Top Banner
Apostila de Máquinas Elétricas Eletrotécnica Domínio Público Ezio Fernandes da Silva 42 CAPÍTULO II PARTIDA E ACELERAÇÃO 2.1) INTRODUÇÃO A partida e aceleração são um período transitório na operação dos motores ao qual estão associados alguns dos mais importantes problemas no acionamento elétrico. Ao ser ligado à rede elétrica de modo a receber a tensão plena, o motor de indução absorve uma elevada corrente cujo surto inicial chega a atingir 4 a 8 vezes o valor da corrente nominal. À medida que o motor se acelera, o surto vai se reduzindo até atingir o valor de regime. Esta elevada corrente, cuja duração está associada ao tempo de aceleração do motor, é denominada corrente de partida e sua presença pode provocar os seguintes problemas: No motor: Um forte aquecimento, num tempo muito curto, (tempo que o motor gasta para se acelerar) devido às elevadas perdas jóulicas. Esta sobrecarga térmica não tem tempo suficiente para ser dissi- pada para o meio ambiente de modo que todo o calor gerado se destina a elevar a temperatura do rotor e do enrolamento do estator. Os efeitos desta elevação de temperatura podem causar no rotor sérios problemas tais como dilatação dos anéis de curto-circuito e deformação das barras da gaiola. No estator, a elevação da temperatura pode atingir valores superiores à classe de isolamento térmico do motor e com isto provocar uma rápida deterioração do isolamento. Esforços eletrodinâmicos entre espiras das bobinas do enrolamento do estator, na parte do enrolamento chamada coroa, constituída pelas cabeças das bobinas. Elas se atraem e se repelem, causando atrito entre elas que resulta em fadiga e abrasão, erodindo o isolamento. Tais esforços são proporcionais ao quadrado da corrente. Atuação indevida de fusíveis ou de relés de proteção contra sobrecarga se o tempo de ace- leração for muito longo. Na máquina acionada e no sistema de transmissão: Choques mecânicos nos componentes do sistema de transmissão, devido ao conjugado re- sultante da corrente de partida, que pode danificá-los. Um sistema de transmissão por correias múl- tiplas e polias pode deslizar (“patinar”) sob a ação de um conjugado de valor muito elevado. Uma aceleração muito rápida devido a um alto conjugado de partida pode provocar pro- blemas ao produto. Máquinas têxteis, por exemplo, têm um limite máximo de aceleração pois esta pode provocar danos aos delicados tecidos e fios. Os elevadores têm também um limite máximo de aceleração, pois, se esta for muito alta, pode acarretar mal estar e desconforto para os usuários. Na rede elétrica e instalações: Quedas de tensão que prejudicam a operação de outros aparelhos e equipamentos, princi- palmente aparelhos eletrônicos. Cintilação de lâmpadas, em especial as de vapor de mercúrio e vapor de sódio que são muito sensíveis à variação de tensão.
49

eBook -2. Acionamentos de M-quinas El-tricas

Jul 07, 2016

Download

Documents

Gu Simões

Acionamento maquinas eletricas
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 42

CAPÍTULO II

PARTIDA E ACELERAÇÃO 2.1) INTRODUÇÃO A partida e aceleração são um período transitório na operação dos motores ao qual estão associados alguns dos mais importantes problemas no acionamento elétrico. Ao ser ligado à rede elétrica de modo a receber a tensão plena, o motor de indução absorve uma elevada corrente cujo surto inicial chega a atingir 4 a 8 vezes o valor da corrente nominal. À medida que o motor se acelera, o surto vai se reduzindo até atingir o valor de regime. Esta elevada corrente, cuja duração está associada ao tempo de aceleração do motor, é denominada corrente de partida e sua presença pode provocar os seguintes problemas:

No motor : • Um forte aquecimento, num tempo muito curto, (tempo que o motor gasta para se acelerar)

devido às elevadas perdas jóulicas. Esta sobrecarga térmica não tem tempo suficiente para ser dissi-pada para o meio ambiente de modo que todo o calor gerado se destina a elevar a temperatura do rotor e do enrolamento do estator. Os efeitos desta elevação de temperatura podem causar no rotor sérios problemas tais como dilatação dos anéis de curto-circuito e deformação das barras da gaiola. No estator, a elevação da temperatura pode atingir valores superiores à classe de isolamento térmico do motor e com isto provocar uma rápida deterioração do isolamento.

• Esforços eletrodinâmicos entre espiras das bobinas do enrolamento do estator, na parte do enrolamento chamada coroa, constituída pelas cabeças das bobinas. Elas se atraem e se repelem, causando atrito entre elas que resulta em fadiga e abrasão, erodindo o isolamento. Tais esforços são proporcionais ao quadrado da corrente.

• Atuação indevida de fusíveis ou de relés de proteção contra sobrecarga se o tempo de ace-leração for muito longo.

Na máquina acionada e no sistema de transmissão: • Choques mecânicos nos componentes do sistema de transmissão, devido ao conjugado re-

sultante da corrente de partida, que pode danificá-los. Um sistema de transmissão por correias múl-tiplas e polias pode deslizar (“patinar” ) sob a ação de um conjugado de valor muito elevado.

• Uma aceleração muito rápida devido a um alto conjugado de partida pode provocar pro-blemas ao produto. Máquinas têxteis, por exemplo, têm um limite máximo de aceleração pois esta pode provocar danos aos delicados tecidos e fios. Os elevadores têm também um limite máximo de aceleração, pois, se esta for muito alta, pode acarretar mal estar e desconforto para os usuários.

Na rede elétr ica e instalações: • Quedas de tensão que prejudicam a operação de outros aparelhos e equipamentos, princi-

palmente aparelhos eletrônicos. • Cintilação de lâmpadas, em especial as de vapor de mercúrio e vapor de sódio que são

muito sensíveis à variação de tensão.

Page 2: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 43

• Possível desligamento de outros motores pela abertura de seus contatores. Com cerca de 30% de queda de tensão no barramento, pode ocorrer a abertura do contator.

• Redução momentânea do conjugado máximo disponível de outros motores em operação que podem provocar sua desaceleração e desligamento. Os problemas descritos acima serão tanto maiores quanto menor for a capacidade do sistema elétrico que alimenta o motor e maior a potência do motor para tensões de 220, 380 ou 440 volts. A solução para tais problemas está associada ao conhecimento do tempo que o motor gasta para atingir, a partir do repouso, sua velocidade nominal, tempo de aceleração, e à redução da cor-rente de partida pela redução da tensão aplicada ao motor. Neste capítulo, vamos estudar estes as-suntos. 2.2) TEMPO DE PARTIDA OU TEMPO DE ACELERAÇÃO A equação [1.18] do capítulo I, reproduzida na equação [2.01] abaixo, pode ter a se-guinte leitura: para ter um acréscimo de velocidade dω do conjunto cujo momento de inércia é J, o motor deve aplicar um conjugado de aceleração Ca = C - Cr, durante um tempo dt.

C C C Jd

dtr a− = =ω

[2.01]

Portanto, podemos explicitar o tempo dt e obtermos a equação [2.02] abaixo

.dt Jd

Ca

[2.02]

A integração da equação [2.02] entre os limites de velocidade ω1 e ω2, corresponden-tes aos instantes inicial e final do movimento, nos dará o tempo para o motor, partindo de ω1, atingir ω2,. Chamando de ta este tempo, podemos escrever:

t Jd

C CJ

d

Car a

=−

= ∫∫ ω ωω

ω

ω

ω

1

2

1

2

[2.03]

O momento de inércia do conjunto, J, é uma grandeza constante. Vê-se, portanto, que o problema está perfeitamente equacionado e a sua solução depende apenas da solução da inte-gral. Porém, não há uma solução exata da integral pois Ca não é uma função integrável. Assim sen-do, o problema real consiste em se lançar mão de métodos aproximativos que forneçam resultados que satisfaçam as aplicações. O que se deseja, quase sempre, nos problemas de acionamento, é o tempo de aceleração do motor desde o repouso até a sua velocidade nominal, isto é, devemos fazer ω1 = 0 e ω2 = ωn. Vamos estudar dois métodos muito aplicados na solução deste tipo de problemas: um, conhecido como Método da Integração Gráfica e o outro, Método dos Conjugados Médios. 2.2.1) MÉTODO DA INTEGRAÇÃO GRÁFICA

Neste método, a solução da integral da equação [2.03] é feita graficamente, isto é, dispondo-se das curvas características do motor e da máquina acionada. obtém-se em um gráfico, a curva Ca que é a diferença, ponto por ponto, entre as curvas C e Cr . Esta curva é então dividida em

Page 3: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 44

vários segmentos, ver figura 2.01. A partir do ponto inicial correspondente ao repouso, traçam-se vários retângulos cuja base menor é o valor médio do segmento marcado sobre a curva Ca e a base

maior é a perpendicular ao eixo das velocidades. Obtém-se, assim, tantos retângulos quantos são os segmentos da curva. O tempo que o motor vai gastar para se acelerar do repouso à velocidade no-minal será o somatório dos tempos gastos para ele ter um acréscimo ∆ω de velocidade correspon-dente à base menor de cada um dos retângulos. Como nestes intervalos o conjugado de aceleração que se considera é o conjugado médio, que é constante, a equação [2.03] será resolvida pela soma dos tempos de aceleração obtidos em cada uma dos segmentos da curva, ou seja:

. t ta n

n

= ∑∆0

[2.04]

sendo n o número de retângulos sobre a curva Ca e ∆tn o tempo gasto para o motor se acelerar entre dois pontos correspondentes à base menor do retângulo. Seu valor será obtido através da equação abaixo:

am

nn

CJt

ω∆=∆ [2.05]

Cam representa o conjugado de aceleração médio (base maior do retângulo) para cada retângulo e, obviamente, terá um valor diferente para cada um deles. ∆ωn representa cada uma das bases meno-res do retângulo, ou seja, o incremento de velocidade entre dois pontos contíguos da curva Ca Este método de cálculo é muito preciso e sua precisão será tanto maior quanto maior for o número de pontos que se marque sobre a curva do conjugado de aceleração. Os incrementos ∆ωn não precisam ser iguais.

2.2.2) – MÉTODO DOS CONJUGADOS MÉDIOS Este método consiste, basicamente, em substituir as características do conjugado mo-tor e do conjugado resistente por características constantes que lhes sejam equivalentes, ou seja,

Page 4: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 45

durante o período de aceleração os conjugados desenvolvido pelo motor e pela máquina acionada serão substituídos pelos seus respectivos conjugados médios conforme visto no capítulo I. Como eles são constantes com a velocidade, o conjugado de aceleração será, por sua vez, constante pois representa a distância entre duas retas paralelas, conforme mostra a figura 2.02

O Conjugado Médio Motor, Cmm, e o Conjugado Resistente Médio, Crm serão dados pelas equações [1.13] e [1.14] e [1.43] a [1.46], respectivamente, do capítulo I.

Após terem sido determinados Cmm e Crm, o Conjugado de Aceleração Médio Equi-valente, Cam, será, então, a diferença entre os dois valores, ou seja:

C C Cam mm rm= − [2.06] O tempo de aceleração será calculado como se segue:

t JCa

am

=−ω ω2 1

[2.07]

onde as letras têm os seguintes significados: ω1 = velocidade de onde se parte, em geral, do repouso, isto é, ω1 = 0.

ω2 = velocidade aonde se chega, em geral, velocidade nominal, isto é, ω2 = ωn. Cam = conjugado de aceleração médio equivalente. J = momento de inércia de toda a massa que se movimenta. ta será obtido em segundos, para J em kgm2, ω1 e ω2 em rad/s e Cam em Nm.

Uma outra expressão para o cálculo do tempo de aceleração, em outras unidades u-suais, é a indicada pela equação [2.08].

t GDn n

Caam

=−2 2 1

375 [2.08]

Page 5: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 46

onde GD2 é o momento de impulsão em kgfm2, n1 e n2 em RPM e Cam em kgfm. Este método dos conjugados médios, comparado com o método da integração gráfi-ca, é menos preciso e os valores de tempo obtidos por este método podem ser maiores do que os obtidos pelo método anterior em cerca de 15%. Para fins práticos esta diferença tem pouco signifi-cado, pois o processo de aceleração é considerado concluído quando o motor atinge cerca de 95% da sua velocidade final. Isto quer dizer que para muitos motores, o processo se inicia no repouso e termina na velocidade correspondente ao conjugado máximo. Por sua simplicidade é o método mais usado na prática. 2.3 – TEMPO MÁXIMO DE ACELERAÇÃO: TEMPO DE ROTOR BLOQUEADO

A máxima temperatura momentânea provocada pela corrente de partida que o motor pode suportar depende das características do seu projeto para dissipar o calor gerado no rotor e no estator. Uma elevação de temperatura permissível durante a partida do motor é um dado próprio de cada motor e de cada fabricante. Por exemplo, temperaturas da ordem de 200oC para gaiolas de ro-tor feitas de latão, para motores de grande porte, são consideradas normais durante os períodos de partida1. Na maioria dos casos, o tempo máximo de aceleração é limitado pela temperatura do rotor, porém há motores em que a limitação da temperatura na partida é do enrolamento do estator. Os cálculos para determinar o tempo máximo de aceleração partem da premissa de se considerar que todo o calor gerado no rotor e no estator, durante a partida, permanece nas barras e nas bobinas, elevando a temperatura de acordo com o calor específico do material. Ao se testar o motor na fábrica, a reprodução das suas condições operacionais no local onde ele vai operar, em especial das condições de partida, é praticamente impossível, pois não se tem idéia das exatas condições ambientais, da inércia da máquina a ser acionada e mesmo das condições da rede que vai alimentar o motor. A determinação exata do máximo tempo de aceleração do motor só poderia ser obtida após um teste de campo. Como isto também não é praticamente pos-sível, para resolver este problema, os fabricantes submetem os motores (no mínimo, os protótipos) a serem enviados aos clientes, ao chamado teste de rotor bloqueado. Durante este teste, o motor é ligado à tensão plena, permanecendo, porém, com seu eixo travado. Desta forma, o enrolamento é percorrido por uma elevada corrente (corrente de rotor bloqueado), cujo surto inicial tem o mesmo valor da corrente de partida do motor. Determina-se, então, quanto tempo o motor pode permanecer nesta condição sem que o calor produzido pela corrente possa danificar seu isolamento. Esta condi-ção é mais severa do que a partida real do motor, pois neste caso, a corrente de partida declina o seu valor durante a aceleração. Para fins práticos, admite-se que a corrente de partida permanece cons-tante, com seu valor inicial, durante pelo menos até o motor atingir a 90% da sua velocidade final. O tempo de rotor bloqueado será, portanto, o máximo tempo que o motor pode su-portar para que não sejam danificados o rotor ou o isolamento do estator pela alta temperatura gera-da pela corrente de rotor bloqueado. Este é um dado muito valioso para o engenheiro ao selecionar um motor para fazer um determinado acionamento, pois ele pode ter escolhido o motor corretamen-te para acionar a sua carga nas condições nominais de operação, mas se o tempo de aceleração for maior do que o tempo de rotor bloqueado, isto pode significar que o calor produzido pela corrente de partida é maior do que o calor produzido pela corrente de rotor bloqueado, o que poderia destruir o motor ou reduzir sua expectativa de vida útil. Neste caso, o motor não poderia ser utili zado.

A esta habili dade que o motor tem de acelerar sua carga, do repouso até a velocidade nominal, em um tempo suficientemente curto para que ele não seja afetado termicamente pelo calor

1 Este assunto será retomado com mais profundidade na seção 2.13

Page 6: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 47

gerado durante a partida é chamada de capabili dade de aceleração2. Portanto, para se fazer uma escolha completa e adequada de um motor é necessário que, após ter sido determinada a sua potên-cia e número de polos para a condição de operação em regime contínuo, seja verificado se ele pos-sui capabili dade de aceleração, ou seja, o tempo de aceleração calculado conforme as equações [2.07] e [2.08] deve ser comparado com o tempo de rotor bloqueado fornecido pelo fabricante do motor. O tempo de rotor bloqueado dos catálogos é dado para partida direta do motor. São usuais valores de 6 a 15 segundos para o tempo de rotor bloqueado de motores trifásicos de potência até 200 CV para tensões de 220, 380 e 440 volts. Se o tempo de aceleração for menor do que o tempo de rotor bloqueado fornecido pelo fabricante, o motor possui capabili dade de aceleração para realizar o acionamento e estará corretamente escolhido. Se, ao contrário, o tempo de aceleração for maior do que o tempo de rotor bloqueado, o motor não serve para realizar o acionamento, mesmo que sua potência esteja adequa-da às exigências da carga na condição de regime contínuo. Neste caso, um outro motor deverá ser escolhido, de potência maior, para o qual o cálculo do tempo de aceleração deverá ser repetido e o resultado novamente comparado com o tempo de rotor bloqueado. Se novamente o tempo de acele-ração for maior, o problema terá de ser reavaliado e talvez deva ser escolhido um motor com núme-ro de polos menor (com alteração do sistema de transmissão), ou escolher um outro tipo de motor, por exemplo, motor de rotor bobinado que pode utili zar reostato de partida e assim diminuir o calor gerado no interior do motor.

O tempo de aceleração só faz sentido ser calculado quando o motor parte com a car-ga acoplada, pois, neste caso, ele aumenta com o aumento do momento de inércia da carga e com a presença do conjugado resistente. Quando o motor parte a vazio o problema não existe, pois, prati-camente, há somente a inércia do rotor, e ele atinge rapidamente a sua velocidade de regime, quan-do se inicia de maneira efetiva a dissipação do calor gerado para o meio ambiente por meio da ven-tilação. Alguns fabricantes, em lugar de fornecer o tempo máximo de aceleração, fornecem as perdas máximas, em watts ou kW, que o motor permite durante uma partida, uma frenagem com inversão da seqüência de fases e durante a operação em regime contínuo. Estes dados são necessá-rios quando se deseja escolher um motor para operar em regime intermitente periódico 2.4) TEMPO DE DESACELERAÇÃO E TEMPO DE FRENAGEM Se o motor está operando na sua condição de regime, por exemplo, na sua condição nominal, e é desligado, ele irá parar após um determinado tempo. Se o motor é desligado, cessa imediatamente a ação do seu conjugado, porém, enquanto ele não parar, acionado pela energia ciné-tica armazenada na massa girante do conjunto, o conjugado resistente continua a atuar, mesmo que de forma decrescente, dependendo do tipo de característica da máquina acionada. Este conjugado resistente é que faz o motor parar. Em muitas aplicações se deseja calcular o tempo que o motor gastaria para parar a-pós o seu desligamento da rede. Para se calcular este tempo de desaceleração se emprega a mesma expressão [2.07], só que agora, com outros significados para as letras, conforme se segue.

2 A palavra capabili dade ainda não consta dos dicionários de língua portuguesa. Em inglês, capabilit y, é definida como a capacidade de alguém ou alguma coisa cumprir suas funções sob condições predeterminadas; no caso presente, será a capacidade do motor de partir e acelerar sua carga, até a velocidade nominal, em um tempo tal que ele não sofra danos devidos ao calor gerado.

Page 7: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 48

t JCd

mr

=−ω ω2 1

[2.08]

onde, td é o tempo de desaceleração em s; J o momento de inércia total da massa girante em kgm2; ω2 a velocidade de onde se parte e ω1 a velocidade aonde se chega, em rad/s; Crm o conjugado resis-tente médio da máquina acionada, em Nm. Seu valor será dado por uma das equações [1.43] a [1.46] conforme o tipo de máquina acionada. Na maioria dos casos, ω2 = ωn e ω1 = 0. Quando se aplica um freio para apressar a paralisação do motor, isto significa dizer que ao conjugado resistente da máquina acionada se adiciona um conjugado frenante. Assim, se aplicarmos um freio que desenvolve um conjugado frenante cujo valor médio é igual a Cfm (conju-gado de frenagem médio equivalente) o tempo que o motor gasta para parar, tempo de frenagem tf, será dado por

t JC Cf

rm fm

=−+

ω ω2 1 [2.09]

onde ω2 as letras têm o mesmo significado do que em [2.08]. Há vários métodos3 para se aplicar um conjugado de frenagem a um motor de indu-ção. Os principais são os seguintes: 2.4.1 – PLUGUEAMENTO Consiste na troca entre si de duas fases que alimentam o motor, invertendo, em con-seqüência, a rotação do seu campo magnético girante. O rotor, até parar, está girando no sentido oposto ao do campo girante desenvolvendo, desta forma, um elevado conjugado resistente. Ao pa-rar, e antes de inverter sua rotação, o motor é desligado, comandado por relés de tempo ou de fre-qüência ajustados previamente. O escorregamento do motor, que na condição normal de operação é dado pela equa-ção [1.02], durante o período transitório entre a troca de fases e a parada do rotor, é dado por:

( )s

n n

n

n n

n

n n s

ns'=

− −−

=+

=+ −

= −1

1

1

1

1 1

1

12 [2.10]

Assim, estando o motor operando na sua condição nominal, no momento exato em que se faz a inversão das fases, o escorregamento é quase igual a 2 pois o escorregamento nominal é, em geral, da ordem de 1 a 2%. Esta região da característica de conjugado do motor, entre os es-corregamentos 2 e 1é chamada de região de frenagem e o tempo de operação do motor nesta condi-ção deve ser o menor possível, pois o calor gerado durante este período é da ordem de 3 vezes o gerado durante a partida. 2.4.2 – FRENAGEM DINÂMICA Neste caso, imediatamente após o motor ser desligado da rede, dois terminais quais-quer do estator são ligados a uma fonte de corrente contínua. Isto cria um fluxo estacionário no inte-

3 Os métodos de frenagem serão estudados com detalhes em outro capítulo.

Page 8: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 49

rior do motor que corta as barras do rotor. Correntes induzidas criam um fluxo no rotor que tende a se alinhar com o fluxo estacionário do estator criando, desta forma um forte conjugado de frena-gem. O valor deste conjugado dependerá da corrente contínua que é aplicada no estator. 2.4.3 – FRENAGEM M ECÂNICA O eixo do motor é abraçado por lonas de freio que por pressão de fortes molas aper-tam o eixo, criando assim um forte conjugado de atrito. Em geral, o conjugado que se aplica é igual ao conjugado nominal do motor. 2.5) EXEMPLOS

2.5.1 - Um compressor centrífugo (característica mecânica parabólica com a velocidade) de-verá ser acionado por um motor de indução trifásico rotor em gaiola, categoria N, conforme a NBR-7094. O compressor possui as seguintes características operacionais e construtivas: a) - Momento de inércia: 4 kgm2. b) - Conjugado de atrito inicial: 9 Nm. c) - Conjugado nominal: 90 Nm. d) - Velocidade nominal: 1755 RPM Ele será acoplado ao eixo do motor através de um multiplicador de velocidades (ωmot<ωmq) de relação 1,50 cujo rendimento foi fixado em 89,4%. Pede-se:

a - Escolher o motor adequado para o acionamento verificando sua capabili dade de acelera-ção, usando o catálogo da WEG motores, para motores de 220 V, 60 Hz.

b - Que conjugado deverá ser aplicado para se fazer uma frenagem mecânica em 2,5 s?

SOLUÇÃO a - A potência requerida pelo compressor quando opera na sua condição nominal será dada por:

54,169550

175590

9550=×=

×=

nCP rn

rn kW

Portanto, a potência mecânica a ser fornecida pelo motor no seu eixo será:

5,18894,0

54,16 ===t

rnmot

PP

η kW. Sendo a transmissão feita por um multiplicador de velocida-

des de relação 1,50, a velocidade do motor será 11705,1

1755= RPM, isto é, um motor de 6 polos.

Consultando o catálogo da WEG, escolhemos o motor com os seguintes dados: 18,5 kW; 220 V; 1165 RPM; 60 Hz; 6 polos; Cn = 150 Nm; Cp = 2,60 p.u.; Cm = 2,80 p.u.; Jm = 0,2696 kgm2; tempo de rotor bloqueado tb= 8 s; Categoria N; Classe B.

Page 9: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 50

A capabili dade de aceleração será verificada comparando-se o tempo de aceleração calcula-do pelo método dos conjugados médios com o tempo de rotor bloqueado. Teremos:

ama

CJt 12 ωω −

= , onde: ω2 = 1165 RPM = 122 rad/s; ω1 = 0

32,95,142696,02,12,1 2

2

=×+×=

+×=

mot

mq

mqm JJJωω

kgm2

( )

++=−=

mot

mq

t

rmmprmmmam

CCCrefCCC

ωω

η45,0)(

( ) ( ) 5,36415043,2..43,280,260,245,045,0 =×==+=+ upCC mp Nm

363

9909

30

0 =−+=−

+=CC

CC rnrm Nm

4,605,1894,0

36)( =×=refCrm Nm

Substituindo os valores obtidos na equação do tempo, teremos:

74,34,605,364

12232,9 =

−=at s<8 s, ou seja, o motor possui a necessária capabili dade (R).

b - O tempo de frenagem é dado por:

fmrmf

CCJt

+−

= 12 ωω. Explicitando em relação a Cfm e substituindo os valores teremos:

4,3944,605,2

012232,912 =−−=−

−= rm

ffm C

tJC

ωωNm (R)

2.5.2 – Um motor de indução trifásico, rotor em gaiola, possui os seguintes dados de placa:

9,2 kW; 220 V; 60 Hz; 4 polos; 1755 RPM; Cn = 50 Nm; Cp = 2,5 p.u.; Cm = 2,9 p.u. Jm = 0,0465 kgm2; Categoria N; Classe B

A curva característica do conjugado motor está indicada na figura 2.03. A máquina que ele

aciona está acoplada diretamente ao seu eixo e o seu momento de inércia vale 2,8 kgm2. Sua carac-terística de conjugado é constante com a velocidade e na condição operacional do problema o con-jugado requerido é 0,80 p.u. Pede-se:

a) Qual a potência que a máquina solicita do motor? b) Qual o tempo de aceleração para o motor atingir a velocidade de regime? c) Qual o tempo de desaceleração sem usar freios?

SOLUÇÃO a – A potência requerida pela máquina é igual à potência fornecida pelo motor pois o aco-plamento sendo direto, não há perdas, ou seja:

Page 10: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 51

PC n

rr=

×9550

C (0/1)

C

m M

Cp A B

Cr R N T

0 900 1700 n RPM

! "

Porém, como o motor não está operando na sua condição nominal, n não pode ser tomado igual a 1755 RPM. O ponto de operação do motor será o ponto N da característica ao qual corres-ponde a velocidade n procurada. Por semelhança de triângulos, teremos:

∆ ∆MT NTnn

n17001800 1700

1800

2 9

0817724≈ ∴

−−

= ∴ =,

,, RPM = 185,6 rad/s

Cr = × =0 8 50 40, Nm. Substituindo os valores na equação da potência, teremos:

Pr =×

=40 17724

95507 42

,, kW (R)

b – O tempo de aceleração será igual a:

ama

CJt 12 ωω −

= , onde: ω1 = 0; ω2 = 185,5 rad/s; J = 0,0465 + 2,8 = 2,8465 kgm2

( ) ( )C C C C C C p uam mm rm p m rm= − = + − = + − = =0 45 0 45 2 5 2 9 0 8 1 63 815, , , , , , . . , Nm

Substituindo os valores, teremos:

ta =−

=2 84651855 0

8156 48,

,

,, s (R)

4 Esta é uma curva teórica que não se encontra na prática. Porém, a região estável MT ser uma reta, não se afasta muito das apli cações práticas que consideram esta região reta para as características reais.

Page 11: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 52

c - t JCd

rm

=−

=−

=ω ω2 1 2 8465

1855 0

40132,

,, s (R)

2.5.3 - Uma bomba centrífuga, cuja característica mecânica está indicada abaixo, deverá ser acionada por um motor de indução trifásico, rotor em gaiola. Ela está acoplada ao eixo do motor através de um redutor de velocidades de relação igual a 0,5 e rendimento 0,94. O momento de inér-cia da bomba vale 7,5 kgm2 e sua velocidade nominal é 880 RPM.

C n nr = × + +−187 10 014 1535 2, , , Cr em Nm e n em RPM.

Pede-se escolher o motor adequado para fazer o acionamento, dando sua potência, número de polos e comparando o tempo de aceleração com o tempo de rotor bloqueado. Usar o mé-todo dos conjugados médios

SOLUÇÃO O conjugado nominal requerido pela bomba na sua condição nominal de operação será:

Crn = × × + × + =−187 10 880 014 880 153 1535 2, , , Nm

Portanto, a potência requerida será: Prn =×

=153 880

955014 09, kW

A potência solicitada ao motor nesta condição será: PP

motrn

t

= = =η

14 09

0 9415

,

, kW

Consultando o catálogo da WEG, o motor escolhido será: 15 kW; 220 V; 60Hz; 4 polos; 1760 RPM; Cn = 80 Nm; Cp =2,2 p.u.; Cm = 2,7 p.u. Jm = 0,0722 kgm2; tb = 6 s; Categoria N; Classe B. A verificação quanto a capabili dade de aceleração será feita a partir do cálculo do tempo de aceleração:

ama

CJt 12 ωω −

= , onde: ω1 = 0; ω2 = 1760 RPM = 184,3 rad/s;

J = × + × =1 2 0 0722 7 5 0 5 1 962, , , , , kgm2;

C C Cam mm rm= − , onde ( ) ( )C C C p umm p m= + = + = =0 45 0 45 2 2 2 7 2 205 1764, , , , , . . , Nm

C CC C

p urmrn= +

−= +

−= = × =0

0

31

1 0 1

30 4 0 4 80 32

,, . . , Nm. Teremos:

ta =−−

=1 961843 0

1764 322 5,

,

,, s <6 s. Logo, o motor possui capabili dade de aceleração. (R)

2.6) MÉTODOS E DISPOSITIVOS DE PARTIDA

Page 12: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 53

Os efeitos da corrente de partida assinalados na seção 2.1) podem ser significativa-mente reduzidos quando se reduz a tensão aplicada ao motor durante a partida e aceleração. Há vá-rios dispositivos disponíveis no mercado, conhecidos pelo nome genérico de Chaves de Partida, que são amplamente usados para reduzir a tensão aplicada ao motor durante a partida. A escolha de cada um destes tipos de chave deve ser feita com critérios que levem em conta as restrições impos-tas pelo sistema elétrico que alimenta o motor, o próprio motor e a carga acionada. Todavia, o me-lhor método para se partir um motor é ligá-lo diretamente á rede, à plena tensão, pois ele foi fabri-cado para isto e a introdução das chaves de partida deve ser considerada como uma solução dada a um problema. As chaves de partida que serão estudadas são supostas serem automáticas, isto é, os seus circuitos de comando possuem relés de vários tipos (temporizados, auxili ares, de proteção, etc, eletromagnéticos ou a estado sólido), além de outros componentes que possibili tam tornar automá-tica a operação de ligar o motor com tensão reduzida e, após o um certo tempo, fazer a comutação para a tensão plena. Por sua vez, os circuitos de potência possuem contatores eletromagnéticos ou componentes estáticos (semicondutores e tiristores) que permitem uma ligação segura do motor à rede. Vamos adotar a seguinte nomenclatura nas equações que serão estabelecidas, con-forme a figura 2.04 abaixo. R

S T C1 V V V I p

' I p' I p

'

CHAVE V ’ V ’

V ’

Ipm Ipm Ipm

MOTOR Zp = Rp + jXp

Page 13: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 54

# ! ! $ ! ! % ! & Ip: Corrente de partida que circula na rede elétrica quando o motor é ligado à plena tensão V I p

' : Corrente de partida que circula na rede elétrica quando o motor é ligado através da chave

V ’: Tensão reduzida pela chave aplicada ao motor. Ipm: Corrente de partida que “entra” no motor quando se dá a partida com a chave. Cp: conjugado de partida do motor a plena tensão. Cm: conjugado máximo do motor a plena tensão. Cp

' : conjugado de partida do motor à tensão V ’.

Cm' : conjugado máximo do motor à tensão V ’.

Zp = Rp + jXp = impedância de partida do motor (impedância subtransitória)

Sendo a impedância de partida do motor um valor constante, podemos escrever as seguintes igualdades:

I IV

Vpm p='

[2.11]

C CV

Vp p'

'

=

2

[2.12]

C CV

Vm m'

'

=

2

[2.13]

Serão estudadas as seguintes chaves de partida:

• Chave autotransformadora ou compensadora de partida • Chave estrela-triângulo • Chave com impedâncias primárias • Chave estática (soft starter) 2.7) CHAVE AUTOTRANSFORMADORA Esta chave é constituída, basicamente, de um autotransformador que reduz a tensão aplicada ao motor na proporção direta da sua relação de transformação. Em geral, o autotransfor-mador possui 3 derivações que reduzem a tensão a tensão primária na relação de 80, 65 e 50%. Por-tanto, sendo V a tensão entre fases da rede de alimentação e K a relação de transformação escolhi-da, a tensão aplicada ao motor, na partida será:

V’ = KV (V>V’) [2.14] A corrente de partida que entra no motor, por fase, será:

Page 14: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 55

IV

Zpmp

='

3 [2.15]

A corrente de partida no primário do autotransformador será igual a:

I I KV

ZK

V

ZK I Kp pm

p pp

''

= = = =3 3

2 2 [2.16]

Vê-se, portanto, que a corrente de partida na rede é reduzida de K2 vezes. Os conju-gados de partida e máximo serão reduzidos na mesma proporção, isto é, K2 vezes. A figura 2.05 mostra os circuitos de potência e de comando de uma chave autotransformadora que utili za contato-res eletromagnéticos para realizar as suas operações.

' ! & ( % ! •• Simbologia As letras que aparecem nos circuitos de potência e de controle têm o seguinte signi-ficado:

Page 15: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 56

• F1, F2...Fn: fusíveis de proteção contra curto-circuito. • FT1: relé térmico de proteção contra sobrecarga. • K1, K2, K3 (no circuito de potência): contatores eletromagnéticos de operação automática. • K1, K2, K3 (no circuito de controle): contatos auxili ares dos respectivos contatores po-dendo ser do tipo NA (normalmente aberto ou contato fechador) ou NF (normalmente fechado ou contato abridor). • S0: botão desliga de atuação manual; S1,S2: botão liga, de atuação manual. • KT1 ) : relé de tempo que comanda a atuação do seu respectivo contato. Pode ser tempori-zado ao trabalho ou ao repouso. Ao trabalho, após receber tensão “conta” tempo para atuar, isto é, abrir ou fechar seu contato. Ao repouso: após ter sido desenergizado, “conta” tempo para atuar. • H1, H2,...Hn: lâmpadas de sinalização A seqüência de operação da chave é a seguinte: • Ligação Ao pressionar o botão S2, a bobina do contator K3 é energizada, comandando o fe-chamento do contator K3 no circuito de potência. Os contatos auxili ares de K3 mudam de posição: o contato NF abre e não permite que o contator K1 seja ligado; o contato NA fecha e energiza o relé temporizado KT1 ) , que começa a “contar” tempo, e a bobina do contator K2 que liga o motor à rede através do autotransformador na derivação escolhida. O motor recebe a tensão reduzida. Os contatos NA de K2 fecham para reter a ligação de K2 e K3. Observar o intertravamento entre os circuitos de K3 e K2: os contatores não podem estar fechados ao mesmo tempo. • Comutação Transcorrido o tempo ajustado, o relé de tempo KT1 ) abre o seu contato KT1 e des-liga o contator K3. O contator K3 fecha seu contato auxili ar NF que estava aberto energizando a bobina do contator K1. O contator K1 fecha e o motor recebe a tensão plena. O contator K1 perma-nece ligado através de seu contato NA de retenção K1 e seu contato NF desliga K2. Observar que ao abrir o contator K3 o motor permanece ligado à rede através do primário do autotransformador que funciona como uma simples indutância em série com o enrolamento do estator.Este tipo de co-mutação é chamada de transição em circuito fechado. A operação da chave realizada desta forma evita que haja um surto de corrente que poderia ser maior do que a própria corrente reduzida, se a transição fosse feita em circuito aberto com desligamento do motor da rede durante aquele transitó-rio. •• Desligamento

Qualquer um dos dispositivos de proteção ou botão S0 quando pressionado abre o circuito de controle desligando o contator K1. Podem ser acrescentados outros contatos abridores atuados por dispositivos de proteção tais como relés de temperatura, chaves fim de curso, relés anti-vibração, etc, em série com o botão S0.

A figura 2.06 mostra as características da corrente de partida e do conjugado do mo-tor em função da velocidade da velocidade do motor. Na primeira etapa do processo de aceleração, o motor recebe a tensão V’ e se acelera até atingir a velocidade ω’ . A corrente de partida I p

' reduzi-

da pelo autotransformador, evolui segundo a curva MN na figura (a) e o conjugado segundo a curva

Page 16: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 57

MN da figura (b). Neste instante é feita a comutação, o motor recebe a tensão plena, e as curvas de corrente de partida e conjugado voltam às curvas correspondentes à tensão plena até completar a aceleração quando o motor atinge a velocidade ω. No momento da comutação se observa um pe-queno surto da corrente e o correspondente surto no conjugado, que seriam maiores, se a transição fosse em circuito aberto. Vê-se que o tempo de aceleração será aumentado pois o conjugado médio motor fica-rá reduzido da área AMNP, restando somente a área hachurada. Isto pode trazer problemas para o motor no que se refere à sua elevação de temperatura, como será visto no capítulo III .

* ! &

% !

A especificação de uma chave autotransformadora é um problema muito simples para o engenheiro de aplicação, pois os fabricantes deste tipo de equipamento fornecem modelos padronizados para os quais é necessário sejam fornecidas as seguintes informações: • potência do motor • número de partidas por hora. • tempo de aceleração • tensão da rede • número de derivações necessárias. • classe de isolamento térmico 2.8) CHAVE ESTRELA-TRIÂNGULO Para que um motor de indução possa usar uma chave estrela-triângulo ele deve satis-fazer a duas condições preliminares:

Page 17: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 58

• O enrolamento do estator deve ser ligado em triângulo quando ele opera na sua condição normal, recebendo a tensão plena. • Os 6 terminais do enrolamento devem ser trazidos até a caixa de ligação do motor para permitir as conexões entre eles através dos contatores. Na partida enrolamento do estator é ligado em estrela de modo que a tensão por fase que ele recebe seja dividida por 3. Enquanto o enrolamento estiver ligado em estrela, a corrente de partida e o conjugado serão reduzidos. No instante em que atinge a velocidade em que deve ser feita a comutação para a tensão plena, os contatores operam, religando o enrolamento em triângulo. Se o motor fosse ligado diretamente à rede, a corrente de partida que circularia por ela seria igual a:

IV

Zpp

= 3 [2.17]

Quando a chave é ligada, a corrente de partida na rede passa a ser:

IV

Z

V

Zpp p

''

= =3

[2.18]

Dividindo membro a membro as igualdades acima teremos:

II

p

p' =3

[2.19]

Portanto, quando se usa a chave estrela-triângulo na partida do motor, a corrente de partida da rede é 1/3 da corrente de partida a plena tensão. De seu lado, o conjugado de partida fica também reduzido de 3 vezes pois ele é proporcional ao quadrado da tensão aplicada. A figura 2.07 mostra os circuitos de potência e de comando da chave estrela-triângulo cuja seqüência de operação é a seguinte:

• Simbologia A mesma simbologia usada na chave autotransformadora observando apenas que o relé temporizado usado no circuito de controle possui dois contatos: um NF que “conta” tempo para abrir (no circuito da bobina K3) e um NA que “conta” tempo para fechar (no circuito da bobina K2) se mantendo nestas posições enquanto a bobina do relé se mantiver energizada. • Ligação Ao pressionar o botão S1 a bobina do contator K3 é energizada através dos contatos NF do relé temporizado KT1 e do contato auxili ar de K2. O contator K3 fecha seu contato NA e abre seu contato NF comandando o fechamento de K1 e não permitindo o fechamento de K2. O motor é ligado à rede em estrela recebendo a tensão reduzida. •• Comutação

Page 18: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 59

Transcorrido o tempo ajustado, o relé KT1 opera abrindo o circuito da bobina de K3 e fechando o da bobina de K2 que se retem através de seu contato auxili ar de retenção. Os contato-res K1 e K2 permanecem ligados e o motor opera ligado em triângulo recebendo a tensão da rede. Observar o intertravamento entre K3 e K2 que impede o fechamento simultâneo dos contatores. •• Desligamento Qualquer um dos dispositivos de proteção ou botão S0 quando pressionado abre o circuito de controle desligando o contator K1. Podem ser acrescentados outros contatos abridores atuados por dispositivos de proteção tais como relés de temperatura, chaves fim de curso, relés anti-vibração, etc, em série com o botão S0.

+ & ( % ! , Como se pode observar pela seqüência de operação acima descrita, durante a comu-tação, o motor fica durante um transitório desligado da rede. Isto pode provocar um surto de corren-te ao ser fechado o contator K2 devido à tensão residual existente em seus terminais, após o desli-gamento, que se compõe com a tensão aplicada. Este tipo de chave é chamado de transição em cir-cuito aberto. A figura 2.08 apresenta as características de corrente de partida e de conjugado de uma chave estrela-triângulo. Vê-se no exemplo da figura 2.08 (a) que o surto de corrente no momento da comuta-ção ultrapassa a corrente reduzida. Pelo fato de reduzir o conjugado de partida para 1/3 de seu valor a plena tensão e de fazer a transição em circuito aberto, a chave estrela-triângulo não é usada para ligar motores que acionam cargas que possuem um valor elevado de conjugado resistente na parti-da, como por exemplo, as cargas de característica constante com a velocidade. Elas são usadas para

Page 19: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 60

ligar motores que acionam cargas tipo parabólica, que possuem um conjugado de partida da ordem de 10% do seu conjugado nominal, ou quando eles podem partir a vazio, sendo a carga acoplada posteriormente.

(a) (b) - ! ! & . / . 0 / % ! 1

2.9) CHAVES COM IMPEDÂNCIAS PRIMÁRIAS A chave de partida com impedâncias primárias é constituída, basicamente, de uma impedância, por fase, em série com o enrolamento do estator. Ao ser ligado à rede, o motor recebe uma tensão V’ que é igual à tensão da rede menos a queda de tensão na impedância, isto é:

V V Z Ia p` '= − 3 [2.20]

sendo Za a impedância por fase em série com o enrolamento do estator. Como impedâncias são usa-das resistências ou reatâncias, sendo normal os fabricantes fornecerem conjuntos ajustáveis de mo-do a se poder escolher o valor da tensão V’ que se deseja aplicar ao motor. Em geral, os valores de resistência ou de reatância são ajustados de modo a se ter uma tensão uma queda de tensão de 20 a 30%. A escolha entre resistência e reatância está, em geral, associada à potência do motor: para motores pequenos e médios é usada resistência; para motores de grande potência é usada a reatân-cia. Todavia, fatores econômicos podem mudar esta orientação. A figura 2.09 mostra os circuitos de potência e de comando de uma chave com im-pedância primária. A seqüência de operação da chave é muito simples e fica proposto como exercí-cio a sua descrição. Devido ao seu modo de operar, a chave com impedâncias primárias é, inerentemente, uma chave com transição em circuito fechado. Vê-se que a corrente que "entra" no motor é a mes-ma da rede. Isto significa que a redução que se obtém com esta chave, é menor, comparada com as

Page 20: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 61

duas chaves vistas anteriormente. A grande vantagem da chave com impedâncias primárias reside no fato de ela proporcionar uma aceleração suave que a faz ideal para dar a partida em motores que acionam cargas delicadas, tais como se encontram na indústria têxtil. À medida que o motor se ace-lera, o surto de corrente vai diminuindo e, conseqüentemente, a queda de tensão na impedância tor-na-se menor. A tensão reduzida V’ cresce gradualmente nos terminais do motor o que proporciona um aumento gradual do conjugado de aceleração. A aceleração se completa curto-circuitando-se a impedância acrescentada através de um contator.

. / . 0 / 2 % & 1 ! & ! 3 . / & ( 4 . 0 /

A figura 2.10 mostra as características de corrente de partida e de conjugado de um motor quando se usa uma chave com impedância primária onde se pode notar os pequenos surtos de corrente e de conjugado, comparados com os surtos das outras chaves. 2.9.1 - Dimensionamento das impedâncias O valor de uma resistência a ser acrescentada em série com o enrolamento do estator pode ser facilmente calculada através do diagrama fasorial das impedâncias mostrado na figura 2.11 onde as letras têm o seguinte significado:

Page 21: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 62

ppp jXRZ += = impedância do motor na partida. No circuito equivalente, faz-se s = 1.

aR = resistência de partida a ser acrescentada em cada fase.

´pZ = impedância total (motor + resistência adicionada)

cos pφ = fator de potência do motor na partida

(a) (b)

! & . / . 0 /

pZ 'pZ

pX

0 pR aR

5 ! & 1 ! O valor de Ra será obtido através da solução do triângulo retângulo de hipotenusa '

pZ

e catetos pX e ( aR + pR ).

Page 22: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 63

pppa RXZR −−= 22' [2.21]

Os valores de '''' ,,,,,,, pppppp CCVVIIZZ estão relacionados através

das igualdades abaixo:

'''

'

p

p

p

pp

C

C

V

V

I

I

Z

Z

p

=== [2.22]

Se em lugar de resistências usarmos reatâncias, a expressão [2.20] se transforma em:

X Z R Xa p p p= − −'2 2 [2.23]

Para calcularmos os valores de Rp e de Xp seria necessário conhecer o fator de potên-cia do motor, cos φp, na partida. Este, entretanto, não é um dado disponível de catálogo. Como Rp, comparado com Xp, é um valor muito pequeno, é comum desprezar seu valor e fazer Xp = Zp. Toda-via, se se deseja obter um valor de cosφp, pode-se fazê-lo através da expressão empírica [2.24], pro-posta por B.Y. Lipkin em seu livro Electrical Equipment for Industry.

( )( )

cos cosφ φη η

p m

n p

pC

s I

I=

−+

1

1

3 [2.24]

Os símbolos e as letras se referem a um determinado motor, todos os valores são dados em

p.u., tomando as grandezas nominais do motor como valores base e têm o seguinte significado: cos φp = fator de potência do motor na partida. cos φ = fator de potência do motor a plena carga Cm = conjugado máximo

Ip = corrente de partida η = rendimento a plena carga sn = escorregamento nominal 2.10) CHAVES ESTÁTICAS (SOFT STARTERS) Os semicondutores de potência existem há mais de 30 anos mas, até relativamente pouco tempo, eram muito caros para serem usados em chaves de partida de motores elétricos, subs-tituindo as chaves convencionais. Porém, com a redução dos custos de produção dos semiconduto-res, têm surgido no mercado as chamadas chaves estáticas (soft starters) com preços mais competi-tivos, ampliando o seu uso nos dias atuais. Além de possibili tar a redução da tensão aplicada ao motor na partida a valores muito baixos, elas têm incorporado outras operações de controle e prote-ção do motor, tornando-se extremamente versáteis. O principal componente da chave estática é o tiristor ou retificador controlado de silício (SCR - sili con controlled rectifier) que opera em dois estados estáveis: aberto ou fechado, tal como um interruptor comum. O controle da tensão aplicada,

Page 23: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 64

mediante o ajuste do ângulo de disparo dos tiristores, permite obter partidas e paradas suaves do motor, donde o seu nome em inglês.

Com o ajuste adequado das variáveis, o conjugado produzido é ajustado à necessida-de da carga, garantindo a mínima corrente necessária para a partida. Como os tiristores operam co-mo interruptores que permitem fluxo de corrente em um único sentido, nos circuitos de corrente alternada eles são ligados dois a dois, formando a chamada ligação antiparalela (Figura 2.12).

6 & ! !

Desta forma, a corrente alternada circula normalmente e, ao mesmo tempo se obtém

o controle da tensão aplicada ao motor. As chaves estáticas permitem um ajuste contínuo da tensão entre 0 e 100% da tensão de linha e não têm, como as chaves eletromagnéticas convencionais, o problema do surto de corrente e conjugado quando se passa para a tensão plena. A WEG e a SIE-MENS produzem chaves estáticas avançadas, com várias funções.

A utili zação de controladores micro-processados para as chaves estáticas é uma ten-dência geral entre os fabricantes. O uso dos micro-processadores permite ampliar o número de fun-ções de controle da chave, não se limitando a ligar e desligar o motor. Algumas destas funções são, resumidamente, as seguintes: •• Função partida suave: o tempo de aceleração do motor pode ser controlado. • Função limitação de corr ente: limita a corrente a valores pré-determinados

• Função partida de bombas hidráulicas: reduz o chamado golpe de aríete que ocorre quando há desligamento do motor.

• Função parada suave: permite que o tempo de desaceleração do motor possa ser contro-lado, reduzindo-se gradualmente a tensão do motor ao invés de desligá-lo da rede.

• Função freio: o disparo dos tiristores pode ser feito de forma assimétrica, aplicando ao motor uma tensão desequili brada que provoca o aparecimento de uma componente de ten-são de seqüência negativa que, por sua vez, cria um conjugado de sentido oposto ao da ro-tação, freando o motor.

O uso das chaves estáticas sempre acarreta algum tipo de impacto sobre os motores de indução devido aos harmônicos que ela introduz no enrolamento do motor ao realizar as suas funções. 2.11) CONSIDERAÇÕES FINAIS

Page 24: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 65

O uso de qualquer uma das chaves descritas anteriormente provoca a redução do con-jugado do motor durante o processo de aceleração que pode ser considerado concluído quando o motor atinge a velocidade correspondente ao escorregamento crítico sm. Se a redução for significa-tiva, como ocorre no caso da chave estrela triângulo ou da chave autotransformadora na derivação de 50%, há o risco da curva do conjugado motor cortar a curva do conjugado resistente em um pon-to bem antes do conjugado máximo e, com isto, abortar o processo de aceleração. Além disso, o conjugado de aceleração diminui o que pode provocar um maior aquecimento do motor durante o período de aceleração, conforme será mostrado no capítulo III . A escolha de um dos tipos de chave depende do tipo de carga que será acionada pelo motor e, obviamente, de fatores econômicos. As chaves estrela triângulo são as mais baratas e de-vem ser usadas, preferencialmente, quando o motor aciona cargas de característica mecânica para-bólica. As chaves com impedâncias primárias são muito usadas em motores de pequena e média potência, tipicamente, em motores abaixo de 20 kW. Se o objetivo principal é reduzir o surto de corrente na rede, a chave autotransformadora deve ser a indicada. De todas as chaves, a chave estática é a que oferece a aceleração a mais suave e pode incorporar, como já dito, várias funções de proteção e controle do motor. Seu inconveniente, com-parada com as demais, é o custo. As chaves de partida só devem ser usadas quando a partida direta do motor não for possível devido ao surto de corrente que ela provoca ou quando se deseja reduzir o conjugado de aceleração para permitir uma partida suave. 2.12) EXEMPLOS 2.12.1 - Um motor de indução trifásico, rotor em gaiola, aciona uma máquina diretamente acoplada ao seu eixo que deverá girar a 1140 RPM na condição nominal de operação. A partida do motor deverá ser efetuada por meio de uma chave autotransformadora usando a derivação de 50%. O conjugado da máquina acionada varia com a seguinte equação:

C n nr = + +− −1364 10 102 4 2, n em RPM e Cr em Nm. Escolher o motor adequado para fazer o acionamento usando o catálogo da WEG e calcular a corrente de partida na rede quando se usa a chave.. A tensão disponível é 220 V e a freqüência é de 60 Hz. SOLUÇÃO Na condição nominal de operação, o conjugado resistente será igual a: Crn = + × + × =− −1364 10 1140 10 1140 1552 4 2, Nm A potência requerida pela máquina será:

PC n

rnrn= =

×=

9550

155 1140

9550185, kW

Page 25: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 66

O conjugado do motor na partida, usando a chave autotransformadora, deverá ser maior do que o valor inicial do conjugado resistente Co = 13,64 Nm, isto é, '

pC > 13,64 Nm.

Porém, C K C CC

KCp p p

p

p',

,,

'

= ∴ = ∴ > =22 2

1364

0 55456 Nm

O motor a ser escolhido deverá ter um conjugado de partida maior do que 54,56 Nm a plena

tensão. Consultando o catálogo da WEG, encontramos um motor com os seguintes dados de placa: 18,5 kW; 220 V; 6 polos; 1165 RPM; In = 60,3 A; Ip= 7,9 p.u; Cn = 150 Nm; Cp = 2,6 p.u. = 390 Nm; Cm = 2,8 p.u; tb = 8 s; Jm = 0,30337 jgm2; Categoria N. O motor escolhido atende às condições do problema, pois Cp = 390 Nm (R) Observação: não foi feita a verificação da capabili dade de aceleração por não ter sido dado

o momento de inércia da máquina. A corrente de partida ao se usar a chave será: I K Ip p' , , ,= = × =2 20 50 7 9 1 975 p.u. (R)

2.12.2 - Um soprador de ar de um alto forno de uma usina siderúrgica possui os seguintes dados operacionais: Conjugado nominal: 290 Nm Velocidade nominal: 1760 RPM Conjugado de atrito: 29 Nm Momento de inércia: 15 kgm2 Deseja-se especificar um motor de indução trifásico, rotor em gaiola, para acionar o sopra-dor, sabendo-se que este será acoplado diretamente ao eixo do motor. O motor deverá ser ligado à rede através de uma chave autotransformadora na derivação de 80%. Usar o catálogo da WEG. SOLUÇÃO A potência requerida pelo soprador será:

44,539550

1760290 =×=rP kW

que é a mesma fornecida pelo motor pois o acoplamento é direto. Consultando o catálogo da WEG, o motor que será escolhido possui os seguintes dados:

55 kW; 440V; 60 Hz; 4 polos; 1770 RPM; Cn = 30,3 kgfm; Cp = 2,2 p.u.; Cm = 2,7 p.u. Jm = 0,69987 kgm2; Categoria N; tb = 11 s

Page 26: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 67

Para verificarmos se o motor escolhido está adequado, temos que calcular o tempo de acele-ração do motor para atingir a velocidade de 1760 RPM, com a chave ligada, para comparar com o tempo de rotor bloqueado do motor. Desta forma teremos:

'

12'

am

aC

Jtωω −

=

onde 'at : tempo de aceleração quando o motor recebe a tensão reduzida pela chave.

J: momento de inércia total = 15 + 0,69987 = 15,7 kgm2 ω1 = 0 ω2 = 1760 RPM = 184,30 rad/s

rmmmam CCC −= '' : conjugado de aceleração médio equivalente com a tensão reduzida.

( ) 2' 45,0 KCCC mpmm += : conjugado médio motor com a tensão reduzida

3orn

orm

CCCC

−+= : conjugado médio resistente do soprador de ar, carga de característica parabó-

lica. ( ) 4112,18,07,22,245,0 2' =+=mmC p.u.= 1,4112x30,3x9,81 Nm = 419,47 Nm.

1163

2929029 =++=rmC Nm

Substituindo os valores obtidos acima na expressão do conjugado de aceleração, teremos:

47,30311647,419' =−=amC Nm

O tempo de aceleração será então:

53,947,303

3,1847,15' ==at s, valor menor do que o tempo de rotor bloqueado. O motor está correto.(R)

2.12.3) O motor escolhido no problema 2.11.1 será, agora, ligado à rede através de uma cha-

ve com resistências primárias, acionando uma carga de característica mecânica constante com a velocidade acoplada diretamente ao eixo do motor, sendo 3,4 kgm2 o seu momento de inércia. O motor vai operar na sua condição nominal. O fator de potência na partida foi estimado em 38%. Pede-se:

a – O valor da resistência adicional, por fase, para reduzir a corrente de partida para 6 p.u. b – O conjugado de partida e o conjugado máximo. c – O tempo gasto para se fazer a comutação sabendo-se que ela vai ocorrer na velocidade

correspondente ao escorregamento crítico que vale 0,10 p.u. SOLUÇÃO a – A resistência a ser inserida será obtida pela seguinte equação:

Page 27: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 68

R Z X Ra p p p= − −'2 2

sendo:

R Z

X Zp p p

p p p

==

cos

sen

φφ

A impedância Zp, em p.u., é o inverso da corrente de partida, ou seja, ZIp

p

= = =1 1

7 90126

,,

Da equação [2.21] podemos tirar: Z ZI

Ip p

p

p

' ' ,,

,= = =01267 9

60166 p.u.

R p u

X p u

p

p

= × == × =

0126 0 38 0 0478

0126 0 925 01165

, , , . .

, , , . .

Substituindo os valores, teremos: Ra = − − =0166 01165 0 0478 0 07042 2, , , , p.u. (R) Para obter o valor de Ra em ohms, é necessário calcular a impedância nominal do motor que

será tomada como a impedância base, isto é, Z ZV

Ib n

n

= = =×

=3

220

3 60 32 106

,, ohms.

Ra = × =0 0704 2106 0148, , , ohms (R) b - Da equação [2.21] podemos tirar:

C CI

Íp p

p

p

' ,,

,=

=

=

2 2

2 66

7 91 45 p.u. ; C C

I

Ím m

p

p

' ,,

,=

=

=

2 2

2 86

7 91 61 p.u.

c - O tempo para a comutação será igual a: '

12'

am

aC

Jtωω −

= , onde:

J J Jmot maq= + = + =0 30337 3 4 3 703, , , kgm2

ω1 = 0; ω2 = velocidade correspondente ao escorregamento de 0,10 p.u., isto é: ( )n2 12001 010 1080= − =, RPM = 113,09 rad/s = ω2 rmmmam CCC −= '' ; ( ) 2' 45,0 KCCC mpmm += = ( )0 45 1 45 1 61 1 377, , , ,+ = p.u. = 206,55 Nm

Crm = conjugado nominal do motor pois a máquina está acoplada diretamente e sua caracte-rística mecânica é constante = 150 Nm. Substituindo os valores obtidos, teremos:

ta' ,

,

,,=

−=3703

11309

20655 1507 4 s (R)

2.12.4) Um motor de indução trifásico, rotor em gaiola, possui os seguintes dados de placa: 37 kW; 440 V; 60 Hz; 4 polos; 1770 RPM; Cn = 198 Nm; Cp = Cm = 2,4 p.u.;

Page 28: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 69

Jmot = 0,3405 kgm2; tb = 12 s; Categoria H Ele opera na sua condição nominal acionando uma carga que está acoplada ao seu eixo atra-

vés de um redutor de velocidade cuja relação é 0,333 e rendimento 88,27%. O momento de inércia da carga é 9 kgm2 e o seu conjugado resistente varia com a seguinte equação:

C nr = +60 0 787, (n em RPM e Cr em Nm)

O motor será ligado à rede por uma chave estrela-triângulo e a comutação para a tensão ple-na se dará no instante em que o motor atinge 1713 RPM correspondente ao conjugado máximo. Pede-se:

a) O tempo de ajuste do relé de tempo para comandar a comutação b) Estando o motor operando normalmente, qual o tempo de frenagem quando se aplica um

conjugado frenante mecânico igual ao conjugado nominal da carga? SOLUÇÃO a – Na condição nominal de operação do motor, a velocidade do eixo da carga será 590 RPM e o conjugado requerido igual a: Cr = 60 + 0,787x590 = 524,33 Nm

O valor médio do conjugado resistente será: Crm =+

=60 52433

229216

,, Nm, cujo valor

referido ao eixo do motor será igual a:

Crm = × =29216

0 88270 3333 11031

,

,, , Nm

O conjugado médio motor com a chave ligada, será igual a:

( ) ( )C

C C Cp umm

mm p m= =

+=

+= = × =

3

0 45

3

0 45 2 4 2 4

30 72 0 72 198 14256

, , , ,, . . , , Nm

O momento de inércia total referido ao eixo do motor será:

J = × + ×

=1 2 0 3405 9

1

31 4086

2

, , , kgm2

Tendo obtido todos os dados para calcular o tempo de aceleração teremos:

t JCa

am

' ' ,,

, ,,=

−=

−=

ω ω2 1 1 408617938

14256 110317 8 s (R)

b – O tempo de frenagem será igual a:

Page 29: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 70

t JC Cf

rm fm

=−+

=+

=ω ω2 1 1 4086

18535

11031 1980 84,

,

,, s (R)

2.13) AQUECIMENTO DO MOTOR DURANTE A PARTIDA O comportamento térmico de um motor de indução durante a partida e aceleração e após atingir o estado de operação em regime permanente são muito diferentes. No primeiro caso, quando a partida é direta, condição em que a corrente atinge valores da ordem de 5 a 8 vezes a cor-rente nominal do motor, uma grande quantidade de calor é gerada, em um tempo relativamente cur-to (tempo de partida, da ordem de segundos). Como conseqüência, há um aquecimento rápido e intenso do enrolamento do estator e do rotor cujas temperaturas podem atingir valores bem maiores do que as que seriam atingidas durante a operação normal em regime permanente. No segundo caso, após ter atingido seu estado de regime permanente, em geral, na sua condição nominal, o motor inicia um processo de aquecimento gradual, até atingir uma deter-minada temperatura. Ao longo deste processo se estabelece um gradiente de temperatura do interior do motor (enrolamento do estator) para a parte externa (carcaça) havendo, portanto, dissipação de calor para o meio ambiente. O processo se completa a partir do momento em que se estabelece o chamado equilíbrio térmico, isto é, todo calor gerado pelas perdas do motor é dissipado para o meio ambiente. A temperatura do motor atinge o seu valor máximo possível para aquela condição de car-ga e se estabili za5. Na partida, a impedância do motor de indução assume o seu menor valor. Em conse-qüência, a corrente do motor, quando ele é ligado diretamente à rede, atinge o máximo valor possí-vel. Valores usuais da corrente de partida são de 4 a 8 vezes o da corrente nominal. Esta corrente de partida provoca um forte aquecimento, durante um tempo relativamente muito curto, tempo que o motor gasta para se acelerar, no rotor e no estator. Este forte aquecimento é devido às elevadas per-das jóulicas que são proporcionais ao quadrado da corrente circulante (as perdas magnéticas e me-cânicas têm influência desprezível sobre o aquecimento do motor durante a partida). Esta sobrecarga térmica não tem tempo suficiente para ser dissipada no meio ambi-ente sendo então absorvida pelos enrolamentos do rotor e do estator, provocando uma elevação da temperatura localizada naquelas partes do motor. Esta condição pode ser mais crítica para o rotor do que para o estator, em especial para o rotor em gaiola. Isto porque no rotor, a elevação de tempera-tura causa sérios problemas devidos à dilatação dos anéis de curto-circuito que unem as barras do rotor. Os anéis aumentam o seu diâmetro, mas as barras, que são rigidamente presas dentro das ra-nhuras do rotor, não acompanham a dilatação dos anéis. Como conseqüência, aparece um esforço severo na junção das barras com os anéis, na parte externa que se estende fora das ranhuras, ao mesmo tempo em que o calor reduz a resistência mecânica dos anéis. Este esforço pode deformar as barras e provocar fadigas a cada vez que o motor for ligado. Isto é particularmente verdadeiro para os motores que trabalham em regimes intermitentes que são ligados e desligados várias vezes du-rante seu ciclo operacional. No enrolamento do estator, a elevação da temperatura em tão curto período pode provocar uma rápida deterioração do isolamento, reduzindo a expectativa de sua vida útil. Além deste problema de natureza térmica, vale mencionar também que a elevada corrente de partida pode provocar, especialmente nos grandes motores, na parte do enrolamento chamado coroa, constituída pelas cabeças das bobinas, esforços eletrodinâmicos entre as espiras, que se atraem ou se repelem, causando um movimento de atrito entre elas que resulta em fadiga e abrasão. Da mesma forma co-

5 Voltaremos a este assunto no capítulo III .

Page 30: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 71

mo foi citado anteriormente para o rotor, este problema é agravado para os motores que operam em regimes de trabalho intermitente em que são submetidos a partidas, frenagens e reversões freqüen-tes, como ocorre nos regimes de trabalho S4 e S56. Desta forma, a operação do motor de indução pode ficar limitada pelo aquecimento do rotor ou do estator durante a partida e aceleração Enquanto o rotor em gaiola pode suportar tem-peraturas significativamente mais altas do que as do enrolamento do estator, entretanto, ele pode atingir sua temperatura máxima permissível durante a partida, antes de o mesmo acontecer com o enrolamento do estator. Nesta condição, a limitação térmica do motor é imposta pelo rotor. Se, ao contrário, é a temperatura do enrolamento do estator que atinge, durante a partida, seu máximo va-lor permissível antes da do rotor, dizemos que a limitação térmica do motor é imposta pelo estator. Estes valores de temperatura que o rotor e o enrolamento do estator atingem são superiores aos va-lores máximos para a classe de isolamento do motor que são estabelecidos para sua condição de operação em regime contínuo.

Tão logo o motor atinge a velocidade de regime, a fonte de calor se reduz drastica-mente (a corrente de partida se reduz à corrente nominal ou a outro valor menor). Paralelamente, a ventilação do motor, agora funcionando plenamente, ajuda a dissipar o calor residual e, em conse-qüência, as temperaturas do rotor e do enrolamento do estator caem. Tais considerações são especi-almente válidas quando se trata de partida de cargas de grande inércia que requerem um tempo mai-or para se acelerar.

2.13.1) CALOR GERADO NO ROTOR DURANTE A PARTIDA

A equação [1.08] é a expressão do conjugado desenvolvido pelo motor, a partir do circuito equivalente de Thévénin, conforme visto no capítulo I, reproduzida em [2.24]:

s

IrmC

1

2221

ω= [2.24]

Por outro lado, a equação [1.17] estabelece que:

dt

dJCC r

ω+= [2.25]

Supondo a situação particular em que o motor está desacoplado da máquina aciona-da, ou seja, o motor está girando a vazio, podemos fazer na equação [2.25] Cr = 0. No conjugado Cr está embutido o conjugado associado às perdas mecânicas do rotor. Portanto, o conjugado que o motor desenvolve será todo ele utili zado na aceleração da massa m cujo momento de inércia é igual a J. Esta massa m é constituída pela massa do rotor e por alguma outra que possa estar acoplada ao seu eixo, por exemplo, a massa de um volante de inércia. A equação [2.25] se transforma em:

dt

dJC

ω= [2.26]

Igualando as equações [2.24] e [2.26] podemos escrever:

6 Os regimes de trabalho normalizados serão estudados no capítulo III

Page 31: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 72

s

Irm

dt

dJ

1

2221

ωω

= [2.27]

Porém, sendo:

1

1

ωωω −=s [2.28]

resulta:

dt

ds

dt

d1ωω −= [2.29]

Substituindo a expressão [2.29] na equação [2.26], teremos:

dt

dsJ

s

Irm1

1

2221 ω

ω−= [2.30]

Rearranjando a equação [2.30] e tomando a integral de ambos os membros podemos escrever:

∫ ∫−=2

1

2

1

21

2221

t

t

s

ssdsJdtIrm ω [2.31]

Chamando de Er, o resultado da integração do primeiro membro, podemos escrever:

( )22

21

21

2ss

JEr −= ω

[2.32]

A equação [2.32] representa a perda de energia7 que ocorre na resistência ôhmica do rotor (nas três fases, quando se tratar de um rotor bobinado, ou em todas as barras e anéis de curto circuito, se for rotor em gaiola), quando ele acelera uma massa rotativa cujo momento de inércia é J, a partir de uma velocidade correspondente ao escorregamento s1 até à velocidade correspondente ao escorregamento s2. Em outras palavras, para que o rotor consiga acelerar a massa rotativa de momento de inércia J entre as duas velocidades, ele precisa despender uma determinada quantidade de energia sob a forma de calor que será calculada conforme [2.32]. O tempo não aparece nesta equação, o que significa dizer que a energia perdida no rotor devido á aceleração é a mesma, inde-pendente do tempo requerido para acelerar. Esta hipótese só é possível porque todo o conjugado resistente foi desprezado. Se, por exemplo, o atrito e a ventilação fossem considerados, a perda de energia no rotor seria maior e o sistema não seria mais conservativo. Porém, esta perda adicional é usualmente pequena comparada com a energia dissipada para acelerar a massa rotativa e pode ser desprezada. No caso de um motor de rotor bobinado que usa reostato de partida, a maior parte da perda durante a partida se dará na resistência externa do reostato. Nos regimes intermitentes em que

7 Ao longo do texto usaremos as expressões “perda de energia”, "energia perdida", “energia dissipada”, “energia trans-formada em calor” , “calor gerado” , todas com o mesmo significado.

Page 32: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 73

há grande número de partidas, usa-se a equação [2.32] para se calcular as perdas durante a acelera-ção, admitindo-se que ela se dá instantaneamente. Se na equação [2.32] fizermos s1 = 1 e s2 = 0, isto é, o motor parte do repouso e ace-

lera até atingir, praticamente, a velocidade síncrona ω1, a perda no rotor será igual a 2

21ωJ

Er = , ou

seja, a energia perdida no rotor, durante a aceleração de 0 até atingir a velocidade a vazio, é igual, numericamente, à energia acumulada na sua massa rotativa.. A fig. 2.13 mostra, graficamente, a relação entre a energia perdida no rotor e a ener-gia armazenada na massa rotativa para qualquer velocidade até a velocidade síncrona. Somente quando o motor vai do repouso até a velocidade síncrona ω1 é que a perda no rotor é igual à energia armazenada. Para qualquer valor menor do que a velocidade síncrona a perda no rotor será sempre maior do que a energia armazenada. Se, por exemplo, a carga fosse acelerada somente até atingir ωx, a energia armazenada na massa rotativa seria proporcional à área 0ωxA0 enquanto a perda no rotor seria proporcional à área 0ABC0. Obviamente, a energia total despendida para acelerar o rotor de 0 a ωx seria proporcional à soma das duas áreas, isto é, a área 0ωxBC0. ω1 M

Energia armazenada na massa rotativa

ωx A B Energia perdida no rotor 0 C 7 & 8

Por exemplo, tomando ωx igual a 50% de ω1, ou seja, fazendo s1 = 0 e 2

12 =s na

equação [2.32], a área 0ωxA0 seria igual a 8

21ωJ

e a área 0ABC0 seria igual a 218

3 ωJ . Isto mostra

que acelerando a massa rotativa até 50% da velocidade síncrona, a perda no rotor será 3 vezes maior do que a energia cinética armazenada.

A expressão a que chegamos na equação [2.32] nos permite calcular a energia que foi transformada em calor no rotor não apenas durante a partida e aceleração, mas em qualquer condi-ção em que a velocidade do motor está variando, por exemplo, durante as operações de frenagem com plugueamento e inversão de rotação. Para isto, basta atribuir os valores adequados aos escorre-gamentos s1 e s2.

Se o motor funciona a vazio e for feito um plugueamento, (frenagem do motor com

inversão de seqüência de fases), ou seja, s1 = 2 e s2 = 1, a energia perdida será igual a 32

12Jω, isto é,

3 vezes a energia perdida durante a partida e aceleração. Se o motor inverter a rotação após o plu-

gueamento, teremos s1 = 2 e s2 = 0 e a energia transformada em calor no rotor será igual a 42

12Jω ,

isto é, 4 vezes a energia perdida durante uma partida e aceleração.

Page 33: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 74

A energia dissipada no rotor pode ser reduzida fazendo a aceleração em mais de uma etapa. Isto pode ser facilmente obtido por meio dos motores de indução de rotor em gaiola com duas velocidades, conhecidos como motores tipo Dahlander8. Na primeira etapa, o motor é ligado à rede com o enrolamento de maior número de polos e se acelera até atingir, praticamente, a velocidade síncrona. Neste instante, os contatores instalados para fazer a mudança das conexões atuam, desli-gando o primeiro enrolamento e ligando o enrolamento de menor número de polos à rede: o motor se acelera até atingir a velocidade final. A energia perdida se reduz à metade da que foi dissipada na partida em uma só etapa. A figura 2.14 mostra, graficamente, esta redução.

ω1

D

ω1

2 B C

0 A E # 7 & ! & !

Na primeira etapa, o motor se acelera até atingir a velocidade ω1

2. A energia dissipa-

da no rotor corresponde à área 0AB0. Neste instante, as conexões externas são feitas pelos contato-res, mudando o número de polos, e o motor se acelera até atingir a velocidade ω1. A energia dissi-pada no rotor corresponde à área BCDB. Houve, portanto, uma redução de energia correspondente à área ABCEA, metade da área ODEO. A energia armazenada no rotor não se altera, independente de o motor ter se acelerado em uma ou duas etapas e corresponde à área 0ω1D0. A energia total con-sumida ao longo de todo o processo será igual à soma das áreas 0ω1D0, 0AB0 e BCDB.

Em várias situações pode ser conveniente expressar o momento de inércia do motor em outras unidades que não kgm2. Para os motores de indução ou síncronos, o momento de inércia J do rotor pode ser fornecido através da grandeza conhecida como CONSTANTE DE INÉRCIA ou CONSTANTE DE ENERGIA CINÉTICA, representada pela letra H e definida como a relação

entre a energia armazenada na massa rotativa do rotor à velocidade síncrona, Jω1

2

2 em watt.s e a

potência aparente nominal do motor em kVA, isto é:

( )HJ

kVA n

=−ω1

2 310

2

. [2.33]

8 Dahlander é um tipo de motor que possui duas velocidades que são obtidas, ou por dois enrolamentos totalmente sepa-rados eletricamente, ou por um só enrolamento, com terminais externos que permitem fazer conexões mudando, em conseqüência o número de polos. Neste último caso, as velocidades estão entre si na razão 1:2. Com dois enrolamentos as velocidades, em geral, não estão na razão 1:2.

Page 34: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 75

Como se pode observar, H terá a dimensão de tempo, segundo, sendo por isto cha-mada também de CONSTANTE DE TEMPO INERCIAL . Ela nos informa o grau de inércia da massa rotativa do rotor, da mesma forma que a constante de tempo de um circuito R-L nos informa do seu grau de indutividade. Para motores de indução, valores típicos de H são 1 e 0,5 segundos.

2.13.2– CALOR GERADO NO ESTATOR DURANTE A PARTIDA

O próximo passo é calcular a energia perdida no estator, correspondente a uma dada perda de energia no rotor. Partindo, novamente, do modelo de circuito equivalente segundo Thévé-nin, fig. 1.04, vemos que a corrente I2 percorre RTh e r2,. Os pontos a e b na figura 1.04 dividem o circuito equivalente em duas partes distintas: o estator, à esquerda de a e b e o rotor, à sua direita. Portanto, o calor dissipado no estator é o calor dissipado na resistência RTh. Assim sendo, o calor dissipado no enrolamento do estator será igual ao calor dissipado no rotor multiplicado pela relação

2r

RTh , conforme indica a equação [2.34]:

rTh

e Er

RE

2

= [2.34]

Somando as perdas geradas no rotor e no estator obteremos a perda total no motor quando ele opera a vazio, conforme a expressão [2.35]:

( )

+−=

2

22

21

21 1

2 r

Rss

JE Th

m

ω [2.35]

2.13.3) CALOR GERADO NO MOTOR DURANTE A PARTIDA CONSIDE-RANDO O CONJUGADO RESISTENTE

Quando o motor parte e acelera com a carga acoplada (o exemplo clássico desta con-dição são os ventiladores, exaustores e assemelhados), a energia perdida no rotor será acrescida do efeito da inércia da carga que se soma à inércia do rotor e do conjugado resistente da carga aciona-da, provocando, portanto, uma maior elevação da temperatura do motor. A partir do modelo de circuito equivalente da fig. 1.04, podemos escrever:

P mIr

sem = 1 22 2

[2.36]

ou sP mI rem = 1 2

22 [2.37]

A potência eletromagnética Pem é transferida ao rotor através do campo magnético girante de velocidade ω1, se transformando na potência mecânica.

P Cem = ω1 [2.38]

Page 35: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 76

Substituindo [2.38] em [2.37], teremos:

s C mI rω1 1 22

2= [2.39]

Considerando o intervalo de tempo dt durante a partida e aceleração, a energia dissi-pada no rotor será então:

mI r dt sCdt1 22

2 1= ω [2.40]

A equação [2.02] nos permite substituir dt como se segue:

dt Jd

C Cr

=−ω

[2.41]

ou

mI r dt sCJd

C Cr1 2

22 1=

−ω

ω [2.42]

Substituindo a variável ω por s,, podemos escrever:

mI r dtC

C CJ sds

r1 2

22 1

2=−

ω [2.43]

Integrando a equação [2.43] entre os limites correspondentes às variáveis dos dois membros, teremos:

∫∫ −−= 2

1

2

1

212

221

s

sr

t

tsdsJ

CC

CdtrIm ω [2.44]

O primeiro membro da equação [2.44] representa, como já sabemos, a energia Er dissipada no rotor durante a aceleração, ao longo do intervalo de tempo compreendido entre t1 e t2, só que agora com a presença do conjugado resistente Cr. Da mesma forma como visto para o motor fun-cionando a vazio, o segundo membro da equação representa a energia acumulada pelo rotor para acelerar a massa rotativa de momento de inércia J, que inclui o momento de inércia da carga referi-do ao eixo do motor, da velocidade correspondente ao escorregamento s1 à velocidade correspon-dente ao escorregamento s2. Vê-se que a equação [2.44] é a mesma equação [2.31] só que multiplicada pela fun-

çãoC

C Cr− . Esta é uma função da variável s que não possui uma solução exata em termos matemá-

ticos. Assim, para resolver a integral, temos de partir para métodos aproximativos. O mais usado

deles é substituir a funçãoC

C Cr− por valores médios equivalentes aos conjugados do motor C e da

carga acionada Cr. São valores constantes e, portanto, podem ser trazidos para fora do sinal de inte-gração. Isto sendo feito poderemos escrever a equação [2.44] da seguinte forma:

Page 36: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 77

EC

C CJ sdsr

mm

mm rms

s= −

− ∫ ω12

1

2

[2.45]

Cmm é o conjugado motor médio e Crm o conjugado resistente médio. A expressão final de Er será então:

( )EC

C C

Js sr

mm

mm rm

=−

−ω1

2

12

22

2 [2.46]

A equação [2.46] é a equação [2.32] multiplicada por C

C Cmm

mm rm− que será sempre

maior do que a unidade. O valor de J será, neste caso, a soma do J do rotor com o J da carga acio-nada.

A energia dissipada no estator será igual à do rotor multiplicada pela relação 2r

RTh .

Assim sendo, podemos escrever a expressão final da energia dissipada no motor de indução, durante a partida e aceleração, considerando a presença do conjugado resistente durante este período, con-forme a equação [2.47].

( )

+−

−=

2

22

21

21 1

2 r

Rss

J

CC

CE Th

rmmm

mmm

ω [2.47]

A expressão rmmm

mm

CC

C

−, escrita sob a forma

mm

rm

C

C−1

1, nos permite fazer a seguinte

análise dos resultados da equação [2.47]: quanto maior o valor de Cmm em relação a Crm menor será o efeito do conjugado resistente no aquecimento do motor durante a partida. Este é o caso, por e-xemplo, dos pequenos motores, que possuem, em p.u., elevados conjugados de partida e máximo,

comparados com os motores de grande potência. Isto faz com que a relaçãomm

rm

C

C destes motores

tenda para um valor muito pequeno e possa ser desprezada sem cometer grandes erros, ou seja, po-demos considerar Crm igual a zero e admitir que o aquecimento destes motores se dá instantanea-mente. Já os motores de grande potência têm valores menores de conjugado de partida e máximo, em p.u., comparativamente com os motores de pequeno porte, e, portanto, não podem ter a rela-

çãomm

rm

C

Cdesprezada. Tais motores se aquecem mais do que os de pequeno porte durante a partida.

De outro lado, as chaves de partida, que reduzem significativamente o Cmm, aumen-tam o calor gerado durante a aceleração. À primeira vista isto pode parecer paradoxal porque elas reduzem a corrente que circula pelo motor e, portanto, reduzem as perdas jóulicas. Porém, este apa-rente paradoxo pode ser entendido do seguinte ponto de vista: reduzindo-se o Conjugado Médio Motor, o conjugado de aceleração se reduz e, em conseqüência, aumenta-se o tempo de aceleração. Mesmo sendo reduzida a corrente de partida pela chave, a sua permanência no enrolamento do esta-tor, durante um tempo de aceleração maior, provoca maiores efeitos de aquecimento para o motor

Page 37: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 78

do que se ele fosse ligado diretamente à rede. Em outras palavras, a redução da corrente de partida para o motor que parte acoplado com sua carga é compensada, no que se refere aos efeitos térmicos, por um tempo de aceleração maior.

Portanto, ao ser usada, a chave de partida reduz a corrente de partida na rede como é o seu objetivo, mas a redução do conjugado motor que ela provoca produz maior aquecimento do motor devido ao maior tempo de aceleração.

Para que o motor mantenha a sua capabili dade de aceleração conforme definida na seção 2.3, quando for usada uma chave de partida o calor gerado nas duas situações deve ser o mesmo. Supondo que uma chave de partida reduza a tensão do motor para V ’e o conjugado médio motor seja reduzido para '

mmC , a partir da equação [2.47], podemos escrever:

'

'

am

mm

am

m

C

C

C

C = [2.48]

Sendo, como já demonstrado, rmmmam CCC −= e rmmmam CCC −= '' .

Porém, os conjugados médios são proporcionais aos quadrados das tensões aplicadas ao motor. Os conjugados de aceleração são inversamente proporcionais aos tempos de aceleração, ou seja, aos tempos de rotor bloqueado. Podemos estabelecer, portanto, a seguinte proporção:

2

''

''

''2'

=∴====

V

Vtt

t

t

t

t

C

C

C

C

V

Vbb

b

b

a

a

am

am

mm

mm [2.49]

Vemos que o tempo de aceleração do motor, '

at , quando se usa uma chave de partida,

deve ser menor do que o tempo de rotor bloqueado 'bt , para que o motor mantenha a sua capabili da-

de de aceleração, sendo 'bt dado pela equação [2.49].

2.13.4 - ELEVAÇÃ O INSTANTÂNEA DA TEMPERATURA DO MOTOR

DURANTE A PARTIDA

Conforme dito anteriormente, o calor gerado no motor durante a partida e aceleração eleva, em um tempo muito curto, a temperatura do rotor e do estator a valores que podem danificar o rotor por deformação das barras, de um lado, e do outro, destruir ou reduzir, drasticamente, a vida útil do isolamento das bobinas do estator. Para calcular esta elevação de temperatura é necessário conhecer os tipos de materiais usados na gaiola do rotor e no enrolamento do estator, seu calor es-pecífico e o seu peso, no rotor (as barras e os anéis) e no enrolamento do estator. Para facilitar os cálculos, admite-se que a energia perdida durante a partida e aceleração é toda ela consumida para elevar a temperatura do metal e nenhuma parte dela é perdida para o meio ambiente por condução ou irradiação. A partir da definição de capacidade calorífica de um corpo (denomina-se capacidade calorífica de um corpo de massa m à relação entre o calor absorvido ou cedido e a correspondente variação da temperatura), podemos definir a capacidade calorífica do material usado no rotor ou no estator como se segue:

Page 38: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 79

CE

=Θ [2.50]

onde: C = Capacidade calorífica do material usado na gaiola do rotor ou no enrolamento do es-

tator, em cal/oC. E = quantidade de calor gerado durante a partida e aceleração no rotor ou no enrolamento

do estator, com ou sem o conjugado resistente incluído, em cal. Θ = elevação de temperatura do rotor ou do enrolamento do estator, acima da temperatura

inicial (temperatura ambiente se o motor estiver a esta temperatura), em oC. O calor específico da substância que constitui o corpo de massa m sendo definido como a relação entre sua capacidade calorífica e a sua massa, podemos escrever:

CC

me = [2.51]

onde Ce será obtido em cal

g C0 .

TABELA 2.01

Material

Calor específico

Ce

Cobre 0,094 Alumínio 0,220

Latão 0,092 Bronze 0,093

A tabela 2.01 fornece o calor específico dos materiais mais comumente usados no ro-

tor e no enrolamento do estator dos motores de indução.

Portanto, tendo sido calculada a quantidade de calor gerada durante a partida e acele-ração, a elevação instantânea será calculada a partir da equação [2.50], usando a equação [2.52], como se segue:

Θ =× ×E

G Ce4180 [2.52]

A equação [2.52] poderá ser aplicada ao rotor ou ao estator e as letras têm os seguin-

tes significados:

Θ = elevação instantânea da temperatura do rotor ou do enrolamento do estator, acima da temperatura inicial (temperatura ambiente se o motor estiver a esta temperatura), em oC.

Page 39: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 80

E = energia perdida no rotor ou no enrolamento do estator, com ou sem o conjugado resis-tente, em watt.s

G = massa do material do rotor ou do estator, em kg.

Ce = calor específico do material do rotor ou do estator em cal

g C0

Dos elementos que compõem a equação [2.52], o mais problemático de ser obtido pelo engenheiro que vai selecionar o motor é a massa G do material que constitui um dado de proje-to do motor, raramente disponível em catálogos.

TABELA 2.02 CLASSES DE ISOLAMENTO TÉRMICO

CLASSE A 1050 C CLASSE E 1200 C CLASSE B 1300 C CLASSE F 1550 C CLASSE H 1800 C

A elevação instantânea da temperatura no enrolamento do estator pode atingir valo-

res bem acima dos valores limites, de acordo com a sua classe de isolamento térmico, quando ele opera em regime contínuo. A tabela 2.02 mostra as classes de materiais isolantes usados na fabrica-ção de máquinas elétricas com suas respectivas temperaturas limites, de acordo com a NBR-7094. Estas são as máximas temperaturas permissíveis quando o motor opera em condições de regime contínuo, quando a elevação da temperatura se faz de maneira lenta e atinge um valor estável cor-respondente a um determinado valor da carga acionada. Porém, durante uma partida em que podem ocorrer elevações instantâneas da temperatura os limites são ampliados até os valores indicados na tabela 2.03.9 Esta tabela representa a temperatura de atuação de relés microprocessados que são incorporados em muitos motores para prover uma proteção térmica total e não apenas a devida a sobrecorrente.

TABELA 2.03

Classe de isolamento A E B F H Temperatura oC 200 215 225 250 275

Tão logo o motor atinja sua velocidade de regime, a corrente de partida se reduz, re-

duzindo drasticamente, a fonte de calor. Quando o motor parte com a carga acoplada, o que signifi-ca maior inércia e a presença de conjugado resistente, a energia a ser dissipada será, obviamente, maior do que quando ele parte desacoplado. Se esta energia elevar a temperatura do motor a valores iguais aos da tabela 2.03 os relés microprocessados irão atuar desligando o motor. Se de um lado estas temperaturas máximas permissíveis são bem maiores do que as da sua classe de isolamento, por outro lado elas são da mesma ordem de grandeza da temperatura de cozimento do verniz ou resina isolante usados na fabricação das bobinas.

9 Ver publicação número 34-11, 1978 da IEC: proteção térmica incorporada às máquinas elétricas girantes.

Page 40: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 81

2.13.5 – EXEMPLOS 2.13.5.1 – Um motor de indução trifásico, rotor em gaiola, deverá acionar um soprador de ar que está acoplado ao seu eixo através de um redutor de velocidades de relação 0,50 e rendimento 96%. O motor será ligado à rede diretamente. Os dados do motor e do soprador de ar são os seguin-tes: Motor: 7,5 kW; 440 V; 4 polos; 60 Hz; 1750 RPM; Cn = 41 Nm; Jm = 0,1029 kgm2 ; Classe B. Peso do material usado na fabricação da gaiola de alumínio: 1,52 kg Peso do cobre usado no enrolamento do estator: 8,62 kg. A relação entre a resistência R Th do estator e a do rotor é igual a 1,93 Conjugado médio motor: 2,385 p.u. = 97,6 Nm. Soprador de ar: Momento de inércia: Js = 40,53 kgm2

Conjugado nominal: 77,5 Nm Conjugado médio resistente: Crm = 31 Nm Pede-se:

a) Calcular a energia perdida no rotor e no estator, durante a partida, estando o motor desa-coplado do soprador.

b) Idem, com o motor acoplado a sua carga. c) As temperaturas atingidas pelo rotor e pelo estator durante a partida, nos dois itens anteri-

ores, sabendo-se que a temperatura do ambiente é 25oC. SOLUÇÃO a)A energia perdida no rotor será obtida a partir da equação [2.32]:

( )22

21

21

2ss

JEr −= ω

onde, fazendo J = 0,1029 kgm2 ω1 = 188,5 rad/s s1 = 1; s2= 0 resulta: Er = 1828 watt.s ou joules. (R) A energia dissipada no enrolamento do estator será obtida multiplicando o resultado anterior por 1,93, conforme a equação [2.35], ou seja: Ee = 1,93x1828 = 3528 watt.s (R)

b) Estando a carga acoplada ao motor, a energia dissipada no rotor será obtida pela equação [2.46]

Page 41: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 82

( )EC

C C

Js sr

mm

mm rm

=−

−ω1

2

12

22

2

Teremos, agora, os seguintes valores:

Cmm = 97,6 Nm; 162

1

96,0

31)( =×==

m

mq

r

rmrm

CrefC

ωω

η Nm

J = 0,1029x1,2 + 2

2

153,40

× = 10,25 kgm2

( ) ( ) 218000012

5,18825,10

166,97

6,97 22

≅−××−

=rE watt.s (R )

A energia dissipada no estator será igual ao valor anterior multiplicado por 1,93, isto é: Ee = 1,93x218000 ≈ 421000 watt.s ou joules (R)

c) A elevação da temperatura do rotor será obtida através da equação [2.52],

Θ =× ×E

G Ce4180

Teremos os seguintes valores:

15622,052,14180

218000 =××

=Θro C. A temperatura instantânea atingida pelo rotor será igual a:

156 + 25 = 181o C. (R ) A elevação de temperatura no estator será igual a:

182064,062,84180

421000 =××

=Θeo C. A temperatura instantânea atingida pelo estator será

igual a 182 + 25 = 207o C (R )

De acordo com a tabela 2.03, estes valores estariam dentro do limite para a classe B.

2.13.5.2 - Um motor de indução trifásico tipo Dahlander possui os seguintes dados: 6 kW; 220 V; 60 Hz; 4 polos; Cn = 31,4 Nm; 9,2 kW; 220 V; 60 hz; 2 polos; Cn = 24,5 Nm;

Page 42: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 83

O momento de inércia do rotor é Jm = 0,053 kgm2 e a relação 6,12

=r

RTh . Pede-se:

a) Determinar a perda de energia no motor quando a partida é feita em uma só etapa com o motor a vazio.

b) Idem, em duas etapas. c) A energia cedida durante o processo de partida em duas etapas. d) Quando se faz um plugueamento em uma só etapa. e) Quando se faz um plugueamento em duas etapas.

SOLUÇÃO a) A energia perdida no motor é a soma das energias perdidas no rotor e no estator, ou seja:

( )( ) 97936,11012

377053,0 222

=+−×=mE w.s (R )

b) Em duas etapas a energia perdida será igual a:

( )( ) ( )( ) =+−×++−×= 6,1105,02

377053,06,1101

2

5,188053,0 222

222

mE 4896 W.s (R)

Como se percebe, a energia perdida em duas etapas é a metade da energia perdida em uma só etapa. c) A energia cedida será a soma da energia perdida com a energia armazenada na massa gi-rante do rotor, ou seja:

Ec = + =4896 9793 14689 W.s ou joules(R) d) Quando se faz um plugueamento, s1 = 2 e s2 = 1. Portanto, a energia perdida será:

Ep = 3x9793 = 29379 W.s ou joules (R)

e) O plugueamento em duas etapas se inicia, obviamente, com o motor girando à maior ve-locidade e, ao atingir a velocidade igual à metade, faz-se a comutação para o enrolamento de maior número de polos. Assim sendo, teremos para os escorregamentos os seguintes valores:

1a etapa: s1

3600 3600

36002=

− −−

= ; s2

3600 1800

360015=

− −−

= ,

2a etapa: s1

1800 1800

18002=

− −−

= ; s2 1= (rotor parado)

A energia dissipada será:

( )( ) ( )( )Ep =×

− + +×

− + =0 053 377

22 15 1 1 6

0 053 1885

22 1 1 1 6 24482

22 2

22 2,

, ,, ,

, W.s (R)

Page 43: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 84

que representa uma economia de energia de 124482

293791667− = , %

2.13.5.3 - Um motor deverá ser escolhido para acionar uma máquina cujo ciclo operacional deverá ser o seguinte:

a) Partida com a máquina acoplada, porém sem realizar trabalho. b) Operação em regime durante 20 segundos consumindo 3,7 kW. c) Parada do motor por plugueamento, máquina sem realizar trabalho. d) Tempo de repouso, 15 segundos. e) Reinício do ciclo que se repete ao longo do dia..

O motor disponível é de 3,7 kW, 6 polos, 60 Hz, categoria D, cujo momento de inér-cia vale 0,0637 kgm2. A carga deverá ser acoplada diretamente ao eixo do motor e seu momento de inércia vale 0,059 kgm2. O motor possui os seguintes dados de projeto:

Relação 63,02

=r

RTh

Perda total em regime (condição nominal): 700 watts

Perdas permitidas para uma elevação da temperatura de 50 oC 300 watts parado 820 watts em regime

Verificar se o motor disponível é adequado para o acionamento. OBSERVAÇÃO Este regime de trabalho é chamado de Regime Intermitente Periódico S5 e será estu-dado com detalhes mais adiante. SOLUÇÃO A perda de energia no motor (rotor + estator) durante uma aceleração será igual a:

( ) ( )( )Em =+

− + =0 0637 0 05912566

21 0 1 0 63 1579

22 2, , ,

, watt.s

Perda durante o funcionamento em regime: Emr = × =700 20 14000 watt.s Perda durante o plugueamento: Emp = × =3 1579 4737 watt.s

Perda total durante o ciclo: Emt = + + =1579 14000 4737 20316 watt.s Portanto, a cada ciclo são gerados 20316 watt.s de calor que devem ser dissipados

para o meio ambiente, no mesmo período, caso contrário, ao longo do dia, a temperatura do motor iria se elevando e poderia ultrapassar o valor limite da sua classe de isolamento. Assim, o motor deve ser capaz de dissipar para o meio ambiente, durante um ciclo operacional, o mínimo de 20316 watt.s. Segundo os dados do fabricante, para que seja mantida a elevação de temperatura de 50 oC, o motor deve ser capaz de dissipar uma perda de 820 watt.s em regime e 300 watt.s parado. Em ter-mos de calor, teremos:

Page 44: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 85

Calor que o motor é capaz de dissipar em regime: 820x20 = 16400 watt.s Idem, quando parado: 300x15 = 4500 watt.s Total: 20900 watt.s Logo, podemos concluir que o motor terá condições de realizar o acionamento sem

prejuízo do seu isolamento térmico (R). Como conclusão, podemos verificar que o motor deverá

partir 3600

20 15103

+≅ vezes por hora ao longo do dia.

2.14) EXERCÍCIOS 2.14.1) Um motor de indução trifásico de 37 kW, rotor em gaiola, possui uma curva caracte-rística conforme a indicada na figura 2.13. Ele aciona uma máquina acoplada diretamente ao seu eixo cujo momento de inércia é igual a 60 kgm2. O momento de inércia do rotor pode ser despreza-do. Pede-se: C(Nm)

548

274

0 900 1700 1800 RPM

! 9 : ;

a) Qual a velocidade do motor quando ele opera na sua condição nominal? Qual o conjugado nominal?

b) A máquina operava normalmente na sua condição nominal quando houve uma sobrecarga momentânea devido a um problema operacional fazendo seu conjugado aumentar para 300 Nm. A proteção de sobrecarga atuou, abrindo o contator que liga o motor ao barramento. Enquanto o motor desacelerava, o contator foi religado através de um relé temporizado. Quanto tempo o contator poderia permanecer aberto para que, ao ser religado, o motor pu-desse reacelerar e retornar à condição anterior ao desligamento?

2.14.2 – Um motor de indução trifásico, rotor em gaiola, 3,7 kW, 440 V, 60 Hz, 6 polos, 1150 RPM, categoria N, Jm = 0,0324 kgm2, possui uma curva característica que será traçada a partir dos dados da tabela abaixo:

Page 45: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 86

Ele opera na condição nominal acionando uma carga de conjugado resistente cons-tante com a velocidade, acoplada diretamente ao seu eixo e seu momento de inércia vale 2,3 kgm2. Pede-se calcular o tempo de aceleração quando o motor for ligado diretamente à rede.

Velocidade (RPM)

Conjugado Nm

Velocidade (RPM)

Conjugado Nm

0 62,36 1000 80,00 200 65,75 1050 80,80 400 69,82 1100 55,04 600 73,38 1150 30,72 800 76,80 1200 0 900 79,80

2.14.3 – Especificar um motor de indução trifásico, rotor em gaiola, para acionar um sopra-dor de ar cujo momento de inércia vale 8 kgm2. O conjugado nominal do soprador é 75 Nm à velo-cidade de 1760 RPM e seu conjugado de atrito é 10% do nominal. O motor deverá ser especificado pelo catálogo da WEG para as seguintes condições:

a) Quando o acoplamento for direto. b) Quando o acoplamento possui uma redução de 50% e rendimento 95%.

2.14.4- A tabela abaixo fornece alguns pontos da característica de conjugado de um motor de indução trifásico, rotor em gaiola, ligado a plena tensão:

Conjugado (pu) 2,80 2,90 3,00 3,25 3,50 1,00 0,00 Velocidade (pu) 0,00 0,20 0,45 0,80 0,93 0,97 1,00

O conjugado nominal e a velocidade síncrona foram tomados como base. O motor aciona uma máquina acoplada diretamente ao seu eixo que desenvolve um conjugado constante com a ve-locidade. O momento de inércia total do conjunto possui um valor tal que o tempo de aceleração para atingir a velocidade nominal do motor, com um conjugado de aceleração constante igual a 1,3 p.u. é igual a 1,5 segundos. Durante a operação na condição nominal, houve uma queda de tensão súbita de 50% nos terminais do motor motivada por um curto-circuito em local próximo do motor. A tensão permaneceu neste valor durante 4 segundos, sendo em seguida restaurada ao seu valor nominal após o curto-circuito ter sido eliminado. Durante este período o contator que liga o motor ao barramento permaneceu fechado. Pergunta-se:

a) O motor vai parar? Se não, que velocidade ele vai atingir antes de a tensão retornar? b) O motor vai conseguir se reacelerar e atingir sua velocidade nominal? Se sim, em que

tempo isto se dará?

Page 46: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 87

2.14.5 – Um motor de indução trifásico, rotor em gaiola, 1865 kW, 4160 V, 2 polos, 60 Hz, aciona, através de um acoplamento direto, uma bomba de alimentação de uma caldeira de uma cen-tral de vapor. A tabela abaixo apresenta alguns pontos da característica de conjugado do motor à tensão nominal, da característica do conjugado da bomba e a velocidade do motor, todos os valores em p.u., sendo o conjugado nominal do motor e a velocidade síncrona do motor tomados como ba-se. O motor parte com a válvula do lado de descarga da bomba aberta mas operando contra uma válvula de retenção até que a pressão da bomba se iguala à pressão do sistema (altura manométrica total). A parte linear da característica mecânica da bomba entre 0 e 0,1 p.u. da velocidade representa o conjugado resistente inicial. Quando atinge 0,92 p.u. da velocidade, a válvula de retenção abre e há uma descontinuidade na inclinação da curva da bomba. A 0,98 p.u. da velocidade, o motor de-senvolve o seu conjugado máximo. A inércia do conjunto é tal que a massa girante armazena 5400 kWs de energia cinética à velocidade síncrona. Pede-se:

a) Determinar o tempo necessário para a válvula de retenção abrir após a partida do motor. b) Havendo um desligamento por atuação da proteção do motor, qual o tempo que ele gasta

para parar. c) Se o motor necessitar de ocasionalmente partir com 80% da tensão qual o tempo neces-

sário para a válvula de retenção abrir? d) Qual o valor mínimo teórico de tensão que o motor poderia suportar para que ele consiga

manter a bomba operando?

Velocidade 0 0,10 0,30 0,50 0,70 0,90 0,92 0,98 0,99 Conj. motor 0,75 0,75 0,75 0,80 1,25 1,55 1,55 2,40 1,00 Conj. bomba 0,15 0,00 0,04 0,12 0,26 0,42 0,44 0,87 1,00

2.14.6 – Um motor de indução trifásico, rotor em gaiola, ligado em estrela, possui os seguin-tes dados de placa: 250 CV; 2300V; 60 Hz; 4 polos; 1779 RPM; Cn = 987 Nm; Jm = 3,5 kgm2 ; tb= 14 s As constantes de seu circuito equivalente foram determinadas em ensaio de fábrica e têm os seguintes valores em ohms/fase: r1 = 0,562; r2 = 0,275; x1 = 2,577; x2 = 2,018; xm = 59,79; rw = 1384,31; Pede-se:

a) Usando a equação [1.09] e a figura 1.02 do capítulo I, traçar a característica do conjuga-do do motor quando ele opera como motor (1 ≥ s > 0) e como freio (2 > s ≥ 1). Os valo-res de s devem variar de 10 em 10% e os pontos da curva do conjugado podem ser uni-dos por segmentos de retas.

b) Supondo que o motor aciona uma máquina acoplada diretamente ao seu eixo, cujo con-jugado resistente varia parabolicamente com a velocidade (Co = 0,1 p.u.) e cujo momen-to de inércia é igual a 15 kgm2, calcular o tempo de aceleração para o motor atingir a sua condição nominal de operação.

c) Qual o valor do conjugado de plugueamento no momento em que se faz a inversão da seqüência de fases?

Page 47: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 88

d) Qual o tempo de frenagem quando se faz um plugueamento? (tomar o valor médio de conjugado de frenagem entre o conjugado obtido em c) e o conjugado de partida)

2.14.7) Um motor de indução trifásico, rotor em gaiola, quando ligado diretamente à rede

absorve uma corrente de partida igual a 7 p.u. e seu escorregamento nominal é 4%. Pede-se: a) Que derivação de um autotransformador deveria ser usada para reduzir a corrente de par-

tida a 2,96 p.u.? b) Qual o valor do conjugado de partida na condição do item a)?

2.14.8) Um motor de indução trifásico, 440 V, 60 Hz, 4 polos,1750, RPM ligado em estrela,

possui os seguintes valores por fase para as constantes de seu circuito equivalente: r1 = 0,13 Ω; r2 = 0,32 Ω; x1 = 0,60 Ω; x2 = 1,48 Ω; xm = 20 Ω O motor está operando a plena carga com um escorregamento de 2%. Usando o modelo do

circuito equivalente de Thévénin calcular o conjugado inicial de plugueamento. 2.14.9) Um motor de indução trifásico, rotor em gaiola, possui os seguintes dados de placa: 185 kW; 2300 V; 58 A; 60 Hz; 8 polos; 890 RPM; Cn = 1985 Nm; Cp = 1,4 p.u.; Cm = 2,2 p.u.; Ip = 5,5 p.u.; Jm = 16 kgm2; tb = 25 s; Categoria N Ele será ligado a um barramento de 2400 V, através de uma chave de reatância primária para

operar na condição nominal acionando uma carga de conjugado constante com a velocidade. Des-prezando-se a sua resistência de partida pede-se:

a) A indutância necessária para reduzir a corrente de partida para 3,0 p.u. b) Os conjugados de partida e máximo com a chave ligada. c) O tempo para fazer a comutação da chave que se dará na velocidade de 850 RPM.

2.14.10) Um motor de indução trifásico, rotor em gaiola, deverá acionar uma máquina que possui os seguintes dados operacionais: Conjugado nominal: 49 kgfm Velocidade nominal: 1780 RPM Característica mecânica: parabólica crescente com a velocidade. Conjugado de atrito: 10% do conjugado nominal. Tipo de acoplamento: direto Momento de inércia: 15 kgm2 O motor deverá ser ligado a um barramento de tensão 440 V através de uma chave com RE-SISTÊNCIAS primárias. Pede-se:

a) Escolher o motor utili zando o catálogo da WEG. b) Qual a tensão que a chave deverá aplicar ao motor para que seu conjugado de partida seja

reduzido para 1,5 p.u.?

Page 48: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 89

c) Qual a corrente de partida no barramento correspondente à condição da letra b)? d) Qual o valor de RESISTÊNCIA, em ohms por fase, da chave? Supor que o fator de po-

tência do motor, na partida, é igual a 30%. e) Durante a aceleração, a tensão aplicada ao motor aumenta gradualmente, atingindo 115%

do valor calculado em b) no momento em que a velocidade atinge a 1710 RPM corres-pondente ao conjugado máximo. A comutação da chave para a tensão plena vai se fazer neste instante. Qual deve ser o ajuste do relé de tempo para comandar a operação?

f) Calcular os ângulos de fase entre as grandezas V, V ’ Ip’ , Ip, etc, ou seja, fazer o diagrama fasorial do motor no momento da partida..

2.14.11) Um motor de indução trifásico, rotor em gaiola, 60 Hz, deverá ser escolhido como

acionador de uma máquina cujo conjugado resistente possui uma característica linear crescente com a rotação do seu eixo principal, sendo o seu conjugado de atrito 10% do seu conjugado nominal. A máquina está acoplada ao motor através de um redutor de velocidades e, nas suas condições nomi-nais de operação, desenvolve um conjugado resistente de 1100 Nm à velocidade de 600 RPM do seu eixo principal. O seu momento de inércia é igual a 60 kgm2 . Pede-se:

a) Escolher um motor adequado para acionar esta máquina na sua condição nominal de o-peração, dando a sua potência, e número de polos. Usar o catálogo da WEG.

b) O motor deve funcionar exatamente na sua condição nominal, isto é, fornecendo no seu eixo sua potência nominal à rotação nominal. Determinar qual o rendimento do acopla-mento bem como o fator de redução de velocidades de acordo com o motor escolhido.

c) Calcular o tempo de aceleração do motor para atingir a velocidade nominal. Utili zar o método dos conjugados médios. Verificar se o motor possui capabili dade de aceleração.

d) Qual o tempo de frenagem do conjunto se for aplicado um conjugado frenante mecânico de valor igual a 1 p.u. do conjugado nominal do motor?

e) Desenhar as características do motor e da máquina acionada identificando os valores de todos os conjugados. Desenhar também a característica do conjugado frenante.

2.14.12)Escolher no catálogo da WEG, um motor trifásico tipo Dahlander, de 4 e 8 polos,

potência no mínimo igual a 30 kW na menor velocidade, 220 V, rotor em gaiola e determinar para ele o seguinte:

a) Qual a energia dissipada, em Wh, no seu enrolamento (estator + rotor), durante uma par-tida feita em duas etapas, com o motor a vazio?

b) Qual a energia fornecida pela rede elétrica que alimenta o motor, em Wh, após comple-tada a operação do item anterior?

c) Qual a energia dissipada, em Wh, no enrolamento (estator + rotor), durante um plugue-amento em duas etapas, sendo que a comutação para o enrolamento de maior número de polos se dará à velocidade de 0,20 p.u. da velocidade síncrona inicial?

OBSERVAÇÃ O: Supor que o motor escolhido tenha a relação RTh/r2 igual a 1,6.

2.14.13) Escolher no catálogo da WEG um motor trifásico tipo Dahlander, de carcaça 225 S/M e determinar para ele o seguinte:

a) Qual a energia dissipada no rotor, durante uma partida feita em duas etapas, com o motor

a vazio?

Page 49: eBook -2. Acionamentos de M-quinas El-tricas

Apostila de Máquinas Elétricas Eletrotécnica

Domínio Público Ezio Fernandes da Silva 90

a) Qual a energia armazenada no rotor durante uma partida feita em duas etapas? b) Qual a energia dissipada no rotor durante um plugueamento em duas etapas? c) Se for feita uma frenagem mecânica, qual a energia dissipada no enrolamento do motor?

Porque? d) Se o motor funcionasse durante duas horas na sua condição nominal, com a velocidade

correspondente ao enrolamento de menor número de polos, qual seria a energia dissipada no motor?

2.14.15) O motor de categoria D, de acordo com a NBR-7094, é um motor cuja resistência

rotórica é maior do que a de um correspondente de categoria N de mesma potência, mesmo número de polos e mesmo enrolamento do estator. Ele é chamado de “motor de alto escorregamento” . Du-rante o processo de partida e aceleração, qual dos dois tipos de motor mais se aquece e porque? E durante a operação normal, em regime contínuo? Porque?

2.15) RESPOSTAS AOS PROBLEMAS

2.14.1) a: 1763 RPM; 200 Nm; b: 16 s; 2.14.2) 8,3 s; 2.14.3) a: O motor de 15 kW não serve porque o seu tempo de aceleração é 11 s, maior do que o

tempo de rotor bloqueado de 9 s; o motor de 18,5 kW é adequado pois o tempo de acelera-ção calculado é menor do que o seu tb. b: com o acoplamento, o motor de 15 kW, 2 polos escolhido apresenta um tempo de aceleração de 12 s, maior do que o seu tb de 9 s. O motor mais adequado é o de 18,5 kW, acoplamento direto, ou seja 4 polos

2.14.4) a: o motor não vai parar; em 4 segundos a sua velocidade será 0,3875 p.u.; b: o motor vai acelerar e atingir sua velocidade nominal em 0,635 s.

2.14.5) a: 5,45 s; b: 113.3 s; c: 11,3 s; 2223 volts 2.14.6) a: Cp = 341 Nm = 0,346 p.u.; Cm = 2558 Nm = 2,592 p.u.; Cplug = 171 Nm = 0,174 p.u.

b:1,63 s;c:171Nm; d:5,5 s 2.14.7) a: 65%; b: 0,828 p.u.; 2.14.8) Cplug = 36 Nm = 0,614 p.u. 2.14.9) a: 0,284 p.u. = 6,5 ohms; b: C p u Nm C p u Nmp m

' ', . . ; , . .= = = =0 416 827 0 654 1299

2.14.10) a: 90 kW; 4 polos; 60 Hz; 440 V; 148 A; Ip = 7,3 p.u.; Cn = 492 Nm; Cp = 2,2 p.u.; Cm = 2,5 p.u.; Jmot = 1,606 kgm2; tb = 19 s; Categoria N; a verificação da capabili dade de aceleração será feita na letra e; b: 0,825 p.u. = 363 V; c: Ip = 6,03 p.u.; d: Ra = 0,0612 p.u. = 0,105 ohms; e: 5,17 s, menor do que o tb; o motor está correto.

2.14.11) a: O número de polos do motor pode ser qualquer uma das 4 opções do catálogo; foi esco-lhido o motor: 75 kW; 6 polos, 1185 RPM; Ip= 6,5 p.u.; Cn = 592 Nm; Cp = 2,4 p.u.; Cm = 2,5 p.u.; tb = 28 s; Jmot = 2,643 kgm2; categoria N; b: 92,14%; K= 0,506;

c: 2,36 s; d: 2,48 s.