Top Banner
Quantitative Ethnobotany and Amazonian Conservation O. PHIIJJPS Missouri Botanical Garden Box 299 St. Louis, MO 63166, U.S.A. A. H. GENTRY* C. REYNEL Missouri Botanical Garden Box 299 St. Louis, MO 63166, U.S.A. P. WILKIN The Herbarium Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AE United Kingdom C. GALVEZ-DURAND B. G6mez del Carpio 140 C Barrio M~dico Lima 18, Peru Abstract: We use quantitative ethnobotanical data to com- pare the usefulness of six flortstically distinct forest types to mestizo people at Tambopat4g southeast Perg We aim to evaluate which forest types are most usefu~ arid why. Eth- nobotanical data were collected with informants in inven- tory plots and analyzed using a new technique that uses a two-tier calculation process to derive an "informant in- dexed" estimate of each species" use value. Use values are estimated based on the degree of consistency between re. peated i n t ~ of each informant and between different informant~ We show that (1) in 6 1 lgt 94% of woody stems are "useful" to mestizos. (2) Based on ~tages of useful plants per plog there is little difference between each forest type (3) Simply calculating the percent of useful plants is misleading h ~ , because most species have minor use~ and only a few are exceptionally useful (4) Using the in- formant indexing technique, we demonstrate significant dif- ferences between each forest type's utility. Mature forests of *Deceaseg Paper subraitted November 20, 1992; revised manuscript accepted July 25, 199~ EtnobotMflca cuantitativa y la conservaci6n de la Amazonia Resumen: Se emple6 datos etnobotdnicos cuantitatlvos para comparar la uttlidad de seis tipos de bosques floristt- camente distinto~ con plantas usadas por la poblacidn mes- tiza en Tambopattg sureste de Pertt Datos etnobotdnicos fue- ron registrados de informantes en parcelas inventarlada~ usando una nueva t&'nica que constdera un procedimiento simple para obtener un estimado del valor de uso de cada especi~ Los valores de uso se basan en el grado de consis- tencla de entret~tas m4teradas con uno y ratios informantes (Phillips & Gentry, 1993a). Los resultados muestran que (1) en ~ 1 htg 9496 de individuos arb6reos son "~tiles" a la po- blaci6ft (2) Basados en el porcentaJe de plantas ~Hles por plog hay mtty escasa diferencia entre Hpos de bosqu~ (3) El porcentaJe de plantas t~tiles incluye sin embargo una mayorla de espectes alas que se ies da usos memm~ y son muy pocas las especies que brtndan mayor uttliddg pot" lo tan$o los calculos de porcentaje de plantas t~tiles son err6- nio¢ (4) Empleando la t~'nica del indice de utilida~ se encontraron d i ~ significativas entre la uHlidad de diferentes ttpos de bosqu~ Las dreas de bosque maduro en 225 ConservationBiology, Pages 225-*248 Volume 8, No. 1, March 1994
24
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: etnobotanica quantitativa

Quantitative Ethnobotany and Amazonian Conservation O . P H I I J J P S

Missouri Botanical Garden Box 299 St. Louis, MO 63166, U.S.A.

A. H. GENTRY* C. REYNEL Missouri Botanical Garden Box 299 St. Louis, MO 63166, U.S.A.

P. WILKIN

The Herbarium Royal Botanic Gardens, Kew Richmond, Surrey TW9 3AE United Kingdom

C. GALVEZ-DURAND B. G6mez del Carpio 140 C Barrio M~dico Lima 18, Peru

Abstract: We use quantitative ethnobotanical data to com- pare the usefulness o f six flortstically distinct forest types to mestizo people at Tambopat4g southeast Perg We aim to evaluate which forest types are most usefu~ arid why. Eth- nobotanical data were collected with informants in inven- tory plots and analyzed using a new technique that uses a two-tier calculation process to derive an "informant in- dexed" estimate o f each species" use value. Use values are estimated based on the degree o f consistency between re. peated i n t ~ o f each informant and between different informant~ We show that (1) in 6 1 lgt 94% o f woody stems are "useful" to mestizos. (2) Based on ~ t a g e s o f useful plants per plog there is little difference between each forest type (3) Simply calculating the percent o f useful plants is misleading h ~ , because most species have minor use~ and only a f e w are exceptionally useful (4) Using the in- formant indexing technique, we demonstrate significant dif- ferences between each forest type's utility. Mature forests o f

*Deceaseg Paper subraitted November 20, 1992; revised manuscript accepted July 25, 199~

EtnobotMflca cuantitativa y la conservaci6n de la Amazonia

R e s u m e n : Se emple6 datos etnobotdnicos cuantitatlvos para comparar la uttlidad de seis tipos de bosques floristt- camente distinto~ con plantas usadas por la poblacidn mes- tiza en Tambopattg sureste de Pertt Datos etnobotdnicos fue- ron registrados de informantes en parcelas inventarlada~ usando una nueva t&'nica que constdera un procedimiento simple para obtener un estimado del valor de uso de cada especi~ Los valores de uso se basan en el grado de consis- tencla de entret~tas m4teradas con uno y ratios informantes (Phillips & Gentry, 1993a). Los resultados muestran que (1) en ~ 1 htg 9496 de individuos arb6reos son "~tiles" a la po- blaci6ft (2) Basados en el porcentaJe de plantas ~Hles por plog hay mtty escasa diferencia entre Hpos de bosqu~ (3) El porcentaJe de p lan tas t~tiles incluye sin embargo una mayorla de espectes a l a s que se ies da usos m e m m ~ y son muy pocas las especies que brtndan mayor uttliddg pot" lo tan$o los calculos de porcentaje de plantas t~tiles son err6- nio¢ (4) Empleando la t~'nica del indice de utilida~ se encontraron d i ~ significativas entre la uHlidad de diferentes ttpos de bosqu~ Las dreas de bosque maduro en

225

Conservation Biology, Pages 225-*248 Volume 8, No. 1, March 1994

Page 2: etnobotanica quantitativa

226 Ethnobotany and Conservation Phillips et al.

present and former floodplains are more useful than other forest type~ mostly due to their importance as sources o f construction materials and fooa~ (5) Lower floodplain is more useful medicinally, swamp more important commer- cially, and terra t r i n e sandy more important technologi- cally; they are not easily substituted for some o f these use~ (6) On averag¢ 80% o f the value o f forest p lan t products to mestizos is subsistence value; only 20% is commercial We conclude that (1) to maintain cultural autonomy, Amazo- nian people may need access to all local forest type~ and (2) present and former f loodplain forests in western Amazonla should be a conservation priority. We make these broad con- clustons on the basis o f evidence of.. (1) ethnoecological sim- ilarittes among mestizo cultures in Peruvian Amazonian. (2) the similarity o f family-level floristtc composition at Tam- bopata and elsewhere in western Amazonta~ (3) rapid flood- plain deforestation; and (4) floodplain resource overextrac- ttort Conservationists shouid focus on helping communities gain control o f f loodplain resource~

zonas con suelos y terrazas aluvlales proveen m~s plantar muy tittles que otros ttpos de bosque, debtdo mayormente a su importancla como fuentes de material de construcct6n y attmento& (5) Las ~oas aluvlales nuis bajas ttenen mayor valor como proveedoras de plantas medtctnale~ las dreas pantanosas son gittles para productos comerclales y las de "terra f irme" con mayor posthtlidad de uso tecnol6gtco; al- gunos de estos usos no son factlmente sustttutbles~ (6) En promedto, un 80% del valor de los productos del bosque son valor de subsistencet~ solo 20% del valor del basque es valor comerclal Se obttenen las siguientes conclustones (1) para mantener autonomla culturag la poblact6n amaz6n- tca necesita tener acceso a todos los ttpos de bosques locale~ y (2) las zonas de bosques aluvlale~ actuales y pasada~ de la region amaz6nica~ deben priorizarse para la conserva- ci6rt Arribamos a estas conclusiones ampttas basados em (1) la simtlitud de la etnoecoldgica de la poblaci6n mesttza de la Amazonla Peruana; (2) la similitud floristtca al nivel de familia~ del drea de estudio con el resto de la Amazonia peruana; (3) el rdpido proceso de deforestaci6n en las zonas de bosque aluvial; y (4) sobroexplotact6n de los recursos de las dreas aluviale~ Por tant~ la recomendaci6n a los con- servacionistas es ayudar a l a s comuntdades a adquirir el control de los recursos en estas zona~

Introduction

Ethnobotanists have recently used quantitative studies to demonstrate that "natural" and managed Amazonian forests are of vital importance to native and some non- native cultures (see Boom 1985, 1989, 1990; Bal6e 1986, 1987; Prance et al. 1987; Unruh & Alcorn 1988; Anderson & Posey 1989; Pinedo-Vfisquez et al. 1990). These studies have lent irrefutable evidence to the claim that many Amazonian peoples have a profound knowl- edge of how to extract, and often actively manage, forest resources (Bal6e 1989; Bal6e & Gely 1989; Peters et al. 1989a~ 1989b; Anderson 1991). By highlighting this mutual dependence be tween cultural and biological di- versity, quantitative ethnobotany has helped to encour- age alliances be tween conservationists and indigenous peoples (but see Redford & Stearman 1993). It has also helped to broaden ethnobotany's scope beyond its tra- ditional compilatory focus, thereby enhancing the sci- entific status of et lmobotany (MOerman 1991; Prance 1991; Phillips & Gentry 1993a~ 1993b).

In spite of these advances, methodological problems plague attempts to apply quantitative analysis to etlmo- botany (see Trot ter &Logan 1986; Johns et al. 1990). For example, research that explicitly tests hypotheses is still rare in ethnobotany, hindering its conceptual de- velopment. Moreover, because most studies simply total uses reported by variable numbers of informants, or as- sign importance values by subjective a posteriori pro- cesses, results are hard to replicate and compare. With- out increased uniformity in research methods, or at least explicit descriptions of how data are gathered and dis-

cussion of how the results are influenced by method- ological context, there is little hope of making helpful comparisons between results presented by different re- searchers (see Johnson 1978; Alcorn 1984). Because of this lack of precision and comparability, and the related problem of an undeveloped conceptual agenda, quanti- tative ethnobotany has so fax provided little in the way of specific suggestions for conservation and develop- ment projects.

A technique for estimating use values that is explicit, replicatable, and relatively objective was presented re- cently (Phillips & Gentry 1993~ 1993b). It overcomes many of the problems associated with most quantitative methods used to date and can be applied to test a range of hypotheses. In this paper, we use both this technique and the most widely used approach to quantitative eth- nobotany----calculating the percentage of useful species and stems in an areamto measure the usefulness of six forest types to mes t i zo people in Amazonian Peru. To our knowledge, this is the first large-scale comparison of the importance of several different vegetation types to any one traditional tropical cultural group. The data set used is also one of few based on ethnobotanical work with nonnative "peasant" communities, whom research- ers are recognizing should be a priority for ethnoeco- logical research (see Parker 1989; Anderson 1990, 1991; Prance 1991; Hiraoka 1992; Padoch & de Jong 1992), and it comes from people who live more than 800 km away f rom the neares t p rev ious c a b o c l o / r /he re to study (based on Hiraoka's [1992] map of re- search sites).

Our specific objectives are to evaluate which forest

Conservation Biology Volume 8, No. 1, March 1994

Page 3: etnobotanica quantitativa

Ph////ps et 2/. Eamobo~y and Conserv~on 227

types are most useful, and why. We then discuss the implications of our results for the practical problem of setting priorities in conservation. By so doing, we aim to demonstrate that quantitative ethnobotanical surveys can be powerfifl diagnostic tools for conservationists. A brief account of our research methods is given below. The reader is referred to Phillips and Gentry (1993a) for a detailed discussion of our methods.

Methods

Ecological and £ulmral Setfl-e=

The research area, in the southeastern Peruvian depart- ment of Madre de Dios, includes the 5500-ha Zona Reservada Tambopata and surrounding area (Fig. 1). The whole area is part of the recently declared Zona Reservada Tambopata-Candamo, which covers nearly 1.5 million ha of lowland and montane forest. The low- land climate and moist forest is described in detail by Erwin (1984). We have defined nine forest types in the original reserve (Table 1; Phillips), based on our obser- vations and on earlier descriptions of vegetation and r iverine success ion in southeast Peru by Terborgh (1983), Erwin (1984) , Salo et al. (1986), Foster (1990), and Rasanen et al. (1992). Local people also recognize similar forest types, based mostly on frequency of flood-

712 711 710 6~9

I/"/jl'/ ii'iii -ii , .? . - - - ._ .J / ' L/--.,,...,,._,..,.j- ",- -,,x.

10-

II-

Figure 1. Map o f Madre de Dios showing location o f the Zona Reservada Tambopata~ other protected ar- ea& and principal riverx (1) Cocha Cashu Biological Statiort (2) Pakitza Biological Statiott (3) Zona Reservada Tambopata (4) Reserva Cuzco Ama. z(mica (5) Reserva Lago Sandovat (6) Santuario Nacional del Heath. Reproduced with permission from Duellman and Koechlin (1991).

Table 1. Fore~typesoftheZoaaLumrvadaTambopata."

Plot Forest Type Number Area

Permanently Water.Logged Swamp Forest C'Aguajal"): former oxbow lakes still flooded but covered in forest 2 0.6 ha

Seasonally Water-Logged Swamp Forest ("Shebonal"): oxbow lakes fitting in

Lower Floodplain Forest: lowest floodplain locations with a recognizable forest 5 0.5 ha

Middle Floodplain Forest: tall forest, flooded occasionally

upper Floodplain Forest: tall forest, very rarely flooded 4 1.0 ha

Old Floodplain Forest: subjected to flooding within the last two hundred years 0 1.0 ha

P r e v i o u s Floodplain (=Terra Firme Clay): clay soil; ancient floodplain of Tambopata river 1 1.0 ha

Term Firme ~ndy-Clay: sandy-clay soil; little or no indication of past flooding 3, 6 2.0 ha

Terra Firme UltrasarwL. highly weathered sandy soil

*Forest ~pes with tnventory plots are highlighted in bold

ing and the dominant species (Elisb~n Armas, personal communication; Jos~ Armas, personal communication; Wilfredo Torres, personal communication). The distri- bution of these forest types in a 112.4-km z area along the lower Tambopata river is mapped in Figure 2 (based on a ground-truthed 1991 false color Iandsat image), illustrating the wide variety of vegetation potentially available for local people's use. Three of the forest types (c, d, e ) are within the contemporary floodplain of the Tambopata and La Tor te rivers. Four more (a, b, f, g) are within the rivers' Holocene and late Quaternary flood- plain (see Salo et al. 1986; Rasanen et al. 1991, 1992). In Peruvian Amazonia as a whole, the complex succes- sional mosaic of present and previous floodplains oc- cupy, respectively, 12.0% and 14.6% of the lowland forest (Salo et al. 1986). Amazon forest is often classified simply as vdrzea ( f l ooded ) and te r ra f i rme (non- flooded); to apply this dichotomy to most of western Amazonia would be inappropriate, partly because it de- nies the enormous influence of past flooding on vege- tation. In fact, all western Amazonian forest was prob- ably f looded at least once during the Tert iary and Quaternary.

The floristic dissimilarities be tween the nine Tambo- pata forest types contributes to an unusually large flora for such a small area (at least 1300 flowering species; Reynel & Gentry 1994), and makes it an ideal site for comparing the usefulness of different ecosystems to tropical forest people. In addition, this kind of informa-

Comervation Biotow yolnme 8, No. 1, March 1994

Page 4: etnobotanica quantitativa

228 Edmobotany and Conservation Ph~ps et sd.

T?.? def

bf

ef

gh

..977.

bfs

g

b

hi

Figure 2. Large-scale map of the study area based on a ground-truthedJuly 1991 Landsat image Solid black represents waterbodies (rivers and oxbow lakes). The Tambopata river f lows approximately southwest to north- east; La Torre river f lows southeast to northwest All forest that is (a) north, or up to 1 km west, of La T o m river and (b) east of Tambopata river is protected in the Zona Reservada Tambopata Vegetation: (a) Perma. nentiy Water-Logged Swamp Forest; (b) Seasonally Water-Logged Swamp Forest,. (c) Lower Floodplain Forest; (d) Middle Floodplain Forest; (e) Upper Floodplain Forest; 09 Old Floodplain Forest,. (g) Previous Floodplain Forest; (h) Terra Ftrme Sandy-Clay Soil Forest,. (i) Terra Firme Ultrasand Soil Forest; (v) Floating herbaceous vegetatiorL ~ f, g = Mature Floodplain Forests; c, a~ e = Present Floodplain (Salo et aL 1986); ag b, f, g = Pre- vious Floodplain (Salo et aL 1986). Use of two or more letters indicates that the forest types could not be re- solved; each is considered to contribute equally in the area calculations (Table 7). Hatching represents forest that shows little or no topographic evidence of succession from a riverbed (h, i). Stippling represents deforested area up to July 1991.

tion could have a practical application in guiding the process of allocating the entire lowland area of the new reserve into different zones for protect ion and for ex- tractive and agricultural use by local people.

Most of the current inhabitants of the Tambopata area are mestizo~ The te rm mestizo covers a broad cultural spectrum, from very recent migrants from the Andes with little knowledge of their new environment to col- onists of more than 30 years in the region who came from elsewhere in Madre de Dios or further north in Peruvian Amazonia, and who, like the caboclos of Brazil and the rtbere~os of nor thern Peru, are linked histori- cally to native Amerindian cultures (Parker 1989). Of our adult informants, 83% were born in Madre de Dios, but only about 55% had lived more than half their lives

in the immediate area of the newly formed La Torre communi ty on the wes t bank of the Tambopata River. Such mobility is typical among nonindigenous Amazo- nians (see Padoch & de Jong 1990) and implies that the conditions that allow a relatively free exchange of eth- nobotanical knowledge be tween most mestizos have existed for a long time.

Data Collection

We worked in seven 1.ha plots at Tambopata, represent- ing the six forest types highlighted in bold in Table I. The plots were originally established by Gary Hartshorn in 1979 (plot 1 ) and Alwyn Gentry and Terry Erwin in 1983 (plots 0, 2, 3, 4, 5, 6) to include a representat ive

Conservation Biology Volume 8, No. 1, March 1994

Page 5: etnobotanica quantitativa

P h ~ et ~. Etimobol~ and Gonser~on 229

and reasonably homogenous sample of each forest type. Collections, including periodic reinventories and iden- tifications of all t ree and liana species of at least 10 cm diameter at breast height ( d b h ) in the plots, were done by A. H. Gentry, C. Reynel, and O. Phillips, wi th Proy- ecto Flora del Peril botanists (see Acknowledgments) . The tagged, identified trees and lianas in a total of 6.1 ha were used for the ethnobotanical study. This approach discr iminates against herbs, shrubs, epiphytes , and vines, but the problems of identifying sterile vouchers make it almost impossible to inventory the e thnobotany of smaller plants comprehensively. Large lianas are in- cluded; among previous hectare-plot e thnobotanical analyses, they were only considered by Boom (1989) and Paz y Mifio et al. (1991).

Ethnobotanical data we re collected be tween 1986 and 1991 by O. Phillips, working with P. Wilkin, C. Galvez-Durand B. and assistants. We interviewed 29 mestizo informants (20 men, three women, six children and youths), f rom the lower Tambopata river, aged be- tween five and 67 years. We recorded their knowledge of some of the approximately 570 woody species in 6.1 ha of plots. Most interviews took place in the forest, among the tagged, vouchered plants. Additional data were gathered in informal interviews for a few weli- known trees that have a consistent one-to-one match of botanical species to local names. In total, we recorded use data f rom 1604 plant-specific "events", each "event" being the process of discussing one species with one informant on one day.

Primary Data Analysis

The informants repor ted over 105 distinct uses for the woody plants of the inventory plot. (The definition of an individual "use" is discussed in Phillips and Gentry [1993a].) We assigned each use to one of five broad categories: edible, construction, commerce , medicinal, and technology and crafts. These categories are similar to those used by Prance et al. ( 1 9 8 7 ) and Pinedo- V~quez et al. (1990) , although some minor differences should be noted. We included in the edible category the use "hunting-wait tree," as a few species were recog- nized by informants as being wor th waiting near when in fruit because their fruits are sought by important game animals. We also included "firewood" and "char- coal" species in the category technology and crafts. ( In contrast to the findings of Prance et al. for four indige- nous Amazonian groups that most tree species are used for fuel and/or to attract game, we found that the species used at Tambopata for hunting or fuel constitute only 12.7% of all useful species, and that just five species are useful solely for hunting or fuel.) Finally, we included under the ca tegory technology and crafts uses that Prance et al. and Pinedo-V~squez et al. assigned to the

category "other," because a broad range of miscella- neous m e s t i z o uses can be considered technological. In any case, these minor categorical differences have little effect on either most species' use value calculations or on our overall conclusions.

The data were analyzed with a technique that shares some features with other informant-driven, -indexing, or -consensus methods (Adu-Tutu et al. 1979; Friedman et al. 1986; Trotter & Logan 1986; Johns et al. 1990) used to estimate noumarket direct usefulness ( rev iewed in Phillips 1993a). Each of the techniques is designed to address different questions, but all share the valuable propert ies that (1 ) they directly reflect the importance of plants to the informants, aiming to minimize the in- fluence of investigators' value-judgements, and (2 ) they facilitate statistical analyses of ethnobotanical data.

Our estimate of the use value of each species s for each informant ~ UV~ is defined as

xu~ UVls - ?lgs

where U/s equals the number of uses ment ioned in each event by informant i, a n d n o equals the number of events for species s with informant

Our estimate of the total use value for each species a; UV s, is then

~i UV~s

ns #J

w h e r e n s equals the number of informants interviewed for species a

This informant indexing technique has a number of interrelated advantages over procedures tlmt simD/y to- tal numbers of uses or assign importance values a pos- teriori:

(1 ) Use values reflect the importance of each species to the informants objectively. Mistakes or very mi- nor uses contr ibute little; important uses contrib- ute significantly.

(2 ) It makes efficient use of all av_ajlable information. Every interview contributes directly to the use- value calculations, even if it provides only nega- tive data, when a plant is claimed to have no use or is apparently misidentified.

(3 ) The distribution of use values generated is contin- uous. More statistical information is contained in continuous data than in comparable discrete data.

( 4 ) Use values are unbiased by the intensity of re- search. The number of interviews per informant per species and the number of informants giving information on each species are denominators in the two calculation steps.

Conservation Biology Volume 8, No. 1, March 1994

Page 6: etnobotanica quantitativa

230 Edmobo~y and Conse~on Phillips et al.

(5 ) Statistical confidence intervals can be stated for each use value. Similarly, a quantitative descrip- tion of the relationship be tween sample size and the accuracy of the use-value estimate can be de- rived (see Phillips & Gentry 1993~ Fig 3).

(6 ) Each species' est imated use value can be improved by resampling techniques such as bootstrapping or jack-knifing (see Efron 1982; Magurran 1988).

(7 ) Direct subsistence and commercia l uses (respec- tively, consumptive use value and product ive use value, see McNeely et al. 1990) are evaluated si- multaneously by the same measure, allowing com- parison of the importance of each form of produc- tion to local people. This proper ty is vital: by their nature, subsistence economies are invisible under financial account ing procedures. Thus, wi thout techniques to evaluate subsistence and commer- cial value simultaneously, development projects that might actually reduce living standards may be apparently justifiable.

( 8 ) Used properly, the technique is scientifically rig- orou~ both because the method of assigning im- por tance is explicit and relatively independent of the r e s e a r c h e r ( so that dif ferent r e sea rche r s should generate similar results), and because it permits the testing of a broad range of specific, falsifiable null hypotheses (Popper 1963).

Secondary Data Analysis A modified version of the raw use-value data was used to make between-plot comparisons. Use data of congeneric species were merged when those species consistently shared the same m e s t i z o names and uses (see Adu-Tutu et al. 1979:323) . For e x a m p l e , all S a l a c i a (Hip- pocra teaceae) liana species that reach 10 cm diameter share, the same names and uses (Phillips & Gentry 1993a), and we calculated the modified use value of each species that comprises this one "folk species" from our data on all Salac ia species (Appendix 1 ). The prin- cipal reason for making this adjustment is to create taxa that reflect m e s t i z o percept ions of their environment more accurately than our botanical species concepts do. A secondary benefit is a marked improvement in the quantity and quality of ethnobotanical data for each taxon. Thus, f rom 496 useful plot species wi th data (mean number of interview events per botanical species = 3.23, mean number of informants per botanical spe- cies = 2.14), w e derived 272 "folk species" (mean number of events per folk species = 5.90, mean number of informants per folk species = 2.74).

For 25 species that we never found with informants, a best-estimate use value was calculated as the mean of the genus or family use values (minus the edible com- ponent, if the fruit and seed are known to be inedible). These species are all very rare (mean density = 0.39

stems/ha) and infrequent (all but two are in only one plot), so inaccuracy in these estimates will have a neg- ligible effect on the overall plot-level comparisons.

In order to compare the usefulness of the forest types, each plot was first divided into 20 × 50 m ( = 1000 m 2) subplots. The use values of each w o o d y s tem were summed and divided by the number of stems in each subplot. To investigate whe ther the subplot-averaged use values could be used for compar ing the usefulness of forest types, we needed to test whe ther the subplots represent sufficiently independent samples. Here, statis- tical independence was partially rephrased in terms of a null hypothesis that we tested: distance be tween sub- plots has no effect on the similarity be tween the sub- plots ' averaged use values. To test the hypothesis for each plot, we first calculated the differences be tween each pair of the subplots ' summed and averaged use values, and then we assigned these differences to four categories based on the distance be tween each subplot pair: ( 1 ) subplots are adjacent; ( 2 ) subplots share a cor- ner; (3 ) subplots are at least 20 m apart; ( 4 ) subplots are at least 40 m apart (category 2 was not used for plots 2 and 5 because the inventoried area was smaller). For each inventory plot, each category's results were com- pared simultaneously by the nonparametr ic Kruskall- WalEs test (Table 2).

The results provide little support for the notion that the distance be tween subplots affects the difference be- tween subplot usefulness. Only o n e p value is significant at the 10% level, and the overall distribution of the s e v e n p values does not appear to be different from that expected by random. There is no evidence to reject the null hypothesis, at least for the distances tested, al- though the small sample sizes mean that the possibility remains of a very weak distance effect. Similarly, al- though for three of the seven plots (0, 2, 3) similarity decreased with increasing distance be tween subplots, the effect was slight. On balance, therefore, w e believe the results support the view that the lO00-m 2 subplots are essentially independent samples. This result is not surprising because the location of each plot was origi- nally chosen to include a reasonably homogeneous and representative sample of the distinct forest type.

Table 2. Results of testing the null hypothesis that distance between subplots has no effect on the similarity between subplots' =,erquJ use y a w .

Plot n (pairwise n (distance Kruskail-Wallis Number c o ~ ) caUgories) Chl-SquamdResult

0 45 4 6.959(3) 1 45 4 5.978 (3) 2 14 3 2.143 (2) 3 45 4 3.331 (3) 4 45 4 2.759(3) 5 10 3 1.791 (2) 6 45 4 1.253(3)

0.073 0.113 0.343 0.343 0.431 0.408 0.645

Conservation Biology Volume & No. 1, March 1994

Page 7: etnobotanica quantitativa

Phillips et al. Eamobolany and Co~¢encttioa 231

Results and Discuss ion

Measur~ of Usefulness Compared

Appendix 1 lists the useful species in the inventory plots, with information on their distribution and density, and the number of interviews and informants on which the use values are based. M e s t i z o s in t he Tambopata area use an estimated 57 w o o d y plant families (count ing Fabaceae as one family) and 87.2% of the tree and liana species in the combined 6.1-ha inventory plots, equiva- lent to 94.0% of woody stems. These results are at the high end of the range of similarly derived results for o the r cu l tures in Amazonia. Pinedo-V~squez et al. (1990) recorded that r / b e r ~ o s in northern Peru use 60.1% of tree species, 66.4% of individual trees, and 36 woody families in 7.5 ha of advanced secondary forest. Anderson and Posey (1989) found that Kayap6 use over 98% of collected plants in an unspecified area of man- aged tropical scrub. Estimates for other Amerindians range from 48.6% to 100% of t ree species used from mostly 1-ha inventory plots (see Boom 1985, 1989, 1990; BaiZe 1986, 1987; Grenand 1992; Prance et al. 1987; Rico-Gray et al. 1991; Bennet t 1992). On a slightly smaller scale, the data for Tambopata m e s t i z o forest use appear even more impressive: up to 97.2% of species and 98.8% of stems in 0.6 ha are useful (Table 3). Our data apparently confirm the view that tropical forests may be utilized as much by some nontribal peo- ples as by tribal peoples (Parker 1989; Anderson 1991 ).

It is apparent, however, that this widely used process of simply totalling useful species in a given area is only a very crude guide to the cultural importance of forests. (The ordinal ranking system used by Prance et al. [ 1987] and Pinedo-V~squez et al. [1990], w h o distinguish be- tween major and minor uses, is an improvement on sim- ple "percentage useful" calculations, but, as discussed above, it has several drawbacks compared to informant indexing techniques. Most important, the method of as- signing importance is a posteriori and sensitive to inves- tigators' value judgments, so it is hard to compare re- suits using this technique. ) Table 3 shows why we believe that percentage Useful results need to be inter-

pre ted with care. The table displays each plot 's mean use value per stem, together with the percentage values of useful species and stems. While the percentage useful values are remarkably uniform be tween forest types, av- erage use values differ by a factor of nearly two. More- over, there is no apparent congruence be tween the dif- ferent measures. In fact, the most useful forest type by percentage useful calculations, swamp forest, turns out to be the least useful by averaging UV s values.

These inconsistencies reflect the fact that most trop- ical forest cultures have at least occasional uses for most trees, but only a few species are exceptionally useful and intensely used. Thus, swamp forest is dominated largely by species of minor importance to m e s t i z o s (es- pecially Luehops i s h o e h n e i Bur., Tiliaceae, which com- prises 68% of the plot 's s tems but has a use value of only 0.5). Figure 3 shows the wide range in use values for the 496 useful species, illustrating the point that only a few species are outstandingly useful. In fact, the most useful folk species, l r tar tea de l to idea IL & P., is nearly two orders of magnitude more useful than M o l t i n e d i a k i l l - ip i i (use value: 4.413 versus 0.067) (Appendix 1), yet each counts as equal in percentage useful calculations. Percentage useful values are as much a function of the level of ethnobotanical research effort as an object ive measure of the importance of plants or vegetation types to people. Thus, the more informants interviewed the more likely it is that ethnobotanists will record addi- tional minor uses that make a negligible contr ibution to use values but swell the numbers of useful species. Con- sequently, many of the differences (o r similarities) be- tween repor ted results in the literature are likely to be artifacts.

Tambopata Forest Types Compared

By contrast to the percentage useful results, three forest types---upper, old, and previous f loodplain f o r e s t m clearly emerge as being the most useful w h e n evaluated by UV s values. Because of these similarities, and the fact that these forests share the propert ies of being physiog- nomically well developed (with canopies of 25 to 35 m

Table 3. Forest-type usefulness with percentage useful and informant-derived use value techniques.

Species Stems Mean Use Forest Type Inventoried Inventoried Value per Stem

Useful Useful Species % Stems %

Swamp Lower Floodplain Terra Firme Sandy (Plot I = 3) Terra Firme Sandy Soil (Plot H = 6) Upper Floodplain Old Floodplain Previous Floodplain Clay Soil

47-491 427 z 0.98 97.2 98.8 25-282 2252 1.15 92.4 93.5

176-178 550 1.31 89.3 95.2 164 568 1.33 85.7 91.2

175-181 530 1.73 91.0 88.8 181-182 560 1.86 91.2 96.0 180-186 561 1.88 90.2 96.0

z In 0.6 ha P ~ t and S e m i - P ~ t Swamp foresL In 0.5 ha Lower Floodplain forest

~ o n Blok~y Volume 8, No. 1, March 1994

Page 8: etnobotanica quantitativa

232 Edmobo~y and Conservation Plfflllps et aL

0.3_ (D

t.)

tn

"~ 0.2_ N--

0.1_

c- o

¢.J ¢o C. t.z- 0

Use Value

Figure 3. D i s t r i b u t i o n o f use va lues (UV~) f o r the 4 9 6 u s e f u l p l o t species a t T a m b o p a t a M a x i m u m UV s = 4.41; m e a n UV s = 1.35; m e d i a n UV s = 1.24.

and numerous large lianas), we will discuss them to- gether as mature floodplain forests (note that this te rm includes forests that are no longer flooded). The excep- tional utility of these forests to m e s t i z o s is due in part to the fact that they share a high density of very useful palm species. Table 4 lists all species with a use value of 3.0 or more; six of the 12 are palms. The most important of these species, I r iar tea de l to ldea R. & P., has a dense populat ion in all mature floodplain forests. Trees of s o m e o t h e r i m p o r t a n t f ami l i e s , s u c h as Anno- naceae, Lauraceae, and Myristicaceae, are much more evenly distributed be tween most of the Tambopata for- est types. There are strong indications, however, that important edible, fleshy fruited genera such as Brosi- m u m and P s e u d o l m e d i a (Moraceae), Garc in ia (Clusi- aceae), P o u t e r i a (Sapotaceae) , S p o n d i u s (Anacardi- aceae), and Theobroma (Sterculiaceae), are either more numerous and speciose (data from Gentry 1988a; Rey-

g ~, 2.5

c~

g 2 c.

L 5

c_ m 0.5 >

TERRA FIRME SANOY SOIL

PREVIOUS FLOODPLAIN OLO

FLOODPLAIN

±

UPPER ~ PLAIN FLDOOPLAIN L~

S~AM~.._

Figure 4 Fores t - type u se fu lnes s compared , range a n d m e d i a n o f s u b p l o t averaged use v a l u e s Upper Flood. p la in , Old Floodplain , a n d P r e v i o u s F l o o d p l a i n = M a t u r e F loodp la in Forest~ Di f f e rences b e t w e e n w h o l e p l o t s are s i g n i f i c a n t a t p < 0.001 (Kruska l l . Wal l t s compar i son , ch i . squared = 28.58) .

nel & Gentry in preparat ion) or more fecund (Phillips unpublished data) in Tambopata mature floodplain for- ests than in upland terra firme forests. By contrast, sim- ply totalling the number of species that are edible, whether important or otherwise, yields a similar result for mature floodplain forests (44 to 53 ha - 1 ) and up- land terra firme (43 h a - t ) (Phillips 1993a). In general, therefore, mature floodplain forests are more useful than the other forest types because the most useful taxa tend to be m o r e n u m e r o u s and/or speciose , even though there are many taxa that can be used in every forest type.

The significance of mature floodplain forests to mes- t i zo people shown by Table 3 is demonstra ted graphi- cally by Figure 4, which displays the averaged use-value range and median for 1000-m 2 subplots in each forest

Table 4. All species with a use value of 3.0 or more.

Genu~ Species Family Mestizo Name n (stems) Plots Use Value n . z n~

IrlarCea deltotdea 1~ & P. Euterpe precatoria Marl Maurtt ta f lexuosa L. Oenocarpus sp. nov. Cedrelinga cateniiforrais Ducke Aniba canelilla (HBK) Mez Bertholletia excelsa BonpL Jessenia bataua (Mart.) Burret Oenocarpus c.f. bacaba Mart. Cinnamomum spa Xylopia aft. calophylla Xylopia sp.1

Arecaceac Arecaccae Arecaccae Arecaceae Fab: Mimosoid Lauraceae Lecythidaceae Arecaceae Arecaceae Lauraceae Annonaceae Annonaceae

p O t l a

huasai aguaje ungurahuillo tornillo, cedro macho canelon c a s t a t ~

ungurahui sinami i r l o e n a

[es]pintana [blanca] [~]pim~m

313 0134 4.413 23 12 32 012345 4.299 24 15 40 2 3.357 11 7

6 16 3.250 7 4 7 36 3.250 4 4 1 3 3.167 4 3 7 1346 3.162 13 7

19 6 3.120 18 10 6 36 3.000 4 3 2 36 3.000 3 2 7 36 3.000 2 1 1 3 3.000 2 1

z no = number of interview events per spect~ 2 n I = number of informants intemtewed per spectex

Conservation Biology Volume 8, No. I, March 1994

Page 9: etnobotanica quantitativa

Phillips et al. Etlmohota~ and ~ o n 233

• conetruction ~ eOble • co,,~ce

• me£1tc~nel • techno]ooJcal

^ L6

L2

g o.e

o.6

0.4

o.2 .o

TERRA FIRNE PREVIOUS OLD UPPER LOWER SWAMP SANDY SOIL FLOODPLAIN FLOODPLAIN

Figure 5. Forest-type usefulness compared,, each for. esrs averaged usefulness displayed by component use category. Upper Floodplain, Old Floodplain, and Pre- vious Floodplain = Mature Floodplain Forests

type, and statistically by Table 5, which shows each sig- nificant between-plot difference in usefulness. Previous floodplain, old floodplain, and upper floodplain forests are each more useful than all three of the other inven- toi led forest types at Tambopata, but in no case is one mature floodplain forest significantly more useful than another. Although there are no inventory plots in the three remaining Tambopata forest types, we predict that the usefulness of middle floodplain and seasonally wa- ter-logged swamp forests may approach that of the ma- ture floodplain forests because they share large numbers of palms and some other floristic similarities. By con- trast, terra firme ultrasand forest has few palms, few trees large enough to provide sawn timber, and an ap- parently negligible product ion of edible fruit, so we sup- pose it to be less useful than terra firme sandy-clay forest.

More insight into the nature of the differences be- tween forest types is given by breaking down each sub- plot's averaged use value into its component use cate- gories: construction, edible, commercial, medicinal, and technological (Fig. 5). Construction, edible, and com- mercial use dominates for most forest types~ reflecting the contribution of palms, Annonaceae, Lauraceae, and Myristicaceae to household cons t ruc t ion and com- merce (for example, furniture, thatching, canoes, round- wood, and split-palm wood and wnwood for walls), and of mostly palms and Moraceae to subsistence food (especially fruits, palm-hearts, edible oils, and hunting- wait trees). In contrast, medicinal uses are dispropor- t ionately impor tant in lower floodplain forest, due largely to a dense population of the important medicinal tree Ficus insiptda Willd., whose latex is a widely used anthelmintic (Phillips 1990). In fact, both F. insipida and another indispensable medicinal species, Croton

lechleri Muell. Arg., only regenerate in lower floodplain forest, so that although the forest type as a whole is less useful than most others, it still makes a vital contribu- tion to mestizo health. These patterns are reflected in Table 6, which enumerates the results of each statistical comparison for each category. The three mature flood- plain forests prevail in most pairwise comparisons for construction and edible usefulness, but they are joined by swamp forest in commercial usefidness comparisons, mostly because of its dense population of the occasion- ally commercialized Luehop$is hoe~meg Lower flood- plain forest wins all six medicinal comparisons. Terra firme sandy-day forest is more important than two ma- ture floodplain forests for technological uses (for exam- ple, Hymenaea spp, and Burseraceae p roduce resin sometimes burnt as a kerosene substitute), but because this category makes a minimal contribution to total use- fulness, this forest type remains significantly less useful than all three mature floodplain forests. Finally, two as- pects of our sampling methodology may have caused us to underestimate the importance of medicinal uses for all forest types. One obvious bias is that only trees and lianas were inventoried. The relative preponderance of medicinal uses among herbs, shrubs, and vines would elevate this category's importance for most forest types. Another problem, the male bias in our informant sample (discussed in Phillips & Gentry 1993a), may also reduce our estimate of the importance of medicinal plants (see Gispert & G6mez Campos 1986).

Implications for Conservation in Amazonla

This is the first at tempt to directly compare the utility of more than two different forest types at such a scale, with any inventory technique. Grenand (1992) listed the number of useful species for Wayapi Indians in small plots of different secondary forests; Salick (1992) found no significant differences in the uses that one Amuesha herbalist knew of in five different forest types, sampling from 50 m 2 to 225 m 2 for each forest type; Stoffle et al. (1990) found differences in the cultural significance of local use areas for native North Americans of Yucca Mountain. One possible limit on the broader signifi- cance of our results is that, inevitably, the notion of what is useful varies from culture to culture. Therefore, it is possible that the data presented here may be of only local relevance, specific to the mestizo people of the lower Tambopata river. Although we recognize this problem, there are grounds for some confidence in ex- trapolating our broad conclusions about the relative im- portance of different forest types to elsewhere in Ama- zonia. First, non-native people are ubiquitous in the region, and they are culturally less heterogeneous than are native people. As a measure of this, of the approxi- mately 45 species wild at Tambopata that are also listed

Conservation Biology Volume 8, No. 1, March 1994

Page 10: etnobotanica quantitativa

234 Edmobotany and Conserv'a~n Pl~ps et ~1.

T~te 5. Forest twe ~ co~pm~ r m ~ d ~ p ~ e b~m~-ptot t o m t i t ~ ' ~ d ~ ~ .

TI c l 1 TF21 p F 1 O1 d U1M L i d S W 1

TF11 XXXXX NS 3.70"** 3.02"* 3.33*** TF21 XXXXX 3.78*** 2.95"* 3.25"* pF 1 XXXXX OF 1 NS XXXXX UF 1 NS NS XXXXX LF ~ 2.08* 2.45* 3.06"* 3.06** 3.06** SW 1 2.60** 2.71"* 3.25** 3.25** 3.25**

XXXXX NS XXXXX

The vertical c o l u m n represents the mos t use fu l fores t type in each pa t rwise compar lso~ Al l values are z values f o r pa i rwl se Wi lcoxon rank s u m comparlsonx Signif icance levels f o r the z values: . . . . p < 0.001, ** = p < 0.01, * = p < 0.05. Note that these a te p values f o r ind iv idual pa i rwl se c o ~ o n , g The true p values f o r the mos t s igni f icant c o l u m n or cell w o u l d be subject to a Bonferroni corteclloet

Forest Oppes: TFI = Terra F i r m , sandy c ~ . p l o t I (h); TF2 = Terra Firme sandy cla~. p lo t H (h); PF = Previous Floodplain clay soil (g); OF = Old Floodplain (j~; UF = Upper Floodplain (e); LF = Lower Floodplain (c); S W = Permanent ly Water-Losged S w a m p (a); ~ f , a n d g are

Mature Floodplain Fores~

by Vgsquez and Gentry (1989) as being edible in the lquitos area about 110 km away, 38 species share similar or identical m e s t i z o n a m e s . Most of the very useful spe- cies at Tambopata (Table 4) are also important species for traditional peoples throughout the rest of Peruvian Amazonia, and almost all present-day inhabitants of riv- er ine zones a r e m e s t t z o / r t b e r e ~ o , not Amer indian (Hiraoka 1992). Second, we sampled a contrasting set of six different forest types, and most share substantial flo- ristic similarities with vegetat ion elsewhere in lowland Madre de Dins (Terborgh 1983; Foster 1990; Gentry & Terborgh 1990; Phillips 1993a; Martin Timan~i, personal communica t ion) . Moreover , because similar distur- bance and successional processes-- involving riverine dynamics and act ive sub-Andean foreland deforma- t ion---operate in most of western Amazonia (Encarna- ci6n 1985; Salo et al. 1986; Rasanen et al. 1991, 1992; Kalliola et al. 1987), we believe that the taxonomic composi t ion of the Tambopata inventory plots may be reasonably representative of much of the seasonal trop- ical forests in southwestern Amazonia. Indeed, Gentry has shown elsewhere that the composi t ion of lowland neotropical forests is ex t remely predictable at the fam- ily level, given sufficient climatic and edaphic similarity (Gentry 1988g. Gentry 1993). For both these reasons, we tentatively predic t that our observation that mature floodplain forests---and not upland terra firme fores t s - - are most useful to m e s t i z o g may hold for the majority of the population in wes tern and southwestern Amazonia. If confirmed, such a pat tern would have important im- plications for Amazonian conservat ion and develop- ment.

It is interesting to compare these findings with the conclusion of Prance et al. (1987) that terra firme forest should be a priority for conservation, and with the cal- culations of Peters et al. (1989b) of potentially large market returns f rom harvesting edible fruit f rom some low-diversity forests. While these authors demonstrated a high degree of use and/or management of these forests,

they did not a t tempt comparisons of direct use value be tween local forest types. By contrast, while there is a clear need for more studies f rom elsewhere, our com- parative results suggest strongly that mature floodplain forests should be a main focus of conservationists ' ef- forts.

In proposing that utility be a major cri terion in setting conservation priorities, we do not mean to imply that less useful forest types be overlooked. Even the least useful forest types may be culturally valuable, and there are clear utilitarian arguments for conserving all forest types. But other, compell ing reasons also make the for- ests of the contemporary and recent floodplains a top priority. First, the floodplains are less extensive than upland terra firme (see Salo et al. 1986); therefore, spe- cies unique to mature floodplain forests are presumably more vulnerable to local, and perhaps global, extinc- tions than those of the more extensive uplands. Second, mature present and previous floodplain forests are at least as diverse as upland terra fuane forests (see Table 3), and much more diverse than Amazonian swamp for- ests. Indeed, the most species-rich forest repor ted to date is old floodplain at Yanamono, near Iquitos in northern Amazonian Peru, with 300 species at least 10 cm dbh in 1 ha (Gentry 1988b). Third, satellite images clearly show that mature floodplain forests in wes tern Amazonia are being deforested faster than other lowland forest types as set t lement and agriculture spread out- ward from riverbanks. Thus, while the deforestation rate for Amazonian Peru was conservatively est imated at 0.7% (Myers 1990), and the annual conversion rate be- tween 1986 and 1991 for all forest adjacent to the orig- inal reserve was about 0.66%, the rate for nonpro tec ted mature floodplain forest in Figure 2 was about 1.63%. 1

1 Total area o f m a p = 112.4 k m z. Original area o f unprotected fores t = 79.4 krr~. Total deforested area = 5.05 lem z ( o f which 4.60 k n ~ is mature f l oodp la in fomst---~ f , and g in Figure 2). Sequent ial

Conservation Biology Volume 8, No. 1, March 1994

Page 11: etnobotanica quantitativa

Phi~s e ta ~ aM c o ~ o n z35

Table 6. Forest type ~ cmapatt~ between-plot dMget~ces in compmtel category mefa im~, tallied by r e s ~

Forest Mean Use Value Construct ion Edible Commerce Medic ine Technology

TFI 1 2~:1:3 2:0:1:3 0:3.~:3 1:1:1:3 0:2:3:1 2:1:2:1 TF2 t 2:1:0:3 2:1.'0:3 0:0:3:3 1:0:1:4 0:4:1:1 5:0:0:1 PF 1 4:2.'0.'0 4:2.'0.'0 4:2.'0.'0 3:1:2:0 0:4:1:1 2:3:0:1 OF 1 4:1:1.'0 4.'0:2.'0 4.'0:2.'0 3:2:1:0 0:4:1:1 3:2:1:0 UF 1 4.'0:2.'0 4:1:1.'0 4:1:1.'0 2:1:2:1 0:1:4:1 2:0:3:1 LF t 0:0:1:5 0.~:0:6 0:1:2:3 0:0:0:6 6:0:0:0 0:1:0:5 SW t 0:1:0:5 1:0:0:5 0:2:1:3 4:2.'0:0 0:0:5:1 0:0:1:5

AH comparisons are pairtvis~ using the nonparmc~tric Wilcoxon rank sum test Results are reported in the following forr~. N (pair~se win~ significant at ~ 596 level): N(pairtvise win~ not significant): N(pai~xvise losse~ not significant): N(pairwise losse~ significant at ~ 5% level). By chance along expect 5/100 x (3 x 7 x 6) = 5.25 pairwise comparisons to be significant at 596 leve~, obsertmd result = 79. The most useful forest O~Oes in each category are highlighted in bola~ as are the most useful forest types for aH uses combined 1 Forest ¢ypes~ TFI = Terra Firme sandy cla~. plot I (H); TF2 = Terra Firme sandy clay. plot II (H); PF = Previous Floodplain clay soil (G); OF = Old Floodplain (F); UF = Upper Floodplain (E); LF = Lower Floodplain (C); SW = Permanently Water.Logged Swamp (A); F, F, and G are

Mature Floodplain Forest~

Rapid floodplain deforestation has several causes, in- cluding the fact that con temporary floodplain soils sus- tain agricultural product ivi ty longer than do older Am- azonian terra firme soils. Hence they have not only been favored by subsistence farmers for thousands of years (Denevan 1976; Padoch & de Jong 1992), but also re- cently by bet ter capitalized individuals and corporat ions growing staples for local urban markets or raising cattle for beef exports. Rivers provide the only form of trans- por t for most of the region, making land close to the rivers even more attractive. A recent gold rush along the Madre de Dios, Ifiambari, and Tambopata rivers has boosted the riverside population. Because people are concentra ted close to rivers, perverse economic incen- fives that encourage deforestation---such as the ex t reme difficulties mest /zo families face in gaining effective title to land wi thout first deforesting it, or access to agricul- tural credit being prora ted by the quantity of forest cut down- - -exe r t the i r m a x i m u m des t ruc t ive effect on floodplain forest, even though destruct ion of its re- sources may ultimately impoverish families and commu- nities. These forces clearly overwhelm any incentive to conserve mature forests of the present and former flood- plains that we might anticipate as a result of their use- fulness, and apparently refute the notion that simply increasing the value of tropical forests to local people will necessarily result in their conservation (Table 7).

Deforestation is not the sole threat to mature flood- plain forests. Perverse incentives (for example, difficulty in obtaining access or title to land and ineffective en- forcement of conservat ion regulations) also encourage over-extract ion of forest resources. In such situations, the very uses that make mature floodplain forests im- portant may also contr ibute to their degradation. Ex-

images were not availabl¢ but based on field experience we esti. mate that 5096 o f this deforestation occurred between 1986 and 1991. Therefor~ estimiat~ annual deforestation rate o f all unpro- tected forest 1986-1991 = 066%; estimated annual deforestation rate o f matum ;Zoodplain forest = 1.6396.

traction has already affected Tambopata 's forests, even within the reserve that received some protec t ion after its establishment in 1977. For example, one of the area's oldest res idents told .us that all the largest C r o t o n

l e c h l e r t ( E u p h o r b i a c e a e ) and m a n y M a y t e n u s sp. (Celastraceae) trees had been felled by 1970 by outsid- ers for one-t ime commercia l extract ion of their medic- inal products (Jos¢~ Armas, personal communicat ion) . Also, in surveying a total of 36.5 ha of all the Tambopata forest types for mature individuals of the valuable Me- liaceous t imber species, Ced r e l a o d o r a t a L and S w i e t e -

n t a m a c r o p h y l l a King, prominent componen t s of mid- die and upper floodplain forest in nearby Manu National Park, O. Phillips found just one C. odora ta tree, implying that the lower Tambopata river has already been high- graded. Not one adult or juvenile of any of these four species was found in the 6.1-ha inventory plot area.

Most uses in the dominant commercia l and construc- tion categories involve felling the t ree for w o o d prod- ucts. The relative importance of these uses to m e s t i z o s

parallels the findings of Pinedo-Vfisquez et al. ( 1990) with r /bere~os in the communi ty of San Rafael in north- east Peru. Timber harvesting in tropical forest need not necessarily lead to forest destruction (Putz 1992), and at both Tambopata and San Rafael some t imber has been extracted while forest cover has been maintained. At the level of individual species' populations, however, t imber extraction as pract iced in most of Amazonia is nonsns- tainable, and thereby reduces the overall usefulness of the remaining forest. Nont imber forest products col- lected by m e s t i z o s ( i n t h e edible, medicinal, and tech- nological categories, as well as leaf thatch in the con- struction category), whether from trees or the smaller plants that our inventory overlooked, are not immune to the prob lem of destructive harvesting (Vfisquez & Gen- try 1989; Phillips 1993~ 1993b), although their collec- tion certainly has a less conspicuous impact on the for- est.

Recent conservationist support for Amazonian people

ComervaOon Biology Volume 8, No. I, March 1994

Page 12: etnobotanica quantitativa

236 Etlmoboemy and C o - - o n Phillips et al.

Table 7. Forest type defogealation rate$ ~ ~ (iafetma~-derived me vahte)~

Est imated Original Protected Est imated A n n u a l Deforestation Forest Type Area in Figure 2, k m 2 Rate 1986-1991 ( % )

Mean Use Value per Stem

Mature Floodpla in Forests (Previous Floodplain, Old Floodplain, and Upper Floodplain) 29.40 1.63 1.84

Lower Floodplain O. 12 0.63 1.15 Middle Floodplain 0.97 0.39 1.752 Unknown 7.74 0.37 1.42 Terra Firme Sandy-Clay 28.24 0.10 1.32 Permanent Swamp 0.34 0 0.98 Seasonal Swamp 8.58 0 1.752 Terra Firme Ultrasand 4.03 0 1.002

All combined 79A1 0.661 1.561

1 Weighted by relative abundance of each forest type 2 Use value based on estimated species compositiorg not directly measured

has focused on promoting and adding value to nationally and internationally traded nont imber forest products (especially Brazil nuts f rom B e r t h o l l e t i a e x c e l s a Bonpl., and rubber f rom H e v e a b r a s i l i e n s t s [A. Juss.] Muell. Arg.). While we affirm our support for these efforts, de- tailed quantitative ethnobotanical studies clearly show that the forests provide many other t imber and nontim- ber products that are integral to household economies and that a solely dollar-based perspect ive grossly under- values. On a species-by-species basis, commercial uses represent only 20.9% of the use value of the Tambopata forest (Appendix 1, calculation from totals); averaged by stem, the commercia l contr ibution to plot use value falls to 18.5 - 6.8% (Fig. 5), and only some of this represents nationally or internationally traded products. In particular, this study has demonstrated the value of continued access to present and previous floodplain for- est for harvesting many products essential to the house- hold economy.

Unfortunately, deforestation and over-extraction are rapidly reducing the usefulness of mature floodplain for- ests to many m e s t i z o and in~genous communities. This is not an inevitable process, however: given opportuni- ties and incentives, and in the absence of threats of re- source expropriat ion by powerful outsiders (see May 1992), people tend to work together to conserve com- mon resources by regulating their use (see Berkes et al. 1989; Alcorn 1991). Establishment of clear rights to land and resource tenure by local families or communi- ties is a necessary step towards encouraging sustainable levels of extract ion and allowing tropical forest dwellers to determine their own future. To this end, the commu- nal forest reserves established unilaterally by r/bere~o villages in nor thern Peru that seek to legitimize informal regulations and traditional usufiamt rights (see Bodmer et al. 1990; Pinedo-Vfisquez et al. 1990) could be a use- ful model for m e s t i z o people elsewhere in Peru who need to develop community-level regulations to ensure

conservation and access to their traditional forest re- sources. A priority for funding organizations, then, is intervent ion to "p romote institutional modifications and support refinement of c o m m o n proper ty manage- ment practices in use by Neotropical forest dwellers" (May 1992:375). Other priorities include prevent ing highly destructive forms of land use such as cattle ranch- ing---favored by well-capitalized individuals at the ex- pense of communal resourceg providing free access to voluntary family planning, and support ing agroforestry to prolong, intensify, and add value to the productivi ty of already deforested floodplain areas. Time is short, and, for conservationists, supporting these processes in communit ies along wes tern Amazonian rivers such as the Tambopata appears to be the best possible invest- ment of all.

Conclusions

We have highlighted some of the problems with the most commonly used approaches to quantitative ethno- botany. In particular, we have shown the calculations of the number of useful # a n t s in a given area provide little insight into which species or vegetation types are most important to local people. By contrast, the application of more objective, replicable, and precise techniques to a large ethnobotanical data set has showed that some for- est types are much more important than others to mes- t i z o people living along the lower Tambopata river in southeast Peru. Mature forests of the present and previ- ous floodplains are especially useful, although other for- est types also contain species with important nonsub- stitutable uses.

These findings, combined with the knowledge that floodplain forests are being depleted faster than other forest types in western Amazonia, are strong evidence for the thesis that the river-influenced forests of the

Conservation Biology Volume 8, No. 1, March 1994

Page 13: etnobotanica quantitativa

Phillips et al. Eamobotm~ and Omser~on 237

region should be a prime conservation priority. How- ever, the results from quantitative ethnobotany need to be interpreted in their political, social, and economic context. Thus, our data highlight the need for peasant access to all forest types, and especially to mature for- ests of the present and previous floodplain, if the sub- sistence and trading requirements of Amazonian people are to be met. The high use values reported for these forests suggest that there is tremendous latent potential for combining local people's legitimate needs with the conservation of floodplain forests. From the conserva- tionist perspective, the greatest gains from social devel- opment initiatives that involve establishing locally de- veloped resource-use regulations (such as communal forest reserves, "extractive reserves," and equivalents) are most likely to come from a focus on recent and contemporary floodplain forest.

Acknowledgments

We are especially indebted to the residents of the com- munity of La Torre and the surrounding area for so gen- erously sharing their knowledge of the Tambopata for- est with us. Michel Alexiades, Flor Cl~vez, and Gavin Nicholson helped with ethnobotanical data collection. Camilo Diaz, Nestor Jaramillo, Percy Nufiez, and Rod- olfo Vfisquez helped with voucher collection. We thank Max Gunther, Marcia Morrow, and the staff at the Ex- plorer's Inn for invaluable logistical help. The Landsat image of the region is copyright of the EOSAT corpora- tion and is supplied courtesy of Conservation Interna- tional. Bill Duellman and Linda Trueb gave permission to reproduce the first map (Fig. 1) from Duellman and Koechlin ( 1991); the second map (Fig. 2) was prepared with Kate Johnson. Stanley Sawyer gave us advice on statistical methodology. We thank Michel Alexiades, Walter Lewis, Rogcrio Castro, and two anonymous re- viewers for helpful comments on earlier versions. O. Phillips was funded by Cambridge University grants (1988) and by a National Science Foundation Doctoral Dissertation Improvement Award (BSR-9001051), a World Wildlife Fund-U.S. Garden Club of America Award (1991), and a Conservation international Plants Program Grant (1990-1992) . A.H. Gentry was a Pew Scholar in Conservation and Environment. Fieldwork and herbarium work by C. Reynel and A. H. Gentry with the Proyecto Flora del Perd was supported by the Mel- lon Foundat ion and the MacArthur Foundation. C. C~vez-Durand B. was supported by the Tambopata Re- serve Society and Peruvian Safaris S. O. O. Phillips and P. Wilkin were also funded for grants to the Tambopata Flora Study Group.

Literature Cited

Adu-Tutu, M., I~ Asanti-Appiah, D. Llebetman, J. B. Hall, and M. Elvin-Lewis. 1979. Chewing stick usage in southern Ghana. Economic Botany 33:320-328.

Alcorn, J. 1984. Huastec Mayan ethnobotany. University of Texas, Austin, Texas.

Alcoru, J. 1991. Ethics, economies, and conservation. Pages 317-348 in M. Oldlield and J. Alcorn, editors. Biodiversity: Culture, conservation, and ecodevelopment. Westview Press, Boulder, Colorado.

Anderson, A.B. 1990. Extraction and forest management by rural inhabitants in the Amazon estuary. Pages 65-85 in A. B. Anderson, editor. Mternatives to deforestation. Columbia Uni- versity Press, New York

Anderson, A.B. 1991. Forest management strategies by rural inhabitants in the Amazon estuary. Pages 351-360 in A. G6- mez-Pompa, T. C. Whitmore, and M. Hadley, editors. Rain for- est regeneration and management. United Nations Education- al, Scientific and Cultural Organization, Paris, France.

Anderson, A. B. and D.A. Posey. 1989. Management of a trop- ical scrub savanna by the Gorotire Kayap6 of Brazil. Advances in Economic Botany 7:159-173.

BaiZe, W.A. 1986. Anili.~e preliminar de invent~rio florestal e a etnobot~nica Ka'apor (Maranhao). Boletim do Museu Paraense Emilio Goeldi 2:141-167.

Bal6e, W.A. 1987. A emobotfinica quantitativa dos indios Temb~ (Rio Gurupi, Par~). Boletim do Museu Paraense Emilio Goeldi 3:29-50.

BaiZe, W. A. 1989. The culture of Amazonian forests. Advances in Economic Botany 7:1-21.

BaiZe, W. A., and A. Gely. 1989. Managed forest succession in Amazonia: The Ka'apor case. Advances in Economic Botany 7:129-158.

Bennett, B. C. 1992. Plants and people of the Amazonian rain- forests. BioScience 42:599-607.

Berkes, F., D. Feeny, B.J. McCay, and J. M. Acheson. 1989. The benefits of the commons. Nature 340:91-93.

Bodmer, R., J. Penn, T. G. Fang, and L Moya I. 1990. Manage- ment programmes and protected areas: The case of the Reserva Comunal Tamshiyacu-Tahuayo, Peru. Parks 1:21-25.

Boom, B. M. 1985. Amazonian Indians and the forest environ- ment. Nature 314:324.

Boom, B.M. 1989. Use of plant resources by the Chacabo. Advances in Economic Botany 7:78-96.

Boom, B.M. 1990. Useful plants of the Panare Indians of the Venezuelan Guayana. Advances in Economic Botany 8:57-76.

Denevan, W. M. 1976. The aboriginal population of Amazonia. Pages 209-234 in W. M. Denevan, editor. The native popula- tion of the Americas in 1492. University of Wisconsin Press, Madison, Wisconsin.

Duellman, W., and J. Koechlin yon Stein. 199 I. Reserva Cuzco Amaz6nico, Peru: Biological investigation, conservation, and ecotourism. Occasional paper 142. Museum of Natural His- tory, University of Kansas, Lawrence, Kansas.

Conservation Biology Volume 8, No. 1, March 1994

Page 14: etnobotanica quantitativa

238 Eamobolany and CotlsermSon ~ et ai.

Effort, B. 1982. The jackknife, the bootstrap and other resam- piing plans. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

Encarnaci6n, F. 1985. Introducci6n a ia flora y vegetaci6n de ia Amazonia peruana: Estado actual de los estudios, medio natural y ensayo de una clave de determinaci6n de las forma- ciones vegetales de la llanura amaz6nica. Candollea 40:237- 252.

Erwin, T. 1984. Tambopata Reserved Zone, Madre de Dios, Peru: History and description of the reserve. Revista Peruana de Entomologia 27:1-8.

Foster, 1Z 1990. Long-term change in the successional forest community of the Rio Manu floodplain. Pages 565-572 in A. Gentry, editor. Four neotropical forests. Yale University Press, New Haven, Connecticut.

Friedman, J., Z. Yaniv, A. Dafni, and D. Palewitch. 1986. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacologlcal field survey among Bedouins in the Ncgev Desert, Israel. Jour- nal of Ethnopharmacology 16:275-287.

Gentry, & H. 1988~ Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:1-34.

Gentry, A.H. 1988/7. Tree species richness of upper Amazo- nian forests. Proceedings of the National Academy of Science 85:156-159.

Gentry, A. H. 1993. Diversity and floristic composition of low- land forest in Africa and South America. In P. Goldbiatt, editor. Biogeogsaphy of Africa and South America. Yale University Press, New Haven, Connecticut.

Gentry, A~ H., and J. Terborgh. 1990. Composition and dynam- ics of the Cocha Cashu "mature" floodplain forest. Pages 542- 564 in A. Gentry, editor. Four nentropical forests. Yale Uni. versity Press, New Haven, Connecticut.

Gispert C. M., and A. G6mez Campos. 1986. Plantas medici- hales silvestres: El proceso de adquisici6n, transmisi6n y colectivaci6n del conocimiento vegetal. Bi6tica 11:113-125.

Grenand, P. 1992. The use and cultural significance of the secondary forest among the Wayapi Indians. Pages 27-40 in M. Plotkin and L Famolare, editors. Sustainable harvest and mar- keting of rain forest products. Island Press, Washington, D.C.

Hiraoka, M. 1992. Caboc/o and r / b e r ~ o resource manage- ment in Amazonia: A review. Pages 134-175 in IL H. Rcdford and C. Padoch, editors. Conservation of neotropical forests: Working from traditional resource use. Columbia University Press, New York

Johns, T.,J. O. Kokwaro, and E. K. Kimanani. 1990. Herbal rem- edies of the Luo of Siaya District, Kenya: Establishirtg quanti- tative criteria for consensus. Economic Botany 44:369-381.

Johnson, A. W. 1978. Quantification in cultural anthropology. Stanford University Press, Stanford, California.

McNeely, J.A., IC 1~ Miller, W.V. Reid, P,. A. Mittermcier, and T.B. Werner. 1990. Conserving the world 's biological diver- sity. World Bank, World Resources Institute, International Union for the Conservation of Nature, Conservation Interna- tional, and World Wildlife Fund, Washington, D.C.

Magurran, A.E. 1988. Ecological diversity and its measure- ment. Princeton University Press, Princeton, New Jersey.

May, P.H. 1992. Common property resources in the neotro- pies: Theory, management progress, and an action agend~ Pages 359-378 in IL H. Redford and C. Padoch, editors. Con- servation of neotropical forests: Working from traditional re- source use. Columbia University Press, New York

Mocrman, D.E. 1991. The medicinal flora of native North America: An analysis. Journal of Ethnopharmacology 31:1-42.

Myers, N. 1990. Tropical forests. Pages 372-399 in J. Leggett, editor. Global warming. Oxford University Press, Oxford, En- gland.

Padoch, C., and W. de Jon& 1990. Santa Rosa: The impact of the forest products trade on an Amazonian place and popula- tion. Advances in Economic Botany 8:151--158.

Padoch, C., and W. de Jong 1992. Diversity, variation, and change in riberefio agriculture. Pages 158-174 in K.H. Red- ford and C. PadoclL editors. Conservation of neotropical for- ests: Working from traditional resource use. Columbia Univer- sity Press, New York.

Parker, E.P. 1989. A neglected htnnan resource in Amazonia: The Amazon caboclo. Advances in Economic Botany 7 :249- 259.

Paz y Mifio C., G., H. Balslev, IZ Valencia IL, P. Mena V. 1991. Lianas utilizadas por los indigenas Siona-Secoya de la Amazonia del Ecuador. Reportes T~cnictm 1. Ecoc ienc~ Quito, Ecuador.

Peters, C. M., A. H. Gentry, and IL M e n d d ~ h n . 1989a Valua- tion of an Amazonian rainforest. Nature 339.'655-656.

Peters, C. M., M.J. Balick, F. Kahn, and A. B. Anderson. 1989b. Oligarchic forests of economic plants in Amazonia: UtiliT~ttton and conservation of an important tropical resource. Conser- vation Biology 3:341-349.

Phillips, O . L B. 1990. Ficus ins~ida (Moraceae): Ethnobot- any and ecology of an Amazonian antheimintic. Economic Bo t - any 44:354-356.

Phillips O . L B. 1993a. Comparative valuation of tropical for- ests in Amazonian Peru. Ph.D. thesis. Washington University, St. Louis, Missouri.

Philli!~, O. L B. 199~ . The potential for l i r v ~ t l ~ fruit in tropical rainforests: New d l ~ from Am~7on i i Peru. Biodiver- sity and Conservation 2:18-38.

niok~ Volume 8, No. I, March 1994

Page 15: etnobotanica quantitativa

Phigips et al. ~ ~ d C o n s e n ~ o n 239

Pbillins, O. L B. Los tipos de bosque en Tambopata In C. Rey- nel and A. Gentry, editors. Flora de Tamhopata. Missouri Bo- tanical Garden, St. Louis, Missouri.

Pl~illins, O. L. B., and A. Gentry. 1993a The useful plants of Tambopata, Peru. I: Statistical hypothesis tests with a new quantitative technique. Economic Botany 47:15-32.

Pl~illins, O. L. B., and A. Gentry. 1993& The useful plants of Tambopata, Peru. II: Additional hypothesis testing in quantita- tive etlmobotany. Economic Botany 47:33-43.

Pinedo-Vlsquez, M., D. Zarin, P. Jipp, and J. Chota-Inum& 1990. Use-values of tree species in a communal forest reserve in northeast Peru. " Conservation Biology 4:405-416.

Popper, IC I~ 1963. Conjecture and refutations: The growth of scientific knowledge. Harper and Row, New York

Prance, G. T. 1991. What is ethnobotany today? Journal of Eth- nopharmacology 32:209-216.

Prance, G. T., W. BaiZe, B. M. Boom, and R. I. Carneiro. 1987. Quantitative ethnobotany and the case for conservation in Am- azonia. Conservation Biology 1:296-310.

Putz, F. 1992. Unnecessary rifts. Conservation Biology 6:301- 302.

Rasanen, M.E., J.S. Salo, and R.J. Kalfiois. 1987. Fluvial pertur- bance in the western Amazon basin: Regulation by long-term sub-Ande tectonics. Science 238:1398-1341.

Rasanen, M. E., J. S. Salo, H. Jungner, and L. Romero Pittman. 1991. Evolution of the western Amazon lowland relief: Impact of Andean foreland dynamics. Terra Nova 2:320-332.

Rasanen, M. E., R. Neller, J. S. Salo, and H. Jungner. 1992. Re- cent and andent fluvial deposition systems in the Amazonian foreland basin, Peru. Geological Magazine 129:293-306.

Redford, FL H., and A. M. Steadman. 1993. Forest-dwelling na- tive ,Ama-onians and the conservation of biodiversity: Inter- ests in common or in collision. Conservation Biology 7:248-- 255.

Reynel, C. and A.H. Gentry. Flora de Tambopata. Missouri Botanical Gardens, St. Louis, Missouri.

Rico-Gray, V., A. Chetmts, and S. Mandujano. 1991. Uses of tropical deciduous forest species by the Yucatecan Maya. Agroforestry Systems 14:149-161.

Salick, J. 1992. Amuesha forest use and management: An inte- gration of indigenous forest use and natural forest manage- ment. Pages 305-332 in K. H. Redford and C. Padoch, editors. Conservation of neotropical forests: Working from traditional resource use. Columbia University Press, New York

Salo, J., IL galliola, I. Hakkinen, Y. Makinen, P. Niemela, M. Puhakka, and P. D. Coley. 1986. River dynamics and the diver- sity of Amazon lowland forest. Nature 322:254-258.

Stoifle, R. W., D. B. Halmo, M. E. Evans, andJ. E. OlmstecL 1990. Calculating the cultural significance of american indian plants: Paiute and Shoshone ethnobotany at Yucca Mountain, Nevada. American Anthropologist 92:416-432.

Terborgh, J. 1983. Five new world primates. Princeton Uni- versity Press, Princeton, New Jersey.

Trotter, R.T., and M. H. Logan. 1986. Informant consensus: A new approach for identifying potentially effective medicinal plants. Pages 91-112 in N. L Etldn, editor. Plants in indigenous medicine and diet. Redgrave Publishing Company, Bedford Hill, New York.

Uuruh, J., and J. Alcorn. 1988. Relative dominance of the useful component in young managed fallows. Advances in Economic Botany 5:47-52.

Vfisquez, 17,, and A. H. Gentry. 1989. Use and misuse of forest- harvested fruits in the Iquitos area. Conservation Biology 3:350-361.

Appendix The tmeful woody plot species at Tambopata: scientific and vernacular names, distribution, density, use values, and ethnobota~cal research ¢~ort.

M e s t i z o F o r e s t

T a x o n N a m e I V o u c h e r 2 t y p e 3 S t e m s 4 U V ~ c U V a ~ / V 6 o u r 6 m U ~ t U ~ gt# 7 nff

Astrcm/smt/ecoini~e/ 45742 0146 4 0.667 0.333 0.333 3 1 Tap/r/tu gu/anens/s tx-quia 31995 146 7 0.750 0.250 0.250 0.250 8 4 AmlmmKae Annona ambotay atxonilla 46099 0136 7 0.944 0.056 0.833 0.056 9 6 cf..4, foetlda pau|fl ruru 45672 4 1 1.000 0.500 0.500 3 2 .4. hypog/auc4a paujil rum 45678 4 1 1.000 0.500 0.500 3 2

:Mestizo name: only the most frequent~ recorded local name Is glve~ even where we have ~_~ OJat more ehan one name Is glt,~ to a spea~ Where a mestizo

nmme could not be o o ~ r m ~ tt appears with a question mark

~ Vouch~. all vouchers greater than 30000 are Gentry collection~ all vouchers less than 1000 are PhiH~Os collectiop.g duplicates o f all vouchers are deposited at lifo and fJSM, and in par t a t CUZ attd AMA~ w b e ~ more than one uoucber exist$ only the f i ~ t Gentry collec~on is listed 3 Pio~ 0 = oid j ik~tplai tg 1 = previous f loodplain (clay soii~ 2 = p m n a n e n t l y water-logged summ~ 3 = terra f i rme sand3¢ , 4 = upper j ~ o d p l a ~ 5 = lower l k ~ p ~ a ~ . 6 = n f o ~ m n d y . 4 S~em~ Votal manbrr o f stems ;~ lO cm d h h in t h e 6 1 ha o f inventoffed forest • UV,, = use ~.I~ (Informant derlved~

6 d l V = c o ~ compo.em~ a] t "= ed~ate compcme.~ oUV = commercial component; mOV = medtc in~ componong ~ V = U, amoioglcal ¢ ~ t m ~ ' n t 7 , , = , u m b e r o f i n t m a e w ovems twr f o l k s p e a m 8 n, = n u m ~ r o f ~ f o r m a m s t ~ r v ~ w ~ por fo lk s p ~

Comerneon mao~ VoI~e $, No. l, Me~ 1994

Page 16: etnobotanica quantitativa

240 ~q/mobomy and Conserv~on ~ et al.

Appendix continued M e s t i z o

T a x o n N a m e 2 v o u c 2 ~ Fores t type 3 S t e m s 4 UV s cUV a eVV ~ o U V 3 m U V a t U ~ n 6 n , 7

Duguetta flagellarls [ es ]pintana D. aft. luada [ es )ptnmna D. oaoram [es]pintana D spLvlana [es]pinmna aft. Dt4guetia [es]pintana negra Guatterla scytot~ylla carahuasca G xylopotdes carahuasca G spa carahuasca G sp.2 carahuasca G sp.3 carahuasca G. spa carahuasca G. sp.5 carahuasca G sp.6 carahuasca G. sp.7 carahuasca G. sp.8 G. sp.9 marafion de monte Oxandra acumlna ta [es]pintana negra O. aft. r/edel/ana [es]pintana negra O. xylopioides [es~intana negra Pseudoxandra polyphleba [es~intana Rollinia centrantha carahuasca £ aft. m/crocarpa anoniUa Ruixodendron ovale paujil ruru Trlgynaea dueka [ cs ~Imana T. spa [es~Intana Unonopsis mathewsit mara~on de monte U. cX. ma~,wsii marafion de monte u. veneflaorum ma_,~on de monte U. sp. 1 marafion de monte U. sp.2 marafion de monte U. sp.3 marafion de monte U. spa marafion de monte Xylopia aft. calopl~lla [es]pintana [blanca] X spa [es hMntana Genus indet, spa Genus lndet, sp.2 Genus indet, sp.3 Apocynaceae Asp~osperma qutUobord6n

tambopateme .4. spa pumaquiro

A sp.2 A sp.3 remocaspi A sp.4 Gassosperma ret/cu/atum quina-quina Lacrael/ea arborescens chicle huayo Arecaceae A S ~ m u r u m u r u huicungo

( =A gratmn f/de Kahn) Etaet/~ precator/a huasai Ir/artea delto/dea pona Jessenta ba taua ungurahui Maurirta flexuosa aguaje Maximiliana maripa inayuga

bacaba c.f. sinami O. mapcm~ sinami O. sp. nov. fl~e Henderson ungurahuillo Schee/ea pha/era ta shapaja Socratea exorh/za cashapona e i .n , mttceae Adenoca/ymna impresum huangana huasca Amphilophium

pantculatum C~ptdarfa f lorl~nda Jaoffranda ¢opala huamanzamana j. o~tu,¢oUa Roentgen/a bracteomana huangana huasca Tabebu/a incana tahuari Xylophragma pratense huansana huasca

51092 6 1 1.593 1.222 51271 6 1 1.593 1.222 51299 36 3 1.593 1.222 45786 14 3 1.593 1.222 57765 01 3 1.593 1.222 57617 06 2 1.857 1.000 45841 014 6 1.857 1.000

4 1 1.857 1.000 58125 1 1 1.857 1.000 46216 013 4 1.857 1.000 46221 3 1 1.857 1.000 46178 3 1 1.857 1.000 58095 1 1 1.857 1.000 51123 6 1 1.857 1.000

5 7 1.857 1.000 51101 6 1 2.857 1.000 1.000 45771 4 1 2.306 1.389

682 01 12 2.306 1.389 51343 136 12 2.306 1.389 51554 2 1 2.000 2.000 45683 3 1 2.000 1.000

4 1 1.000 1.000 57751 0 1 2.000 1.000 57556 01 8 2.000 1.800 45600 4 2 2.000 1.800 45675 34 5 2.300 1.040 0.830 51353 6 2 2.300 1.040 0.830 57699 0 1 2.300 1.040 0.830 58109 1 1 2.300 1.040 0.830 31897 3 1 2.300 1.040 0.830 57553 0 1 2.300 1.040 0.830 45793 4 1 2.300 1.040 0.830 46218 36 7 3.000 2.000 46010 3 1 3.000 2.000

2 1 1.976 1.143 0.253 45616 4 2 1.976 1.143 0.253 45665 4 1 1.976 1.143 0.253

46176 0134 10 2.417 1.417

57566 0 2 2.000 1.000 46095 3 1 0.500 0.500 51543 012 7 1.778 0.444 51133 6 1 1.673 0.840 46008 36 4 1.000

269 I 1 1.000 0.750

629 4 16 2.436 0.367 1.569

631 0123456 32 4.299 1.600 1.591 57654 0134 313 4.413 1.984 1.381 31997 01236 19 3.120 0.139 2.111

2 40 3.357 1.714 16 2 1.250 0.139 1.111

51228 6 6 3.000 1.000 1.667 634 01346 10 2.812 0.646 1.854

016 6 3.250 0.500 2.125 632 4 7 2.671 0.750 1.521

57999 0123456 71 1.964 1.429 0.179

31891 1 1 0.500 51128 6 1 0.111 0.022

45698 4 1 0.111 0.022 45668 01346 14 1.700 1.200

183 13 3 1.000 0.500 31820 04 4 0.667 0.333 58064 1 1 2.000 1.333 57706 01 4 0.500

0.333 0.333 0.333 0.333 0.333 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.583 0.583 0.583

1.000

1.000 0.200 0.200 0.410 0.410 0.410 0.410 0.410 0.410 0.410 1.000 1.000 0.495 0.495 0.495

1.000

1.000

0.500

0.083

0.509 0.810 0.333 1.000

0.143

0.500 0.500

0.667

0.333 0.083 1.000 0.250

0.553 0.095 0.537 0.429

0.333 0.250 0.625 0.050

0.037 13 3 0.037 13 3 0.037 13 3 0.037 13 3 0.037 13 3 0.182 15 2 0 .182 15 2 0 .182 15 2 0 .182 15 2 0 .182 15 2 0 .182 15 2 0 .182 15 2 0 .182 15 2 0.182 15 2 0.182 15 2 0.182 1 1 0.333 10 3 0.333 10 3 0.333 10 3

1 1 2 2 1 1 1 1

9 3 9 3

0.017 16 7 0.017 16 7 0.017 16 7 0.017 16 7 0.017 16 7 0.017 16 7 0.017 16 7

2 1 2 1

0.083 0 0 0.083 0 0 0.083 0 0

1.000 0.250

0.417

0.045 0.143

0.214

0.063

0.350 0.214

0.500 0.089

0.089

0.333

0.500

5 2

2 2 2 1 6 2 0 0 4 4 4 4

14 6

24 15 23 12 18 10 11 7 11 6 4 3

21 12 7 4

31 13 14 8

2 2 0 0

0 0 9 3 2 1 3 1 3 3 3 2

Conservation Biology Volume 8, No. 1, March 1994

Page 17: etnobotanica quantitativa

Ph/H/ps e t a / . E d m o h o g a ~ a n d ~ 2 4 1

Appendix continued M e s t i z o

T a x o n Nagate I Voucbe~

i

Forest 0 ' 1 ~ s ~ . n s 4 w , cVV 5 e v v 5 a J # m V V ~ ~ v ~ n . ~ n f f

B ~ x ~ e e a e

Bixa arborea achiote de monte [de la almra]

R p / a tyca rpa achiote de monte [de, baJ~o]

B o m b a c a c e a e Chor/Ma sp. 1 colorada Huberodendmn

surieWaioides Pachira instsnis punga Pseudobombax sp. 1 P. sp.2 lupuna colorada? Mat/sia ochrocalyx sapote Quara r /bea c.£ w/t / / sapote Q. s p a sapote

Cord/a mex / ana carahuasca C toquere carahuasca? ~ e a e Prot/um aracouchim copal caspi P. c.f. &iabfescens copal caspi R punct/culatum copal caspt P. s p a copal caspi Tetragastris alHssima copal caspi T. panamenas copal caspl Tratt/nickia aspera copal caspi? T. p e m v / a n a copal caspl? T. spa copal caspi?

c a p p a ~ s a a ntna caspi Car icaceae Jacarat/a dtgttata papailla ~ e a e Anthodiscus klugii moena amarllla? & peruanus carahuasca? Caryocarsp.1 atmendro C~ysob~mce.e Hirtella excelsa coloradillo Hirtella sp. l coloradillo Hirtella racemosa coloradlllo L/can/a br / t t en /ana apacharama L canescens apacharama L ~ t / n g a apachara~ L het~mor~Oa L aft. beteromorpba apacharama L c.f. ~t~,.omo,,p~ apacharama cL L beWromorpha apacharama L octaru~ ssO. patZida a~eharama L sp.l apacharama L sp.2 apacharama Genus tndet, spa apacharama Cluslaceae Calophyllum c.f. angulosa lagarto caspi C, brasiliense lagarto caspt Caraipa d~.sifolia blanqutllo C myr/c/o/des blanquilto C sp. nov. blanquillo Garcinia ~ charichuelo M a r / / a / a x / f l o r a palo guacamayo V/sm/a cay~nnens/s V. angus t / fo l /a tortuga? C o m b r e m e e a e Terminalta amaxonica yacushapana T. oblonga yacuahagmna m ~ Tapuracorlacea T. j u r u a n a itauba? E b e n a c e a e Dtospyr¢~ melinonii caimito?

45943 3 14

46245 5 4

45832 4 1 31852 3 3

58028 1 2 5 1

58052 1 1 57676 0136 15 57600 014 6 46043 34 4

45964 3 9 46160 36 8

51087 06 10 57788 0 1 57543 0 1 57764 0 1

641 1246 27 31909 1345 9 46032 3 2 58077 13 4

4 1

31833 3 1

45620 04 7

45875 046 5 46042 3 2 57737 0 1

45669 14 3 58070 1 1 57677 0 2 51556 2 1 46170 3 1 45582 4 1 45932 036 13 5154O 02 2 51269 6 11

6 1 46213 3 1 46083 3 1 45965 3 1 51540 2 1

46O79 51541 58043

247 57620 57684 51O66 45666

57550 5754O

51489 626

51477

6 36 23

1 1

04 O4

5 4

01 0

2 14

0236

2 10

2 4 3 2 2 1 1

2 1

1 4

7

0.750 0.250 0.375 0.125

0.667 0.667

0.500 0.500 1.333 0.667 0.667

0.250 0.250 1.000 1.000 0.750 0.750 0.556 0.389 0.167 0.556 0.389 0.167

1.000 1.000

1.25O 0.75O 0.500 1.000 0.500 0.500

1.150 0.200 1.150 0.200 1.150 0.200 1.150 0.200 1.667 0.444 0.111 0.333 1.667 0.444 0.111 0.333 2.000 1.000 1.000 2.000 1.000 1.000 2.000 1.000 0.500

0.500

0 .810 0 .810

1.333 0.667 0.667 2.OOO 1.500 0.5OO 0.6OO 0.6OO

1.000 0.75o 1.000 0.750 1.250 0.500 0.250 1.000 0.590 0.090 1.00o 0 . 5 ~ 0.090 1.000 0 . 5 ~ 0.090 1.000 0.590 0.09o 1.ooo 0.590 0.090 1.000 0 . 5 ~ 0.090 1.000 ~ 5 ~ o.o9o 1.000 0.590 ~ 0 9 0 1.000 o.590 o.090 1.o00 0 . 5 ~ 0.O9O 1.000 0.590 0.090

0.200 0.200 0.550 0.200 0.200 0.550 0.200 0.200 0.550 0.200 0.200 0.55O

0 . 7 ~ 0 . 7 ~

0.500

0.500

0.250 0.250

0.500 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317

2.500 1.000 ~1.000 0.500 2.500 1.000 1.000 0.500 1.333 0.667 0.500 0.167 1.333 0.667 0.500 0.167 1.333 0.667 0.500 0.167 0.875 0.875 2.000 ~ 1.500 0.500 1.000 1 .000 1.000 1.00O

1.000 0.750 0.250 1.000 0.750 o.25o

1.333 0.667 0.167 0.500 1.333 0.667 0.167 0.500

0.30o o.3o0

6 4

4 3

2 2 4 3

6 4 1 1 1 1

5 2 6 2 6 2

4 2 2 2

6 2 6 2 6 2 6 2 7 2 7 2 1 1 1 1

2 1

4 2

11 7

3 1 2 2 6 5

2 2 2 2 3 2

11 3 11 3 11 3 11 3 11 3 11 3 11 3 11 3 11 3 11 3 11 3

3 2 3 2 5 2 5 2 5 2

11 6 2 2 1 1

1 I

5 2 5 2

4 2 4 2

6 5

Conservation Biology Volume 8, No. 1, Match 1994

Page 18: etnobotanica quantitativa

Appendix continued M e s t i z o

T a x o n N a m e ~ voua, e d F o r e s t 0 1 ~ 3 S t U n S 4 f.l"~, C u r a e U ~ o U ~ ~ ~ n ? n i 7

Z l a e o c t z t ~ S / o a n m e/c~/er/

s ~ ¢ , / a n , , ~ umO~ra

X s p a £ *p.2 £ f r a g m m remocmpi X pubescens peine de motto de

hoja ancha aft. S~ st~ttata ~_%--b_ otblaceae Acaypea tacumna A ~ U n e n a a O r 3 ~ amazon/ca yutobanco? c.f,/Zg,/mCes yutobanco? G ~ stdra?

~ / c u m Hkwtmyma ob /onga cumal~ Hevea &utanensis shirinsa Hum crepttans catahua Ma~ea ~ u ~ u.. ,p.l

sp.2 smring~ma? u ~ m ~ u ~ ~ d ~ m a ~ a sapo~demma Pera &labrata p. tomentosa aft. Peru Sasoua racemom tmo de aSua Saptum ~ m a s e n s e cuachotaaa~ S, m m ' m ~ d cauchomulm X ~.1 c a u ~ vat~,ete: Copaif~ra ~ettmlata copaiba blanca c £ Crud/a sitka? D/at /urn gu /ammse palo santo

obiot~0~olia tomcat huayo [pequam]

H. parv~folia azucar huayo [peque~o]

Sa~roio~um ~ pashaco blanco Scleroiobtum/mm~o,-um palo santo [ t lanco] £ spa palo santo [blanco] x sp.2 palo santo [ ~ n c o ] S. $p.3 palo santo [blanco] x sp.4 pato santo [manco] s oz. o # ~ ¢ m , o ~ ~ santo [tam:o] r ~ , ~ p o ~ t ~ p~o ~ t o [negro] cl . Tamtng, a / / a h t m m n m n m m ? Falmceae: g i m c m e d ~ A c a a a l n ~ r l t m a u q u m a X kublmannit pastuquma • x rOar~ p,auquma x ~ r o ~ pa~aco A ~ i ~ i a sp.1 Cearet#~ ca tm~foo~ tomillo Bn t~ t~b tum yernoprueba

~ u m ~ t yemoprueba

l n s a ~ .¢hlmlKUo L ~ b a ~limblllo L m w t s ~ l a e

L ~ v ~ n a a~nbmo L oa, m t ~ h m a ~mmMllo L p t m a m ~ ~ n b m o

L s e t o ~ _thtmbillo

46123 3 1 57616 O1 6 57640 0 2 45186 36 8 58137 1 1

2 1 45663 4 3 46192 34 2

45830 4 1

51356 6 4 45979 236 6 45739 4 3 54197 4 1 45587 1346 5

46231 36 5 205 13 14

2 1 45591 4 12 46O96 3 1 51542 2 1 46241 5 6 57688 014 8 57787 0 1 57810 0 1 57669 0 1

191 1 22 46240 5 8 45645 O4 3 57601 0 1

57626 0 1 45982 3 4 45928 346 5 46088 13 2

45958 36 5

45870 4 1 46068 0136 13 51088 6 1 58147 1 1 57661 0 3 58131 1 1 57561 0 1 51344 01236 22 51093 6 5

57666 0 1 45933 36 4 57580 0 2 57678 0 1 51549 2 4 46087 36 7 57748 06 3

46089 013 4 37635 O4 2 46194 13 2 57643 036 5 46194 3 3 46146 4 1

4 3 57557 016 10

1863 4 1 51317 6 2 58044 1 1

0.167 0.167 6 1 0.167 0.167 6 1 0.167 0.167 6 1 0.167 0.167 6 1 0.167 0.167 6 1 0.167 0.167 6 1 0.167 0.167 4 3 0.500 0.500 3 2

0.209 0.125 0.063 0.021 0 0

0.833 0.833 4 2 0.833 0.833 4 2 0.500 0.500 2 1 0.500 0.500 2 1 1.167 1.000 0.167 4 2

1.000 1.000 1 1 0.733 0.200 0.067 0.467 7 5 2.000 0.917 0.500 0.583 6 3 0.400 0.4OO 5 3 0.4OO 0.4OO 5 3 0.4OO 0.4OO 5 3 0.359 0.030 0.039 0.149 0.120 0 0 0.125 0.125 11 6 0.500 0.500 2 1 0.500 0.500 2 1 0.500 0.500 2 1 0.750 0.625 0.125 6 2 1.250 1.250 3 2 1.898 0.400 0.267 1.017 0.200 10 4 1.898 0.400 0.267 1.017 0.200 10 4

2.000 1.500 0.500 2 2 1.500 0.500 0.500 0.500 3 2 1.250 1.000 0.250 3 2 1.871 0.286 0.586 0.286 0.429 0.286 16 8

1.871 0.286 0.586 0.286 0.429 0.286 16 8

2.000 1.000 1.000 1 1 1.944 1.167 0.778 9 2 1.944 1.167 0.778 9 2 1.944 1.167 0.778 9 2 1.944 1.167 0.778 9 2 1.944 1.167 0.778 9 2 1.944 1.167 0.778 9 2 1.722 1.056 0.333 0.333 9 3 1.000 1.000 1 1

0.333 0.333 9 3 0.333 0.355 9 3 0.333 0.333 9 3 0.500 0.500 2 2 0.451 0.247 0.143 0.061 0 0 3.250 1.750 1.500 4 4 1.281 0.781 0.500 9 2

1.281 0.781 0.500 1.244 0.146 1.031 0.057 1.244 0.146 1.031 0.037 1.244 0.146 1.031 0.057 1.244 0.146 1.031 0.057 1.244 0.146 1.031 0.057 L244 0.146 1.031 0.057 1.244 0,146 1.031 0.057 1.244 0.146 L031 0.057 1.244 0.146 1.031 0.057 1.244 0.146 1.031 0.057

9 2 0.011 83 7 0.011 83 7 0 ~ 1 1 83 7 0 ~ 1 1 83 7 0.011 83 7 0.011 83 7 0.011 83 7 0.011 83 7 0.011 83 7 0.011 83 7

~ e t o t ~ volume 8, Ncx 1, March 1994

Page 19: etnobotanica quantitativa

P ~ . ~ a a. ~ ~ C o n m v ~ 243

Appendix continued M e s t ~ o

Taxon N a m d V o u ~ Forest

Stems ~ UV. c U ~ e U ~ o U ~ mUV ~ tUV ~ n~ 6 n Z

L s p i m d m ~ ~,imt4,11o

L tomen tom ah~mmllo L umbeilifmr~P *htmhiilo

L $p.2 shkmla411o L ~ . nov. ~am~Mdlo L ~urgomi i s h t m ~

[cotmadol Z nobtl /s sixtmbillo

[colorado] L u n u ~ p u / a

tcoto=doI L c h a r t a c m pacae de monte L e~u//s Smlm de mome L ~p.3 pacae demonte P w k / a nat~/a ca'. pa~haco [on4m-,t~] P ~ t a , ~ m a m , ~ m yemo pmetm Pt~m~/o~um Ju~mm/m

s ~

Amd/ ra /ne rm/ t D ~ r o p ~ purpsnu ~ casp~? DO,~Ocg on~ata ~ehuahuaco D u m a sp.x muqgre de t o m u3~,oxMo, aakmm~ estoraque

c £ p a n a m m ~ huaynn'u o. s p a huaymru o. sp.2 huayruru P/aO, m / m ' u m sp.x ltauba? P t m w . a r p m aft. sangre de t o m

a t t l a2~qum P. rohr/ / sangre de t o m P. u/e/ sangre de tofo P. spa san~'~ de toro c.f. P ~ o c a v p u ~ sp. 1 sansge de toro of. ~ ap.2 H ~ r e de t o m c~. P ~ sp.3 Su,artW/a m, l k w ~ m s sanlwe de t o m £ ~topetala sanSre de tom £ s p a smntp.'g de t:ogo

~ deeme deems?

Fa~ Papil ionoid ~p.l aim Palmceae: at&mitres

Fabaceawsp.l moenaamarllla? Fabaceae sp.2 tamarindo Fl~gougllaceme C a ~ w ~ j a ~ t e m ~ remo caWl? C ulmtfol ta blanqumo? C u / t u n a E u a w a m n / t /da ~ ilave L a e n a ~ pato nave £ s u a t ~ o / e m palo llave

L ~ a p a / u d m a n t t w o c r m a c , ~ Cheaoc l /num a n o m a / u m

Ton ta /m anGnua ta s ~ o t e de liana z congmufoua? sapote de Uam S a / a ~ & ~ m t m sapote de x ~mana mpote de aam £ macrand~a mqpote de liana I~wn~mceme SacoMon~

45627 46OO9 45856 57813

51195

46O27

26197

54179 576O2

57649 57785 58O73 51071 57784

58O03 57981

57607 45745 58118 57565 57637 45845

45774 57545 58143 57803 45929 51328 45576 45882 58100 46195 51546 58024

57803 57645

46021 57734 57734 45965 57622 55146 45851

679

51205 51205 45803 45913 57684 5808O 57578

45951

4 3 4 0 1 1 6 4

3

135

0345 014

1 016

Ol 1

25 06

6 12 14 14

014 4

16 0

02 4

4 0 1 0 3 6 4 4 1

3 O24

1

13 0 4

36 01

1 4

01346

6 6 4

56 1

• 13 06

1.244 0.146 1.031 0.057 0.011 83 7 1.244 0.146 1.031 0.057 0.011 83 7 1.244 0.146 1.031 0.057 0.011 83 7 1.244 0.146 1.031 0.057 0.011 83 7 1.244 0.146 1.031 0.057 0.011 83 7 1.244 0.146 1.031 0.057 0.011 83 7 1.244 0.146 1.031 0.057 0.011 83 7 1.424 . 0.150 1.041 0.150 0.083 20 5

3 1.424 0.150 1.041 0.150 0.083 20 5

9 1.424 0.150 1.041 0.150 0.083 20 5

6 1.583 0.167 1.250 0.167 11 6 8 1.417 0.083 1.208 0.083 0.042 13 6 I 1.167 1.167 4 3 4 1.750 1.250 0.500 3 2 2 0.333 0.333 3 3 1 0.454 0.248 0.144 0.061 0 0

14 0.454 0.248 0.144 0.061 0 0 3 0.454 0.245 0.144 0.061 0 0

1 1.058 0.536 0.371 0.096 0.050 0 0 3 0.500 0.500 2 2 2 1.698 0.063 0.729 0.500 0.406 14 9 2 2.000 1.000 1.000 1 1 8 2.500 0.500 0.875 0.875 0.125 0.125 6 4 3 1.965 0.600 0.524 0.714 0.127 10 3 3 1.965 0.600 0.524 0.714 0.127 10 3 3 1.965 0.600 0.524 0.714 0.127 10 3 2 2.000 1.000 1.000 1 1 1 1.857 1.143 0.714 7 2

1 1.857 1.143 0.714 7 2 1 1.857 1.143 0.714 7 2 1 1.857 1.143 0.714 7 2 1 1.857 1.143 0.714 7 2 ! 1.857 1.143 0.714 7 2 1 1.857 1.143 0.714 7 2 4 0.890 0.390 0.350 0.150 11 6 1 0.890 0.390 0.350 0.150 11 6 I 0.890 0.390 0.350 0.150 11 6 1 1.000 0.500 0.500 3 2 3 0.500 0.500 2 1 1 0.SdJ0 0.50O 2 2

1 2 . ~ 1 . ~ 1 . ~ 1 1 1 2 . ~ 1 . ~ 1 . ~ 1 1

2 0.500 0.500 2 2 1 1.000 1.000 1 1 1 1.000 1.000 1 1

14 0.750 0.750 4 2 7 O.666 O.666 4 2 1 0.666 0.666 4 2 1 0.666 0.666 4 2

27 0.500 0.250 0.250 5 2

2 1.116 0.745 0.370 0 0 1 1.116 0.749 0.370 0 0 1 " 0.722 0.611 0.111 13 7 3 0.722 0.611 0.111 13 7 ! 1.500 0.833 0.667 5 3 2 1.500 0.833 0.667 5 3 2 1.500 0.833 0.667 5 3

0 . 8 6 9 0 . 4 5 0 0 . 1 1 3 0 . 1 8 4 0 .062 0 . 0 5 9 0

comervmim motow Volume 8~ No. 1, March 1994

Page 20: etnobotanica quantitativa

244 Egmobo~y ~ d Conservation Phillips et ~.

Appendix continued M e s t i z o

T a x o n N a m e ~ V o u c h e r 2

Fores t 0 , ~ , ~ S t e m s ~ UV s cUV ~ eOV" o U ~ m U V 5 t U ~ n / n i 7

I cac tnaceae Dendrobangia boliviensis itauba? 51086 Laclatemataceae Lacistema aggregatum almendrillo 57935 L nena 54172 Lauraceae Aniba caneliila canelon 46126 A guiatwnsis moena 57736 .4. taubert /ana mocha 57747 A sp.1 moena 57872 A sp.2 moena 51194 A panurens/s palo al camfor 45693 ,4. sp.3 palo al camfor 51196 Bellschmiedia sp. nov. moena [negra] 54196 R spa moena [negra] 45728 Cinnamoraum sp.l moena 51097 Endlicheriaformosa moena[ amarilla] 45597 K verticellata moena [amarilla] 57775 !~, kna~vii moena 45853 K ser/cea moena 45649 E aft. sericea moena 58030 K williarasii moena 51504 L/car/a a rmen/aca moena 51474 L aurea palo al camfor 51206 L canel/a moena [negra] 46173 L c.f. canei/a moena [amarilla] 46166 Mexilaurus longipetiolata ishpingo 51288 3£. subconffata ishpingo 45952 Nectandra c/ss/f/ora moena 45649 N. pulverulenta moena 45681 N. spa moena 51479 N. sp.2 moena 46249 N. v/burno/des moena [negra] 45671 N. globosa moena [negra] 45650 N. sp.3 moena [negra] 51263 Ocotea bofo moena [negra] 45586 O. spa moena [negra] 45795 O. aft. bofo moena 57816 O. cuprea moena 46158 O. sp.2 moena 54183 O. sp.3 moena 51407 O. spa moena 51120 O. sp.5 moena 190 Persea spa cumala? 57592 P /eu ro I~ r /um sp. nov. moena 58103 P. c~. cuneifolium? moena 45760 Rhodostemonodaphne moena [ncgra] 57815

~and~ R kunl~bt~ma moena [negra] 57819 JZ c~. grac/i/s moena 185 Lauraceae spa moena

• Lauraceae sp.2 moena 46053 Lauraceae sp.3 moena 45603 Lauraceae s p a moena 57648 /auraceae sp.5 moena 58005 Lauraceae sp.6 moena Lauraceae sp.7 rnoena 57634 Lauraceae sp.8 moena 57739 LauraCeae sp.9 moena 57700 Lauraceae sp.10 moena 57790 Lauraceae sp.11 moena 57604 Lauraceae sp,12 moena 57728 Lauraceae sp.12 moena 46232 Lauraceae sp.14 moena 51312 Lauraceae sp.15 moena 51354 Lauraceae sp.16 moena Lauraceae sp,17 mocha tamamal 46o64

6 3 2.000 1.000

13 2 0.500 0.500 4 0,500 0.500

3 1 3,167 1.167 0 1 2.500 2,000

01 3 2,500 2,000 1 1 2,500 2.000 6 1 2,500 2,000

046 3 2.500 1,500 0 1 2,500 1,500 4 1 1.000 1.000 4 3 1.000 1.000

36 2 3.000 1.750 14 6 2.167 1.500 0 1 2.167 1.500 4 2 2.875 2.375 4 1 2.875 2,375 1 2 2.875 2.375 0 1 2.875 2.375

24 9 2,000 1.000 36 12 2.000 1.233

3 1 2.000 1.000 3 1 2.000 1.000 6 1 2.000 1.000 3 3 2.000 1.000 3 1 1.375 0.875 4 3 1.375 0.875 6 1 1.375 0,875 5 2 1.375 0.875

346 9 1.625 1.375 4 1 1.625 1.375 6 3 1.625 1.375

0346 22 2.022 1.022 04 2 2.022 1.022

0 1 1.375 0.875 3 1 1.375 0.875 3 1 1,375 0.875 6 1 1.375 0.875 6 10 1,375 0.875 1 1 1,375 0.875

01 3 2.000 1.000 1 1 2,250 1.750

04 3 2,250 1.750 0 1 2.000 1.000

01 2 2,000 1.000 1 1 2.286 1,714 4 1 1.375 0.875 3 1 1.375 0.875 4 1 1.375 0.875 0 1 1.375 0.875 2 1 1.375 0,875 2 1 1,375 0.875 0 1 1.375 0.875 0 1 1,375 0.875 0 4 1.375 0,875 0 1 1.375 0.875 0 1 1,375 0.875 0 1 1.375 0.875 3 1 1,375 0.875 6 1 1.375 0.875 6 1 1.375 0.875 5 1 1.375 0.875 3 1 1.400 0.800

0.667

1,000

0.333 0.500 0.500 0.500 0,500 1.000 1,000

1.250 0.667 0.667 0.500 0.500 0.500 0,500 1.000 0.767 1.000 1.000 1.000 1.000 O.5OO 0.500 0.500 0.500 0.250 0.250 0.250 1.000 1.000 0,500 0.500 0.500 0.5OO 0.5OO O.5OO 1,000 0.500 0.500 1.000

1.000 0.571 0.500 O.5OO 0.500 0.500 0.500 O.5OO 0.500 0.500 0.500 0.500 0.500 0,500 O.5OO 0.500 0.500 0.500 0.600

1.000 4 2 2 2 2 3 3 3 3 3 5 5 5 5 5 5 1

4 1 1 2 2 5 5 5 5 5 5 5

13 13

5 5

5 5 5 5 2 3 3 1

1

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6

3 2 2 2 2 1

1 1 1

2 2 2 2 2 2 2 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 2 2 2 2 2 2 1

2 2 1

Comervadon Biology Volume 8, No. 1, March 1994

Page 21: etnobotanica quantitativa

ef al. B O m ~ and Conser~on 245

Appendix continued M e s t i z o

T a x o n N a m e I V o u c h e ~ Fores t t y l ~ Stems 4 UV, cUV a e U # oU~ m g ~ tU~ n , 6 n i 7

Lauraceae sp.18 moena [negra] 57686 0 Lauraceae sp.19 moena [negra] 46034 3 Lauraccme sp.20 moena [negra] 46125 3

Bertholletia exce/sa castafia 31974 1346 Couratari guianensis misa colorada 263 1 Eschu, e//era cor/acea misa 45604 01346 K c £ ~ r f a ~ a ~ 45966 13 E cLjumensis misa 57559 0 L inaceae R ~ p u n c t a t a palo Ilave 45924 0136 Lythraceae Physoca0~m m a s c a b e t ~ m a itaub&7 51273 6 Malp~aceae Byrsontma poeppigiana cumala? 25569 6 R aft. punctata cumala? 6 R s p a cumala? 57702 0 Melas tomataceae Bellucia pentamera guayaba de monte 45977 36 M/con/a dol /chotyhyncha 46148 36

punctata 51528 16 ,M~ ser/cea 46024 6 M. t r / ~ 46103 356 M. s p a 51485 1 M. sp.2 46212 3 M. sp,3 46024 3 M. c£pyrifolia requia 46003 3 Mouriri nigra lanza caspi? 46183 23 Mel iaceae C a b r a / ~ canJerana huamanzamana? 57649 01 Cedmlafissilis cedro [de la altura} 58097 1 Guarea g / a b r a requia 51564 014 G. gomma requia 45195 014 G. 8uidonia requia 51065 5 G. k u n ~ / a n a requia 45886 4 G. macrophyl /a requia 45577 4 Trichilia micrantha reqnia 31860 1 T. pallida requia 45633 4 T. ru/Tra requia 51552 2 T. septentronalis requia 45796 04 T. s p a reqnia 51104 6 M o n i m l a c e a e Mollinedia ktlliptt para para? 46019 6 Slparuna decipiens huarmi huayo? 45930 01346 Moraceae Batocarp~ amazonicus 04 Brosimura alicastrura ssp. machinga 45592 034

bolivarense R c.£ ut//e manchinga 45861 4 Brosimum guianense tamamuri 57802 0136 B c.f. gu /anense tamamuri 6 R /actescens tamamuri 51473 0123 R c.f. /actescem tanmmuri 57591 01 B. rubescens mashonaste 45937 0136 Cat~t/l/a u/e/ caucho 45590 14 Cecropiaflafolia cetico [del bajio] 46069 35 C sp. nov. shtari 652 0 C sctadophylla cetico [de la altura] 31998 016 C/ar/s/a b/f lora mashonaste 45655 0124 C racemosa mashonaste 45692 12346 Coussapoa trinervta mata pain 46154 1236 F/cus lns /p/da oj~ [blanco] 646 5 F. m a x i m a oj~ [amarillo] 45639 4 E / ~ ' t u s a renaco 45601 4 P. c.f. schu/tes// renaco 45622 4 E s p a renaco 45920 3 F. sp.2 renaco 51129 6

2 2 , ~ 1 . ~ 1 . ~ 4 1 1 2 . ~ 1 . ~ 1 . ~ 4 1 2 2 , ~ 1 . ~ 1 . ~ 4 1

7 3.162 0.300 1.522 1.007 0.333 13 7 1 2.333 1.000 0.667 0.667 3 3

24 2.262 0.905 0.429 0.929 14 4 4 2.262 0.905 0.429 0.929 " 14 4 2 2.262 0.905 0.429 0.929 14 4

35 0.667 0.667 10 2

2 2.000 1.000 1.000 1 1

1 1.500 1.000 0.500 2 1 2 1.500 1.000 0.500 2 1 1 1.500 1.000 0.500 2 1

4 1.063 1.063 11 8 2 8 5 2 8 5 1 8 5

18 8 5 1 8 5 1 8 5 1 8 5 2 2 2 4 3 2

0.857 0.429 0.143 0.286 0.857 0.429 0.143 0.286 0.857 0.429 0.143 0.286 0.857 0.429 0.143 0.286 0.857 0.429 0.143 0.286 0.857 0.429 0.143 0.286 0.857 0.429 0.143 0.286 2.000 1.000 1.000 1.333 0.500 0.333 0.500

4 1.750 1.500 0.250 3 2 1 2.944 1.528 1.083 0.111 0.222 11 6 5 1.302 0.877 0.037 0.389 16 3

14 1.302 0.877 0.037 0.389 16 3 6 1.302 0.877 0.037 0.389 16 3 1 1.302 0.877 0.037 0.389 16 3 1 1.302 0.877 0.037 0.389 16 3 1 1.500 1.000 0.500 4 2 2 1.500 1.000 0.500 4 2 1 1.500 1.000 0.500 4 2 3 1.500 1.000 0.500 4 2 1 1.500 1.000 0.5OO 4 2

1 0.067 0.067 7 5 37 0.833 0.667 0.167 5 2

2 2.333 0.667 1.333 0.333 5 2 4 1.667 0.500 0.833 0.250 0.083 8 5

2 1.667 0.500 0.833 0.250 0.083 8 5 1.000 1.000 2 1 1.000 1.000 2

18 1.208 0.167 0.750 0.083 0.167 0.042 12 6 1.208 0.167 0.750 0.083 0.167 0.042 12 9 2.333 1.000 0.667 0.667 3 6 1.375 0.375 1.000 8

98 0.667 0.333 0.333 7 1 1.250 0.500 0.750 8

11 0.444 0.111 0.167 0.167 7 16 1.633 0.300 0.400 0.100 0.533 0.300 9 9 1.750 0.333 0.306 0.083 0.528 0.500 13 9 0.250 0.250 5

22 2.167 0.111 0.250 0.222 1.583 13 1 1.000 1.000 4

1 0.333 0.333 6 1 0.333 0.333 6 1 0.333 0.333 6 1 0.333 0.333 6

5 1 1

5 5 1 4 4 2 3 5 6 2

11 3 3 3 3 3

Conservation Biology Volume 8, No. 1, March 1994

Page 22: etnobotanica quantitativa

7,46 ~ w ~ d Coamva~ P h ~ a a

Appendix ~n~u~ M e s t i z o

T a x o n N a m e I v o u c ~

i

F o r e s t t y p e ~ S t e m s 4 UV. ~ e t ~ o t ~ m U V ~ tUV ~ n . 6 n l 7

Helicostylis tomentosa misho chaqui 1t. c.f. tomentosa rniato chaqui Maquira ~ l l a chinflcua blanca? I~L &utanemis chimicua blanca? Naucleopsts chimicua?

WmJVtoemtfolta cL Naucleopas patna Perebea attgu~ifolia chimicua? P. x a n ~ , y m a dflnflcu~ Potwouma cec3ropitfolia uvilla p. ~ uvlna [~ca] P. gu/anena, uvilla [seca] P. minor uvflla [seca] P. p a m a t a uviUa [seca] P. su~tr/8osa uvtlla [seca] P. teumannu uvma [secal P. c.f. villosa uvtlla [see.a] P. s p a uvflla [seca] P. l ~ t e n t o s a uvilla P~.udo~ned/a Um, /sa ta chimicua [mancaI P. /aev/s chimtcua P. macrop~Ua patna P. murwe patna P. r/g/da chlmicua Sorocea ptleata tormga caspi? Tropb/s sp. 1 Moraceae sp. 1 Moraceae sp.2 Moraceae sp.3 ~ - t m c K e a e Compsonemu sp. 1 cumala Otoba parvtfolta cumala Irmna, em juruem/s cumaia [ c o l o r ~ ] L aff.juruenas cumala [colorada] L /aev/s cumala [roja] /. c£ / ae t , / s ¢umala [roja] /. c~. o/aco/des cumala [mja] L c £ te~mmnn// cumala [roja] Virola ca /ophyl /a cumala [de hoja

anchal V. e /ongata cumala [de hoja

ancha] V.. c.f. elonRata c u m a ~ [de hoja

ancha] V. seb/fera cumala [de hoja

anchal V. c.f. seb/fera cumala [de hoja

ancha] V. f /exuosa cumala [blanca]' V. lo~tens/s cumala V. sur/namenMs cumala V. muittpiinervia cumala [colorada] wrr~mceae C y ~ m ~ u s aft. r a / n o s u s Mymceae Eu~enta c.f. f / o r ~ guayav~ ~sp.1 ~yavma K sp.2 guayavilla Myraa gta, t , m ~ ~ayavma M: s p a guayavilla M~ s p a guayavflla M ~ . I

Neea dtvaricata

~. f ~ m u n a a N. ~ l l a N.. aft..u~t~ylta N. ovalifoiia

45794 58O68 57535 46198 45857

51511 51553 4562.8 45922 46059 45953 51177 45699

273

5756O 39162 31867 31873 57694 51175 45"/78 46O50 58105 46128 51106

45677 45761 45632 57709 45829 45944 51292

189 46147

45670

45874

45935

4598O

45621 57539 57724 51486

51083

57606 51483 461O4 58151 22462 46O31

45653 45679 45955

43743

o136 14 1 1

Ol 6 036 3 124 4

4 1 0 1

12 3 34 11 26 2

136 17 O1346 89

O6 8 14 3

1 1

1 1

1 5 O4 8

136 25 012346 47

0136 35 0 1

16 3 O4 7

3 1 1 1

3 1 6 1

4 1 4 5

01346 63 O6 6

12346 53 034 13

6 1 1 1

136 7

4 7

4 1

0136 32

3 2

14 3 0 4

02 8 126 5

6 1

O4 3 2 2

236 6 1 2

5 3 3 1 4 1

01346 14 4 4

1236 4 4 1 4 1

0.400 0.050 0.350 0.400 0.050 0.350 0.833 0.167 0.667 0.833 O. 167 0.667 0.750 0.500 0.250

1.000 1 .000 1.600 0.6OO 1.000 1.6OO 0.6OO 1.000 0.757 0.757 0.930 0.222 0.930 0.222 0.930 0.222 0.930 0.222 0.930 0.222 0.930 0.222 0.930 0.222 0.930 0.222 1.000 0 .500

2.080 0.115 1.360 0.066 0.518 2.080 0.115 1.3(30 0.086 0.518 2.007 0.121 1.427 0.074 0.354 2.007 0.121 1.427 0.074 0.354 1.875 1.500 0.375 1,000 1.000 1.000 1.000 2.000 1.000 1.000 2.000 1.000 1.000 2.000 1.000 1.000

1.500 1.0O0 1.500 1.000 0.9OO 0.4OO 0.9OO 0.4OO 1.200 0.600 1.200 0.600 1.200 0.600 1.200 0.600 2.200 1.013

2.200 1.013

2.200 1.013

2.200 1.013

2.200 1.013

1.750 1 .000

2.000 1.000 2.000 1.000 2.000 1.000

0.869 0.450 0.113 0.184 0.094 0.059

1.000 0.50O 0.5OO 1,000 O.5OO O.5OO 1.000 0.500 0.500 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 0.667 0.167 0.500

0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467 0.467

11 4 11 4 4 3 4 3 6 2

1 1

4 3 4 3

15 7 0.708 19 2 0.708 19 2 0.708 19 2 0.708 19 2 0.708 19 2 0.708 19 2 0.708 19 2 0.708 19 2 0.500 2 2

2O 7 2O 7 22 7 22 7

6 4 2 1 2 1 1 1

1 1 1 1

0.500 2 1 0.500 2 1 0.500 12 3 0.500 12 3 0.600 9 3 0.6OO 9 3 0.60O 9 3 0.600 9 3

0.944 0.076 0.167 20 3

0.944 0.076 0.167 20 3

0.944 0.076 0.167 20 3

0.944 0.076 O. 167 20 3

0.944 0.076 0.167 2O 3

0.500 0.250 3 2 1.000 4 3 1.000 4 3 1.000 2 2

0 0

5 2 5 2 5 2 1 1 1 1 1 1 0 0

8 2 8 2 8 2 8 2

8 2

s k ~ y V~ume IK No. I, March 1994

Page 23: etnobotanica quantitativa

Phiff~s et a/. ~ b n o b o t ~ m J C o n s e f v ~ 247

Appendix mn~u~

Taxon

i i i

Mestizo Name' V o u d m ~

ii

Forest ~vl'~ s ~ m s * ug. c u r ~ ~ our ~ m ~ ~ n 6 n /

N. ~ 186 N.. c £ v/r/d/folta Neea sp. 1 57672 N. sp.2 58107 N. sp.3 N. s p a N. sp.5 5776O N. sp.6 58039 O c h n a c e a e O u r a ~ a sp. 1 coloradfllo 45936 Oiacaceae He/ster/a a c u m / n a t a yutobanco? 261 Minquartia gu/anens£$ huacapd 45892 v t w t o t ~ e Gai /es /a /n tegr / fo i /a ajosquiro 45737 Tetrastignm ocA~mb'um 45765 Potyatmace~ Tr/p/ar~ eL sa~fera tan$arana 45640 Q u m ~ ¢ t e L a c u n a r ~ acnmmum coloradfllo 57623 Qutina florida coloradfllo 51233 Q. nitida coloradfllo 57619 g m a c e a e Prunus amplifolia 45763 R u m a c e a e A m a / o u a corymbosa canllla de vieja 45896 CaOmophyilgtm acreanum capirona 46004 C sp ruceanum capirona [del bajio] 5822 Chimarrhts booker / / palo de agua 45661 C.homelta sp.1 Gen/pa a m e r / c a n a huito 45862 Warscewtcxia coccinea 58098 ICutaceae Zantl~xylum acreanum tongui sacha 45697 Sablaceae Meliosma herber~i 46086 swmdaceae Cupan /a scrob/cu/a ta 46237 Dilodendron elegans 46217 Matayba purgans 46237 TaltMa cerasina bkmquill~ 57571 T. cupu/ar / s blanquma? 46237 T. molHs blanquilla? 57690 Sapotaceae (Tarysophyllum quinflla blanca 45636

pom/#rum Manilkara sur / tmmens/s qutnilla [colorada] 45595 Mtcrop~lls guyanen~ qulnflla blanca 4606O M venu/osa quinilla blanca 51124 PouWria bang ii catmito? 45779 P. caimito caimtto 46191 P c/.adan #Ja caimito? 45735 P sp. nov. sachavaca papaya 45874 P. p roce ra quinilla blanca 46235 P tampotenM$ h~cuma 45593 P. rorfa caimito? 45768 P trH.ocu/ar/a caimito? 45625 P spa 58123 P sp.2 quina-qulna 45880 P sp.3 caimito 45631 P. $1).4 58153 P. sp.5 Sarcau/us bras/l/ens/s caimito? 45638 ~70tZ~'lPt~ sp.l quinllla blanca 51369 S a p o f a f l ~ sp.2 quInilla blanca? 51196 Sapotaceae sp.3 qjuntlla blanca? 51293 S a p O # ~ ~ . 4 qninilla blanca? 51550

1 1 0 1 4 4 0 1

36

0136 1346

O4 4

4

0 6 0

4

01346 136

5 4 5

245 1

4

0136

3 3

36 01 36

0

O4

014 236 026 014 346 134 O46

3 034

01346 014

1

14 4 1

4 0134

6 6 6 2

1 0.467 0.467 8 2 1 0.467 0.467 8 2 1 O.467 0.467 8 2 2 0.467 0.467 8 2 1 0.467 0.467 8 2 1 0.467 0.467 8 2 1 0.467 0.467 8 2 1 0.467 0.467 8 2

27 2.000 2.000 3 2

12 1.667 0.667 0.556 0.444 10 2 7 1.400 1.000 0.4OO 6 4

4 1.167 0.833 0.333 5 3 1 1.167 0.833 0.333 0 0

1 1.857 0.571 1.286 8 4

1 1.000 1.000 1 1 2 1.000 1.000 2 1 2 1.000 1.000 2 1

1 0.869 0.450 0.113 0.185 0.062 0.059 0 0

18 0.5OO 0.5OO 3 2 7 1.920 1.387 0.533 15 5

19 2.029 1.429 0.467 0.133 8 5 4 1.000 1.000 2 1 3 0.525 0.301 0.037 0.089 0.098 0 0 3 1.452 0.595 0.429 0.429 12 7 2 0.500 0.500 3 2

1 O.944 O.944 5 3

16 1.750 1.417 0.333 8 2

1 2.000 1.000 1.000 1 1 1 1.083 0.556 0.194 0.333 0 0 5 2.000 1.000 1.000 1 1 4 0.833 0.444 0.389 8 3 7 0.833 0.444 0.389 8 3 1 0.833 0.444 0.389 8 3

5 1.333 0.667 0.667 3 1

6 2.127 0.667 0.360 0.783 0.200 0.117 12 5 18 1.667 0.833 0.667 0.167 4 1 4 1.667 0.833 0.667 0.167 4 1

10 0.917 0.233 0.450 0.100 0.133 11 5 5 0.833 0.833 10 6 3 0.833 0.833 5 3 3 1.367 1.067 0.300 8 5 1 1.000 0.333 0.333 0.333 3 3 3 0.667 0.667 3 2

20 0.962 0.273 0.689 18 5 5 1.444 0.833 0.611 6 2 1 1.667 1.000 0.667 4 2 3 1.000 0.208 0.667 0.042 0.083 12 7 2 1.000 1.000 1 1 2 1.000 1.000 1 1 1 1.079 0.222 0.781 0.037 0.040 0 0 5 1.500 0.250 1.250 3 2 1 1.000 0.500 0.500 2 1 1 1,000 0.500 0.500 2 1 2 1,000 0.500 0.500 2 1 I 1,000 0.500 0.500 2 1

mo~sy volume & No, 1, Mm:h 1994

Page 24: etnobotanica quantitativa

248 ~ m £ ~ Consem~n P h / ~ et aL

Appem~ continued Mes t i zo

Taxon N a m e ~ Forest

v o u c h ~ t y l ~ Stems ~ UV, c U ~ e U ~ oUV a m U ~ # U ~ n / n , 7

Sapotac , ae sp.5 m m m m d m o m e Simarouba ~nara huamanzamana Slmaba? s p a huamanzamana S i m a b ~ sp.2 huamanzamana s t a l # t y l ~ Turptnta occtdentalis Saetmmaceae Theobronm cacao cacao Z $tm~osum cacao de monte Ti l laceae Apelba ~ peine de mono Luebops/s h o ~ n a sapote de pantano Ulmaeeae Ampe/ocera s p a yutobatmo A sp.2 yutobanco .4. sp.3 yutobanco A lattfolia yutob~nco A vea'rucosa yutobanco? Sparrea schtppa ~xina seca Trema tntegerrlma Verbenaceae Ci~m,exylum sp~ Vitex triflora palo de agua Violaceae Gloeospermum isula caspi?

O~,mcar/n~ Leonia glycicarpa coto runto L aft. g / ~ coto runto V o c h y s ~ e a e Q,~__~,~ aft. g rand l fo l / a r e q u w

46O38 3 1 2.OOO

58114 1 1 1.000 58086 1 1 1.000 51308 6 1 1.000

45626 04 4 0.500

45785 04 9 1.317 46O36 03 2 0.833

45682 0146 14 0.250 51503 2 283 0.500

57628 0 1 0.750 57554 0 1 0.750 51457 2 1 0.750 45801 4 2 0.750 45840 1236 22 0.750 45584 04 22 0.875 45834 4 1 0.661

46244 5 9 1.000 32046 1 2 1.000

45747 4 1 0.333

45583 01346 79 0.472 45594 4 11 0.472

1.0OO

1.000 1.000 1.000

0.S00

0.250 0.250

0.750 0.750 0.750 0.750 0.375 0.250 0.518

1.000 1.000

1.317 0.833

0.333

0.403 O.4O3

1.000

0.250

0.375 0.500 0.125

0.125 0.179

0.069 0.069

12 6

20 20

57789 0 1 2.000 1.000 1.000 1 1

TOT: 3415 673.4 317.1 128.5 140.9 40.6 46.3 1604 29

Conservation Biology Volume 8, No. 1, March 1994