Top Banner
Electric Circuit Theory Nam Ki Min 010-9419-2320 [email protected]
50

Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

May 15, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

Electric Circuit Theory

Nam Ki Min

010-9419-2320 [email protected]

Page 2: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

Sinusoidal Steady-State Analysis

Chapter 9

Nam Ki Min

010-9419-2320 [email protected]

Page 3: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 3 9.1 The Sinusoidal Source

Sinusoidal Source

Sinusoidal voltage source

β€’ Produces a voltage that varies sinusoidally with time.

Sinusoidal current source

Sinusoidal source or sinusoidally time-varying excitation or sinusoid. β€’ Produce a signal that has the form of the sine or cosine function.

β€’ Produces a current that varies sinusoidally with time.

𝑣

𝑣

𝑒

𝑒

𝑣𝑠

𝑖 𝑖𝑠

Page 4: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 4 9.1 The Sinusoidal Source

Alternating Circuit

A sinusoidal current is usually referred to as alternating current (ac).

Circuits driven by sinusoidal current or voltage sources are called ac circuits.

πœ‹ 2

βˆ’πœ‹ 2

πœ‹ 0

πœ” 𝑣(𝑑)

AC Waveforms

Sinusoidal wave

Page 5: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 5 9.1 The Sinusoidal Source

Why Sinusoids?

Nature itself is characteristically sinusoidal. We experience sinusoidal variation in the motion of a pendulum, the vibration of a string, the economic fluctuations of the stock market, and the natural response of underdamped second-order systems’

A sinusoidal signal is easy to generate and transmit.

It is the form of voltage generated throughout the world and supplied to homes, factories, laboratories, and so on.

It is the dominant form of signal in the communications and electric power industries.

Through Fourier analysis, any practical periodic signal can be represented by a sum of sinusoids. Sinusoids, therefore, play an important role in the analysis of periodic signals.

A sinusoid is easy to handle mathematically.

πœ‹ 2

βˆ’πœ‹ 2

πœ‹ 0

πœ” 𝑣(𝑑)

Page 6: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 6 9.1 The Sinusoidal Source

Sinusoidal Voltage

𝑣 𝑑 = π‘‰π‘š sinπœ”π‘‘

𝑣 𝑑 = π‘‰π‘š cosπœ”π‘‘

π‘‰π‘š cosπœ”π‘‘ π‘‰π‘š sinπœ”π‘‘

𝑣 𝑑

πœ”π‘‘ πœ™ = 90Β°

𝑣 𝑑 = π‘‰π‘š sin(πœ”π‘‘ Β± 90Β°) = Β±π‘‰π‘š cosπœ”π‘‘

𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ Β± 90Β°) = βˆ“π‘‰π‘š sinπœ”π‘‘

π‘‰π‘š

A sinusoid can be expressed in either sine or cosine form.

When comparing two sinusoids, it is expedient to express both as either sine or cosine with positive amplitudes.

This is achieved by using the following trigonometric identities:

sin(𝐴 ± 𝐡) = sin 𝐴 cos𝐡 ± cos𝐴 sin 𝐡

cos(𝐴 Β± 𝐡) = cos𝐴 cos𝐡 βˆ“ sin𝐴 sin𝐡

Page 7: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 7 9.1 The Sinusoidal Source

Sinusoidal Voltage

𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ + πœ™)

β€’ π‘‰π‘š: amplitude

β€’ πœ” ∢ angular frequency in radians/s

β€’ πœ”π‘‘: argument

β€’ 𝑇 ∢ period in second

𝑇 =2πœ‹

πœ”

𝑣 𝑑 + 𝑇 = π‘‰π‘š cosπœ” 𝑑 + 𝑇 = π‘‰π‘šcos πœ” 𝑑 +2πœ‹

πœ”

= π‘‰π‘š cosπœ”π‘‘

= π‘‰π‘š cos(πœ”π‘‘ + 2πœ‹)

= 𝑣(𝑑)

β€’ 𝑓 ∢ frequency in Hz

𝑓 =1

𝑇 πœ” = 2πœ‹π‘“

A more general expression:

β€’ πœ™: phase angle

(9.1)

Page 8: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 8 9.1 The Sinusoidal Source

Converting Sine to Cosine

π‘‰π‘š cosπœ”π‘‘

π‘‰π‘š sinπœ”π‘‘

𝑣 𝑑

πœ”π‘‘ πœ™ = 90Β°

π‘‰π‘š

𝑣 𝑑 = π‘‰π‘š sin(πœ”π‘‘ + 90Β°) = π‘‰π‘š cosπœ”π‘‘

𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ βˆ’ 90Β°) = π‘‰π‘š sinπœ”π‘‘

𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ Β± 180Β°) = βˆ’π‘‰π‘š cosπœ”π‘‘

𝑣 𝑑 = π‘‰π‘š sin(πœ”π‘‘ Β± 180Β°) = βˆ’π‘‰π‘š sinπœ”π‘‘

𝑣 𝑑 = π‘‰π‘š cos(5𝑑 + 10Β°) = π‘‰π‘š sin(5t + 90Β° + 10Β°)

= π‘‰π‘š sin(5t + 100Β°)

𝑣(𝑑) = π‘‰π‘š sin(5t βˆ’ 260Β°)

= π‘‰π‘š sin(5t βˆ’ 180Β° βˆ’ 80Β°)

= βˆ’π‘‰π‘š sin(5t + 90 βˆ’ 170Β°)

= βˆ’π‘‰π‘š cos(5t βˆ’ 180 + 10Β°)

= π‘‰π‘š cos(5t + 10Β°)

= βˆ’π‘‰π‘š sin(5t βˆ’ 80Β°)

= βˆ’π‘‰π‘š cos(5t βˆ’ 170Β°)

Page 9: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 9 9.1 The Sinusoidal Source

Phase Relation of a Sinusoidal Wave

Page 10: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 10 9.1 The Sinusoidal Source

Phase Shift (difference)

The two waves (A versus B) are of the same amplitude and frequency, but they are out of step with each other.

In technical terms, this is called a phase shift (difference).

πœ™π΄

πœ™π΅ πœ™ = 0

𝑣 𝑑 = π‘‰π‘š sin(πœ”π‘‘ + πœ™π΄)

𝑣 𝑑 = π‘‰π‘š sin(πœ”π‘‘ + πœ™π΅)

𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ + πœ™π΄)

𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ + πœ™π΅)

πœ”

πœ” πœ™π΄ πœ™π΅

𝑣 𝑑 𝑣 𝑑

Page 11: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 11 9.1 The Sinusoidal Source

Phase Shift (difference)

Examples of phase shifts

The sinusoids are said to be in phase.

The sinusoids are said to be out of phase.

B β€œlags” A

A β€œlags” B

Leading

Lagging

Page 12: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 12 9.2 The Sinusoidal Response

Sinusoidal Response

A sinusoidal forcing function produces both a natural (or transient) response and a forced (or steady-state) response, much like the step function, which we studied in Chapters 7 and 8.

The natural response of a circuit is dictated by the nature of the circuit, while the steady-state response always has a form similar to the forcing function.

However, the natural response dies out with time so that only the steady-state response remains after a long time.

When the natural response has become negligibly small compared with the steady-state response, we say that the circuit is operating at sinusoidal steady state.

It is this sinusoidal steady-state response that is of main interest to us in this chapter.

Page 13: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 13

𝑑𝑖

𝑑𝑑+𝑅

𝐿𝑖 =

π‘‰π‘šπΏcos(πœ”π‘‘ + πœ™)

9.2 The Sinusoidal Response

β–Ί Example β—„

For the circuit in Fi.9.5, find current

𝑣𝑠(𝑑) = π‘‰π‘š cos(πœ”π‘‘ + πœ™)

𝐿𝑑𝑖

𝑑𝑑+ 𝑅𝑖 = π‘‰π‘š cos(πœ”π‘‘ + πœ™)

𝑝(𝑑) =𝑅

𝐿

𝑔(𝑑) =π‘‰π‘šπΏcos(πœ”π‘‘ + πœ™)

πœ‡ 𝑑 = exp 𝑅

𝐿𝑑𝑑 = 𝑒

𝑅𝐿𝑑

(9.7)

(9.8)

(3)

(1)

(2)

(4)

πœ‡ π‘₯ = exp 𝑝(π‘₯)𝑑π‘₯

Page 14: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 14

𝑖 𝑑 =1

𝑒𝑅𝐿𝑑 𝑒

𝑅𝐿𝑑 π‘‰π‘šπΏcos(πœ”π‘‘ + πœ™)𝑑𝑑 +

𝐾

𝑒𝑅𝐿𝑑

9.2 The Sinusoidal Response

β–Ί Example β—„

πœ‡ 𝑑 = 𝑒𝑅𝐿𝑑

𝑔(𝑑) =π‘‰π‘šπΏcos(πœ”π‘‘ + πœ™) =

1

𝑒𝑅𝐿𝑑

π‘‰π‘šπΏ 𝑒

𝑅𝐿𝑑 cosπœ”π‘‘ cosπœ™ βˆ’ sinπœ”π‘‘ sinπœ™ 𝑑𝑑 +

𝐾

𝑒𝑅𝐿𝑑

=1

𝑒𝑅𝐿𝑑

π‘‰π‘šπΏ

cosπœ™ 𝑒𝑅𝐿𝑑 cosπœ”π‘‘ 𝑑𝑑 βˆ’ sinπœ™ 𝑒

𝑅𝐿𝑑 sinπœ”π‘‘ 𝑑𝑑 +

𝐾

𝑒𝑅𝐿𝑑

cos(πœ”π‘‘ + πœ™) = cosπœ”π‘‘ cosπœ™ βˆ’ sinπœ”π‘‘ sinπœ™

exp π‘Žπ‘₯ cos 𝑏π‘₯ 𝑑π‘₯ =π‘’π‘Žπ‘₯

π‘Ž2 + 𝑏2(π‘Ž cos 𝑏π‘₯ + 𝑏 sin 𝑏π‘₯)

exp π‘Žπ‘₯ sin 𝑏π‘₯ 𝑑π‘₯ =π‘’π‘Žπ‘₯

π‘Ž2 + 𝑏2(π‘Ž sin 𝑏π‘₯ βˆ’ 𝑏 cos 𝑏π‘₯)

(5)

(6)

Page 15: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 15 9.4 The Passive Circuit Elements in the Frequency Domain

=1

𝑒𝑅𝐿𝑑

π‘‰π‘šπΏ

cosπœ™ 𝑒𝑅𝐿𝑑 cosπœ”π‘‘ 𝑑𝑑 βˆ’ sinπœ™ 𝑒

𝑅𝐿𝑑 sinπœ”π‘‘ 𝑑𝑑 +

𝐾

𝑒𝑅𝐿𝑑

exp π‘Žπ‘₯ cos 𝑏π‘₯ 𝑑π‘₯ =π‘’π‘Žπ‘₯

π‘Ž2 + 𝑏2(π‘Ž cos 𝑏π‘₯ + 𝑏 sin 𝑏π‘₯)

exp π‘Žπ‘₯ sin 𝑏π‘₯ 𝑑π‘₯ =π‘’π‘Žπ‘₯

π‘Ž2 + 𝑏2(π‘Ž sin 𝑏π‘₯ βˆ’ 𝑏 cos 𝑏π‘₯)

β–Ί Example β—„

=1

𝑒𝑅𝐿𝑑

π‘‰π‘šπΏ

cosπœ™π‘’π‘Žπ‘₯

π‘Ž2 + 𝑏2 (π‘Ž cos 𝑏𝑑 + 𝑏 sin 𝑏𝑑) βˆ’ sinπœ™

π‘’π‘Žπ‘₯

π‘Ž2 + 𝑏2 (π‘Ž sin 𝑏𝑑 βˆ’ 𝑏 cos 𝑏𝑑) +

𝐾

𝑒𝑅𝐿𝑑

π‘Ž cos 𝑏π‘₯ + 𝑏 sin 𝑏π‘₯ = π‘Ž2 + 𝑏2π‘Ž

π‘Ž2 + 𝑏2cos 𝑏π‘₯ +

𝑏

π‘Ž2 + 𝑏2sin 𝑏π‘₯ = π‘Ž2 + 𝑏2 cosπœƒ cos 𝑏π‘₯ + sin πœƒ sin 𝑏π‘₯

π‘Ž =𝑅

𝐿

𝑏 = πœ” π‘’π‘Žπ‘₯ = 𝑒

𝑅𝐿𝑑

=π‘‰π‘šπΏ

cosπœ™1

π‘Ž2 + 𝑏2 (π‘Ž cos 𝑏𝑑 + 𝑏 sin 𝑏𝑑) βˆ’ sinπœ™

1

π‘Ž2 + 𝑏2 (π‘Ž sin 𝑏𝑑 βˆ’ 𝑏 cos 𝑏𝑑) +

𝐾

𝑒𝑅𝐿𝑑

= π‘Ž2 + 𝑏2 cos(πœƒ βˆ’ 𝑏π‘₯)

π‘Ž sin 𝑏π‘₯ βˆ’ 𝑏 cos 𝑏π‘₯ = = π‘Ž2 + 𝑏2 sin(𝑏π‘₯ βˆ’ πœƒ) π‘Ž2 + 𝑏2 cos πœƒ sin 𝑏π‘₯ βˆ’ sin πœƒ cos 𝑏π‘₯

(7)

(8)

Page 16: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 16 9.2 The Sinusoidal Response

β–Ί Example β—„

π‘Ž cos 𝑏π‘₯ + 𝑏 sin 𝑏π‘₯ = π‘Ž2 + 𝑏2π‘Ž

π‘Ž2 + 𝑏2cos 𝑏π‘₯ +

𝑏

π‘Ž2 + 𝑏2sin 𝑏π‘₯ = π‘Ž2 + 𝑏2 cosπœƒ cos 𝑏π‘₯ + sin πœƒ sin 𝑏π‘₯

= π‘Ž2 + 𝑏2 cos(πœƒ βˆ’ 𝑏π‘₯)

π‘Ž sin 𝑏π‘₯ βˆ’ 𝑏 cos 𝑏π‘₯ = = π‘Ž2 + 𝑏2 sin(𝑏π‘₯ βˆ’ πœƒ) π‘Ž2 + 𝑏2 cos πœƒ sin 𝑏π‘₯ βˆ’ sin πœƒ cos 𝑏π‘₯

=π‘‰π‘šπΏ

cosπœ™1

π‘Ž2 + 𝑏2π‘Ž2 + 𝑏2 cos(πœƒ βˆ’ 𝑏𝑑 βˆ’ sinπœ™

1

π‘Ž2 + 𝑏2π‘Ž2 + 𝑏2 sin(𝑏𝑑 βˆ’ πœƒ) +

𝐾

𝑒𝑅𝐿𝑑

=π‘‰π‘šπΏ

1

π‘Ž2 + 𝑏2cosπœ™ cos(πœƒ βˆ’ πœ”π‘‘) βˆ’ sinπœ™ sin(πœ”π‘‘ βˆ’ πœƒ) +

𝐾

𝑒𝑅𝐿𝑑

=π‘‰π‘šπΏ

1

𝑅𝐿

2

+ πœ”2

cosπœ™ cos(πœ”π‘‘ βˆ’ πœƒ) βˆ’ sinπœ™ sin(πœ”π‘‘ βˆ’ πœƒ) +𝐾

𝑒𝑅𝐿𝑑

π‘Ž =𝑅

𝐿

𝑏 = πœ”

=π‘‰π‘šπΏ

cosπœ™1

π‘Ž2 + 𝑏2 (π‘Ž cos 𝑏𝑑 + 𝑏 sin 𝑏𝑑) βˆ’ sinπœ™

1

π‘Ž2 + 𝑏2 (π‘Ž sin 𝑏𝑑 βˆ’ 𝑏 cos 𝑏𝑑) +

𝐾

𝑒𝑅𝐿𝑑

(9)

(10)

Page 17: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 17 9.2 The Sinusoidal Response

β–Ί Example β—„

=π‘‰π‘šπΏ

1

𝑅𝐿

2

+ πœ”2

cosπœ™ cos(πœ”π‘‘ βˆ’ πœƒ) βˆ’ sinπœ™ sin(πœ”π‘‘ βˆ’ πœƒ) +𝐾

𝑒𝑅𝐿𝑑

𝑖(𝑑) = π‘‰π‘š1

𝑅2 + (πœ”πΏ)2cos(πœ”π‘‘ + πœ™ βˆ’ πœƒ) +

𝐾

𝑒𝑅𝐿𝑑

π‘Ž =𝑅

𝐿

𝑏 = πœ”

0 = π‘‰π‘š1

𝑅2 + (πœ”πΏ)2cos(πœ™ βˆ’ πœƒ) + 𝐾 𝐾 = βˆ’π‘‰π‘š

1

𝑅2 + (πœ”πΏ)2cos(πœ™ βˆ’ πœƒ)

𝑖(𝑑) =π‘‰π‘š

𝑅2 + πœ”πΏ 2cos(πœ”π‘‘ + πœ™ βˆ’ πœƒ) βˆ’

π‘‰π‘š

𝑅2 + πœ”πΏ 2cos(πœ™ βˆ’ πœƒ) π‘’βˆ’

𝑅𝐿𝑑

(10)

(11)

(12)

(13) (9.9)

Page 18: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 18 9.2 The Sinusoidal Response

𝑖 𝑑 = βˆ’π‘‰π‘š

𝑅2 + πœ”πΏ 2cos(πœ™ βˆ’ πœƒ) π‘’βˆ’

𝑅𝐿𝑑 +

π‘‰π‘š

𝑅2 + πœ”πΏ 2cos(πœ”π‘‘ + πœ™ βˆ’ πœƒ) (9.9)

Sinusoidal Response

Transient(Natural) Component

β€’ The natural response of a circuit is

dictated by the nature of the circuit.

β€’ The natural response dies out with time.

Steady-state Component

(Forced Response)

β€’ The steady-state solution is a sinusoidal function.

β€’ The frequency of the response signal is identical to

the frequency of the source signal.

β€’ The maximum amplitude of the steady-state

response, in general, differs from the maximum

amplitude of the source.

β€’ The phase angle of the response signal, in general,

differs from the phase angle of the source.

When the natural response has become

negligibly small compared with the steady-

state response, we say that the circuit is

operating at sinusoidal steady state.

It is this sinusoidal steady-state response

that is of main interest to us in this chapter.

Page 19: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 19 9.3 The Phasor

Definition

A phasor is a complex number that represents the amplitude and phase angle of a sinusoid.

𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ + πœ™) β†’ 𝐕 = π‘‰π‘šπ‘’π‘—πœ™ = π‘‰π‘šβˆ πœ™

phasor representation

When a phasor is used to describe an AC quantity, the length of a phasor represents the amplitude of the wave while the angle of a phasor represents the phase angle of the wave relative to some other (reference) waveform.

Page 20: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 20

Complex Number

A complex number z can be written in rectangular form as

𝑧 = π‘₯ + 𝑗𝑦

𝑗 = βˆ’1

Representation of a complex number z in the complex plane

π‘₯: the real part of z

the imaginary part of z 𝑦:

The complex number z can also be written in polar or exponential form as

𝑧 = π‘Ÿπ‘’π‘—πœ™

π‘Ÿ = π‘₯2 + 𝑦2

πœ™ = π‘‘π‘Žπ‘›βˆ’1𝑦

π‘₯

𝑧 = π‘Ÿβˆ πœ™

The relationship between the rectangular form and the polar form is

𝑧 = π‘₯ + 𝑗𝑦 = π‘Ÿ(cosπœ™ + 𝑗 sinπœ™) = π‘Ÿβˆ πœ™

9.3 The Phasor

Page 21: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 21

Complex Number

Addition and subtraction of complex numbers

𝑧1 = π‘₯1 + 𝑗𝑦1 = π‘Ÿ1βˆ πœ™1

Multiplication and division

𝑧1𝑧2 = π‘Ÿ1π‘Ÿ2βˆ πœ™1 + πœ™2

Reciprocal

Square Root

𝑧2 = π‘₯2 + 𝑗𝑦2 = π‘Ÿ2βˆ πœ™2

𝑧1 + 𝑧2 = (π‘₯1 + π‘₯2) + 𝑗(𝑦1 + 𝑦2)

𝑧1 βˆ’ 𝑧2 = (π‘₯1 βˆ’ π‘₯2) + 𝑗(𝑦1 βˆ’ 𝑦2)

𝑧1𝑧2=π‘Ÿ1π‘Ÿ2βˆ πœ™1 βˆ’ πœ™2

1

𝑧=

1

π‘₯ + 𝑗𝑦 =

1

π‘₯2 + 𝑦2∠ βˆ’ πœ™

1

𝑧=

1

π‘Ÿβˆ πœ™ =1

π‘Ÿ ∠ βˆ’ πœ™

𝑧 = π‘Ÿβˆ πœ™/2

9.3 The Phasor

Representation of a complex number z in the complex plane

Page 22: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 22

Complex Conjugate

Complex Conjugate

𝑧 = π‘₯ + 𝑗𝑦

π‘§βˆ— = π‘₯ βˆ’ 𝑗𝑦 = π‘Ÿβˆ  βˆ’ πœ™ = π‘Ÿπ‘’βˆ’πœ™

βˆ’π‘— =1

𝑗 ←

1

𝑗=

1

1∠90°=1

1∠ βˆ’ 90Β° = βˆ’π‘—

9.3 The Phasor

Representation of a complex number z in the complex plane

Page 23: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 23

The Phasor Representation of the Sinusoid v(t)

The idea of phasor representation is based on Euler’s identity. In general,

π‘’Β±π‘—πœƒ = cos πœƒ + 𝑗 sin πœƒ (9.10)

We can regard cos πœƒ and sin πœƒ as the real and imaginary parts of π‘’π‘—πœƒ; we may write

cos πœƒ = Re{π‘’π‘—πœƒ}

sin πœƒ = Im{π‘’π‘—πœƒ}

(9.11)

(9.12)

We write the sinusoidal voltage function given by Eq.(9.1) in the form suggested by Eq.(9.11)

(9.1) 𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ + πœ™)

= Re{π‘‰π‘šπ‘’π‘— πœ”π‘‘+πœ™ }

= Re{π‘‰π‘šπ‘’π‘—πœ™π‘’π‘—πœ”π‘‘}

π‘‰π‘šπ‘’π‘—πœ™ : a complex number that carries the amplitude and phase angle

of the given sinusoidal function.

We define the phasor representation or phasor transform of the given sinusoidal function as

𝑣 𝑑 = Re{π•π‘’π‘—πœ”π‘‘} 𝐕 = π‘‰π‘šπ‘’π‘—πœ™ (9.15)

(9.14)

9.3 The Phasor

Page 24: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 24

The Phasor Representation of the Sinusoid v(t)

Phasor representation

𝐕 = π‘‰π‘šπ‘’π‘—πœ™ (9.15)

𝐕 = π‘‰π‘šβˆ πœ™

𝐕 = π‘‰π‘š(cosπœ™ + 𝑗 sinπœ™) (9.16)

One way of looking at Eqs. (9.15) and (9.16) is to consider the plot of the π•π‘’π‘—πœ”π‘‘ on the complex plane.

As time increases, the π•π‘’π‘—πœ”π‘‘ rotates on a circle of radius π‘‰π‘š at an angular velocity Ο‰ in the counterclockwise direction, as shown in Fig. (a). In other words, the entire complex plane is rotating at an angular velocity of Ο‰.

We may regard 𝑣(𝑑) as the projection of the π•π‘’π‘—πœ”π‘‘ on the real axis, as shown in Fig.(b).

The value of the π•π‘’π‘—πœ”π‘‘ at time t = 0 is the phasor 𝐕 of the sinusoid 𝑣(𝑑). The π•π‘’π‘—πœ”π‘‘ may be regarded as a rotating phasor.

Thus, whenever a sinusoid is expressed as a phasor, the term π’†π’‹πŽπ’• is implicitly present. It is therefore important, when dealing with phasors, to keep in mind the frequency Ο‰ of the phasor; otherwise we can make serious mistakes.

𝐕

π•π‘’π‘—πœ”π‘‘

9.3 The Phasor

Page 25: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 25

Phasor Transform : Summary

Eqs.(9.14) through (9.16) reveal that to get the phasor corresponding to a sinusoid, we first express the sinusoid in the cosine form so that the sinusoid can be written as the real part of a complex number. Then we take out the time factor π‘’π‘—πœ”π‘‘, and whatever is left is the phasor corresponding to the sinusoid.

By suppressing the time factor, we transform the sinusoid from the time domain to the phasor domain. This transformation is summarized as follows:

= Re{π‘‰π‘šπ‘’π‘—πœ™π‘’π‘—πœ”π‘‘} 𝑣 𝑑 = π‘‰π‘š cos(πœ”π‘‘ + πœ™)

= Re{π•π‘’π‘—πœ”π‘‘}

𝐕 = π‘‰π‘šπ‘’π‘—πœ™

= π‘‰π‘šβˆ πœ™ (1)

Time-domain representation Phasor or frequency-domain representation

π‘‰π‘š sin(πœ”π‘‘ + πœ™) = π‘‰π‘š cos(πœ”π‘‘ + πœ™ βˆ’ 90Β°)

9.3 The Phasor

Page 26: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 26

Inverse Phasor Transform

Equation (1) states that to obtain the sinusoid corresponding to a given phasor V, multiply the phasor by the time factor π‘’π‘—πœ”π‘‘ and take the real part.

𝐕 = 115∠ βˆ’ 45Β°

𝐕 = π‘‰π‘šβˆ πœ™

πœ” = 500 rad/s

= π‘‰π‘š cos(πœ”π‘‘ + πœ™)

𝑣 𝑑 = 115 cos(500𝑑 βˆ’ 45Β°)

𝑣(𝑑) = Rm{π‘‰π‘šπ‘’π‘—πœ™π‘’π‘—πœ”π‘‘} = π‘‰π‘šπ‘’

π‘—πœ™

𝐕 = 𝑗8π‘’βˆ’π‘—20Β°

= (1∠90Β°)(8∠ βˆ’ 20Β°)

= 8∠90Β° βˆ’ 20Β°

= 8∠70°° 𝑣 𝑑 = 8 cos(πœ”π‘‘ + 70Β°)

𝐕 = 𝑗 5 βˆ’ 𝑗12 = 12 + 𝑗5

= 122 + 52βˆ πœ™ πœ™ = tanβˆ’15

12= 22.62Β°

𝑣 𝑑 = 13 cos(πœ”π‘‘ + 22.62Β°) = 13∠22.62Β°

9.3 The Phasor

Page 27: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 27

Phasor Diagram

Since a phasor has magnitude and phase (β€œdirection”), it behaves as a vector and is printed in boldface.

For example, phasors 𝐕 = π‘‰π‘šβˆ πœ™ and 𝐈 = πΌπ‘šβˆ  βˆ’ πœƒ are graphically represented in Figure.

Such a graphical representation of phasors is known as a phasor diagram.

9.3 The Phasor

Page 28: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 28

Phasor Diagram

The relationship between two phasors at the same frequency remains constant as they rotate; hence the phase angle is constant.

Consequently, we can usually drop the reference to rotation in the phasor diagrams and study the relationship between phasors simply by plotting them as vectors having a common origin and separated by the appropriate angles.

Finally, we should bear in mind that phasor analysis applies only when frequency is constant; it applies in manipulating two or more sinusoidal signals only if they are of the same frequency.

Phasor Diagram

𝝓

πœ™

𝐈

𝐕

𝐕

𝐈 πœ™

𝑣(𝑑) = π‘‰π‘š cos(πœ”π‘‘ + πœ™2)

𝑖(𝑑) = πΌπ‘š cos(πœ”π‘‘ + πœ™1)

𝐕 = π‘½π’Ž βˆ πœ™2

𝐈 = π‘°π’Ž βˆ πœ™1 𝝓 = π“πŸ βˆ’π“πŸ

9.3 The Phasor

Page 29: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 29 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for a Resistor>

Time Domain

β€’ Current

𝑖(𝑑) = πΌπ‘š cos(πœ”π‘‘ + πœ™)

β€’ Voltage

𝑣 𝑑 = 𝑖𝑅 = π‘…πΌπ‘š cos(πœ”π‘‘ + πœ™)

Phasor form

𝐈 = πΌπ‘šβˆ πœ™

𝐕 = π‘…πˆ = π‘…πΌπ‘šβˆ πœ™

Voltage-current relations for a resistor in the: (a) time domain, (b) frequency domain.

This shows that the voltage-current relation for the resistor in the phasor domain continues to be Ohm’s law, as in the time domain.

Page 30: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 30 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for a Resistor>

Phasor Diagram

𝐈 = πΌπ‘šβˆ πœ™

𝐕 = π‘…πˆ = π‘…πΌπ‘šβˆ πœ™

𝐈 = πΌπ‘šβˆ 0Β°

𝐕 = π‘…πˆ = π‘…πΌπ‘šβˆ 0Β°

Page 31: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 31 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for an Inductor>

Time Domain

𝑖(𝑑) = πΌπ‘š cos(πœ”π‘‘ + πœ™)

𝑣 𝑑 = 𝐿𝑑𝑖

𝑑𝑑= βˆ’πœ”πΏπΌπ‘š sin(πœ”π‘‘ + πœ™) 𝑣

𝑖

= βˆ’πœ”πΏπΌπ‘š cos(πœ”π‘‘ + πœ™ βˆ’ 90Β°)

= πœ”πΏπΌπ‘š cos(πœ”π‘‘ + πœ™ + 90Β°)

Page 32: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 32 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for an Inductor>

Phasor form

𝐈 = πΌπ‘šβˆ πœ™

𝐕 = πœ”πΏπΌπ‘šβˆ πœ™ + 90Β°

𝑣(𝑑) = πœ”πΏπΌπ‘š cos(πœ”π‘‘ + πœ™ + 90Β°)

= (1∠90Β°)(πœ”πΏπΌπ‘šβˆ πœ™)

𝑗 = 1∠90Β° = π‘—πœ”πΏπΌπ‘šβˆ πœ™

= π‘—πœ”πΏπˆ

Voltage-current relations for an inductor in the: (a) time domain, (b) frequency domain.

Page 33: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 33 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for an Inductor>

𝑑𝑖

𝑑𝑑 = πœ”πΌπ‘š cos(πœ”π‘‘ + πœ™ + 90Β°)

= Re{πœ”πΌπ‘š π‘’π‘—πœ”π‘‘π‘’π‘—πœ™π‘’π‘—90Β° }

= Re{π‘—πœ”πΌπ‘š π‘’π‘—πœ”π‘‘π‘’π‘—πœ™ }

= Re{π‘—πœ”πˆ π‘’π‘—πœ”π‘‘ }

𝑑𝑖

𝑑𝑑

𝐈 = πΌπ‘šβˆ πœ™ 𝑖(𝑑) = πΌπ‘š cos(πœ”π‘‘ + πœ™)

π‘—πœ”πˆ

Differentiating a sinusoid is equivalent to

multiplying its corresponding phasor by π‘—πœ”.

𝑣 𝑑 = 𝐿𝑑𝑖

𝑑𝑑= πΏπ‘—πœ”πˆ = π‘—πœ”πΏπˆ

Page 34: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 34

Phasor Diagram

9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for an Inductor>

𝐈 = πΌπ‘šβˆ 0Β°

= π‘—πœ”πΏπˆ

Voltage leads current by 90Β°in an inductor

Current lags voltage by 90Β° in an inductor

𝐕 = πœ”πΏπΌπ‘šβˆ 90Β°

𝐈 = πΌπ‘šβˆ πœ™

𝐕 = πœ”πΏπΌπ‘šβˆ πœ™ + 90Β°

Page 35: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 35 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for a Capacitor>

Time Domain

𝑣(𝑑) = π‘‰π‘š cos(πœ”π‘‘ + πœ™)

𝑖 𝑑 = 𝐢𝑑𝑣

𝑑𝑑= βˆ’πœ”πΆπ‘‰π‘š sin(πœ”π‘‘ + πœ™)

= βˆ’πœ”πΆπ‘‰π‘š cos(πœ”π‘‘ + πœ™ βˆ’ 90Β°)

= πœ”πΆπ‘‰π‘š cos(πœ”π‘‘ + πœ™ + 90Β°)

𝑣

𝑖

Page 36: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 36 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for a Capacitor>

Phasor form

𝐕 = π‘‰π‘šβˆ πœ™

𝐈 = πœ”πΆπ‘‰π‘šβˆ πœ™ + 90Β°

𝑖(𝑑) = πœ”πΆπ‘‰π‘š cos(πœ”π‘‘ + πœ™ + 90Β°)

= (1∠90Β°)(πœ”πΆπ‘‰π‘šβˆ πœ™)

𝑗 = 1∠90Β° = π‘—πœ”πΆπ‘‰π‘šβˆ πœ™

= π‘—πœ”πΆπ•

𝐕 =1

π‘—πœ”πΆπˆ

Voltage-current relations for a capacitor in the: (a) time domain, (b) frequency domain.

Page 37: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 37 9.4 The Passive Circuit Elements in the Frequency Domain

< The V- I Relationship for a Capacitor>

Phasor Diagram

𝐕 = π‘‰π‘šβˆ πœ™

𝐈 = πœ”πΆπ‘‰π‘šβˆ πœ™ + 90Β°

𝐕 = π‘‰π‘šβˆ 0Β°

𝐈 = πœ”πΆπ‘‰π‘šβˆ 90Β°

= π‘—πœ”πΆπ•

Page 38: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 38 9.4 The Passive Circuit Elements in the Frequency Domain

Summary

Summary of voltage-current relationships

Page 39: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 39 9.4 The Passive Circuit Elements in the Frequency Domain

< Impedance, Reactance, and Admittance>

Impedance

We obtained the voltage-current relations for the three passive elements as

𝐕 = π‘…πˆ

𝐕 =1

π‘—πœ”πΆπˆ

𝐕 = π‘—πœ”πΏπˆ

𝐕

𝐈= 𝑅

𝐕

𝐈= π‘—πœ”πΏ

𝐕

𝐈 =

1

π‘—πœ”πΆ

From these three expressions, we obtain Ohm’s law in phasor form for any type of element as

𝐙 =𝐕

𝐈 𝐕 = π™πˆ or

Z is a frequency-dependent quantity known as impedance, measured in ohms.

Page 40: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 40 9.4 The Passive Circuit Elements in the Frequency Domain

< Impedance, Reactance, and Admittance>

Impedance

The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, measured in ohms.

The impedance represents the opposition which the circuit exhibits to the flow of sinusoidal current. Although the impedance is the ratio of two phasors, it is not a phasor, because it does not correspond to a sinusoidally varying quantity.

The impedances of resistors, inductors, and capacitors can be readily obtained from Eq. (9.39). Table 9.1 summarizes their impedances.

Page 41: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 41 9.4 The Passive Circuit Elements in the Frequency Domain

< Impedance, Reactance, and Admittance>

Resistance and Reactance

As a complex quantity, the impedance may be expressed in rectangular form as

𝐙 =𝐕

𝐈= 𝑅 + 𝑗𝑋

𝑅 : Resistance

𝑋 : Reactance

Inductive and capacitive reactance

𝐙 = 𝑅 + 𝑗𝑋

𝑋<0 :

𝑋>0 :

𝐙 = 𝑅 βˆ’ 𝑗𝑋

Inductive reactance

Capacitive reactance

𝐙 = 𝑅

𝐙 = π‘—πœ”πΏ

𝐙 =1

π‘—πœ”πΆ= βˆ’π‘—

1

πœ”πΆ

Resistor :

Inductor :

Capacitor:

Page 42: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 42 9.4 The Passive Circuit Elements in the Frequency Domain

< Impedance, Reactance, and Admittance>

Impedance in Polar Form

𝐙 = 𝑅 + 𝑗𝑋

𝐙 = π‘βˆ πœƒ 𝑍 = 𝑅2 + 𝑋2 πœƒ = tanβˆ’1

𝑋

𝑅

𝐙

𝑅

𝑗𝑋

πœƒ

𝑅 = 𝑧 cos πœƒ

𝑋 = 𝑍 sin πœƒ

Admittance

It is sometimes convenient to work with the reciprocal of impedance, known as admittance.

The admittance Y is the reciprocal of impedance, measured in siemens (S).

𝐘 =1

𝐙=𝐈

𝐕

As a complex quantity, we may write Y as

𝐘 = 𝐺 + 𝑗𝐡

𝐺 : Conductance

𝐡 : Susceptance

𝐘 =1

𝑅 + 𝑗𝑋 =𝑅 βˆ’ 𝑗𝑋

𝑅2 + 𝑋2

𝐺 =𝑅

𝑅2 + 𝑋2 𝐡 = βˆ’

𝑋

𝑅2 + 𝑋2

Page 43: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 43 9.4 The Passive Circuit Elements in the Frequency Domain

< Impedance, Reactance, and Admittance>

𝐘 = 𝐺 + 𝑗𝐡

𝐺 : Conductance

𝐡 : Susceptance

𝐘 =1

𝑅 + 𝑗𝑋 =𝑅 βˆ’ 𝑗𝑋

𝑅2 + 𝑋2

𝐺 =𝑅

𝑅2 + 𝑋2 𝐡 = βˆ’

𝑋

𝑅2 + 𝑋2

Page 44: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 44 9.4 The Passive Circuit Elements in the Frequency Domain

β–Ί Example β—„

(a) Convert the circuit to the frequency domain.

(b) Find an admittance for resistor and capacitor

𝐕s = 10 ∠0Β° V

𝐙R = 5 Ξ©

𝐙c = βˆ’π‘—1

πœ”πΆ= βˆ’π‘—

1

4 Γ— 0.1= βˆ’π‘—2.5 Ξ©

𝐘R =1

5= 0.2 S

𝐘c = π‘—πœ”πΆ = 𝑗4 Γ— 0.1 = 𝑗0.4 S

Voltage phasor

Impedance

Admittance

Page 45: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 45 9.5 Kirchhoff’s Laws in the Frequency Domain

KVL in the frequency Domain

For KVL, let 𝑣1, 𝑣2, β‹― , 𝑣𝑛 be the voltages around a closed loop. Then

𝑣1 + 𝑣2 +β‹―+ 𝑣𝑛 = 0

In the sinusoidal steady state, each voltage may be written in cosine form, so that Eq. (9.36) becomes

(9.36)

π‘‰π‘š1 cos(πœ”π‘‘ + πœƒ1) + π‘‰π‘š2 cos(πœ”π‘‘ + πœƒ2) + β‹―+ π‘‰π‘šπ‘› cos(πœ”π‘‘ + πœƒπ‘›) = 0 (9.37)

We now Euler’s identity to write Eq.(9.37) as

Re π‘‰π‘š1π‘’π‘—πœƒ1π‘’π‘—πœ”π‘‘} + Re{π‘‰π‘š2𝑒

π‘—πœƒ2π‘’π‘—πœ”π‘‘} + β‹―+ Re{π‘‰π‘šπ‘›π‘’π‘—πœƒπ‘›π‘’π‘—πœ”π‘‘} = 0 (9.38)

or

Re (π‘‰π‘š1π‘’π‘—πœƒ1 + π‘‰π‘š2𝑒

π‘—πœƒ2 +β‹―+ π‘‰π‘šπ‘›π‘’π‘—πœƒπ‘›)π‘’π‘—πœ”π‘‘} = 0

If we let π•π‘˜ = π‘‰π‘šπ‘˜π‘’π‘—πœƒπ‘˜, then

Re (𝐕1 + π•πŸ +β‹―+ 𝐕𝒏)π‘’π‘—πœ”π‘‘} = 0

Since π‘’π‘—πœ”π‘‘ β‰  0,

𝐕1 + π•πŸ +β‹―+ 𝐕𝒏 = 0

(9.39)

(9.40)

(9.41)

indicating that Kirchhoff’s voltage law holds for phasors.

+ 𝑣1 βˆ’ + 𝑣2 βˆ’

+ 𝑣𝑛 βˆ’

Page 46: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 46 9.5 Kirchhoff’s Laws in the Frequency Domain

KCL in the frequency Domain

By following a similar procedure, we can show that Kirchhoff’s current law holds for phasors. If we let 𝑖1, 𝑖2, β‹― , 𝑖𝑛 , in be the current leaving or entering a closed surface in a network at time t, then

𝑖1 + 𝑖2 +β‹―+ 𝑖𝑛 = 0

If 𝐈1, 𝐈𝟐, β‹― , πˆπ‘›, are the phasor forms of the sinusoids 𝑖1, 𝑖2, β‹― , 𝑖𝑛 , then

(9.42)

(9.43) 𝐈1 + 𝐈𝟐 +β‹―+ πˆπ’ = 0

which is Kirchhoff’s current law in the frequency domain.

β–Ί Example β—„

Find 𝑖(𝑑) in the circuit

𝐕s = 10 ∠0Β° V

KVL :

𝐙R = 5 Ξ© 𝐙c = βˆ’π‘—2.5 Ξ©

𝐕s = 𝐕R + 𝐕C = πˆπ™R + πˆπ™C = 5𝐈 + βˆ’j2.5 𝐈

𝐈 =10∠0°

5 βˆ’ 𝑗2.5=10(5 + 𝑗2.5)

52 + 2.52= 1.6 + 𝑗0.8 = 1.789∠26.57Β° A

𝑖1

𝑖2

𝑖𝑛

Page 47: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 47 9.6 Series, Parallel, and Delta-to-Wye Simplifications

Series Connection

showing that the total or equivalent impedance of series-connected impedances is the sum of the individual impedances.

This is similar to the series connection of resistances.

𝐕ab = π•πŸ + π•πŸ +β‹―+ 𝐕𝒏

= πˆπ™1 + πˆπ™πŸ +β‹―+ πˆπ™π§

= 𝐈(𝐙1 + π™πŸ +β‹―+ 𝐙𝐧)

𝐙ab =𝐕ab𝐈= 𝐙1 + π™πŸ +β‹―+ 𝐙𝐧

Page 48: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 48 9.4 The Passive Circuit Elements in the Frequency Domain

β–Ί Example β—„

For the circuit in Fi.9.5, find (a) current, (b) impedance, and (c) reactance.

𝑣𝑠(𝑑) = π‘‰π‘š cos(πœ”π‘‘ + πœ™)

β€’ Phasor form

𝐙 = 𝑅 + π‘—πœ”πΏ = π‘βˆ πœƒ

𝐕𝑠 = π‘‰π‘šβˆ πœ™

𝐈 =𝐕𝑠𝐙=

π‘‰π‘šβˆ πœ™

𝑅2 + (πœ”πΏ)2βˆ πœƒ

𝑍 = 𝑅2 + (πœ”πΏ)2

πœƒ = tanβˆ’1πœ”πΏ

𝑅

Voltage :

Impedance :

𝐙

𝑅

π‘—πœ”πΏ

πœƒ

𝑅 = 𝑧 cos πœƒ

𝑋 = 𝑍 sin πœƒ Current : =

π‘‰π‘šβˆ πœ™ βˆ’ πœƒ

𝑅2 + (πœ”πΏ)2

𝑖 𝑑 =π‘‰π‘š

𝑅2 + πœ”πΏ 2cos(πœ”π‘‘ + πœ™ βˆ’ πœƒ)

Page 49: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 49 9.6 Series, Parallel, and Delta-to-Wye Simplifications

Parallel Connection

This indicates that the equivalent admittance of a parallel connection of admittances is the sum of the individual admittances.

𝐈 = 𝐈𝟏 + 𝐈𝟐 +β‹―+ πˆπ’

= 𝐕1

π™πŸ+1

𝐙2+β‹―+

1

𝐙n =

𝐕

π’π‘Žπ‘

1

π’π‘Žπ‘=1

π™πŸ+1

𝐙2+β‹―+

1

𝐙n

π’€π‘Žπ‘ = 𝐘1 + 𝐘2 +β‹―+ π˜π‘›

Page 50: Electric Circuit Theory - KOCWcontents.kocw.net/KOCW/Document/2015/Korea_sejong/Minnamki/12.PdfChapter 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source 5 Why Sinusoids?

CIEN346 Electric Circuits Nam Ki Min 010-9419-2320 [email protected]

Chapter 9 Sinusoidal Steady-State Analysis 50 9.6 Series, Parallel, and Delta-to-Wye Simplifications

Delta-to-Wye Transformation

Z1 =𝑍𝑏𝑍𝑐

π‘π‘Ž + 𝑍𝑏 + 𝑍𝑐 , (9.51)

Z2 =π‘π‘π‘π‘Ž

π‘π‘Ž + 𝑍𝑏 + 𝑍𝑐 , (9.52)

Z3 =π‘π‘Žπ‘π‘

π‘π‘Ž + 𝑍𝑏 + 𝑍𝑐 , (9.53)

Za =𝑍1𝑍2+ 𝑍2𝑍3+ 𝑍3𝑍1

𝑍1 , (9.54)

Zb =𝑍1𝑍2+ 𝑍2𝑍3+ 𝑍3𝑍1

𝑍2 , 9.55

Zc =𝑍1𝑍2+ 𝑍2𝑍3+ 𝑍3𝑍1

𝑍3 , (9.56)