ALP_Rotondaro EE5321/EE7321 1 EE5321/EE7321 Semiconductor Devices and Circuits Frequency Response Part1
ALP_Rotondaro EE5321/EE7321 1
EE5321/EE7321Semiconductor Devices and Circuits
Frequency Response Part1
ALP_Rotondaro EE5321/EE7321 2
Impedance network transfer function Impedance network transfer function:
where H(), Vout() and Vin() are phasors
( ) ( )( )
in
out
VV H =
( ) ( )( ) C R j 11
C j1 R
C j1
VV H
in
out
+=
+
==
ALP_Rotondaro EE5321/EE7321 3
H() in polar coordinates H() is represented by its amplitude and phase Amplitude |H()|
Phase
If H() = N() / D() then:
Re[H()] = Re[N()D*()]
Im[H()] = Im[N()D*()]
( ) ( ) )(HH H * =
( ) ( )[ ]( )[ ]
=
HReHImarctan
ALP_Rotondaro EE5321/EE7321 4
H() for the RC circuit Amplitude
Amplitude in Decibels
For a -3dB reduction on the magnitude
( ) ( )
+
=C R j1
1C R j1
1 HH *
( ) ( ) ( )
+= 2
*
C R 11 HH
( ) ( )[ ] Hlog20 H dB =
( )[ ]dB3Hlog20 3 = ( ) 0.7079H 3 =dB
ALP_Rotondaro EE5321/EE7321 5
Bode Plot RC circuit Amplitude
( ) ( ) 0.7079 C R 11 H 2
33dB =
+=
dB CR
1 p3dB ==
( )
+
= 2
3
1
1 H
dB
For >> 3dB ( )
2
3
1 H
dB
( )
dB3 H
Amp drops by 2 when f doubles
Amp drops by 10 every decade
ALP_Rotondaro EE5321/EE7321 6
Bode Plot RC circuit - Phase
H() phase ( ) ( )[ ]( )[ ]
=
HReHImarctan
( ) 23dB
3dB
3dB
3dB
3dB3dB 1
j 1
j 1
j 1
j 1
1 j 1
1 H
+
=
+=
+=
( ){ } 23dB
1
1 H Re
+
=
( ){ } 2
3dB
3dB
1
H I
+
=
m
ALP_Rotondaro EE5321/EE7321 7
Bode Plot RC circuit - Phase And the Phase is given by:
( ) ( )[ ]( )[ ]
=
=
=
3dB3dB
-arctanarctan HReHImarctan
ALP_Rotondaro EE5321/EE7321 8
RC circuit sine wave The output wave has amplitude and phase altered by
the circuit
In Out
( )C R j 1
1 H
+
=
ALP_Rotondaro EE5321/EE7321 9
Bode Plots 1 pole RC circuit
( )
dB3 H
( )
=
3dB
-arctan
CR1 p3dB ==
ALP_Rotondaro EE5321/EE7321 10
SPICE SIM RC circuit Run AC Sweep with 1V amplitude and freq: 10Hz to
100MHz Output DB[V2(C1)/V1(V1)] and P[V2(C1)]
ALP_Rotondaro EE5321/EE7321 11
SPICE SIM RC circuit p = 1/RC = 10k fp = 1.6kHz
ALP_Rotondaro EE5321/EE7321 12
RC circuits in series 2 poles The combination of two RC circuits in series is going
to result in 2 poles
( )p2p1
j 1
1
j 1
1 H
+
+= where: p1 = 1/R1C1 and
p2 = 1/R2C2
ALP_Rotondaro EE5321/EE7321 13
RC circuits in series 2 poles Overall transfer function ( ) ( ) ( ) p2p1 HHH =
( ) ( )[ ] ( )[ ]p2p2p1p1 jexpH jexpH H =( ) [ ]( )p2p1p2p1 jexpH H H +=( ) ( ) ( )( ) jexpH H =
( ) ( ) p2p1p2p1 and H H H +==
ALP_Rotondaro EE5321/EE7321 14
Amplitude Bode Plot 2 poles Second pole accelerates the amplitude reduction
20dB/Dec
40dB/Dec
( ){ } ( ) ( ){ } HH log20 H log20 21 pp =( ){ } ( ){ } ( ){ } H log20 H log20 H log20 21 pp +=
ALP_Rotondaro EE5321/EE7321 15
Phase Bode Plot 2 poles Second pole adds to the phase shift
( ) p2p1 +=
ALP_Rotondaro EE5321/EE7321 16
2 poles circuit 180 phase shift A phase shift of 180 can be a problem
If in a feedback loop, a 180 phase shift will turn a negative feedback into a positive feedback
This results in an unstable system if the loop gain is > 1
ALP_Rotondaro EE5321/EE7321 17
Bode Plots 3 Superimposed Poles The phase shift
is quite fast and strong
When used in a feedback loop will probably result in an unstable circuit
ALP_Rotondaro EE5321/EE7321 18
C R circuit H() Circuit has:
1 Zero at = 01 Pole at = 1/R C
( )1/RC j 1
CRj C R j 1
C Rj C j
1 R
R H
+
=
+=
+
=
( ) ( )( )
in
out
VV H =
( ) ( )2C R 11C R H
+
=
ALP_Rotondaro EE5321/EE7321 19
C R circuit Bode plot amplitude At = 0 |H()| = 0 and since
-3dB
( ) ( )[ ] Hlog20H dB =( ) ( )
+= -
C R 11C R log20 H 2dB
( ) ( ) 3dB- 1 111 log20 H 2dB =
+=p
( )( )
01log20
HdB
=
=
>> p
ALP_Rotondaro EE5321/EE7321 20
SPICE SIM C R circuit p = 1/RC = 10k fp = 1.6kHz
ALP_Rotondaro EE5321/EE7321 21
Zeros phase response The phase response of a Zero depends on which
half plane the Zero is located
( )zss-1 sH = ( )
zss1 sH +=zz j-s =
ALP_Rotondaro EE5321/EE7321 22
Zeros gain response For Zero in either half plane the amplitude
response is the same
0
( )2
z
1 H
+=
( )
+=
2
zdB 1 log10 H
( )
dB/dec20
log20
H
z
dB
>>
z
ALP_Rotondaro EE5321/EE7321 23
Transfer function Other circuits 1 Pole
1 Pole, 1 Zero
( ) ( )CR||Rj11
RRRH
2121
2
+
+=
( ) ( )CR||Rj1CRj1
RRRH
21
1
21
2
+
+
+=
ALP_Rotondaro EE5321/EE7321 24
1 Pole, 1 Zero response The response depends
on the relative location of the Pole and the Zero ( )
p
z
j1
j1 H
+
+
=
ALP_Rotondaro EE5321/EE7321 25
MOSFET capacitances - circuit Specs: tox (Cox), CGSO, CGDO, CGBO, CJ, PB (B)
Typical Values
Cox = 10-4 F/m2
CGSO = 5x10-10 F/m
CGDO = 5x10-10 F/m
CGBO = 4x10-10 F/m
CJ = 10-4 F/m2
PB = 0.8 V
ALP_Rotondaro EE5321/EE7321 26
MOSFET capacitances - equationsSaturation Linear
with: PS = Perimeter of Source, AS = Area of Source
MJ = (default), MJSW = 3 (default)
CGB = CGBO L
WCGSOWLC32 C oxGS += WCGSO2
WLC C oxGS +
=
WCGDO CGD = WCGDO2WLC C oxGD +
=
MJSWBS
MJBS
SB
PBV1
PCJSW
PBV1
ACJ C
+
+
+
=
SS a similar equation is used to calculate CDB
ALP_Rotondaro EE5321/EE7321 27
MOSFET classic layout Area of Source = AS = 4W Area of Drain = AD = AS = 4W Perimeter of Source = PS = 8+W Perimeter of Drain = PD = 8+W
ALP_Rotondaro EE5321/EE7321 28
MOSFET SPICE attributesM1 1 2 3 4 NMOS L=2U W=2U+ AS=4p AD=4p PS=6U PD=6U
Overlap capacitances are calculated using W
Capacitance to body have area and perimeter terms
ALP_Rotondaro EE5321/EE7321 29
Miller approximation Capacitance between
input and output appears multiplied by the gain at the input
inout vA-v =
( )( )
( )dtdvA1C i
vAvdtdC i
v-vdtdCi
inc
ininc
outinc
+=
+=
=
ALP_Rotondaro EE5321/EE7321 30
Miller approximation Common source
( )[ ]CRRg1CRj1Rg
vv
outoutmin
outm
in
out
+++
=
( )outminp Rg1 CR1
+=
Miller Capacitor
ALP_Rotondaro EE5321/EE7321 31
Common Source CD can be ignored
sometimes
Rout = RL || ro
CG = CGB + CGS
Rout
ALP_Rotondaro EE5321/EE7321 32
Common source small signal Using impedances
Rout0
Zv-v
Zv
Rv-v
GD
out1
G
1
in
in1=++
( )[ ]{ } GDGinout2GDLinGoutmGDm
GD
outmin
out
CCRRCRRCRg1C j1gC-1
R-gvv
++++=
p2p1
2
p2p1
m
GD
p2p1
m
GD
in
out
1111j1
gCj-1
j1j1
gCj-1
vv
++
=
+
+
=
ALP_Rotondaro EE5321/EE7321 33
Common source Poles and Zeros From the transfer function:
( )[ ] GDLGoutmGDinp1 CRCRg1CR1-
+++=
( ) Ggm1inoutGDoutp2 C ||R ||R1
CR1- =
GD
mz C
g=
( )
++
+
+
=
p2p1
z
j1j1
j1H
ALP_Rotondaro EE5321/EE7321 34
Common source Poles and Zeros Converting to s space:
sz = -jz sp1 = -jp1 sp2 = -jp2
( )
++
+
+
=
p2p1
z
j1j1
j1H
( )
+
=
p2p1
z
-1-1
-1H
ss
ss
ss
s
ALP_Rotondaro EE5321/EE7321 35
Diode connected and Pole Splitting
ALP_Rotondaro EE5321/EE7321 36
Common source Capacitance Cases Relative magnitude of
the capacitors result in different scenarios
Case1: Miller Cap small
RinC, RoutCD >> RinCMiller
CR1
inp1 =
DCR1
outp2 = oLout r||R R =
ALP_Rotondaro EE5321/EE7321 37
Common source Small Miller capacitance Output Impedance, Zout
Stage gain, Av
Output pole
Dout
DoLout Cj
1 ||R Cj1 ||r ||R Z
==
Dout
out
Dout
D
out
moutmv CRj1R
Cj1 R
CjR
g- Zg- A
+=
+==
Doutp CR
1 =
ALP_Rotondaro EE5321/EE7321 38
Common source Small Miller capacitance Input transfer function
Input pole
CRj11
Cj1 R
Cj1
vv
inin
in
'in
+=
+=
CR1
inp =
ALP_Rotondaro EE5321/EE7321 39
Common source Other cases Case 2: Large CD
RoutCD >> RinCMiller, RinC
Case 3: Large CRinCMiller >> RoutCD, RinC
Doutp1 CR
1 = ( ) CCR1
inp2 +=
( ) CRg1R1
outminp1 +=
CMiller
( ) ( )Dm
Dm
p2 CCg
CCg1
1 +
=
+=
ALP_Rotondaro EE5321/EE7321 40
Poles and Zeros Usually the multiplying factor on the Miller
capacitor results in poles far apart from each other than in other cases.
The pole splitting is used to compensate the circuit.
MILLERinp1 CR
1
ALP_Rotondaro EE5321/EE7321 41
Common drain (source follower) Small circuit analysis
vOUT
( ) outoutinin
g vv-vCRj11v +
+
=
ALP_Rotondaro EE5321/EE7321 42
Common drain Small signal analysis
( ) outmgmoutgs
out vg1-Vg
Cj1v-v
Rv
++=
( ) ( ) gmms
out vgCjCjg1R1v +=
+++
( )( ) sm
smin
m
sm
sm
s
out
Rg11Rg1CRj1
gCj1
Rg11Rg
Rv
++
++
+
++
=
Cg mz = ( )A1CR
1 in
p1
=
( ) smsm
Rg11Rg A++
=
ALP_Rotondaro EE5321/EE7321 43
Common drain (source follower) Effect of CSB
The Body is Grounded
ALP_Rotondaro EE5321/EE7321 44
Common drain small signal
( ) GSoutgGgin
gin Cjv-vCjvR
v-v +=
( ) ( ) SBouts
outoutgmGSoutg CjvR
vv-vg-Cjv-v +=
ALP_Rotondaro EE5321/EE7321 45
Common drain Small signal analysis
( ) ( )
+
++
+
++
+++
+
+=
sm
GSGSBGGSins
2
sm
SBGSs
sm
GSinGin
m
GS
sm
sm
in
out
Rg1CCCCCRR
Rg1CCR
Rg1CRCRj1
gCj1
Rg1Rg
vv
Having the denominator to be in the format:
The poles are:
p2p1
2
p2p1p2p1
11 j1 j1j1
++=
+
+
( ) ( )SBGSOsm
GSinGin
sm
SBGSs
sm
GSinGin
p1CCR
Rg1CRCR
1
Rg1CCR
Rg1CRCR
1
+++
+=
+
++
++
=
( )[ ]GSSBGSBGGSinO
SBGSOsm
GSinGin
p2 CCCCCCRR
CCRRg1
CRCR
++
+++
+
= sm
O R ||g1R =
ALP_Rotondaro EE5321/EE7321 46
Common drain - Cases
Case 1:
Case 2:
( )SBGSOsm
GSGin CCR Rg1
CCR +>>
+
+
+
+
=
sm
GSGin
p1
Rg1CCR
1
sm
sm
Rg1Rg A
+= ( )A-1CC GSMiller =
( )
+
+>>+sm
GSGinSBGSO Rg1
CCR CCR
( )SBGSOp1 CCR1+
=
ALP_Rotondaro EE5321/EE7321 47
Common Gate
Assuming ro
ALP_Rotondaro EE5321/EE7321 48
Common gate small signal Using KCL @ vs and @ vout
No Zeros
smsss
sin vgCjvR
v-v+=
L
outDoutsm R
vCjv vg +=
( )
+
++
+=
sm
ssDL
sm
Lm
in
out
Rg1CRj1CRj1
Rg1Rg
vv
DLp1 CR
1=
sm
sssm
sp2
Cg1 ||R
1
CRg1
R1
=
+
=