EXPERIMENTS ON THE RAMSAUER—TOWNSEND EFFECT & THE CHILD—LANGMUIR LAW 赵元晟, 贾晓瀚 复旦大学物理学系 June 14 th , 2017
EXPERIMENTS ONTHE RAMSAUER—TOWNSEND EFFECT
& THE CHILD—LANGMUIR LAW
赵元晟, 贾晓瀚
复旦大学物理学系
June 14th, 2017
Contents
• The Ramsauer—Townsend Effect• Introduction & Basic Principle
• Experimental Results
• The Child—Langmuir Law• Basic Principle & Experiment Results
• Correction
• Explanation of the R—T effect by quantum mechanics• Quantum scattering theory
• Analysis of the experimental results
Ramsauer-Townsend Effect?
Principle
• Measuring Scattering Section
Principle
• Measuring Scattering Section
20
21
10
SP
SSS
SK
IIIIIIIII
0
1IIP PS
Principle
• Geometrical Factor
• 77K
1
0
SII
f 1
11S
PS If
IP
*
*
S
P
IIf *
*
1
1P
S
S
PS I
IIIP
Principle
• Measuring Scattering Section
• f
Results
• V~Is,Ip
Results
• V~Is*,Ip*
Results
• Geometrical Factor : f
Results
• V~Q
Results
• V~Ps
Results
• Ionization
The Characteristic Of Thyratrons:The Child–Langmuir Law
A self-consistent process:
∂2Φ
∂z2=− ρ
²0, Charge → Electric field;
1
2mv2 = eΦ, Electric field → Current;
J = ρv ,
=⇒ J ∝Va 3/2.
Assumption:
Ï Source → infinite; !!!Ï No initial velocity; !!!Ï No collision with gas. X
e-ΦK S
Filament
0 L = 6mm
Experimental Result
Anomalies
Ï C–L law ⇒ I independent of Vf, but Vf ↑⇒ I ↑?Ï Slope 6= 1.5? And Vf ↑⇒ Slope ↓?
Vf (V) Slope1.50 1.86†
1.80 1.363.00 1.156.97 1.01†Before saturation.
0.0 0.5 1.0 1.5 2.00
2
4
6
8
ln(Φ (V))
ln(I(μA
))
Vf=1.50 V 3.00 V1.80 V 6.97 V
The Explanation Of The Anomalies:Extension Of The C–L Law
Ï Initial velocity →
eΦ= 12
m(v2 − v02),Ï Solution:
J ∝ (2eΦ+mv0u)2
u, with u =
√v02 +
2eΦ
m− v0.
Ï Log-log-curve → Slightly concave up.
mv02/
(2k),(K) 300 1000 1500 2500ln
(J (1V)
),(A/m2) −2.32 −2.05 −1.93 −1.76
Avg. Slope, (1 ∼ 10V) 1.38 1.31 1.28 1.25
A Further Try
Ï General behavior of Φ(z):Ï “
p” shaped;
Ï zm ≈ 0.Ï Energy distribution of
thermal electrons:
f (E) ∼ e−E/(kT )
is relatively good.
Ï Self-consistent process(Extended from C–L law):
Φ((f
((ρgg .
Ï Iteration.
z
Φ(z)
Fast e-Slow e-
zm
Φm
ImprovementsÏ Curvature → Larger;Ï Dependence of J upon Tf
→ Larger;
DeficienciesÏ Too small:
Ï Value of slope;Ï Dependence of J ← Tf.
Ï Field emission neglected.
0.0 0.5 1.0 1.5 2.00.00.51.01.52.02.53.03.5
ln(Φ (V))
lnJ(A/
m2 )+
2
2500 K1800 K1200 K950 K
Someimprovements
But not fullysatisfactory
Explanation Of The Ramsaur–Townsend Effect
Ï Recall: Finite square well potential:Ï R = 0 when E is the eigen-energy of ISW potential.
V
a
E
R
Quantum Scattering Theory
Ï Schrödinger equation;Ï Boundary condition:
ψ
≈ A(
eikz + f (θ) eikr
r
), For r →+∞,
is finite, For r → 0.
ⅇⅈ k zⅇⅈ k rr
Core regionV ≠ 0
Radiation regionV ≈ 0
Ï V has SO(3) symmetry → Separate variables.Ï Radical solution:
R(1)l (r, [V ]), Core region,
R(2)l = Ail (2l +1)
[jl (kr )+ ial h(1)l (kr )
], Radiation region.
Ï Connection condition (ρ0 is the radius of core region):
R(2)l (r )
∂r R(2)l (r )
∣∣∣∣∣r=ρ0
=R(1)l (r )
∂r R(1)l (r )
∣∣∣∣∣r=ρ0
, ⇒ al .
Ï Scattering section:
dσ
dΩ= 1
k2
∣∣∣∣∣∞∑
l=0(2l +1)al Pl (cosθ)
∣∣∣∣∣
2
,
σ= 4πk2
∞∑
l=0|al |2.
Question: V === ?
Ï Holtsmark: Hartree field & empirical polarization correction.The R–T effect: X; Maximum @ Φ∼ 10V: X.
Ï Allis & Morse: A simplified field: V ∝−max{r−1 − r0−1,0}.The R–T effect: ×; Maximum @ Φ∼ 10V: X.
Atomic Potential (Kr)
Ï Atomic field → Hartree field; Modification → Polarization.Ï Asymptotic behavior of polarization energy:
Φp →αr−4/
2, (in atomic units).
Ï The scattering property of Xe is similar.
0 1 2 3 4 5 6 70
2
4
6
8
r (a.u.)
-2Φr2(a.u.) Hartree& Polarization
Calculation Results
Ï ρ0 = 120a0, α= 16.337a.u.Ï Solve Schrödinger equation of core region numerically.Ï Use connection condition to obtain al .Ï Minimum: Almost exact (!?); Maximum: Left-shifted.
0.5 1.0 1.5 2.0 2.5 3.0 3.50
1
2
3
4
5
Φ1/2 (V1/2)
σ(Rel)
ExpTots
p
d
f
Correction: Effective Range Of Scattering Angle
Ï Effective range: 0 < θm < θ
Other Corrections
Ï Initial velocity of electrons & Volta potential→ E = e(Φ−Va0) (→ Right?).
Ï Velocity distribution of electrons→ Correction of the curve @ Φ→ 0 (→ Left & Down).
Ï Early scattering (→ Left) or multiple scattering.Ï Calculated value → empirical polarization.
0 1 20
1
∫x
+∞(ζ - 1)2 4 ⅇ-4 (ζ-x) ⅆζ(x - 1)2
S PK
Ip
Is1
Is2Is3
Is2 and Is3 areindistinguishable!
Without Polarization Energy: No R–T Effect!
Ï ρ0 = 7a0.Ï Share no similarity with experimental result.
→ the polarization term is necessary.
0.0 0.5 1.0 1.5 2.0 2.5 3.00
2
4
6
8
Φ1/2 (V1/2)
σ(Rel) s fp Total
d
Discusstion: The Finite Square Well Potential
Ï Wave function: R(1)l (r ) = jl (κr ), with κ=p
2m(E +V )/ħ;Ï Requirement: 4π3 a
3V = 4π∫ +∞0 r 2VHp(r )dr ;Ï optimize: a → 164pm;Ï Minimum 6← σ0; Maximum ← σ3.
0 1 2 3 4 50
1
2
3
4
5
Φ1/2 (V1/2)
σ(Rel)s Totp f
d
Conclusion
The Ramsauer–Townsend Effect
Ï Min @0.77p
V, Max @2.95p
V; R–T effect verified.Ï Source of errors:
Ï Effective range of scattering angle;Ï Initial velocity distribution of thermal electrons;Ï Volta potential;Ï Early scattering or multiple scattering;Ï Etc.
Ï Problem on FSW potential.
The Child–Langmuir Law
Ï ln I – lnΦ: Slope 6= 1.5; Vf ↑⇒ Slope ↓; Vf ↑⇒ I ↑;Ï Reason:
Ï Initial velocity distribution of thermal electrons;Ï Finite amount of thermal electrons;Ï Volta potential;Ï Field electron emission.Ï Etc.
Thank You For Listening
• 戴道宣, 戴乐山. 近代物理实验. 高等教育出版社. 2006.
• N. F. Mott, H. S. W. Massey. The Theory Of Atomic Collisions. Oxford At The Clarendon Press, 1949.
• H. S. W. Massey, E. H. S. Burhop. Electronic And Ionic Impact Phenomena. Oxford At The Clarendon Press, 1969.
• Yon J. Holtsmark. J., Z. Phys. 55 (1929) 437.
• Yon J. Holtsmark. J., Z. Phys. 66 (1930) 49.
• D. J. Griffiths. Introduction To Quantum Mechanics. Pearson Prentice Hall, 2004.
• 曹钧植, 杨新菊, 姚红英. 物理实验. Vol. 35, No. 3 (2015)
• Thermionic Emission. http://www.physics.csbsju.edu/370/thermionic.pdf
Self-Consistent Field Method
Charge → Electric field:
Φ(z) =∫ L
0
ρ(ζ)
2²0· |z −ζ|dζ+a +bz,
where a and b are determined by Φ(0) = 0 and Φ(L) =Va .Electric field & Initial velocity → Current:
fz (E) =
f0(E +eΦ(z)) E > 0,
fz (−E) Φm −Φ(z) < E < 0,0 E Φ(z)−Φm ,
0 E zm ,
where f = ddE NPassing through.
Initial distribution:
f0(E) =kmT e−W /(kT )
2h3π2e−E/(kT ).
Relation between ρ and f :
ρ(z) =−e∫ +∞
−∞fz (E)
√m
2|E | dE ,
Similar self-consistent process:
Φ((f
((ρgg .
Iteration!Expression of J :
J = e∫ +∞
−eΦmf0(E)dE .
Quamtum Scattering Theory
Ï Schrödinger equation;(− ħ
2
2m∇2 +V
)ψ= Eψ.
Ï Boundary condition:
ψ
≈ A(
eikz + f (θ) eikr
r
), For r →+∞,
is finite, For r → 0.Ï V has SO(3) symmetry → Separate variables.
Radical equation:
− ħ2
2m
d2u
dr 2+
[V + ħ
2
2m
l (l +1)r 2
]u = Eu, with u(r ) ≡ r R(r ).
Ï General solution:
ψ=∞∑
l=0Rl (r )Pl (θ).
Ï Assumption: V negligible for r > ρ0 → Solution:R(2)l = Ai
l (2l +1)[
jl (kr )+ ial h(1)l (kr )]
, For r > ρ0,Ï Suppose the radical solution for r < ρ0 is R(1)l (r ).Ï Connection condition:
R(2)l (r )
∂r R(2)l (r )
∣∣∣∣∣r=ρ0
=R(1)l (r )
∂r R(1)l (r )
∣∣∣∣∣r=ρ0
, ⇒ al .
Ï Scattering section:
dσ
dΩ= 1
k2
∣∣∣∣∣∞∑
l=0(2l +1)al Pl (cosθ)
∣∣∣∣∣
2
,
σ= 4πk2
∞∑
l=0|al |2.