Top Banner
ECE Diagnostic on the HSX Stellarator K.M.Likin, C.Domier*, J.N.Talmadge, D.T.Anderson, F.S.B.Anderson, A.F.Almagri, S.P.Gerhardt, J.M.Canik University of Wisconsin, Madison, USA University of Wisconsin, Madison, USA *University of California, Davis, USA *University of California, Davis, USA
26

ECE Diagnostic on the HSX Stellarator

Jan 19, 2016

Download

Documents

ECE Diagnostic on the HSX Stellarator. K.M.Likin, C.Domier*, J.N.Talmadge, D.T.Anderson, F.S.B.Anderson, A.F.Almagri, S.P.Gerhardt, J.M.Canik. University of Wisconsin, Madison, USA *University of California, Davis, USA. Introduction. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ECE Diagnostic on the HSX Stellarator

ECE Diagnostic on the HSX Stellarator

K.M.Likin, C.Domier*, J.N.Talmadge, D.T.Anderson, F.S.B.Anderson,

A.F.Almagri, S.P.Gerhardt, J.M.Canik

University of Wisconsin, Madison, USAUniversity of Wisconsin, Madison, USA

*University of California, Davis, USA *University of California, Davis, USA

Page 2: ECE Diagnostic on the HSX Stellarator

IntroductionA single spatial channel conventional radiometer is used for

detection of the electron cyclotron emission (ECE) from the HSX plasma. The HSX plasma built-up followed by is made by microwave power (up to 200 kW) at 28 HGz that corresponds to the second harmonic of ce at 0.5 T. The experiments are carried out under

(0.5 – 3)*1012 cm-3 of the mean plasma density and (0.4 – 1) keV of the central electron temperature [1].

To evaluate the optical depth of HSX plasma, the spatial resolution and the radiation temperature profile the ray tracing code developed for ECRH in the HSX geometry has been modified so that it can serve the ECE diagnostic [2]. Both emission and absorption terms are taken into consideration. The available HSX ports have been examined to place the ECE antenna for the optimum sight. The wave beam width, its divergence and the sight angle can be adjusted to get maximum optical depth and spatial resolution.

Page 3: ECE Diagnostic on the HSX Stellarator

ECE in the Box Port

1.4 1.45 1.5

-0.2

-0.1

0

0.1

0.2

Z, m

R, m

Mod |B| and plasma boundary

1.4 1.45 1.5

-0.2

-0.1

0.0

0.1

0.2

R,m

Z,m

Bo = 0.5 Tne(0) = 31012 cm-3;

Ray traces

Advantages:

• Good access to the plasma

• Small wave beam refraction

• Good spatial resolution

• Measurements at both low and high field sides

Disadvantages

• Low optical depth under a moderate electron temperature

= 0 degs.

Page 4: ECE Diagnostic on the HSX Stellarator

Optical Depth in the Box PortAntenna at = 0o

Te(0) = 0.4 keV

0.00

0.10

0.20

0.30

0.40

0.00 0.20 0.40 0.60 0.80 1.00reff.

P, a.u.

27 GHz = 0.6

29 GHz = 0.5

30 GHz = 0.2

31 GHz = 0.1

26 GHz = 0.3

25 GHz = 0.1

Antenna at = 0 degs., Te(0) = 0.4 keV

0.00

0.10

0.20

0.30

1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52

R, m

P, a.u.

27 GHz = 0.6

29 GHz = 0.5

30 GHz = 0.2

31 GHz = 0.1

26 GHz = 0.3

25 GHz = 0.1

Radiated power profile and optical depth at different frequencies versus the major radius (a,b) and effective plasma radius (c,d) under Bo = 0.5 T; ne(0) = 31012 cm-3;ne(r) = ne(0)*(1- r2); Te(r) = Te(0)*exp(-

2*r2)

Antenna at = 0 degs., Te(0) = 1.0 keV

0.00

0.20

0.40

0.60

1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52

R, m

P, a.u.

27 GHz = 1.7

29 GHz = 1.1

30 GHz = 0.5

31 GHz = 0.2

26 GHz = 0.9

25 GHz = 0.2

Antenna at = 0o

Te(0) = 1.0 keV

0.00

0.20

0.40

0.60

0.00 0.20 0.40 0.60 0.80 1.00reff.

P, a.u.

27 GHz = 1.7

26 GHz = 0.9 30 GHz

= 0.5

29 GHz = 1.1

25 GHz = 0.231 GHz

= 0.2

a) c)

b) d)

Page 5: ECE Diagnostic on the HSX Stellarator

Inward ResonanceCentral resonance

0.00

0.10

0.20

0.30

1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52R, m

P, a.u.

27 GHz = 0.6

29 GHz = 0.5

30 GHz = 0.2

31 GHz = 0.1

26 GHz = 0.3

25 GHz = 0.1

Central resonance

0.00

0.10

0.20

0.30

0.40

0.00 0.20 0.40 0.60 0.80 1.00reff.

P, a.u.

27 GHz = 0.6

29 GHz = 0.5

30 GHz = 0.2 31 GHz

= 0.1

26 GHz = 0.3

25 GHz = 0.1

Inward resonance

0.00

0.10

0.20

0.30

1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52R, m

P, a.u.

27 GHz = 0.7

29 GHz = 0.3

30 GHz = 0.1

26 GHz = 0.6

25 GHz = 0.2

Inward resonance

0.00

0.10

0.20

0.30

0.40

0.00 0.20 0.40 0.60 0.80 1.00reff.

P, a.u.

27 GHz = 0.7

29 GHz = 0.3

30 GHz = 0.1

26 GHz = 0.6

25 GHz = 0.2

a) c)

b) d)

Radiated power profile versus the major radius (a,b) and versus the effective plasma radius (c,d) under B o = 0.5 T (a,c); Bo = 0.49 T (b,d), respectively;ne(0) = 31012 cm-3; Te(0) = 0.4 keV; ne(r) = ne(0)*(1- r2); Te(r) = Te(0)*exp(-2*r2)

Page 6: ECE Diagnostic on the HSX Stellarator

ECE in the 6” Top Port

1.1 1.15 1.2 1.25 1.3 1.35

0

0.05

0.1

0.15

0.2

0.25

0.3

Z, m

R, m

Mod |B| and plasma boundary

1.1 1.15 1.2 1.25 1.3 1.35

0

0.05

0.1

0.15

0.2

0.25

0.3

R,m

Z,m

Ray traces

Bo = 0.5 T; ne(0) = 31012 cm-3; Advantages:

• Good access to the plasma

• High optical depth

Disadvantages

• High wave beam refraction

• Poor spatial resolution under high plasma densities

• Measurements at down shifted frequency only

= 18.1 degs.

Page 7: ECE Diagnostic on the HSX Stellarator

Optical Depth in the 6” Top Port

Antenna at = 18.1 degs., ne(0) = 1013 cm-3

0.00

0.10

0.20

0.30

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30R, m

P, a.u.

27 GHz = 0.3

29 GHz = 0.3

30 GHz = 0.2

26 GHz = 0.2

25 GHz = 0.04

Antenna at = 18.1 degs., ne(0) = 3*1013 cm-3

0.00

0.10

0.20

0.30

0.40

0.50

1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30

R, m

P, a.u.

27 GHz = 2

26 GHz = 1

25 GHz = 0.14

a)

b)

Radiated power profile and optical depth at different frequencies versus the major radius (a,b) and versus the effective plasma radius (c,d) in the 6” top port under Bo = 0.5 T; ne(r) = ne(0)*(1- r2); Te(0) = 0.4 keV; Te(r) = Te(0)*exp(-2*r2)

Antenna at = 18.1 degs., ne(0) = 3*1013 cm-3

0.00

0.10

0.20

0.30

0.40

0.00 0.20 0.40 0.60 0.80 1.00reff.

P, a.u.

27 GHz = 2

25 GHz = 0.14

26 GHz = 1

Antenna at = 18.1 degs.

ne(0) = 1013 cm-3

0.00

0.10

0.20

0.30

0.40

0.00 0.20 0.40 0.60 0.80 1.00reff.

P, a.u.

27 GHz = 0.3

29 GHz = 0.3

30 GHz = 0.2

26 GHz = 0.2

25 GHz = 0.04

c)

d)

Page 8: ECE Diagnostic on the HSX Stellarator

ECE at the High Field Side

0.9 0.95 1 1.05 1.1 1.15 1.2

0

0.05

0.1

0.15

Z, m

R, m

Mod |B| and plasma boundary Ray traces

Bo = 0.5 T ne(0) = 31012 cm-3

Advantages:

• Small magnetic field gradient

• Moderate optical depth

Disadvantages

• High refraction

• One side measurements at up shifted frequencies

• Small port diameter

= 37.8 degs.

0.9 0.95 1 1.05 1.1 1.15 1.2

0

0.05

0.1

0.15

0.44

0.44

0.44

0.47

0.47

0.47

0.47

0.47

0.5

0.5

0.5

0.5

0.53

0.53

0.53

0.53

0.56

0.56

Z, m

R, m

Page 9: ECE Diagnostic on the HSX Stellarator

Optical Depth at the High Field

Radiated power profile and optical depth versus the major radius (a) and versus the effective plasma radius (b) in the high field side port under Bo = 0.5 T; ne(0) = 31012 cm-3; ne(r) = ne(0)*(1- r2);

Te(0) = 0.4 keV; Te(r) = Te(0)*exp(-2*r2)

Antenna at = 37.8 degs.

0.00

0.10

0.20

0.30

0.40

0.50

1.05 1.10 1.15 1.20 1.25R, m

P, a.u.

29 GHz = 1 30 GHz

= 0.6

31 GHz = 0.1

Antenna at = 37.8 degs.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.00 0.20 0.40 0.60 0.80 1.00reff.

P, a.u.

31 GHz = 0.1

30 GHz = 0.6

29 GHz = 1

a) b)

Page 10: ECE Diagnostic on the HSX Stellarator

Description of the radiometer

The radiometer is a heterodyne type receiver [5]. Radiation from the plasma, over a frequency range of 25-31 GHz, is collected by a horn antenna (Millitech Model SGH-28, with a nominal 25 dB of gain at the axis) and after a notch filter it applies to a broadband balanced mixer. A Gunn diode (21 mW at 42.5 GHz) is used as a local oscillator. The 11.5-17.5 GHz IF signals from the mixer (4.3-7.5 dB conversion loss) are amplified by a low noise microwave amplifier (model JCA1218-F01, 22 dB gain), bandpass filtered (center frequency may be varied from 11.5 to 17.5 GHz) and amplified once more (model C060180G-4F1, 32 dB gain). Conventional IF modules incorporate wideband detectors which are coupled to two stage (100X gain, 20 kHz) video amplifiers.

Page 11: ECE Diagnostic on the HSX Stellarator

ECE Radiometry

n nce

ce eB me

e

X

Y

Z

Vacuum Vessel

Plasma

R

z

R0

B ~ 1/R

The gyromotion of electrons results in the Electron Cyclotron Emission (ECE) at a series of discrete harmonic frequencies:

2

3 2( ) ( )

8e

B

TI I

c

When the plasma is optically thick, the ECE radiation intensity is the black body intensity:

Page 12: ECE Diagnostic on the HSX Stellarator

Location of the ECE antenna

Pecrh = 50 kW

ECE antenna

MD_5

MD_1

MD_4

MD_6

MD_2MD_3

Page 13: ECE Diagnostic on the HSX Stellarator

Radiometer set-up

12 - 18 GHzHigh Pass

Filter

Amplifier:22 dB gain+10 dBm3 dB NF

27 GHz Low Pass

Filter

Video Amplifier

Video Detector

Amplifier:32 dB gain+18 dBm3.5 dB NF

15.5 GHzBand Pass

Filter

Diode Mixer

Horn Antenna

Gunn diode:42.5 GHz21 mW

Data Acquisition

System

Page 14: ECE Diagnostic on the HSX Stellarator

Gyrotron power leakage test

First test of the notch filter on HSX operation with 50 kW of launched power showed that the gyrotron leakage power through the filter is 3 mW with a peak at the gyrotron leading front (it is greater by factor of 3 in power).

0.795 0.8 0.805 0.81 0.815 0.82 0.825 0.83-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Time (seconds)

Vo

lts

7/11/02, shot #2

Page 15: ECE Diagnostic on the HSX Stellarator

Low Pass FilterTo reduce the gyrotron leakage power a lowpass filter is suggested to use. The filter consists of a pair of K-band lowpass filters (HP model K362A), in which the cut-off frequency has been lowered by the insertion of carefully cut sections of dielectric strips within the filter, coupled with a K and Ka band transition. Also shown on the Fig. are three shaded areas which represent available IF bandpass filter.

-70

-60

-50

-40

-30

-20

-10

0

24 25 26 27 28

Lowpass Filter Response

Tra

nsm

issi

on

(d

B)

Frequency (GHz)

Gyrotron power leakage through the filter in HSX operation is about 0.8 mW in a lack of absorption and drops down to 0.03 mW when the absorption is high.

Page 16: ECE Diagnostic on the HSX Stellarator

Raw ECE signal and Te

The calibration of the radiometer demonstrated its temperature response to be ~ 400 eV/V.

In terms of a noise level the sensitivity of radiometer is 2 eV

The estimated electron temperature at plasma radius of 0.6 is 250eV.

Page 17: ECE Diagnostic on the HSX Stellarator

Low Plasma Density Discharge

0 2 4 6 8 10-5

0

5

10

HSX Status, Shot:47Main & Aux Current (kAmps), and Coil Ground Current

0 2 4 6 8 10-3

-2

-1

0

Neu

tral

Pre

ssur

e (m

icro

Tor

r)

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

0.2

0.4

0.6

0.8

1

11/8/02Density of Last 4 Shots:red(current), magenta, green, blue

time (sec)

1e12

/cm

3

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

0.5

1

time (sec)

H

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

0.2

0.4

SX

R E

mis

sion

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

0

10

20

30

Flu

x Lo

op (

J)

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

time (sec)

EC

H P

ower

Page 18: ECE Diagnostic on the HSX Stellarator

Moderate Plasma Density Discharge

0 2 4 6 8 10-5

0

5

10

HSX Status, Shot:36Main & Aux Current (kAmps), and Coil Ground Current

0 2 4 6 8 10-3

-2

-1

0

Neu

tral

Pre

ssur

e (m

icro

Tor

r)

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

0.5

1

1.5

2

2.5

11/8/02Density of Last 4 Shots:red(current), magenta, green, blue

time (sec)

1e12

/cm

3

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

time (sec)

H

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

0.1

0.2

0.3

SX

R E

mis

sion

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

0

10

20

Flu

x Lo

op (

J)

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

time (sec)

EC

H P

ower

Page 19: ECE Diagnostic on the HSX Stellarator

Raw ECE SignalsLow plasma density

ne = 0.5*1012 cm-3

Moderate plasma density

ne = 1.5*1012 cm-3

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

Vo

lts

11/8/02, shot #47

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

Vo

lts

11/8/02, shot #36

The higher level in radiated power at low plasma density is supposed due to superthermal electron emission.

Page 20: ECE Diagnostic on the HSX Stellarator

ECH Absorption

ne = 0.5*1012 cm-3

In the QSH magnetic field configuration the heating microwave power is absorbed with high efficiency (about 90%) in a few passes through the plasma column.

The absorption of heating microwave power is measured with a set of microwave diodes installed around the machine. The raw signals are shown in the following figures.

0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

3

4

5

6

7

8

Time (seconds)

Vo

lts

11/8/02, shot #47

MD4

MD5

MD6

0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

3

4

5

6

7

8

Time (seconds)

Vo

lts

11/8/02, shot #24

MD4

MD5

MD6

ne = 3*1012 cm-3ne = 1.5*1012 cm-3

0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

3

4

5

6

7

8

Time (seconds)

Vo

lts

11/8/02, shot #36

MD4

MD5

MD6

Page 21: ECE Diagnostic on the HSX Stellarator

Inward Resonance Discharge

0 2 4 6 8 10-5

0

5

10

HSX Status, Shot:39Main & Aux Current (kAmps), and Coil Ground Current

0 2 4 6 8 10-4

-2

0

Neu

tral

Pre

ssur

e (m

icro

Tor

r)

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

0.5

1

1.5

2

2.5

11/8/02Density of Last 4 Shots:red(current), magenta, green, blue

time (sec)

1e12

/cm

3

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

time (sec)

H

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

0.1

0.2

0.3

SX

R E

mis

sion

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

0

10

20

Flu

x Lo

op (

J)

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.860

1

2

time (sec)

EC

H P

ower

Page 22: ECE Diagnostic on the HSX Stellarator

Off-axis ResonanceCentral resonance

Bo = 0.5 T

The radiated temperature drops under off-axis heating because of flattening of electron temperature profile and reduction of superthermal electron population.

Resonance shifted inward

Bo = 0.49 T

0.8 0.81 0.82 0.83 0.84 0.850

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (seconds)

Vo

lts

11/8/02, shot #39

0.8 0.81 0.82 0.83 0.84 0.85 0.86

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (seconds)

Vo

lts

11/8/02, shot #37

Page 23: ECE Diagnostic on the HSX Stellarator

ECE Signal Decay

0.847 0.848 0.849 0.85 0.851 0.852 0.853 0.854

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (seconds)

Vo

lts

11/8/02, shot #36

After the heating microwave power turn-off the decay rate of radiated temperature is about 1.7 msec. while the plasma density is slightly increased.

Page 24: ECE Diagnostic on the HSX Stellarator

Plasma Temperature Profile

Taking the real plasma density profile and assuming some electron temperature profile one can find an optical depth running the ray tracing code. For mean plasma density of 1.5*1012 cm-3 and the central electron temperature of 300 eV the optical depth is 0.5. Taking into account this value the electron temperature has been estimated for two spatial locations (the data were taken at 27 GHz and 26.2 GHz using two different band pass filters ).

0

100

200

300

0 0.2 0.4 0.6 0.8 1

reff

eV

TeTrad

Temperature profile:

Te(r) = Te(0)*exp(-3*r2)

Page 25: ECE Diagnostic on the HSX Stellarator

Conclusion1. Optical depth and radiated power profile in the HSX plasma

can be evaluated with the ray tracing code in 3-D geometry.

2. Three different locations for ECE antenna have been examined. The best access to the plasma is on the box port while an ECE antenna in the 6” top port can be a challenger as well.

3. The notch and low pass filters have been tested on a gyrotron power leakage and it was found that the low pass filter has the suitable attenuation at 28 GHz.

4. The radiometer has been calibrated with a hot load at the UC-Davis and installed at the HSX.

5. First measurements exhibit about 270 eV of electron temperature at the plasma radius of 0.2 at ne = 1.5*1012 cm-3

Page 26: ECE Diagnostic on the HSX Stellarator

References.

1. D.Anderson. HSX: Helically Symmetric Experiment. Progress Report and Renewal Proposal. 2001.

2. K.Likin, B.D.Ochirov. Sov.J.Plasma Phys. 18 (1992), 42.

3. M.Bornatici, R.Cano, O.De Barbieri, F.Engelman. Nucl.Fusion, 23 (1983), p.1153.

4. H.J.Hartfuss, T.Geist, M.Hersch. Plasma Phys. & Control. Fusion, 39 (1997), pp.1693-1769.

5. M.Bornatici, F.Engelman. Phys. Plasmas, 1 (1992), pp.189-198.

6. G. Cima et al., Phys. Plasmas 2, 70 (1995).

7. V.L.Ginzburg. Propagation of electromagnetic waves into plasma. Nauka, Moscow,1967.