Click here to load reader
Dec 27, 2015
Graduate School ETD Form 9
(Revised 12/07)
PURDUE UNIVERSITY GRADUATE SCHOOL
Thesis/Dissertation Acceptance
This is to certify that the thesis/dissertation prepared
By
Entitled
For the degree of
Is approved by the final examining committee:
Chair
To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue Universitys Policy on Integrity in Research and the use of copyrighted material.
Approved by Major Professor(s): ____________________________________
____________________________________
Approved by: Head of the Graduate Program Date
Mousumi Mukhopadhyay
LANE DEPARTURE AVOIDANCE SYSTEM
Master of Science in Electrical and Computer Engineering
Dr. Sarah Koskie
Dr. Yaobin Chen
Dr. John Lee
Dr. Sarah Koskie
Dr. Yaobin Chen 04/20/2011
Graduate School Form 20
(Revised 9/10)
PURDUE UNIVERSITY GRADUATE SCHOOL
Research Integrity and Copyright Disclaimer
Title of Thesis/Dissertation:
For the degree of Choose your degree
I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*
Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.
I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.
______________________________________ Printed Name and Signature of Candidate
______________________________________ Date (month/day/year)
*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html
LANE DEPARTURE AVOIDANCE SYSTEM
Master of Science in Electrical and Computer Engineering
Mousumi Mukhopadhyay
04/21/2011
LANE DEPARTURE AVOIDANCE SYSTEM
A Thesis
Submitted to the Faculty
of
Purdue University
by
Mousumi Mukhopadhyay
In Partial Fulfillment of the
Requirements for the Degree
of
Master of Science in Electrical and Computer Engineering
May 2011
Purdue University
Indianapolis, Indiana
ii
To My Parents and My Husband Debangshu Sadhukhan.
iii
ACKNOWLEDGMENTS
I would like to acknowledge Dr. Sarah Koskie for providing guidance and being
so instrumental throughout the study. I am much indebted for her valuable advice,
supervision and devoting her precious time to the thesis.
I would like to thank Dr. Yaobin Chen for his advice and support. I could never
have embarked and started working on this thesis without his prior teachings.
I would like to express my appreciation to Dr. Jaehwan Lee for being a part of
my advisory committee.
My gratitude also goes to Sherrie Tucker and Valerie Lim Diemer for all their help
through the Masters Program.
Also, I thank my family and especially my husband for encouraging me to pursue
the degree.
iv
TABLE OF CONTENTS
Page
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Crash Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Safety Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Active Safety Systems in Production and Under Development . . . 2
1.3.1 ABS (Anti-lock Braking System) . . . . . . . . . . . . . . . 3
1.3.2 Traction Control . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 Vehicle Stability Control . . . . . . . . . . . . . . . . . . . . 4
1.3.4 ACC (Adaptive Cruise Control) . . . . . . . . . . . . . . . . 4
1.3.5 Forward Collision Mitigation . . . . . . . . . . . . . . . . . . 5
1.3.6 Lane Guidance System . . . . . . . . . . . . . . . . . . . . . 5
1.3.7 Blind-spot Warning System . . . . . . . . . . . . . . . . . . 6
1.4 Lane-keeping System . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 LIVIC System and Objectives of the Thesis . . . . . . . . . 7
1.5 Motivation and Organization of the Thesis . . . . . . . . . . . . . . 8
2 VEHICLE MODEL WITH STEERING ASSISTANCE . . . . . . . . . . 9
2.1 Scope of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Bicycle Model of Lateral Vehicle Dynamics . . . . . . . . . . . 10
2.3 Bicycle Model Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Steering Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
vPage
2.5 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 CONTROL LAW DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Design Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Stability Analysis and Controller Design . . . . . . . . . . . . . . . 18
3.3 Linear Quadratic Regulator (LQR) . . . . . . . . . . . . . . . . . . 19
3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 SWITCHING STRATEGY . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Geometrical Constraints . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Normal Driving Zone . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Switching Strategy Specifications . . . . . . . . . . . . . . . . . . . 26
4.4 LIVIC Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.1 LIVIC 1 Switching Strategy . . . . . . . . . . . . . . . . . . 26
4.4.2 LIVIC 2 Switching Strategy . . . . . . . . . . . . . . . . . . 27
4.5 New Switching Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 SIMULINK IMPLEMENTATION RESULTS . . . . . . . . . . . . . . . . 35
5.1 Comparison of Simulation Results . . . . . . . . . . . . . . . . . . . 38
5.2 Impact on Vehicle Drivability . . . . . . . . . . . . . . . . . . . . . 43
6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 45
LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
APPENDICES
Appendix A Block Diagram of Simulation Model . . . . . . . . . . . . . . . 49
Appendix B Matlab Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Appendix C Matlab Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
vi
LIST OF TABLES
Table Page
5.1 Comparison of maximum values of the state variables for LIVIC 1, atvarying simulation time. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Comparison of bounds on state variables at simulation time 30, 60 and100 s for LIVIC 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Comparison of bounds on state variables at simulation time 30, 60 and100 s for the new switching strategy. . . . . . . . . . . . . . . . . . . . 43
5.4 Comparison of bounds on state variables for normal driving zone anddifferent switching strategies. . . . . . . . . . . . . . . . . . . . . . . . 44
vii
LIST OF FIGURES
Figure Page
1.1 Timeline of active safety system development [9]. . . . . . . . . . . . . 3
2.1 Bicycle model geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Tire slip angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 State-feedback controller. . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Matlab plot of root locus. . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Normal driving zone of the vehicle. . . . . . . . . . . . . . . . . . . . . 24
4.2 Switching strategy LIVIC 1. . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Switching characteristic for LIVIC 1. . . . . . . . . . . . . . . . . . . . 29
4.4 The trajectory of the front wheels. . . . . . . . . . . . . . . . . . . . . 29
4.5 Switching strategy for LIVIC 2. . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Switching characteristic for LIVIC 2. . . . . . . . . . . . . . . . . . . . 31
4.7 The trajectory of the front wheels for LIVIC 2. . . . . . . . . . . . . . 32
4.8 New switching law controller. . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Switching curve for new switching strategy. . . . . . . . . . . . . . . . . 34
4.10 The lateral trajectory of the front wheels. . . . . . . . . . . . . . . . . 34