Top Banner
Exploring Compound Combina1ons in High Throughput Se9ngs Going Beyond 1D Metrics Rajarshi Guha NCATS June 2014, Novar:s, Boston.
39

Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Aug 23, 2014

Download

Science

rguha

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Exploring  Compound  Combina1ons  in  High  Throughput  Se9ngs    

Going  Beyond  1D  Metrics  

Rajarshi  Guha  NCATS  

June  2014,  Novar:s,  Boston.  

Page 2: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Background  

•  Cheminforma:cs  methods  – QSAR,  diversity  analysis,  virtual  screening,    fragments,  polypharmacology,  networks  

•  More  recently  –  RNAi  screening,  high  content  imaging,    combina:on  screening  

•  Extensive  use  of  machine  learning  •  All  :ed  together  with  soMware    development  – User-­‐facing  GUI  tools  –  Low  level  programma:c  libraries,  APIs,    databases    

•  Believer  &  prac::oner  of  Open  Source  

Page 3: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Outline  

hUp://origin.arstechnica.com/news.media/pills-­‐4.jpg  

Why  combine?  

Physical  infrastructure  &  workflow  

Summarizing  and  exploring  the  data  

Page 4: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Screening  for  Novel  Drug  Combina1ons  

•  Increased  efficacy  •  Delay  resistance  •  AUenuate  toxicity  

•  Inform  signaling  pathway  connec:vity  

•  Iden:fy  synthe:c  lethality  •  Highlight  polypharmacology  

Transla5onal  Interest   Basic  Interest  

Page 5: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

How  to  Test  Combina1ons  

•  Many  procedures  described  in  the  literature  – Fixed  dose  ra:o  (aka  ray)  – Ray  contour  – Checkerboard  – Gene:c  algorithm    

C5,D5 C5

C4,D4 C4

C3,D3 C3

C2,D2 C2

C1,D5 C1,D4 C1,D3 C1,D2 C1,D1 C1

D5 D4 D3 D2 D1 0

Page 6: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Mechanism  Interroga1on  PlateE  •  Collec:on  of  ~  2000  small  molecules  of  diverse  mechanism  of  ac:on.  •  745  approved  drugs    •  420  phase  I-­‐III  inves:ga:onal  drugs    •  767  preclinical  molecules  

•  Diverse  and  redundant  MOAs  represented  

AMG-47a Lck inhibitor Preclinical

belinostat HDAC inhibitor Phase II

Eliprodil NMDA antagonist Phase III

JNJ-38877605 HGFR inhibitor Phase I

JZL-184 MAGL inhibitor Preclinical

GSK-1995010 FAS inhibitor Preclinical

Page 7: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Development VEGF signaling and activation

Translation Non-genomic (rapid) action of Androgen Receptor

Transcription PPAR Pathway

Regulation of lipid metabolism RXR-dependent regulation of lipid metabolism via PPAR, RAR and VDR

Cytoskeleton remodeling TGF, WNT and cytoskeletal remodeling

Cell adhesion Chemokines and adhesion

Apoptosis and survival Anti-apoptotic action of Gastrin

Development VEGF signaling via VEGFR2 - generic cascades

Some pathways of EMT in cancer cells

Development EGFR signaling pathway

0 5 10 15-log10(pValue)

Mechanism  Interroga1on  PlateE  Top  10  enriched  GeneGo  pathway  maps  

Page 8: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Combina1on  Screening  Workflow  

Run  single  agent  dose  responses  

6x6  matrices  for    poten1al  synergies  

10x10  for  confirma1on  +  self-­‐cross  

Acoustic dispense, 15 min for 1260 wells, 14 min for

1200 wells"

Page 9: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Where  Are  We  Now?  

•  382  screens  in  total  – 65,960  combina:ons  – 3,024,224  wells  

•  244  cell  lines  – Various  cancers  – Mainly  human  

•  Combined  with  target    annota:ons  we  can  look    at  combina:on  behavior  as  a  func:on  of  various  factors  

0

50

100

150

0 500 1000 1500 2000Number of combinations

Num

ber o

f ass

ays

Page 10: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Screening  Challenges  

•  A  key  challenge  is  automated  quality  control  •  Plate  level  data  employs  standard  metrics  focusing  on  control  performance  

•  Combina:on  level  is  more  challenging  – Single  agent  performance  is  one  approach  

– MSR  across  all  combina:on  can  provide  a  high  level  view  

– But  how  to  iden:fy  bad  blocks?  

Page 11: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

QC  Examples  

•  Inves:ga:ng  an:-­‐malarial  combina:ons  •  300  10x10  combina:ons  in  duplicate  •  15  compounds  included  more  than  ten  :mes  

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

Artemether Artesunate Dihydroartemisinin

Halofantrine Lumefantrine

log

IC50

(uM

)

Page 12: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

0 5 10 15 20

MSR

Compound

10

20

30

40Freq

QC  Examples  

•  Single  agents  with  very  high  MSR’s  could  be  used  to  flag    combina:ons    containing  them  

•  Doesn’t  help  for    compounds  with    only  one  or  two    replicates  

Page 13: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

QC  Score  

A  heuris:c  score  that  can  be  used  to  focus  on  good  quality  combina:ons  

Acceptable DMSO response

Valid single agent curve fit & IC50

Sufficient variance in dose sub-matrix

Spatial autocorrelation in dose sub-matrix

Acceptable single agent efficacy

0

250

500

750

0 2 3 5 6 7 8 10 11 12 13 15 16QC Score

Frequency

Strain3D7

DD2

HB3

Page 14: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

QC  Score  QCS  =  0  

QCS  =  13  QCS  =  2  

•  Depends  on  mul:ple  subjec:ve  thresholds  

•  Passes  some  poor  quality  blocks  

•  Quickly  filters  out  very  bad  combina:ons  

Page 15: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Repor1ng  Combina1on  Results  

Page 16: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Repor1ng  Combina1on  Results  

Page 17: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Repor1ng  Combina1on  Results  

•  These  web  pages  and  matrix  layouts  are  a  useful  first  step  

•  Does  not  scale  as  we  grow  MIPE    •  Need  beUer  ways  of  ranking  and  aggrega:ng  combina:on  responses  taking  into  account  – Response  matrix  – Compounds,  targets  and  pathways  – Clinical  status  and  other  external  informa:on  

Page 18: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Network  Representa1ons  

Combina:on  screens  lend  themselves  naturally  to  network  representa:ons                    

 

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

∆ Bliss+

−4.3

−3.8

−3.3

−2.9

−2.4

−1.9

−1.4

−1.0

−0.5

0.0

●●

● ●

●●●

●●

●●

●●

● ●

● ●

●●

●●

●●●

●●

● ●

●●

∆ Bliss+

−3.4−3.1

−2.7

−2.3

−1.9

−1.5−1.2

−0.8

−0.4

0.0

immune system process

apoptotic process

transcription from RNApolymerase II promoter

protein phosphorylation

cell communication

immune response

Page 19: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Network  Representa1ons  

•  Things  get  more    interes:ng  when  we  have  n          m  screens  

•  Can  be  simplified  using  a  variety  of    methods  – Neighborhoods  – Minimum  Spanning  Tree  

●●

●●

●●

●●

●●

● ●

●●

×

Page 20: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Comparing  Neighborhoods  

Combina:ons  that  have  DBSumNeg  <  1st  quar:le  value  for  that  strain  

3D7 DD2 HB3

Page 21: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Comparing  Neighborhoods  

Alterna:vely,  consider  all  tested  combina:ons,  highligh:ng  distribu:on  of  synergis:c  and  antagonis:c  combina:ons  

3D7 DD2 HB3

Page 22: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Iden1fying  the  Most  Synergis1c  Pairs  

● ●

●●

●●

●●

●●

●●

● ●

●●

Page 23: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

When  are  Combina1ons  Similar?  

•  Differences  and  their  aggregates  such  as  RMSD  can  lead  to  degeneracy  

•  Instead  we’re  interested  in  the  shape  of  the  surface  

•  How  to  characterize  shape?  – Parametrized  fits  – Distribu:on  of  responses  

0.000

0.005

0.010

0 25 50 75 100

0.00

0.02

0.04

0.06

0 25 50 75 100

0.00

0.05

0.10

0.15

0 50 100

D, p value

Page 24: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

0

3

6

9

0.00 0.25 0.50 0.75 1.00D

density

Similarity  via  the  KS  Test  

•  Quan:fy  distance  between  response  distribu:ons  via  KS  test  –  If  p-­‐value  >  0.05,  we  assume  distance  is  0  

•  But  ignores  the  spa1al  distribu:on  of  the  responses  on  the  concentra:on  grid  

Page 25: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

0.0

2.5

5.0

7.5

10.0

0.00 0.25 0.50 0.75D

density

Similarity  via  the  Syrjala  Test  

•  Syrjala  test  used  to  compare  popula:on  distribu:ons  over  a  spa:al  grid  –  Invariant  to  grid  orienta:on  – Provides  an  empirical  p-­‐value  

•  Less  degenerate  than  just  considering  1D  distribu:ons  

Syrjala,  S.E.,  “A  Sta:s:cal  Test  for  a  Difference  between  the  Spa:al  Distribu:ons  of  Two  Popula:ons”,  Ecology,  1996,  77(1),  75-­‐80  

Page 26: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Ibru1nib  Combina1ons  For  DLBCL  

•  Primary  focus  is  on  inves:ga:ng  combina:ons  with  Ibru:nib  for  treatment  of  DLBCL  – Btk  inhibitor  in  Phase  II  trials  – Experiments  run  in  the  TMD8    cell  line,  tes:ng  for  cell  viability    

Mathews-­‐Griner,  Guha,  Shinn  et  al.  PNAS,  2014,  in  press  

Viable Cells

(% DMSO)

Ibrutinib* (nM) MK-2206 (µM)

Ibrutinib

MK-2206

Ibrutinib* + MK-2206

Page 27: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Clustering  Response  Surfaces  0.0

0.2

0.4

0.6

0.8

C1  (24)  

C2(47)  

C3(35)  

C4(24)  

Page 28: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

response to stress

peptidyl-tyrosine phosphorylation

cell cycle checkpoint

interphase

peptidyl-amino acid modification

negative regulation of cell cycle

cellular process involved in reproduction

ubiquitin-dependent protein catabolic process

regulation of interferon-gamma-mediated signaling pathway

macromolecule catabolic process

0 1 2 3-log10(Pvalue)

Cluster  C3  

•  Vargatef,  vorinostat,  flavopiridol,  …  

•  Not  par:cularly  specific  given  the  range  of  primary  targets  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

302

281

128

174

285

153

177

210

144 35 60 457

180 39 111

272

288

166

231

104

106

417

319 44 218

279

219

121

119 34 102

286

230

178

179

Page 29: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Cluster  C4  

•  Focus  on  sugar  metabolism    

•  Ruboxistaurin,  cycloheximide,  2-­‐methoxyestradiol,  …  

•  PI3K/Akt/mTOR  signalling  pathways  glycogen metabolic process

regulation of glycogen biosynthetic process

glucan biosynthetic process

glucan metabolic process

cellular polysaccharide metabolic process

regulation of generation of precursor metabolites and energy

peptidyl-serine phosphorylation

cellular macromolecule localization

regulation of polysaccharide biosynthetic process

cellular carbohydrate biosynthetic process

0 1 2 3-log10(Pvalue)

0.00

0.02

0.04

0.06

0.08

361

254

215

164

143 82 125

327

241

194

145

116

139

371

163

165

384

339

322

217

184

150 52 136

Page 30: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Combina1ons  across  Cell  Lines  

•  Cellular  background  affects  responses  •  Can  we  group  cell  lines  based  on  combina:on  response?    

•  Or  find  “fingerprints”  that  characterize  cell  lines?  

Page 31: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Working  in  Combina1on  Space  

•  Each  cell  line  is  represented  as  a  vector  of  response  matrices  

•  “Distance”  between  two    cell  lines  is  a  func:on  of  the  distance  between  component  response  matrices      

•  F  can  be  min,  max,  mean,  …    

L1   L2  

=  d1  

=  d2  

=  d3  

=  d4  

=  d5  

D L1,L2( ) = F({d1,d2,…,dn})

,  

,  

,  ,  ,  

Page 32: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Many  Choices  to  Make  0

12

34

KMS-34

INA-6

L363

OPM-1

XG-2

FR4

AMO-1

XG-6

MOLP-8

ANBL-6

KMS-20

XG-7

OCI-MY1

XG-1

8226

EJM

U266

KMS-11LB

SKMM-1

MM-MM1

sum

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L363

OPM-1

XG-2

KMS-20

XG-1

XG-7

ANBL-6

OCI-MY1

U266

XG-6

INA-6

MOLP-8

AMO-1

KMS-34

KMS-11LB

SKMM-1

MM-MM1

EJM FR4

8226

max

0.00

0.05

0.10

0.15

0.20

0.25

INA-6

MM-MM1

8226

XG-1

U266

ANBL-6

SKMM-1

EJM

OPM-1

XG-2

OCI-MY1

KMS-20

L363

KMS-11LB

AMO-1

XG-6

FR4

KMS-34

MOLP-8

XG-7

min

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L363

OPM-1

XG-2

KMS-34

INA-6

KMS-11LB

SKMM-1

EJM

U266

MM-MM1

FR4

AMO-1

XG-6

8226

MOLP-8

ANBL-6

OCI-MY1

XG-1

KMS-20

XG-7

euc

Page 33: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

•  Vargatef  exhibited  anomalous  matrix  response  compared  to  other  VEGFR  inhibitors            

Exploi1ng  Polypharmacology  

Vargatef  

Linifanib Axitinib Sorafenib Vatalanib

Motesanib Tivozanib Brivanib Telatinib

Cabozantinib Cediranib BMS-794833 Lenvatinib

OSI-632 Foretinib Regorafenib

Page 34: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Exploi1ng  Polypharmacology  

•  PD-­‐166285  is  a  SRC  &  FGFR  inhibitor  

•  Lestaurnib  has    ac:vity  against  FLT3  

Vargatef DCC-2036 PD-166285 GDC-0941

PI-103 GDC-0980 Bardoxolone methyl AT-7519AT7519

SNS-032 NCGC00188382-01 Lestaurtinib CNF-2024

ISOX Belinostat PF-477736 AZD-7762

Chk1 IC50 = 105 nM

VEGFR-1

VEGFR-2

VEGFR-3

FGFR-1

FGFR-2

FGFR-3

FGFR-4

PDGFRa

PDGFRb

Flt-3

Lck

Lyn

Src

0 200 400 600Potency (nM)

Hilberg,  F.  et  al,  Cancer  Res.,  2008,  68,  4774-­‐4782  

Page 35: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Predic1ng  Synergies  

•  Related  to  response  surface  methodologies  •  LiUle  work  on  predic:ng  drug  response  surfaces  – Peng  et  al,  PLoS  One,  2011  –  Jin  et  al,  Bioinforma1cs,  2011  – Boik  &  Newman,  BMC  Pharmacology,  2008  – Lehar  et  al,  Mol  Syst  Bio,  2007  &  Yin  et  al,  PLoS  One,  2014  

•  But  synergy  is  not  always  objec:ve  and  doesn’t  really  correlate  with  structure  

Page 36: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Structural  Similarity  vs  Synergy  

beta gamma

ssnum Win 3x3

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.85 0.90 0.95 1.00 1.05 1.10 1.15 0.75 0.85 0.95 1.05

0 5 10 15 20 25 -40 -30 -20 -10 0Synergy measure

Similarity

Page 37: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Predic1on  Strategy  

•  Don’t  directly  predict  synergy  •  Use  single  agent  data  to  generate  a  model  surface  

•  Predict  combina:on  responses  •  Characterize  synergy  of  predicted  response  with  respect  to  model  surface      

•  Reduced  to  a  mixture  predic:on  problem  •  Need  to  incorporate  target  connec:vity  

Page 38: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Conclusions  

•  Use  response  surfaces  as  first  class  descriptors  of  drug  combina:ons  –  Surrogate  for  underlying  target  network  connec:vity  (?)  

•  Response  surface  similarity  based  on  distribu:ons  is  (fundamentally)  non-­‐parametric  

•  Going  from  single  -­‐  chemical  space  to  combina:on  space  opens  up  interes:ng  possibili:es  

•  Manual  inspec:on  is  s:ll  a  vital  step  

Page 39: Exploring Compound Combinations in High Throughput Settings: Going Beyond 1D Metrics

Acknowledgements  

•  Lou  Staudt  •  Beverly  Mock,  John  Simmons  •  Lesley  Griner,  Craig  Thomas,  Marc  Ferrer,  Bryan  MoU,  Paul  Shinn,  Sam  Michaels