Top Banner
ALP_Rotondaro EE5321/EE7321 1 EE5321/EE7321 Semiconductor Devices and Circuits Frequency Response Part1
48

Freq Response

Jul 13, 2016

Download

Documents

OzephSharif

Nice explanation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • ALP_Rotondaro EE5321/EE7321 1

    EE5321/EE7321Semiconductor Devices and Circuits

    Frequency Response Part1

  • ALP_Rotondaro EE5321/EE7321 2

    Impedance network transfer function Impedance network transfer function:

    where H(), Vout() and Vin() are phasors

    ( ) ( )( )

    in

    out

    VV H =

    ( ) ( )( ) C R j 11

    C j1 R

    C j1

    VV H

    in

    out

    +=

    +

    ==

  • ALP_Rotondaro EE5321/EE7321 3

    H() in polar coordinates H() is represented by its amplitude and phase Amplitude |H()|

    Phase

    If H() = N() / D() then:

    Re[H()] = Re[N()D*()]

    Im[H()] = Im[N()D*()]

    ( ) ( ) )(HH H * =

    ( ) ( )[ ]( )[ ]

    =

    HReHImarctan

  • ALP_Rotondaro EE5321/EE7321 4

    H() for the RC circuit Amplitude

    Amplitude in Decibels

    For a -3dB reduction on the magnitude

    ( ) ( )

    +

    =C R j1

    1C R j1

    1 HH *

    ( ) ( ) ( )

    += 2

    *

    C R 11 HH

    ( ) ( )[ ] Hlog20 H dB =

    ( )[ ]dB3Hlog20 3 = ( ) 0.7079H 3 =dB

  • ALP_Rotondaro EE5321/EE7321 5

    Bode Plot RC circuit Amplitude

    ( ) ( ) 0.7079 C R 11 H 2

    33dB =

    +=

    dB CR

    1 p3dB ==

    ( )

    +

    = 2

    3

    1

    1 H

    dB

    For >> 3dB ( )

    2

    3

    1 H

    dB

    ( )

    dB3 H

    Amp drops by 2 when f doubles

    Amp drops by 10 every decade

  • ALP_Rotondaro EE5321/EE7321 6

    Bode Plot RC circuit - Phase

    H() phase ( ) ( )[ ]( )[ ]

    =

    HReHImarctan

    ( ) 23dB

    3dB

    3dB

    3dB

    3dB3dB 1

    j 1

    j 1

    j 1

    j 1

    1 j 1

    1 H

    +

    =

    +=

    +=

    ( ){ } 23dB

    1

    1 H Re

    +

    =

    ( ){ } 2

    3dB

    3dB

    1

    H I

    +

    =

    m

  • ALP_Rotondaro EE5321/EE7321 7

    Bode Plot RC circuit - Phase And the Phase is given by:

    ( ) ( )[ ]( )[ ]

    =

    =

    =

    3dB3dB

    -arctanarctan HReHImarctan

  • ALP_Rotondaro EE5321/EE7321 8

    RC circuit sine wave The output wave has amplitude and phase altered by

    the circuit

    In Out

    ( )C R j 1

    1 H

    +

    =

  • ALP_Rotondaro EE5321/EE7321 9

    Bode Plots 1 pole RC circuit

    ( )

    dB3 H

    ( )

    =

    3dB

    -arctan

    CR1 p3dB ==

  • ALP_Rotondaro EE5321/EE7321 10

    SPICE SIM RC circuit Run AC Sweep with 1V amplitude and freq: 10Hz to

    100MHz Output DB[V2(C1)/V1(V1)] and P[V2(C1)]

  • ALP_Rotondaro EE5321/EE7321 11

    SPICE SIM RC circuit p = 1/RC = 10k fp = 1.6kHz

  • ALP_Rotondaro EE5321/EE7321 12

    RC circuits in series 2 poles The combination of two RC circuits in series is going

    to result in 2 poles

    ( )p2p1

    j 1

    1

    j 1

    1 H

    +

    += where: p1 = 1/R1C1 and

    p2 = 1/R2C2

  • ALP_Rotondaro EE5321/EE7321 13

    RC circuits in series 2 poles Overall transfer function ( ) ( ) ( ) p2p1 HHH =

    ( ) ( )[ ] ( )[ ]p2p2p1p1 jexpH jexpH H =( ) [ ]( )p2p1p2p1 jexpH H H +=( ) ( ) ( )( ) jexpH H =

    ( ) ( ) p2p1p2p1 and H H H +==

  • ALP_Rotondaro EE5321/EE7321 14

    Amplitude Bode Plot 2 poles Second pole accelerates the amplitude reduction

    20dB/Dec

    40dB/Dec

    ( ){ } ( ) ( ){ } HH log20 H log20 21 pp =( ){ } ( ){ } ( ){ } H log20 H log20 H log20 21 pp +=

  • ALP_Rotondaro EE5321/EE7321 15

    Phase Bode Plot 2 poles Second pole adds to the phase shift

    ( ) p2p1 +=

  • ALP_Rotondaro EE5321/EE7321 16

    2 poles circuit 180 phase shift A phase shift of 180 can be a problem

    If in a feedback loop, a 180 phase shift will turn a negative feedback into a positive feedback

    This results in an unstable system if the loop gain is > 1

  • ALP_Rotondaro EE5321/EE7321 17

    Bode Plots 3 Superimposed Poles The phase shift

    is quite fast and strong

    When used in a feedback loop will probably result in an unstable circuit

  • ALP_Rotondaro EE5321/EE7321 18

    C R circuit H() Circuit has:

    1 Zero at = 01 Pole at = 1/R C

    ( )1/RC j 1

    CRj C R j 1

    C Rj C j

    1 R

    R H

    +

    =

    +=

    +

    =

    ( ) ( )( )

    in

    out

    VV H =

    ( ) ( )2C R 11C R H

    +

    =

  • ALP_Rotondaro EE5321/EE7321 19

    C R circuit Bode plot amplitude At = 0 |H()| = 0 and since

    -3dB

    ( ) ( )[ ] Hlog20H dB =( ) ( )

    += -

    C R 11C R log20 H 2dB

    ( ) ( ) 3dB- 1 111 log20 H 2dB =

    +=p

    ( )( )

    01log20

    HdB

    =

    =

    >> p

  • ALP_Rotondaro EE5321/EE7321 20

    SPICE SIM C R circuit p = 1/RC = 10k fp = 1.6kHz

  • ALP_Rotondaro EE5321/EE7321 21

    Zeros phase response The phase response of a Zero depends on which

    half plane the Zero is located

    ( )zss-1 sH = ( )

    zss1 sH +=zz j-s =

  • ALP_Rotondaro EE5321/EE7321 22

    Zeros gain response For Zero in either half plane the amplitude

    response is the same

    0

    ( )2

    z

    1 H

    +=

    ( )

    +=

    2

    zdB 1 log10 H

    ( )

    dB/dec20

    log20

    H

    z

    dB

    >>

    z

  • ALP_Rotondaro EE5321/EE7321 23

    Transfer function Other circuits 1 Pole

    1 Pole, 1 Zero

    ( ) ( )CR||Rj11

    RRRH

    2121

    2

    +

    +=

    ( ) ( )CR||Rj1CRj1

    RRRH

    21

    1

    21

    2

    +

    +

    +=

  • ALP_Rotondaro EE5321/EE7321 24

    1 Pole, 1 Zero response The response depends

    on the relative location of the Pole and the Zero ( )

    p

    z

    j1

    j1 H

    +

    +

    =

  • ALP_Rotondaro EE5321/EE7321 25

    MOSFET capacitances - circuit Specs: tox (Cox), CGSO, CGDO, CGBO, CJ, PB (B)

    Typical Values

    Cox = 10-4 F/m2

    CGSO = 5x10-10 F/m

    CGDO = 5x10-10 F/m

    CGBO = 4x10-10 F/m

    CJ = 10-4 F/m2

    PB = 0.8 V

  • ALP_Rotondaro EE5321/EE7321 26

    MOSFET capacitances - equationsSaturation Linear

    with: PS = Perimeter of Source, AS = Area of Source

    MJ = (default), MJSW = 3 (default)

    CGB = CGBO L

    WCGSOWLC32 C oxGS += WCGSO2

    WLC C oxGS +

    =

    WCGDO CGD = WCGDO2WLC C oxGD +

    =

    MJSWBS

    MJBS

    SB

    PBV1

    PCJSW

    PBV1

    ACJ C

    +

    +

    +

    =

    SS a similar equation is used to calculate CDB

  • ALP_Rotondaro EE5321/EE7321 27

    MOSFET classic layout Area of Source = AS = 4W Area of Drain = AD = AS = 4W Perimeter of Source = PS = 8+W Perimeter of Drain = PD = 8+W

  • ALP_Rotondaro EE5321/EE7321 28

    MOSFET SPICE attributesM1 1 2 3 4 NMOS L=2U W=2U+ AS=4p AD=4p PS=6U PD=6U

    Overlap capacitances are calculated using W

    Capacitance to body have area and perimeter terms

  • ALP_Rotondaro EE5321/EE7321 29

    Miller approximation Capacitance between

    input and output appears multiplied by the gain at the input

    inout vA-v =

    ( )( )

    ( )dtdvA1C i

    vAvdtdC i

    v-vdtdCi

    inc

    ininc

    outinc

    +=

    +=

    =

  • ALP_Rotondaro EE5321/EE7321 30

    Miller approximation Common source

    ( )[ ]CRRg1CRj1Rg

    vv

    outoutmin

    outm

    in

    out

    +++

    =

    ( )outminp Rg1 CR1

    +=

    Miller Capacitor

  • ALP_Rotondaro EE5321/EE7321 31

    Common Source CD can be ignored

    sometimes

    Rout = RL || ro

    CG = CGB + CGS

    Rout

  • ALP_Rotondaro EE5321/EE7321 32

    Common source small signal Using impedances

    Rout0

    Zv-v

    Zv

    Rv-v

    GD

    out1

    G

    1

    in

    in1=++

    ( )[ ]{ } GDGinout2GDLinGoutmGDm

    GD

    outmin

    out

    CCRRCRRCRg1C j1gC-1

    R-gvv

    ++++=

    p2p1

    2

    p2p1

    m

    GD

    p2p1

    m

    GD

    in

    out

    1111j1

    gCj-1

    j1j1

    gCj-1

    vv

    ++

    =

    +

    +

    =

  • ALP_Rotondaro EE5321/EE7321 33

    Common source Poles and Zeros From the transfer function:

    ( )[ ] GDLGoutmGDinp1 CRCRg1CR1-

    +++=

    ( ) Ggm1inoutGDoutp2 C ||R ||R1

    CR1- =

    GD

    mz C

    g=

    ( )

    ++

    +

    +

    =

    p2p1

    z

    j1j1

    j1H

  • ALP_Rotondaro EE5321/EE7321 34

    Common source Poles and Zeros Converting to s space:

    sz = -jz sp1 = -jp1 sp2 = -jp2

    ( )

    ++

    +

    +

    =

    p2p1

    z

    j1j1

    j1H

    ( )

    +

    =

    p2p1

    z

    -1-1

    -1H

    ss

    ss

    ss

    s

  • ALP_Rotondaro EE5321/EE7321 35

    Diode connected and Pole Splitting

  • ALP_Rotondaro EE5321/EE7321 36

    Common source Capacitance Cases Relative magnitude of

    the capacitors result in different scenarios

    Case1: Miller Cap small

    RinC, RoutCD >> RinCMiller

    CR1

    inp1 =

    DCR1

    outp2 = oLout r||R R =

  • ALP_Rotondaro EE5321/EE7321 37

    Common source Small Miller capacitance Output Impedance, Zout

    Stage gain, Av

    Output pole

    Dout

    DoLout Cj

    1 ||R Cj1 ||r ||R Z

    ==

    Dout

    out

    Dout

    D

    out

    moutmv CRj1R

    Cj1 R

    CjR

    g- Zg- A

    +=

    +==

    Doutp CR

    1 =

  • ALP_Rotondaro EE5321/EE7321 38

    Common source Small Miller capacitance Input transfer function

    Input pole

    CRj11

    Cj1 R

    Cj1

    vv

    inin

    in

    'in

    +=

    +=

    CR1

    inp =

  • ALP_Rotondaro EE5321/EE7321 39

    Common source Other cases Case 2: Large CD

    RoutCD >> RinCMiller, RinC

    Case 3: Large CRinCMiller >> RoutCD, RinC

    Doutp1 CR

    1 = ( ) CCR1

    inp2 +=

    ( ) CRg1R1

    outminp1 +=

    CMiller

    ( ) ( )Dm

    Dm

    p2 CCg

    CCg1

    1 +

    =

    +=

  • ALP_Rotondaro EE5321/EE7321 40

    Poles and Zeros Usually the multiplying factor on the Miller

    capacitor results in poles far apart from each other than in other cases.

    The pole splitting is used to compensate the circuit.

    MILLERinp1 CR

    1

  • ALP_Rotondaro EE5321/EE7321 41

    Common drain (source follower) Small circuit analysis

    vOUT

    ( ) outoutinin

    g vv-vCRj11v +

    +

    =

  • ALP_Rotondaro EE5321/EE7321 42

    Common drain Small signal analysis

    ( ) outmgmoutgs

    out vg1-Vg

    Cj1v-v

    Rv

    ++=

    ( ) ( ) gmms

    out vgCjCjg1R1v +=

    +++

    ( )( ) sm

    smin

    m

    sm

    sm

    s

    out

    Rg11Rg1CRj1

    gCj1

    Rg11Rg

    Rv

    ++

    ++

    +

    ++

    =

    Cg mz = ( )A1CR

    1 in

    p1

    =

    ( ) smsm

    Rg11Rg A++

    =

  • ALP_Rotondaro EE5321/EE7321 43

    Common drain (source follower) Effect of CSB

    The Body is Grounded

  • ALP_Rotondaro EE5321/EE7321 44

    Common drain small signal

    ( ) GSoutgGgin

    gin Cjv-vCjvR

    v-v +=

    ( ) ( ) SBouts

    outoutgmGSoutg CjvR

    vv-vg-Cjv-v +=

  • ALP_Rotondaro EE5321/EE7321 45

    Common drain Small signal analysis

    ( ) ( )

    +

    ++

    +

    ++

    +++

    +

    +=

    sm

    GSGSBGGSins

    2

    sm

    SBGSs

    sm

    GSinGin

    m

    GS

    sm

    sm

    in

    out

    Rg1CCCCCRR

    Rg1CCR

    Rg1CRCRj1

    gCj1

    Rg1Rg

    vv

    Having the denominator to be in the format:

    The poles are:

    p2p1

    2

    p2p1p2p1

    11 j1 j1j1

    ++=

    +

    +

    ( ) ( )SBGSOsm

    GSinGin

    sm

    SBGSs

    sm

    GSinGin

    p1CCR

    Rg1CRCR

    1

    Rg1CCR

    Rg1CRCR

    1

    +++

    +=

    +

    ++

    ++

    =

    ( )[ ]GSSBGSBGGSinO

    SBGSOsm

    GSinGin

    p2 CCCCCCRR

    CCRRg1

    CRCR

    ++

    +++

    +

    = sm

    O R ||g1R =

  • ALP_Rotondaro EE5321/EE7321 46

    Common drain - Cases

    Case 1:

    Case 2:

    ( )SBGSOsm

    GSGin CCR Rg1

    CCR +>>

    +

    +

    +

    +

    =

    sm

    GSGin

    p1

    Rg1CCR

    1

    sm

    sm

    Rg1Rg A

    += ( )A-1CC GSMiller =

    ( )

    +

    +>>+sm

    GSGinSBGSO Rg1

    CCR CCR

    ( )SBGSOp1 CCR1+

    =

  • ALP_Rotondaro EE5321/EE7321 47

    Common Gate

    Assuming ro

  • ALP_Rotondaro EE5321/EE7321 48

    Common gate small signal Using KCL @ vs and @ vout

    No Zeros

    smsss

    sin vgCjvR

    v-v+=

    L

    outDoutsm R

    vCjv vg +=

    ( )

    +

    ++

    +=

    sm

    ssDL

    sm

    Lm

    in

    out

    Rg1CRj1CRj1

    Rg1Rg

    vv

    DLp1 CR

    1=

    sm

    sssm

    sp2

    Cg1 ||R

    1

    CRg1

    R1

    =

    +

    =