω z

Page 23: Freq Response

ALP_Rotondaro EE5321/EE7321 23

Transfer function – Other circuits• 1 Pole

• 1 Pole, 1 Zero

( ) ( )CR||Rj11

RRRH

2121

2

ωω

+•

+=

( ) ( )CR||Rj1CRj1

RRRH

21

1

21

2

ωωω

++

•+

=

Page 24: Freq Response

ALP_Rotondaro EE5321/EE7321 24

1 Pole, 1 Zero response• The response depends

on the relative location of the Pole and the Zero ( )

p

z

j1

j1 H

ωωωω

ω+

+=

Page 25: Freq Response

ALP_Rotondaro EE5321/EE7321 25

MOSFET capacitances - circuit• Specs: tox (Cox), CGSO, CGDO, CGBO, CJ, PB (φB)

• Typical Values

Cox = 10-4 F/m2

CGSO = 5x10-10 F/m

CGDO = 5x10-10 F/m

CGBO = 4x10-10 F/m

CJ = 10-4 F/m2

PB = 0.8 V

Page 26: Freq Response

ALP_Rotondaro EE5321/EE7321 26

MOSFET capacitances - equationsSaturation Linear

with: PS = Perimeter of Source, AS = Area of Source

MJ = ½ (default), MJSW = 3 (default)

CGB = CGBO · L

WCGSOWLC32 C oxGS •+•••= WCGSO

2WLC C ox

GS •+••=

WCGDO CGD •= WCGDO2

WLC C oxGD •+••=

MJSWBS

MJBS

SB

PBV1

PCJSW

PBV1

ACJ C

+

•+

+

•= SS a similar equation is used to calculate CDB

Page 27: Freq Response

ALP_Rotondaro EE5321/EE7321 27

MOSFET – classic layout• Area of Source = AS = 4λ·W

• Area of Drain = AD = AS = 4λ·W

• Perimeter of Source = PS = 8λ+W

• Perimeter of Drain = PD = 8λ+W

Page 28: Freq Response

ALP_Rotondaro EE5321/EE7321 28

MOSFET – SPICE attributesM1 1 2 3 4 NMOS L=2U W=2U+ AS=4p AD=4p PS=6U PD=6U

• Overlap capacitances are calculated using W

• Capacitance to body have area and perimeter terms

Page 29: Freq Response

ALP_Rotondaro EE5321/EE7321 29

Miller approximation• Capacitance between

input and output appears multiplied by the gain at the input

inout vA-v •=

( )

( )

( )dtdvA1C i

vAvdtdC i

v-vdtdCi

inc

ininc

outinc

•+•=

•+•=

•=

Page 30: Freq Response

ALP_Rotondaro EE5321/EE7321 30

Miller approximation – Common source

( )[ ]CRRg1CRj1Rg

vv

outoutmin

outm

in

out

+•++•

( )outminp Rg1 CR

1•+••

Miller Capacitor

Page 31: Freq Response

ALP_Rotondaro EE5321/EE7321 31

Common Source• CD can be ignored

sometimes

• Rout = RL || ro

• CG = CGB + CGS

Rout

Page 32: Freq Response

ALP_Rotondaro EE5321/EE7321 32

Common source – small signal• Using impedances

Rout

0Z

v-vZv

Rv-v

GD

out1

G

1

in

in1 =++

( )[ ]{ } GDGinout2

GDLinGoutmGD

m

GD

outmin

out

CCRRCRRCRg1C j1gC-1

R-gvv

ωω −+•+•++••=

p2p1

2

p2p1

m

GD

p2p1

m

GD

in

out

1111j1

gCj-1

j1j1

gCj-1

vv

ωωω

ωωω

ω

ωω

ωω

ω

••−

++

=

+•

+

=

Page 33: Freq Response

ALP_Rotondaro EE5321/EE7321 33

Common source – Poles and Zeros• From the transfer function:

( )[ ] GDLGoutmGDinp1 CRCRg1CR

1-++•+•

( ) Ggm1

inoutGDoutp2 C ||R ||R

1CR1- −=ω

GD

mz C

g=ω

( )

++

+

+

=

p2p1

z

j1j1

j1H

ωω

ωω

ωω

ω

Page 34: Freq Response

ALP_Rotondaro EE5321/EE7321 34

Common source – Poles and Zeros• Converting to s space:

sz = -jωz sp1 = -jωp1 sp2 = -jωp2

( )

++

+

+

=

p2p1

z

j1j1

j1H

ωω

ωω

ωω

ω ( )

+

=

p2p1

z

-1-1

-1H

ss

ss

ss

s

Page 35: Freq Response

ALP_Rotondaro EE5321/EE7321 35

Diode connected and Pole Splitting

Page 36: Freq Response

ALP_Rotondaro EE5321/EE7321 36

Common source – Capacitance Cases• Relative magnitude of

the capacitors result in different scenarios

• Case1: Miller Cap small

RinCπ, RoutCD >> RinCMiller

π

ωCR1

inp1 =

DCR1

outp2 =ω oLout r||R R =

Page 37: Freq Response

ALP_Rotondaro EE5321/EE7321 37

Common source – Small Miller capacitance• Output Impedance, Zout

• Stage gain, Av

• Output pole

Dout

DoLout Cj

1 ||R Cj1 ||r ||R Z

ωω==

Dout

out

Dout

D

out

moutmv CRj1R

Cj1 R

CjR

g- Zg- Aω

ω

ω+

=+

•=•=

Doutp CR

1 =ω

Page 38: Freq Response

ALP_Rotondaro EE5321/EE7321 38

Common source – Small Miller capacitance• Input transfer function

• Input pole

π

π

π

ωω

ωCRj1

1

Cj1 R

Cj1

vv

inin

in

'in

+=

+=

π

ωCR1

inp =

Page 39: Freq Response

ALP_Rotondaro EE5321/EE7321 39

Common source – Other cases• Case 2: Large CD

RoutCD >> RinCMiller, RinCπ

• Case 3: Large Cµ

RinCMiller >> RoutCD, RinCπ

Doutp1 CR

1 =ω ( )µπ

ωCCR

1 in

p2 +=

( ) µ

ωCRg1R

1 outmin

p1 +=

CMiller

( ) ( )D

m

Dm

p2 CCg

CCg1

1 +

=+

π

ω

Page 40: Freq Response

ALP_Rotondaro EE5321/EE7321 40

Poles and Zeros• Usually the multiplying factor on the Miller

capacitor results in poles far apart from each other than in other cases.

• The pole splitting is used to compensate the circuit.

MILLERinp1 CR

1 ≈ω

Page 41: Freq Response

ALP_Rotondaro EE5321/EE7321 41

Common drain (source follower)• Small circuit analysis

vOUT

( ) outoutinin

g vv-vCRj1

1v +•

+

=πω

Page 42: Freq Response

ALP_Rotondaro EE5321/EE7321 42

Common drain – Small signal analysis

( ) outmgmoutg

s

out vg1-Vg

Cj1v-v

Rv ••+•+= χ

ω π

( ) ( ) gmms

out vgCjCjg1R1v •+=

+•++• ππ ωωχ

( )( ) sm

smin

m

sm

sm

s

out

Rg11Rg1CRj1

gCj1

Rg11Rg

Rv

•++•+•+

+

••++

=

χχω

ω

χπ

π

π

ωCg m

z = ( )A1CR1

inp1 −

ω ( ) sm

sm

Rg11Rg Aχ++

=

Page 43: Freq Response

ALP_Rotondaro EE5321/EE7321 43

Common drain (source follower)• Effect of CSB

• The Body is Grounded

Page 44: Freq Response

ALP_Rotondaro EE5321/EE7321 44

Common drain – small signal

( ) GSoutgGgin

gin Cjv-vCjvR

v-vωω •+•=

( ) ( ) SBouts

outoutgmGSoutg Cjv

Rvv-vg-Cjv-v ωω •+=••

Page 45: Freq Response

ALP_Rotondaro EE5321/EE7321 45

Common drain – Small signal analysis

( ) ( )

+

++−

+

++

+++

+•

+=

sm

GSGSBGGSins

2

sm

SBGSs

sm

GSinGin

m

GS

sm

sm

in

out

Rg1CCCCCRR

Rg1CCR

Rg1CRCRj1

gCj1

Rg1Rg

vv

ωω

ω

• Having the denominator to be in the format:

• The poles are:

p2p1

2

p2p1p2p1

11 j1 j1j1ωω

ωωω

ωωω

ωω −

++=

+•

+

( ) ( )SBGSOsm

GSinGin

sm

SBGSs

sm

GSinGin

p1CCR

Rg1CRCR

1

Rg1CCR

Rg1CRCR

1

+++

+=

+++

++

( )[ ]GSSBGSBGGSinO

SBGSOsm

GSinGin

p2 CCCCCCRR

CCRRg1

CRCR

++

+++

+=ω s

mO R ||

g1R =

Page 46: Freq Response

ALP_Rotondaro EE5321/EE7321 46

Common drain - Cases

• Case 1:

• Case 2:

( )SBGSOsm

GSGin CCR

Rg1CCR +>>

+

+

+

+=

sm

GSGin

p1

Rg1CCR

1ωsm

sm

Rg1Rg A

+= ( )A-1CC GSMiller •=

( )

+

+>>+sm

GSGinSBGSO Rg1

CCR CCR

( )SBGSOp1 CCR

1+

Page 47: Freq Response

ALP_Rotondaro EE5321/EE7321 47

Common Gate

• Assuming ro → ∞

Page 48: Freq Response

ALP_Rotondaro EE5321/EE7321 48

Common gate – small signal• Using KCL @ vs and @ vout

• No Zeros

smsss

sin vgCjvR

v-v+•= ω

L

outDoutsm R

vCjv vg +•= ω

( )

+

+•+

+=

sm

ssDL

sm

Lm

in

out

Rg1CRj1CRj1

Rg1Rg

vv

ωω

DLp1 CR

1=ω

sm

sssm

sp2

Cg1 ||R

1

CRg1

R1

=

+