Top Banner
EXPERIMENTS ON THE RAMSAUER—TOWNSEND EFFECT & THE CHILD—LANGMUIR LAW 赵元晟, 贾晓瀚 复旦大学物理学系 June 14 th , 2017
35

EXPERIMENTS ON THE RAMSAUER TOWNSEND EFFECT THE CHILD LANGMUIR …phylab.fudan.edu.cn/lib/exe/fetch.php?media=course:... · 2017. 6. 13. · Contents The Ramsauer / Townsend Effect

Jan 23, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • EXPERIMENTS ONTHE RAMSAUER—TOWNSEND EFFECT

    & THE CHILD—LANGMUIR LAW

    赵元晟, 贾晓瀚

    复旦大学物理学系

    June 14th, 2017

  • Contents

    • The Ramsauer—Townsend Effect• Introduction & Basic Principle

    • Experimental Results

    • The Child—Langmuir Law• Basic Principle & Experiment Results

    • Correction

    • Explanation of the R—T effect by quantum mechanics• Quantum scattering theory

    • Analysis of the experimental results

  • Ramsauer-Townsend Effect?

  • Principle

    • Measuring Scattering Section

  • Principle

    • Measuring Scattering Section

    20

    21

    10

    SP

    SSS

    SK

    IIIIIIIII

    0

    1IIP PS

  • Principle

    • Geometrical Factor

    • 77K

    1

    0

    SII

    f 1

    11S

    PS If

    IP

    *

    *

    S

    P

    IIf *

    *

    1

    1P

    S

    S

    PS I

    IIIP

  • Principle

    • Measuring Scattering Section

    • f

  • Results

    • V~Is,Ip

  • Results

    • V~Is*,Ip*

  • Results

    • Geometrical Factor : f

  • Results

    • V~Q

  • Results

    • V~Ps

  • Results

    • Ionization

  • The Characteristic Of Thyratrons:The Child–Langmuir Law

    A self-consistent process:

    ∂2Φ

    ∂z2=− ρ

    ²0, Charge → Electric field;

    1

    2mv2 = eΦ, Electric field → Current;

    J = ρv ,

    =⇒ J ∝Va 3/2.

    Assumption:

    Ï Source → infinite; !!!Ï No initial velocity; !!!Ï No collision with gas. X

    e-ΦK S

    Filament

    0 L = 6mm

  • Experimental Result

    Anomalies

    Ï C–L law ⇒ I independent of Vf, but Vf ↑⇒ I ↑?Ï Slope 6= 1.5? And Vf ↑⇒ Slope ↓?

    Vf (V) Slope1.50 1.86†

    1.80 1.363.00 1.156.97 1.01†Before saturation.

    0.0 0.5 1.0 1.5 2.00

    2

    4

    6

    8

    ln(Φ (V))

    ln(I(μA

    ))

    Vf=1.50 V 3.00 V1.80 V 6.97 V

  • The Explanation Of The Anomalies:Extension Of The C–L Law

    Ï Initial velocity →

    eΦ= 12

    m(v2 − v02),Ï Solution:

    J ∝ (2eΦ+mv0u)2

    u, with u =

    √v02 +

    2eΦ

    m− v0.

    Ï Log-log-curve → Slightly concave up.

    mv02/

    (2k),(K) 300 1000 1500 2500ln

    (J (1V)

    ),(A/m2) −2.32 −2.05 −1.93 −1.76

    Avg. Slope, (1 ∼ 10V) 1.38 1.31 1.28 1.25

  • A Further Try

    Ï General behavior of Φ(z):Ï “

    p” shaped;

    Ï zm ≈ 0.Ï Energy distribution of

    thermal electrons:

    f (E) ∼ e−E/(kT )

    is relatively good.

    Ï Self-consistent process(Extended from C–L law):

    Φ((f

    ((ρgg .

    Ï Iteration.

    z

    Φ(z)

    Fast e-Slow e-

    zm

    Φm

  • ImprovementsÏ Curvature → Larger;Ï Dependence of J upon Tf

    → Larger;

    DeficienciesÏ Too small:

    Ï Value of slope;Ï Dependence of J ← Tf.

    Ï Field emission neglected.

    0.0 0.5 1.0 1.5 2.00.00.51.01.52.02.53.03.5

    ln(Φ (V))

    lnJ(A/

    m2 )+

    2

    2500 K1800 K1200 K950 K

    Someimprovements

    But not fullysatisfactory

  • Explanation Of The Ramsaur–Townsend Effect

    Ï Recall: Finite square well potential:Ï R = 0 when E is the eigen-energy of ISW potential.

    V

    a

    E

    R

  • Quantum Scattering Theory

    Ï Schrödinger equation;Ï Boundary condition:

    ψ

    ≈ A(

    eikz + f (θ) eikr

    r

    ), For r →+∞,

    is finite, For r → 0.

    ⅇⅈ k zⅇⅈ k rr

    Core regionV ≠ 0

    Radiation regionV ≈ 0

  • Ï V has SO(3) symmetry → Separate variables.Ï Radical solution:

    R(1)l (r, [V ]), Core region,

    R(2)l = Ail (2l +1)

    [jl (kr )+ ial h(1)l (kr )

    ], Radiation region.

    Ï Connection condition (ρ0 is the radius of core region):

    R(2)l (r )

    ∂r R(2)l (r )

    ∣∣∣∣∣r=ρ0

    =R(1)l (r )

    ∂r R(1)l (r )

    ∣∣∣∣∣r=ρ0

    , ⇒ al .

    Ï Scattering section:

    dΩ= 1

    k2

    ∣∣∣∣∣∞∑

    l=0(2l +1)al Pl (cosθ)

    ∣∣∣∣∣

    2

    ,

    σ= 4πk2

    ∞∑

    l=0|al |2.

  • Question: V === ?

    Ï Holtsmark: Hartree field & empirical polarization correction.The R–T effect: X; Maximum @ Φ∼ 10V: X.

    Ï Allis & Morse: A simplified field: V ∝−max{r−1 − r0−1,0}.The R–T effect: ×; Maximum @ Φ∼ 10V: X.

  • Atomic Potential (Kr)

    Ï Atomic field → Hartree field; Modification → Polarization.Ï Asymptotic behavior of polarization energy:

    Φp →αr−4/

    2, (in atomic units).

    Ï The scattering property of Xe is similar.

    0 1 2 3 4 5 6 70

    2

    4

    6

    8

    r (a.u.)

    -2Φr2(a.u.) Hartree& Polarization

  • Calculation Results

    Ï ρ0 = 120a0, α= 16.337a.u.Ï Solve Schrödinger equation of core region numerically.Ï Use connection condition to obtain al .Ï Minimum: Almost exact (!?); Maximum: Left-shifted.

    0.5 1.0 1.5 2.0 2.5 3.0 3.50

    1

    2

    3

    4

    5

    Φ1/2 (V1/2)

    σ(Rel)

    ExpTots

    p

    d

    f

  • Correction: Effective Range Of Scattering Angle

    Ï Effective range: 0 < θm < θ

  • Other Corrections

    Ï Initial velocity of electrons & Volta potential→ E = e(Φ−Va0) (→ Right?).

    Ï Velocity distribution of electrons→ Correction of the curve @ Φ→ 0 (→ Left & Down).

    Ï Early scattering (→ Left) or multiple scattering.Ï Calculated value → empirical polarization.

    0 1 20

    1

    ∫x

    +∞(ζ - 1)2 4 ⅇ-4 (ζ-x) ⅆζ(x - 1)2

    S PK

    Ip

    Is1

    Is2Is3

    Is2 and Is3 areindistinguishable!

  • Without Polarization Energy: No R–T Effect!

    Ï ρ0 = 7a0.Ï Share no similarity with experimental result.

    → the polarization term is necessary.

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    2

    4

    6

    8

    Φ1/2 (V1/2)

    σ(Rel) s fp Total

    d

  • Discusstion: The Finite Square Well Potential

    Ï Wave function: R(1)l (r ) = jl (κr ), with κ=p

    2m(E +V )/ħ;Ï Requirement: 4π3 a

    3V = 4π∫ +∞0 r 2VHp(r )dr ;Ï optimize: a → 164pm;Ï Minimum 6← σ0; Maximum ← σ3.

    0 1 2 3 4 50

    1

    2

    3

    4

    5

    Φ1/2 (V1/2)

    σ(Rel)s Totp f

    d

  • Conclusion

    The Ramsauer–Townsend Effect

    Ï Min @0.77p

    V, Max @2.95p

    V; R–T effect verified.Ï Source of errors:

    Ï Effective range of scattering angle;Ï Initial velocity distribution of thermal electrons;Ï Volta potential;Ï Early scattering or multiple scattering;Ï Etc.

    Ï Problem on FSW potential.

  • The Child–Langmuir Law

    Ï ln I – lnΦ: Slope 6= 1.5; Vf ↑⇒ Slope ↓; Vf ↑⇒ I ↑;Ï Reason:

    Ï Initial velocity distribution of thermal electrons;Ï Finite amount of thermal electrons;Ï Volta potential;Ï Field electron emission.Ï Etc.

  • Thank You For Listening

    • 戴道宣, 戴乐山. 近代物理实验. 高等教育出版社. 2006.

    • N. F. Mott, H. S. W. Massey. The Theory Of Atomic Collisions. Oxford At The Clarendon Press, 1949.

    • H. S. W. Massey, E. H. S. Burhop. Electronic And Ionic Impact Phenomena. Oxford At The Clarendon Press, 1969.

    • Yon J. Holtsmark. J., Z. Phys. 55 (1929) 437.

    • Yon J. Holtsmark. J., Z. Phys. 66 (1930) 49.

    • D. J. Griffiths. Introduction To Quantum Mechanics. Pearson Prentice Hall, 2004.

    • 曹钧植, 杨新菊, 姚红英. 物理实验. Vol. 35, No. 3 (2015)

    • Thermionic Emission. http://www.physics.csbsju.edu/370/thermionic.pdf

  • Self-Consistent Field Method

    Charge → Electric field:

    Φ(z) =∫ L

    0

    ρ(ζ)

    2²0· |z −ζ|dζ+a +bz,

    where a and b are determined by Φ(0) = 0 and Φ(L) =Va .Electric field & Initial velocity → Current:

    fz (E) =

    f0(E +eΦ(z)) E > 0,

    fz (−E) Φm −Φ(z) < E < 0,0 E Φ(z)−Φm ,

    0 E zm ,

    where f = ddE NPassing through.

  • Initial distribution:

    f0(E) =kmT e−W /(kT )

    2h3π2e−E/(kT ).

    Relation between ρ and f :

    ρ(z) =−e∫ +∞

    −∞fz (E)

    √m

    2|E | dE ,

    Similar self-consistent process:

    Φ((f

    ((ρgg .

    Iteration!Expression of J :

    J = e∫ +∞

    −eΦmf0(E)dE .

  • Quamtum Scattering Theory

    Ï Schrödinger equation;(− ħ

    2

    2m∇2 +V

    )ψ= Eψ.

    Ï Boundary condition:

    ψ

    ≈ A(

    eikz + f (θ) eikr

    r

    ), For r →+∞,

    is finite, For r → 0.Ï V has SO(3) symmetry → Separate variables.

    Radical equation:

    − ħ2

    2m

    d2u

    dr 2+

    [V + ħ

    2

    2m

    l (l +1)r 2

    ]u = Eu, with u(r ) ≡ r R(r ).

    Ï General solution:

    ψ=∞∑

    l=0Rl (r )Pl (θ).

  • Ï Assumption: V negligible for r > ρ0 → Solution:R(2)l = Ai

    l (2l +1)[

    jl (kr )+ ial h(1)l (kr )]

    , For r > ρ0,Ï Suppose the radical solution for r < ρ0 is R(1)l (r ).Ï Connection condition:

    R(2)l (r )

    ∂r R(2)l (r )

    ∣∣∣∣∣r=ρ0

    =R(1)l (r )

    ∂r R(1)l (r )

    ∣∣∣∣∣r=ρ0

    , ⇒ al .

    Ï Scattering section:

    dΩ= 1

    k2

    ∣∣∣∣∣∞∑

    l=0(2l +1)al Pl (cosθ)

    ∣∣∣∣∣

    2

    ,

    σ= 4πk2

    ∞∑

    l=0|al |2.