Top Banner
Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes) on the outer slope of an Ediacaran collisional foredeep, eastern Kaoko belt, Namibia Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0164.R1 Manuscript Type: Article Date Submitted by the Author: n/a Complete List of Authors: Hoffman, Paul; 1216 Montrose Ave Bellefroid, Eric; Yale University, Geology and Geophysics Johnson, Benjamin; University of Victoria, School of Earth and Ocean Sciences Hodgskiss, Malcolm ; McGill University, Earth and Planetary Sciences Schrag, Daniel; Harvard University, Earth and Planetary Sciences Halverson, Galen; McGill University, Earth and Planetary Sciences Keyword: submarine landslide, mass transport complex, extensional detachment, slope failure, continental margin https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences
36

Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Aug 03, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

Early extensional detachments in a contractional orogen:

coherent, map-scale, submarine slides (mass transport complexes) on the outer slope of an Ediacaran collisional

foredeep, eastern Kaoko belt, Namibia

Journal: Canadian Journal of Earth Sciences

Manuscript ID cjes-2015-0164.R1

Manuscript Type: Article

Date Submitted by the Author: n/a

Complete List of Authors: Hoffman, Paul; 1216 Montrose Ave Bellefroid, Eric; Yale University, Geology and Geophysics Johnson, Benjamin; University of Victoria, School of Earth and Ocean Sciences Hodgskiss, Malcolm ; McGill University, Earth and Planetary Sciences Schrag, Daniel; Harvard University, Earth and Planetary Sciences Halverson, Galen; McGill University, Earth and Planetary Sciences

Keyword: submarine landslide, mass transport complex, extensional detachment,

slope failure, continental margin

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 2: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

cjes-­‐2015-­‐0164  (revised,  12  Jan  16)  1  

 2  

CJES  Special  Issue:  Uniformitarianism  and  Plate  Tectonics    3  

A  Tribute  to  Kevin  C.  Burke  and  John  F.  Dewey  4  

 5  

 6  

Early  extensional  detachments  in  a  contractional  orogen:  coherent,  7  

map-­‐scale,  submarine  slides  (mass  transport  complexes)  on  the  outer  8  

slope  of  an  Ediacaran  collisional  foredeep,  eastern  Kaoko  belt,  Namibia  9  

 10  

 11  

Paul  F.  Hoffman1,  Eric  J.  Bellefroid2,  Benjamin  W.  Johnson3,    12  

Malcolm  S.  W.  Hodgskiss4,  Daniel  P.  Schrag5  and  Galen  P.  Halverson4  13    14  

11216  Montrose  Avenue,  Victoria,  BC  V8T  2K4  15  2Department  of  Geology  and  Geophysics,  Yale  University,  New  Haven,  CT  06520-­‐8109  16  

3School  of  Earth  and  Ocean  Sciences,  University  of  Victoria,  Victoria,  BC  V8P  5C2  17  4Department  of  Earth  and  Planetary  Sciences,  McGill  University,  Montreal,  QC  H3A  0E8  18  

5Department  of  Earth  and  Planetary  Sciences,  Harvard  University,  Cambridge,  MA  02138  19  

 20  

Corresponding  author:  [email protected]    21  

Page 1 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 3: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

2  

2  

Abstract:   The   existence   of   coherent,   large-­‐scale,   submarine   landslides   on  modern  22  

continental  margins   implies   that   their   apparent   rarity   in   ancient   orogenic   belts   is  23  

due   to   non-­‐recognition.   Two   map-­‐scale,   coherent,   pre-­‐orogenic,   normal-­‐sense  24  

detachment   structures   of   Ediacaran   age   are   present   in   the   Kaoko   belt,   a   well-­‐25  

exposed  arc-­‐continent  collision  zone  in  northwestern  Namibia.  The  structures  occur  26  

within   the   Otavi   Group,   a   Neoproterozoic   carbonate   shelf   succession.   They   are  27  

brittle   structures,   evident  only   through  stratigraphic  omissions  of  400  m  or  more,  28  

that  ramp  down  to  the  west  with  overall  ramp  angles  of  1.1°  and  1.3°  with  respect  to  29  

stratigraphic   horizons.   The   separations   of   matching   footwall   and   hangingwall  30  

stratigraphic   cut-­‐offs   require  horizontal   translations  >20  km   for  each  detachment.  31  

One  of   the  detachments   is   remarkably  narrow  (5  km)   in   the  up-­‐dip  direction,   just  32  

one  fourth  of  its  translation.  The  other  detachment  is  stratigraphically  dated  at  the  33  

shelf-­‐foredeep   transition,   when   the   passive   margin   was   abortively   subducted  34  

westward,   in   the   direction   of   submarine   sliding.   Trenchward   sliding   on   the  35  

foreslope   occurred   concurrently   with   deep   karstification   of   the   autochthonous  36  

carbonate   succession   to   the   east,   presumably   due   to   forebulge   uplift   and/or  37  

conjectural  basin-­‐scale  base-­‐level   fall.  We  expect   that   similar  detachments  exist   in  38  

other  orogenic  belts,  and  failure  to  recognize  them  can  lead  to  misinterpretations  of  39  

stratigraphy,  sedimentary  facies  and  paleogeography.  40  

 41  

Keywords:   submarine   landslide,   mass   transport   complex,   extensional   detachment,  42  

slope  failure,  continental  margin,  collisional  foredeep  43  

 44  

   45  

Page 2 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 4: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

3  

3  

Introduction  46  

Coherent,   large-­‐scale,   submarine   landslides   exist   on  many  modern   continental  47  

margins  (Dingle  1977;  Bugge  et  al.  1987;  Kayen  and  Lee  1991;  Hampton  et  al.  1996;  48  

Rowan  et  al.  2004;  Frey-­‐Martinez  et  al.  2005;  Masson  et  al.  2006;  Butler  and  Paton  49  

2010;   Morley   et   al.   2011;   Armandita   et   al.   2015).   Bathymetric   and/or   seismic  50  

reflection  studies  show  them  to  consist  of  up-­‐dip  extended  domains  and  down-­‐dip  51  

shortened  domains,  characterized  by  breakaway-­‐  and  thrust-­‐duplexes  respectively  52  

(Fig.  1).  Although  stratigraphically  confined,  the  presence  of  growth  strata  (Fig.  1A)  53  

show  some  examples   to  have  developed   slowly  by   creep.  Their   apparent   rarity   in  54  

ancient  orogenic  belts  is  more  likely  due  to  non-­‐recognition  than  non-­‐occurrence.    55  

The   discovery   of   the   Ombonde   detachment   (Hoffman   and   Hartz   1999)   in   the  56  

Kaoko   belt   of   Namibia   (Fig.   2)   provided   an   Ediacaran   example   for   which   the   net  57  

displacement,  paleotectonic  setting  and  longitudinal  (i.e.,  slip-­‐parallel)  cross-­‐section  58  

of  the  extended  domain  (Fig.  1)  are  well  constrained  by  plunge  projection  of  surface  59  

maps   and   stratigraphic   logs   (Hoffman   and   Hartz   1999;   Hoffman   and   Halverson  60  

2008).  What   the  Ombonde  detachment  did  not  reveal  was   its   transverse  (i.e.,   slip-­‐61  

normal)   dimension,   and   an   implicit   shortened   domain   (Fig.   1)   in   the   down-­‐dip  62  

direction,   which   is   obscured   by   post-­‐orogenic   cover.   The   shortened   domain   of   a  63  

possibly   analogous   detachment,   the   ‘Saturn   slide’   (Clifford   1962,   2008),   was  64  

recognized  earlier  within  correlative  strata  of  the  adjacent  Outjo  zone  (Fig.  3).    65  

Here  we  describe  a  second  low-­‐angle  extensional  detachment  in  the  Kaoko  belt  66  

(Fig.   3).   Like   the   Ombonde   detachment,   90   km   to   the   south,   the   Ombepera  67  

detachment  predates  orogenic  shortening.  It  is  a  brittle  structure  within  a  carbonate  68  

platform   succession,   locally   associated   with   a   dilational   breccia   zone   in   the  69  

hangingwall,  but   lacking  recognizeable  shear   fabrics.  The  structure   is  only  evident  70  

through   stratigraphic  mapping.   The   average   ramp   angle   between   the   detachment  71  

and   stratigraphic   planes   is   1.3°,   similar   to   the   Ombonde   detachment   (1.1°).   The  72  

characteristic  stratigraphic  omission  is  somewhat  greater  than  the  395  m  of  missing  73  

strata  across  the  Ombonde  detachment,  and  the  separation  of  stratigraphic  cut-­‐offs  74  

Page 3 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 5: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

4  

4  

in   the   footwall   and   hangingwall   of   the   Ombepera   detachment   imply   >20   km   of  75  

displacement.    76  

The   timing   of   the   Ombonde   detachment   is   tightly   constrained.   Movement  77  

postdates   the  entire  Otavi  Group  carbonate   shelf   sequence  and  predates   the  basal  78  

foredeep   clastics   of   the   disconformably   overlying  Mulden   Group   (Fig.   4)(Hoffman  79  

and   Hartz   1999).  We   assume   contemporaneity   of   the   two   detachments   based   on  80  

structural  homology.  Like   the  Ombonde  detachment,   only   the  extended  domain  of  81  

the   Ombepera   detachment   is   exposed.   Unlike   the   Ombonde   detachment,   its  82  

transverse   extent   is   directly   constrained   by   surface   mapping.   This,   and   mutual  83  

verification   of   the   phenomenon,   make   the   Ombepera   detachment   a   structure   of  84  

interest.   Failure   to   recognize   the   detachment   would   have   led   to   serious  85  

misinterpretations  of  the  stratigraphy  and  sedimentary  facies  relations.  86  

We   begin   by   describing   the   basic   stratigraphy   of  Neoproterozoic   cover   on   the  87  

southwestern  Congo  craton  and  its  relation  to  the  Kaoko  and  Damara  orogenic  belts,  88  

in  the  context  of  centre-­‐west  Gondwana  amalgamation.  Next  we  review  the  salient  89  

map-­‐scale   features   of   the   Ombonde   detachment   that   bear   on   its   geometry,  90  

displacement  and  age.  Then  we  describe  how  the  Ombepera  detachment  came  to  be  91  

recognized  in  its  type  area,  and  how  its  interpretation  was  tested  and  confirmed  by  92  

up-­‐dip  projection.  Finally,  we  identify  the  need  for  additional  mapping  to  investigate  93  

marked   widening   and/or   flattening   of   the   Ombepera   detachment   surface   in   the  94  

down-­‐dip  direction    95  

 96  

Neoproterozoic  cover  of  the  southwestern  Congo  craton  97  

Paleoproterozoic   crust   of   the   present   southwestern   promontory   of   the   Congo  98  

craton  (Fig.  2)  is  blanketed  by  a  Neoproterozoic  sedimentary  succession  composed  99  

of  three  groups  (Fig.  4).  The  basement-­‐hugging  Nosib  Group  (SACS  1980)  consists  of  100  

subfeldspathic   arenite   and   rudite   deposited   on   a   southward-­‐sloping   alluvial  101  

braidplain.   The   conformably   overlying   Otavi   Group   (SACS   1980)   is   a   2-­‐   to   4-­‐km-­‐102  

thick   carbonate   shelf   sequence   with   a   well-­‐defined   shelf-­‐break   and   a   distally-­‐103  

tapered   southern   foreslope   (Hoffman   and   Halverson   2008).   A   presumed  western  104  

Page 4 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 6: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

5  

5  

shelf   margin   is   occluded   by   the   Sesfontein   thrust   (Fig.   3),   an   eastward-­‐vergent,  105  

crustal-­‐scale,  thrust  fault  carrying  the  Central  Kaoko  zone,  where  the  Otavi  Group  is  106  

an  off-­‐shelf  facies.    107  

Internally,   the   Otavi   Group   consists   of   three   subgroups   (Fig.   4),   divided   by  108  

unconformities   that   underlie   each   of   the   two   Cryogenian   glacial-­‐periglacial  109  

assemblages   (Hoffmann   and   Prave   1996).   The   Chuos   and   Ghaub   formations  110  

represent   the  prolonged  Sturtian  (717-­‐659  Ma)  and  briefer  Marinoan  (ca  645-­‐635  111  

Ma)   glaciations,   respectively.   The   Rasthof   and  Maieberg   formations   represent   the  112  

respective  postglacial  cap-­‐carbonate  sequences  (Hoffman  and  Halverson  2008).    113  

The  Tonian  Ombombo  Subgroup  (Hoffmann  and  Prave  1996)  consists  of  cyclical,  114  

shallow-­‐marine   dolomite   with   authigenic   chert,   intercalated   with   alluvial   and  115  

deltaic   clastic   rocks.   Clastic   input   resulted   from   intermittent   uplift   and   erosion   of  116  

northward-­‐inclined   dip-­‐slopes,   interpreted   as   the   footwalls   of   spaced,   south-­‐117  

dipping,   normal   faults   (Hoffman  and  Halverson  2008).  The   age  of   the  Nosib-­‐Otavi  118  

transgression  and  the  onset  of  rift  faulting  must  be  significantly  older  than  760  ±  1  119  

Ma  (Halverson  et  al.  2005),  the  U-­‐Pb  zircon  date  of  a  bentonite  near  the  top  of  the  120  

carbonate-­‐rich   Devede   Formation   (Fig.   4)   in   the   middle   Ombombo   Subgroup.  121  

Intermittent   rift-­‐shoulder   uplift,   inferred   from   low-­‐angle   unconformities   and  122  

cannibalistic  sedimentation,  persisted  into  the  Cryogenian  Abenab  Subgroup  (SACS  123  

1980)  up  to  the  base  of   the  Ombaatjie  Formation  (Fig.  4),  which  marks  the  rift-­‐to-­‐124  

shelf  transition  (Hoffman  and  Halverson  2008)  at  an  estimated  650  Ma.  Thereafter,  125  

the   shelf   aggraded   conformably   and   preferentially   relative   to   the   foreslope   and  126  

basin  in  the  Outjo  zone  (Fig.  3)  until   the  demise  of  carbonate  sedimentation  at  the  127  

top   of   the   Ediacaran   Tsumeb   Subgroup   (SACS   1980),   the   thickest   and   most  128  

continuous  of  the  Otavi  subgroups.    129  

The  Mulden  Group   (SACS  1980)  paraconformably  overlies   the  Otavi  Group  and  130  

forms   an   upward-­‐shoaling,   marine   to   nonmarine   sequence   of   compositionally-­‐131  

immature   clastics,   culminating   with   crossbedded   arenites   (Renosterberg  132  

Formation)   deposited   by   high-­‐discharge   southeastward-­‐flowing   rivers   (Hoffman  133  

and  Halverson  2008).  On  the  southwest  flank  of  the  Kamanjab  inlier  (Fig.  3),  paleo-­‐134  

outliers   of   Otavi   Group   carbonate   <900   m   thick   are   buried   paraconformably   by  135  

Page 5 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 7: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

6  

6  

Mulden   Group   clastics   which,   at   their   base,   were   deposited   directly   upon   the  136  

crystalline  basement  (Frets  1969).  The  karstic  outliers  shed  dolomite-­‐chert  debris-­‐137  

fans  and  conglomerates  into  the  more  far-­‐travelled  Mulden  Group  detritus.  Locally,  138  

the  present  drainages   (e.g.   upper  Huab  River   at   20°06'10"S,   14°36'04"E)  have   re-­‐139  

incised  Mulden-­‐age  paleovalleys  (Frets  1969).  The  Mulden  Group  is  interpreted  as  a  140  

trench-­‐foredeep   assemblage   associated  with   abortive  westward   subduction   of   the  141  

Congo   margin   beneath   the   Dom   Feliciano–Ribeira   arc   (Fig.   2)(Oyhantçabal   et   al.  142  

2009;   Chemale   et   al.   2012).   Alternatively,   it   was   a   retro-­‐arc   foreland   basin  143  

developed  above  an  east-­‐dipping  subduction  zone  (Goscombe  and  Gray  2007,  2008;  144  

Konopásek  et  al.  2014).  In  our  view,  the  largely  amagmatic  development  of  the  rifted  145  

western  Congo  margin  (Guj  1970;  Stanistreet  and  Charlesworth  1999;  Goscombe  et  146  

al.   2005;   Miller   2008)   is   more   consistent   with   the   first   alternative.   There   is   no  147  

evidence  for  subduction-­‐related  magmatism  in  the  Central  Kaoko  zone  (see  below),  148  

in  contrast  with  the  Western  Kaoko  zone  (Fig.  3).  149  

 150  

Kaoko  belt  151  

Neoproterozoic   cover   and   basement   of   the   southwestern   Congo   craton   are  152  

deformed   in  an  arcuate   fold  belt   that  manifests   crustal   shortening   in   the  mutually  153  

perpendicular  Kaoko  and  Damara  orogenic  belts  (Fig.  2).  In  the  Eastern  Kaoko  zone  154  

(Fig.  3),  a  train  of  tight,  thin-­‐skinned  folds  and  subordinate  thrusts  formed  above  a  155  

décollement   within   the   Beesvlakte   Formation   (Ombombo   Subgroup).   This   thin-­‐156  

skinned,  eastward-­‐directed,  thrust-­‐fold  belt  was  subsequently  refolded  by  broader,  157  

coaxial,  basement-­‐involved  structures,  a  relationship  best  observed  at  the  northern  158  

plunge   of   the   Kamanjab   basement   inlier   (Fig.   3).   The   northward   and   southward  159  

plunges  characteristic  of  Kaoko  belt  structures  are  at  least  in  part  a  product  of  late-­‐160  

stage  refolding  as  a  far-­‐field  consequence  of  collisions  in  the  Damara  belt.    161  

The  Central  Kaoko  zone  (CKz,  Fig.  3)  underwent  sinistral  transpression,  dynamic  162  

metamorphism,   and   rapid   exhumation   at   580-­‐570   Ma,   creating   a   system   of  163  

eastward-­‐vergent,   basement-­‐cored,   thrust   nappes   with   northwest-­‐plunging  164  

stretching   lineations   (Dürr   and  Dingeldey   1996;   Goscombe   et   al.   2003;   Goscombe  165  

Page 6 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 8: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

7  

7  

and  Gray  2008).  Metamorphic  P-­‐T-­‐t  paths  are  clockwise  with  limited  coeval  granitic  166  

magmatism   (Goscombe   et   al.   2003;  Will   et   al.   2004;   Jung   et   al.   2014).   The   CKz   is  167  

juxtaposed   against   the   Western   Kaoko,   or   Coastal,   zone   (WKz),   by   a   continuous  168  

high-­‐grade   ultramylonite   zone,   the   Purros   suture   (Fig.   3),   having   sinistral  169  

subhorizontal  shear-­‐sense  indicators  (Goscombe  et  al.  2003;  2007;  Konopásek  et  al.  170  

2005;  2008).  The  WKz  has  a  magmatic  and  metamorphic  history  distinct   from  the  171  

CKz  (Goscombe  et  al.  2005;  Goscombe  and  Gray  2007;  Konopásek  et  al.  2008)  and  is  172  

taken  to  represent  the  leading  edge  of  the  Dom  Feliciano–Ribeira  (DF-­‐R)  magmatic  173  

arc   of   Uruguay   and   southern   Brazil   (Fig.   2),   against   which   the   Kaoko   belt   was  174  

juxtaposed   prior   to   South   Atlantic   opening   (Oyhantçabal   et   al.   2009,   2011;  175  

Konopásek   et   al.   2014).   Deformation   and   exhumation   of   the   CKz   at   580-­‐570   Ma  176  

(Goscombe  et  al.  2005;  Jung  et  al.  2014)  was  broadly  coeval  with  a  transition  from  177  

subduction-­‐related   to   slab-­‐failure   magmatism   and   exhumation   in   the   DF-­‐R   arc  178  

(Oyhantçabal  et  al.  2009,  2011;  Faleiros  et  al.  2011;  Tupinambá  et  al.  2012;  Alves  et  179  

al.  2013;  Heilbron  et  al.  2013).  Closure  of  the  Adamastor  paleocean,  situated  at  this  180  

latitude  between   the   rifted  Congo  margin  and  DF-­‐R  arc,   occurred  20-­‐30  Myr  after  181  

abortive   continental   subduction   of   the   opposite   (eastward)   polarity   in   the   West  182  

Gondwana   belt   (Fig.   2)(Ganade   de   Araujo   et   al.   2014),   and   >10   Myr   before   final  183  

closure  of  the  Brasiliano  paleoocean,  between  the  DF-­‐R  arc  and  the  Amazonia  craton  184  

(Fuck  et  al.  2008;  Bandeira  et  al.  2012;  McGee  et  al.  2015a,  b).    185  

 186  

Damara  belt  187  

The  Damara  belt  (Fig.  2)   is  an   intact  collision  zone,  riddled  with  bodies  of  post-­‐188  

collisional   syenogranite,   separating   the   Congo   and   Kalahari   cratons.   It   is   a  189  

compound   belt   with   two   basinal   domains,   the   Outjo   and   Khomas   zones   (Fig.   3),  190  

divided   by   a   central   microcontinent,   the   southern   Central   Zone   (Miller   2008)   or  191  

Swakop   terrane   (Hoffmann  1987).  Terminal   collision   in   the  Damara  belt   occurred  192  

when  northward  subduction  within  the  more  southerly  Khomas  zone  led  to  collision  193  

around   550   Ma   between   the   arc-­‐bearing   Swakop   terrane   and   the   north-­‐facing  194  

passive   margin   (Witvlei   Group)   of   the   Kalahari   craton.   The   fossiliferous   late  195  

Page 7 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 9: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

8  

8  

Ediacaran   and   early   Cambrian  Nama  Group   of   the  Kalahari   craton   is   a   compound  196  

foredeep   related   to   collisions   incurred   by   outward-­‐dipping   subduction   in   the  197  

Damara  belt  to  the  north  and  the  Gariep  belt  to  the  west  (Fig.  2).    198  

Miller  (2008)  and  most  previous  workers  consider  the  more  northerly  Outjo  zone  199  

to  have  been  floored  by  stretched  continental  crust  of  the  Congo  craton,  the  Swakop  200  

terrane  (Fig.  3)  being  interpreted  as  a  horst  block  forming  an  outer  basement  high  at  201  

the   rifted   continental   margin.   However,   subduction   rarely   if   ever   initiates   at   a  202  

passive  margin   (Cloetingh   et   al.   1982),   and   we   therefore   favour   a   more   complex  203  

development   in   which   the   Swakop   terrane   collided   first   with   a   passive   Congo  204  

margin   via   southward   subduction   within   the   Outjo   zone.   The   Outjo   zone   is  205  

coextensive   with   the   largest-­‐amplitude   and   longest-­‐wavelength   aeromagnetic  206  

anomaly   trough   in   the   country.   We   postulate   that   northward   subduction   in   the  207  

Khomas  zone  initiated  through  subduction  zone  ‘flip’  (McKenzie  1969;  Suppe  1984),  208  

consequent  to  a  Swakop-­‐Congo  collision.  We  suggest  that  the  N-­‐S  shortening  event  209  

recently  dated  by  40Ar/39Ar  at  ~590  Ma  in  the  Outjo  zone  (Lehmann  et  al.  2015)  is  a  210  

manifestation  of   Swakop-­‐Congo  collision   in   the  Damara  belt,   broadly   synchronous  211  

with  Congo-­‐DF-­‐R  arc  collision  in  the  Kaoko  belt.    212  

 213  

Significance  of  the  Otavi–Mulden  group  transition  214  

Assuming   the   Kaoko   belt   is   an   arc-­‐continent   collision   zone,   the   Otavi–Mulden  215  

group   transition   (Fig.   4)   records   the   passage   of   the   upper  Otavi   Group   carbonate  216  

shelf   margin   over   the   outer   forebulge   of   a   west-­‐dipping   subduction   zone   and   its  217  

descent   on   the   outer   slope   of   the   trench.   Diachronous   (southward-­‐younging)  218  

closure  of   the  Adamastor  paleocean  and  growth  of   the  resulting  collisional  orogen  219  

(Stanistreet   et   al.   1991)   complies   with   paleocurrent   evidence   for   southeastward  220  

directed   fluvial   sediment   transport   (Renosterberg   Formation)   on   the   Congo  221  

foreland   (Hoffman   and   Halverson   2008).   Rapid   exhumation   of   the   Kaoko   belt   at  222  

580-­‐570  Ma  (Goscombe  et  al.  2005;  Jung  et  al.  2014)  implies  an  age  of  ~585  Ma  or  223  

older  for  the  shelf-­‐to-­‐foredeep  transition  in  the  southern  Kunene  Region  (Fig.  3).  224  

 225  

Page 8 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 10: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

9  

9  

Ombonde  detachment  226  

The   Ombonde   detachment   (Hoffman   and   Hartz   1999)   is   exposed   for   a   strike  227  

length  of  51  km  (22  km  east-­‐west)  in  the  south-­‐plunging  Grootberg  syncline  (Fig.  5),  228  

a  basement-­‐involved  structure  in  the  autochthonous  foreland  of  the  Kaoko  belt.    The  229  

east  limb  of  the  syncline  is  steeply-­‐dipping  (50-­‐70°)  but  the  west  limb  is  gentler  and  230  

crests   in   a   broad   anticline   before   disappearing   beneath   Early   Cretaceous   traps  231  

(Etendeka  Group).  Paleogeographically,  the  Otavi  Group  is  situated  on  the  Makalani  232  

dip-­‐slope   (Fig.   5C),   where   rift-­‐shoulder   uplift   and   erosion   caused   progressive  233  

southward  truncation  of  the  Ombombo  Subgroup,  the  Nosib  Group,  and  the  Rasthof  234  

and  Gruis   formations.  The  Gruis  Formation  undergoes  a  remarkable   facies  change,  235  

from  peri-­‐littoral  carbonate  cycles  in  the  north  to  alluvial  fanglomerate  of  exclusive  236  

basement   derivation   20   km   to   the   south.   Where   intersected   by   the   Ombonde  237  

detachment,   the   Gruis   Formation   is   a   rheologically   weak   facies   characterized   by  238  

marlstone   and   fine-­‐grained   clastic   rocks.   Other   rheologically   weak   units   are  239  

limestones  of   the   lower  Rasthof,   lower  Ombaatjie  and   lower  Maieberg   formations,  240  

while   strong   units   are   dolomites   of   the   upper   Rasthof,   upper   Ombaatjie,   upper  241  

Maieberg   and   Elandshoek-­‐Hüttenberg   (upper   Tsumeb)   formations.   The   Mulden  242  

Group   is   represented   by   compositionally   immature   sandstone   with   metre-­‐scale  243  

crossbedding,  locally  with  a  basal  chert-­‐dolomite  conglomerate  containing  clasts  of  244  

Elandshoek  Formation  stromatolite.    245  

The  Ombonde  detachment  was  first  identified  in  1994  by  Tony  Prave  and  Dawn  246  

Sumner  on  the  east  limb  of  the  syncline  (location  h,  Fig.  5A)  by  virtue  of  the  fact  that  247  

~400   m   of   well-­‐known   strata   (Ombaatjie   and   Maieberg   formations)   are   missing  248  

across   a   brittle,   bedding-­‐parallel,   mappable,   fault   surface.   The   fault   was  249  

subsequently   mapped   throughout   the   syncline,   revealing   a   ramp-­‐flat-­‐ramp  250  

geometry   (Fig.   5B)   that   cuts   down-­‐section   westward   from   the   lower   Elandshoek  251  

Formation   to   granitic   basement   in   the   footwall,   and   from   the   upper   Hüttenberg  252  

Formation   to   the   Rasthof   Formation   in   the   hangingwall.   The   detachment   is  253  

commonly  a  single  fault,  but  a  2.5-­‐km-­‐long  extensional  horse  occurs  at  the  exposed  254  

keel   of   the   syncline   (f,   Fig.   5A)   and   smaller   horses   occur   elsewhere.   Fault-­‐related  255  

Page 9 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 11: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

10  

10  

vein   systems   are   uncommon,   but   stratigraphic   cut-­‐offs   (Fig.   5B)   provide   essential  256  

constraints  on  the  fault-­‐plane  geometry  and  net  slip.    257  

The  western  ramp  is  exposed  over  the  crest  of  the  broad  anticline  (a-­‐c,  Fig.  5A).  258  

The  fault  ramps  down-­‐section  westward  from  the  lower  Elandshoek  to  the  Rasthof  259  

Formation  in  the  hangingwall,  and  from  the  Gruis  Formation  to  the  basement  in  the  260  

footwall.  The  hangingwall  cut-­‐off  of  the  topmost  Maieberg  Formation  is  exposed  on  261  

both   limbs   of   a   second-­‐order   anticlinal   crossfold   (c,   Fig.   5A),   across   which   the  262  

projected  cut-­‐off  strikes  357°,  implying  a  dip  direction  of  267°  at  that  location.  A  dip  263  

direction   between   260°   and   280°   is   required   by   the   distribution   of   cut-­‐offs  264  

throughout   the   syncline   in   order   for   the  detachment   to   ramp   continuously  down-­‐265  

section   in   one   direction.   It   is   noteworthy   that   the   hangingwall   is   not   structurally  266  

extended  in  the  panel  that  parallels  the  inferred  slip  direction  (a-­‐c,  Fig.  5A).  267  

Stratigraphic   cut-­‐offs   in   the  hangingwall   of   the  western   ramp   (a-­‐c,   Fig.   5A)   are  268  

matched  by  cut-­‐offs  in  the  footwall  of  the  eastern  ramp  (h-­‐j,  Fig.  5A).  The  horizontal  269  

separations  of  the  corresponding  cut-­‐offs  are  16.0,  16.4  and  17.3  km  for  the  top  of  270  

the   Gruis,   Ombaatjie   and   Maieberg   formations,   respectively.   Corrected   for   an  271  

estimated  25%  synclinal  shortening,  the  respective  horizontal  separations  are  20.0,  272  

20.5   and   21.6   km   (Fig.   5B).   Because   stratigraphic   thicknesses   are   known   from  273  

measured   sections   (Hoffman   and   Halverson   2008),   ramp   angles   between   the  274  

detachment   surface   and   stratigraphic   horizons   can   be   calculated.   The   ramp   angle  275  

averaged  through  the  Rasthof  Formation  in  the  footwall  is  14°,  while  the  respective  276  

ramp  angles  through  the  Ombaatjie  and  Maieberg  formations  are  10°  and  9°  in  the  277  

hangingwall,  and  8°  and  9.5°   in   the   footwall.  The  uncorrected   footwall   ramp  angle  278  

averaged  through  the  entire  Abenab  Subgroup  (395  m  thick),  including  the  long  flat  279  

within  the  Gruis  Formation,  is  a  mere  1.3°,  or  1.1°  corrected  for  synclinal  shortening.  280  

Compaction  is  slight  in  most  Otavi  Group  carbonates;  only  in  limestone  (Fig.  4)  are  281  

stylolites   common.   If   post-­‐detachment   compaction  were   20%,   at   a  maximum,   the  282  

overall  ramp  angle  would  increase  by  0.2°.    283  

The  age  of   the  Ombonde  detachment   is   tightly  constrained.  High  on  the  eastern  284  

ramp,  the  detachment  carries  uppermost  Otavi  Group  in  the  hangingwall  onto  upper  285  

Maieberg  Formation  in  the  footwall  (j,  Fig.  5A).  Fault  slip  must  therefore  post-­‐date  286  

Page 10 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 12: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

11  

11  

the   entire   Otavi   Group.   The   critical   minimum   age   constraint   comes   from   basal  287  

Mulden   Group   (Renosterberg   Formation)   paleovalleys,   the   largest   of   which   is  288  

located   on   the   west   limb   of   the   syncline   near   the   axial   trace   (d-­‐e,   Fig.   5A).   This  289  

paleovalley   trends   northeast-­‐southwest   and   is   filled   by   crudely   bedded   chert-­‐290  

dolomite   conglomerate   that   dips   ~20°   toward   the   southeast,   structurally  291  

conformable  with  the  underlying  Otavi  Group.  Stromatolite  clasts  derived  from  the  292  

upper  Tsumeb  Subgroup  are  prominent  in  the  conglomerate,  the  structural  attitude  293  

of  which  precludes  a  Karoo  (Carboniferous  to  Early  Cretaceous)  or  younger  age.  On  294  

the   east   wall   of   the   paleovalley,   the   conglomerate   forms   a   buttress   unconformity  295  

against  the  hangingwall  of  the  detachment.  The  axial  drainage  of  the  syncline  covers  296  

the   contact  between   the  paleovalley   and   the  detachment   (e,   Fig.   5A).  On   the  west  297  

wall   of   the   paleovalley,   the   basal   conglomerate   bevels   the   detachment   without  298  

disturbance   and   variably   abuts   the   Elandshoek   Formation   of   the   hangingwall   and  299  

both  the  Gruis  and  Rasthof  formations  of  the  footwall  (d,  Fig.  5A).  Close  to  where  the  300  

paleovalley   truncates   the  detachment,   a   small  window   in   the  hangingwall   exposes  301  

the   Gruis   Formation   of   the   footwall.   Erosional   incision   and   truncation   of   the  302  

detachment   fault   by   the   basal   Mulden   Group   conglomerate   (Fig.   5B),   which   is  303  

conformably   overlain   by   sandstone   of   the   Renosterberg   Formation,   demonstrate  304  

that  the  detachment  must  be  pre-­‐Mulden  as  well  as  post-­‐Otavi  in  age.    305  

High  on   the  eastern   ramp,  a   set  of   small  paleogullies  at   the  base  of   the  Mulden  306  

Group   incises   the  uppermost  Otavi  Group   in  the  hangingwall  of   the  detachment  (j,  307  

Fig.  5A).  The  floors  of  these  paleogullies  reach  the  footwall  Maieberg  Formation.  The  308  

paleogullies  confirm  a  post-­‐Otavi,  pre-­‐Mulden  group  age  for  the  detachment.    309  

Hoffman  and  Hartz   (1999)   inferred   that   the  Ombonde  detachment   formed  as   a  310  

submarine   slide   on   the   outer   slope  of   a   trench   that   became  a   collisional   foredeep  311  

when  the  descending  plate  passed  from  oceanic  to  continental  as  the  Congo  margin  312  

was  abortively  subducted  at  ~590  Ma.  They  postulated  that  coherent  sliding  of  the  313  

low-­‐angle  detachment  was   facilitated  by  pore-­‐fluid  overpressure,   resulting   from  a  314  

Messinian-­‐type   sea-­‐level   fall   in   the   foredeep.   As   evidence   for   base-­‐level   fall,   they  315  

cited  deep  karstic  erosion  beneath  the  Mulden  Group  in  the  southwest  of  the  Otavi  316  

platform,  incision  of  the  conglomerate-­‐filled  paleovalley  across  the  detachment,  and  317  

Page 11 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 13: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

12  

12  

the  fluvial  paleoenvironment  of  the  Mulden  Group  (Renosterberg  Formation)  in  the  318  

area  of  the  detachment.    319  

One  troubling  fact  regarding  the  Ombonde  detachment  emerged  only  over  time.  320  

After   its   nature   and   age   were   established   by   mapping   in   1996,   seventeen   field  321  

seasons  elapsed  before  another  example  of  the  phenomenon  was  found  in  the  Kaoko  322  

belt.  Such  structures  should  not  occur  singly.    323  

 324  

Ombepera  detachment  325  

Ninety  kilometres  to  the  northwest  of  the  Grootberg  syncline,  the  internal  part  of  326  

the   thin-­‐skinned  Eastern  Kaoko  zone   includes  a   train  of   three  synclines   (S1-­‐3,  Fig.  327  

6).   Reconnaissance  mapping   and   stratigraphic   logging   identified   a   problem   in   the  328  

central   syncline.   The   distinctive   ‘cap   dolostone’   of   the   younger   Cryogenian  329  

(Marinoan)  glaciation,  the  normally  ever-­‐present  Keilberg  Member  at  the  base  of  the  330  

Maieberg  Formation  (Fig.  4),  could  not  be  found.  In  contrast,  the  cap  dolomite  was  331  

easily  recognized  in  the  eastern  and  western  synclines,  in  the  latter  atop  glacigenic  332  

carbonate   diamictite   of   the   Ghaub   Formation.   The   conundrum   of   the   central  333  

syncline   (S2,   Fig.   6)   remained   unresolved   until   the   area   was   revisited   in   the   last  334  

week  of  the  2014  field  season.  335  

Measuring   the   entire   succession   in   the   central   syncline   prompted   a   postulate  336  

(Fig.  7)  that  the  Gruis,  Ombaatjie  and  lower  Maieberg  formations  are  missing  across  337  

a  cryptic,  normal-­‐sense  detachment   that  predates   folding  and  thrusting,  analogous  338  

to   the   Ombonde   detachment.   The   postulate   was   corroborated   by   carbon-­‐isotope  339  

chemostratigraphy.  Strata  directly  overlying  the  Rasthof  Formation  are  isotopically  340  

depleted,  δ13C  =  –2  to  –5‰  VPDB  (Section  2,  Fig.  7).  This   is   incompatible  with  the  341  

Gruis  and  Ombaatjie  formations,  which  are  characteristically  enriched  (δ13C  =  +1  to  342  

+8‰  VPDB),  but  is  consistent  with  the  Maieberg  Formation  (Fig.  4H).    343  

In   the   western   syncline   (S1,   Fig.   6),   the   upper   Ombaatjie,   Ghaub   and   lower  344  

Maieberg  formations,  including  the  cap  dolostone,  appear  on  the  hangingwall  of  the  345  

inferred   detachment   (Section   1,   Fig.   7),   consistent   with   westward   stratigraphic  346  

downcutting   analogous   to   the   Ombonde   detachment.   The   estimated   thickness   of  347  

Page 12 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 14: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

13  

13  

missing  strata,  450-­‐700  m,  implies  a  steeper  ramp  angle  and/or  larger  displacement  348  

compared  with  the  Ombonde  detachment.  349  

In   2015,   we   tested   a   prediction   of   the   detachment   hypothesis:   an   up-­‐ramp  350  

extension  of   the  detachment   in  the  eastern  syncline,  near  the  village  of  Otjize  (Fig.  351  

6).   On   air   photos   and   satellite   imagery   (Fig.   8),   a   channel-­‐like   salient   of   Tsumeb  352  

Subgroup  dolostone,  ~5.0  km  wide  in  a  N-­‐S  direction,  is  seen  to  cut  out  much  of  the  353  

underlying,  strongly-­‐cyclical,  Ombaatjie  Formation.  This  is  evident  on  both  limbs  of  354  

the   syncline.   Alternative   interpretations   of   the   channel-­‐like   structure   can   be  355  

discriminated  on  the  ground.  If  the  structure  was  a  (Ghaub)  glacial-­‐age  paleovalley  356  

(Fig.  8A),   the  cap  dolostone  would  occur   in  the  channel  axis  as  well  as  outside  the  357  

channel.  Up  to  85  m  of  Ghaub-­‐age  local  relief  is  known  elsewhere  on  the  carbonate  358  

shelf   (Halverson   et   al.   2002;   Hoffman   2011)   and  more   than   400  m   occurs   at   the  359  

southern  shelf  break  on  Fransfontein  Ridge  (Hoffman  et  al.  2014).  In  those  areas,  the  360  

thickness   of   the   Maieberg   Formation   as   a   whole   reciprocates   with   relief   on   the  361  

Ghaub  glacial  surface  (Fig.  8A).  Alternatively,   if   the  structure   is  a  post-­‐Otavi  Group  362  

detachment  (Fig.  8B),  the  cap  dolostone  (Keilberg  Member)  would  be  missing  in  the  363  

channel,  and  both  the  footwall  and  hangingwall  should  contain  strata  younger  than  364  

their   equivalents   in   the   central   syncline.   This   is   because   an   Ombonde-­‐type  365  

detachment  should  ramp  up-­‐section  in  an  eastward  direction  (Fig.  5B).    366  

Fig.  9  compares  measured  sections  through  the  upper  Abenab  and  lower  Tsumeb  367  

subgroups   in   the   eastern   syncline.   Sections  4   and  6   are   from   the   axial   part   of   the  368  

channel-­‐like  structure  on  opposite  limbs  of  the  syncline  (Fig.  6).  Sections  3  and  7  are  369  

from   south   of   the   structure   on   opposite   limbs,   and   section   5   is   from  north   of   the  370  

structure  in  the  synclinal  hinge  zone  (Fig.  6).  The  cap  dolostone  (Keilberg  Member)  371  

does   not   occur   within   the   confines   of   the   channel-­‐like   structure   (Fig.   8),   where  372  

dolostone  grainstone  of  the  upper  Maieberg  Formation  is  in  fault  contact  with  marly  373  

limestone   of   the   lower   Ombaatjie   Formation.   Missing   are   ~215   m   of   the   upper  374  

Ombaatjie   Formation,   and   between   215   and   350   m   of   the   lower   Maieberg   and  375  

Ghaub   formations.   The   total  missing   interval,   430-­‐565  m,   compares   favourably   in  376  

thickness  with  that  in  the  central  and  western  synclines,  450-­‐700  m.    377  

Page 13 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 15: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

14  

14  

There   is   no   discernible   difference   in   stratigraphic   level   of   the  missing   interval  378  

across   the   eastern   syncline   (sections   4   and   6,   Fig.   9).   Footwall   and   hangingwall  379  

stratigraphies   in   the   eastern   syncline   are   compared  with   those   in   the   central   and  380  

western  synclines   in  a   longitudinal   section  of   the  detachment  along   the  axial  zone  381  

(Fig.   7).   An   unfaulted   section   from   east   of   the   detachment   is   included   for  382  

comparison   (section   8,   Fig.   7).   From   east   to   west,   the   detachment   ramps   down-­‐383  

section   from   the   lower   Ombaatjie   to   the   lower   Rasthof   formation   in   the   footwall,  384  

and  from  the  upper  Maieberg  to  the  upper  Ombaatjie  formation  in  the  hangingwall.  385  

Like   the   Ombonde   detachment,   the   Ombepera   detachment   ramps   down-­‐section  386  

westward,  which   is   therefore   the   inferred  direction  of  normal-­‐sense  displacement.  387  

The   hypothesized   Ombepera   detachment   is   validated   by   its   predicted   up-­‐ramp  388  

extension  in  the  eastern  syncline.  389  

We   cannot   determine   the   magnitude   of   displacement   from   the   separation   of  390  

matching   stratigraphic   cut-­‐offs,   because   the   footwall   and   hangingwall   have   no  391  

exposed  cut-­‐offs  in  common  (Fig.  7).  However,  we  can  calculate  a  ramp  angle  of  2.0°,  392  

uncorrected   for   tectonic   shortening,   given   the   stratigraphic   climbs   of   ~516   and  393  

~528   m   in   the   footwall   and   hangingwall   respectively   (Fig.   7),   over   a   horizontal  394  

distance  in  the  dip  direction  of  15  km.  Corrected  for  an  estimated  40%  shortening  395  

due  to  folding  and  thrusting,  the  original  ramp  angle  was  1.3°,  slightly  steeper  than  396  

the   Ombonde   detachment   (1.1°).   As   the   footwall   and   hangingwall   of   the   three  397  

synclines   have   no   stratigraphic   cut-­‐offs   in   common,   the   tectonically   corrected  398  

distance   of   25   km  between   the   four   sections   (Fig.   6)   is   a  minimum  bound   on   the  399  

magnitude  of  displacement  of  the  Ombepera  detachment.  Inescapably,  strata  in  the  400  

hangingwall  of   the  western  syncline  restore  palinspastically  to  the  east  of   footwall  401  

strata  in  the  eastern  syncline  (Fig.  7).    402  

 403  

Discussion  and  remaining  problems  404  

Arc-­‐continent   collision   having   been   a   common   process   for   billions   of   years  405  

(Brown  and  Ryan  2011),  early  extensional  detachments  of  the  type  described  here  406  

should  occur   in  other  orogenic  belts,   regardless  of  whether  sharp  base-­‐level   fall   is  407  

Page 14 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 16: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

15  

15  

essential   to   their   origin.   Moreover,   most   examples   on   existing   margins   occur   on  408  

passive  margins,  so  incipient  subduction  is  not  required  for  their  development.  Yet  409  

to  our  knowledge,  few  coherent  map-­‐scale  extensional  detachments  (mass  transport  410  

complexes)  have  been  described  from  paleomargins  in  ancient  orogenic  belts.  411  

Failure  to  recognize  the  Ombepera  detachment  could  have  led  to  serious  errors  in  412  

the   interpretation   of   shelf   development.   The   anomalously   thin   and   argillaceous  413  

Abenab   Subgroup  of   the  western   syncline   (Fig.   7)   could   have   been   interpreted   as  414  

evidence   for   a  western   shelf  margin,   although   no   such  margin   is   apparent   in   the  415  

Ombombo   or   Tsumeb   subgroups   in   the   same   area.   According   to   the   detachment  416  

hypothesis,   the   Ombaatjie   Formation   is   thin   in   the  western   syncline   because   it   is  417  

truncated   from  below.   Its  more  terrigenous  character,  relative  to   footwall  sections  418  

in   the   eastern   syncline,   relates   to   its  more   inboard,   not   outboard,   palinspastically  419  

location  on  the  shelf.    420  

The   anticlinorium   between   the  western   and   central   synclines   includes   a   west-­‐421  

facing  panel   in  which   the   apparent   thickness   of   the  Rasthof   Formation   attenuates  422  

northward  from  350  to  96  m  in  a  strike  distance  of  just  4.4  km  (location  a,  Fig.  6).  In  423  

the   absence   of   structural   disturbance,   the   attenuation  would   imply   a   north-­‐facing  424  

shelf   margin   of   upper   Rasthof   age.   In   light   of   the   detachment   hypothesis,   the  425  

attenuation   could   represent   instead   a   lateral   footwall   ramp.   Closely-­‐spaced  426  

measured   sections   imply   top-­‐down   truncation,   consistent   with   a   footwall   ramp  427  

having   an   average   ramp   angle   of   3.3°.   On   the   other   hand,   the   detachment   could  428  

merely   track   the   Rasthof-­‐Gruis   formation   rheological   boundary   across   a   primary  429  

shelf  margin.   In   this   case,   sedimentary   facies   should   be  distinct   from   those   in   the  430  

shelf  interior.    431  

The  lateral  ramps  bounding  the  Ombepera  detachment  are  just  ~5.0  km  apart  at  432  

the  base  of  the  Tsumeb  Subgroup  in  the  footwall  of  the  eastern  syncline  (Fig.  8).  The  433  

narrowness   of   the   detachment   recalls   the   South   Makassar   Strait   mass   transport  434  

complex   (Fig.   1C)   and   other   submarine   landslides   (Frey-­‐Martinez   et   al.   2005;  435  

Masson   et   al.   2006;   Armandita   et   al.   2015).   Narrowness  may   help   to   account   for  436  

their   infrequent   recognition   on   ancient   continental  margins,   including   the   belated  437  

recognition  of  a  second  detachment  in  the  Kaoko  belt.    438  

Page 15 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 17: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

16  

16  

However,   reconnaissance   mapping   and   air-­‐photo   interpretation   have   not  439  

revealed  any  lateral  ramp  above  the  Rasthof  Formation  for  20  km  southward  or  40  440  

km   northward   of   the   detachment   axis   in   the   central   and   western   synclines.  441  

Additional  mapping  is  required  to  investigate  the  possibility  that  channel-­‐like  lateral  442  

ramps   develop   preferentially   where   the   detachment   surface   intersects   specific  443  

stratigraphic  intervals.  444  

 445  

Conclusions  446  

A  second  map-­‐scale,  coherent,  very-­‐low-­‐angle,  detachment  structure  of  Ediacaran  447  

age  has  been  found  in  the  Kaoko  belt  of  northwestern  Namibia.  Like  the  previously  448  

described   Ombonde   detachment,   the   Ombepera   detachment   is   a   brittle   structure  449  

that  predates  orogenic   shortening,   ramps  downward   stratigraphically   to   the  west,  450  

and  underwent  normal-­‐sense  displacement  of  substantial  magnitude  (>20  km).  The  451  

detachment  is  surprisingly  narrow  (5  km  N-­‐S),  25%  of  its  displacement,  at  the  level  452  

of  the  Cryogenian-­‐Ediacaran  boundary.  By  analogy  with  the  Ombonde  detachment,  453  

the   stratigraphic   age   of   which   is   tightly   constrained,   we   interpret   the   Ombepera  454  

structure   as   the   extended   domain   of   a   coherent   submarine   slide   (mass   transport  455  

complex),  mobilized  on  the  outer  slope  of  a  trench-­‐foredeep  basin  during  incipient  456  

collision  between  the  Congo  craton  and  the  Dom  Feliciano–Ribeira  arc.  Accordingly,  457  

the  average   ramp  angle  of  1.3°   for   the  Ombepera  detachment,   relative   to   the  host  458  

stratigraphy,  would  have  been  augmented  at  the  time  of  failure  by  a  few  degrees  of  459  

incline  related  to  lithospheric  flexure.  We  expect  that  submarine  slides  of  this  type  460  

should  occur  in  other  orogenic  belts  regardless  of  age.  Failure  to  recognize  them  can  461  

lead  to  misinterpretation  of  sedimentary  facies  and  stratigraphic  relations.  462  

 463  

Acknowledgements  464  

PFH  first  met   John  Dewey   in  April  1971  at  a  Canadian  (then  Alberta)  Society  of  465  

Petroleum  Geology  short  course  on  “The  New  Global  Tectonics”  at  Banff   (Alberta),  466  

presented  by  Dewey  and   the   late  William  R.  Dickinson.  He  met  Kevin  Burke  a   few  467  

months   later   at   a   night   club   in   downtown  Toronto.   Together,   they   convinced  him  468  

Page 16 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 18: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

17  

17  

that,   in   tectonics,   the  present   is   the  key   to  past.  Field  work  was  authorized  by   the  469  

Geological   Survey   of   Namibia   and   supported   in   2010-­‐14   by   the   Earth   System  470  

Evolution   Project   of   the   Canadian   Institute   for   Advanced   Research   (CIFAR).   Roy  471  

McG.  Miller  drew  our  attention  to  Tom  Clifford’s  Saturn  slide.  We  thank  Stephen  T.  472  

Johnston,  Francis  A.  Macdonald  and  William  A.  Thomas  for  thoughtful  comments  on  473  

the   manuscript,   and   Andrew   Hynes   and   John   W.   F.   Waldron   for   constructive  474  

reviews.  Ali  Polat  invited  the  paper.  475  

 476  

References  477  

Alves,  A.,  Janasi,  V.A.,  Neto,  M.C.C.,  Heaman,  L.,  and  Simonetti,  A.  2013.  U-­‐Pb  478  

geochronology  of  the  granite  magmatism  in  the  Embu  Terrane:  Implications  for  479  

the  evolution  of  the  Central  Ribeira  Belt,  SE  Brazil.  Precambrian  Research,  230:  1-­‐480  

12,  doi:  10.1016/j.precamres.2013.01.018.  481  

Armandita,  C.,  Morley,  C.K.,  and  Rowell,  P.  2015.  Origin,  structural  geometry,  and  482  

development  of  a  giant  coherent  slide:  The  South  Makassar  Strait  mass  transport  483  

complex.  Geosphere,  11:  376-­‐403,  doi:  10.1130/GES01077.1.  484  

Bandeira,  J.,  McGee,  B.,  Nogueira,  C.R.,  Collins,  A.S.,  Trindade,  R.  2012.  485  

Sedimentological  and  provenance  response  to  Cambrian  closure  of  the  Clymene  486  

ocean:  The  upper  Alto  Paraguay  Group,  Paraguay  belt,  Brazil.  Gondwana  487  

Research,  21:  323-­‐340.  488  

Brown,  D.,  and  Ryan,  P.D.  (Editors)  2011.  Arc-­‐Continent  Collision.  Springer-­‐Verlag,  489  

Heidelberg  (Germany),  493  p.    490  

Bugge,  T.,  Befring,  S.,  Belderson,  R.H.,  Eidvin,  T.,  Jansen,  E.,  Kenyon,  N.H.,  Holtedahl,  491  

H.,  and  Sejrup,  E.,  1987.  A  giant  three-­‐stage  submarine  slide  off  Norway.  Geo-­‐492  

Marine  Letters,  7:  191-­‐198.  493  

Butler,  R.W.H.,  and  Paton,  D.A.  2010.  Evaluating  lateral  compaction  in  deepwater  494  

fold  and  thrust  belts:  How  much  are  we  missing  from  “nature’s  sandbox”?  GSA  495  

Today,  20:  4-­‐10,  doi:  10.1130/GSATG77A.1.  496  

Page 17 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 19: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

18  

18  

Clifford,  T.N.  1962.  Notes  on  nappes  in  the  Otavi  facies  of  northern  South  West  497  

Africa.  University  of  Leeds  (United  Kingdom),  Research  Institute  of  African  498  

Geology,  6th  Annual  Report,  pp.  44-­‐45.  499  

Clifford,  T.N.  2008.  The  geology  of  the  Neoproterozoic  Swakop-­‐Otavi  transition  zone  500  

in  the  Outjo  District,  northern  Damara  Orogen,  Namibia.  South  African  Journal  of  501  

Geology,  111:  117-­‐140  and  Maps  1-­‐3,  doi:  10.2113/gssajg.111.1.119.  502  

Cloetingh,  S.A.P.L.,  Wortel,  M.J.R.,  and  Vlaar,  N.J.  1982.  Evolution  of  passive  503  

continental  margins  and  initiation  of  subduction  zones.  Nature,  297:  139-­‐142.  504  

Chemale,  Jr.,  F.,  Mallmann,  G.,  Bitencourt,  M.F.,  and  Kawashita,  K.  2012.  Time  505  

constraints  on  magmatism  along  the  Major  Gercino  Shear  Zone,  southern  Brazil:  506  

Implications  for  West  Gondwana  reconstruction.  Gondwana  Research,  22:  184-­‐507  

199,  doi:  10.1016/j.gr.2011.08.018.  508  

Dingle,  R.V.  1977.  The  anatomy  of  a  large  submarine  slump  on  a  sheared  continental  509  

margin  (SE  Africa).  Journal  of  the  Geological  Society,  London,  134:  293-­‐310.  510  

Dürr,  S.B.,  and  Dingeldey,  D.P.  1996.  The  Kaoko  belt  (Namibia):  Part  of  a  late  511  

Neoproterozoic  contionental-­‐scale  strike-­‐slip  system.  Geology,  24:  503-­‐506.  512  

Faleiros,  F.M.,  Campanha,  G.A.C.,  Martins,  L.,  Vlach,  S.R.F.,  and  Vasconcelos,  P.M.  513  

2011.  Ediacaran  high-­‐pressure  collision  metamorphism  and  tectonics  of  the  514  

southern  Ribeira  Belt  (SE  Brazil):  Evidence  for  terrane  accretion  and  dispersion  515  

during  Gondwana  assembly.  Precambrian  Research,  189:  263-­‐291,  doi:  516  

10.1016/j.precamres.2011.07.013.  517  

Frets,  D.C.  1969.  Geology  and  structure  of  the  Huab-­‐Welwitschia  area,  South  West  518  

Africa.  University  of  Cape  Town  (South  Africa),  Precambrian  Research  Unit,  519  

Bulletin  5,  235  p.  520  

Frey-­‐Martinez,  J.,  Cartwright,  J.,  and  Hall,  B.  2005.  3D  seismic  interpretation  of  slump  521  

complexes:  examples  from  the  continental  margin  of  Israel.  Basin  Research,  17:  522  

83-­‐108,  doi:  10.111/j.1365-­‐2117.2005.00255.x.  523  

Fuck,  R.A.,  Brito  Neves,  B.B.,  and  Schobbenhaus,  C.  2008.  Rodinia  descendents  in  524  

South  America.  Precambrian  Research,  160:  108-­‐126,  doi:  525  

10.1016/j.precamres.2007.04.018.  526  

Page 18 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 20: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

19  

19  

Ganade  de  Araujo,  C.E.,  Rubatto,  D.,  Hermann,  J.,  Cordani,  U.G.,  Caby,  R.,  and  Basei,  527  

M.A.S.  2014.  Ediacaran  2,500-­‐km-­‐long  synchronous  deep  continental  subduction  528  

in  the  West  Gondwana  Orogen.  Nature  Communications,  5:  5198,  1-­‐8,  doi:  529  

10.1038/ncomms6198.  530  

Goscombe,  B.,  Gray,  D.,  Armstrong,  R.,  Foster,  D.A.,  and  Vogl,  J.  2005.  Event  531  

geochronology  of  the  Pan-­‐African  Kaoko  Belt,  Namibia.  Precambrian  Research,  532  

140:  103.e1-­‐103.e41,  doi:  10.1016/j.precamres.2005.07.003.  533  

Goscombe,  B.D.,  and  Gray,  D.R.  2007.  The  Coastal  Terrane  of  the  Kaoko  Belt,  534  

Namibia:  Outboard  arc-­‐terrane  and  tectonic  significance.  Precambrian  Research,  535  

155:  139-­‐158,  doi:  10.1016/j.precamres.2007.01.008.  536  

Goscombe,  B.D.,  and  Gray,  D.R.  2008.  Structure  and  strain  variation  at  mid-­‐crustal  537  

levels  in  a  transpressional  orogen:  A  review  of  Kaoko  Belt  structure  and  the  538  

character  of  West  Gondwana  amalgamation  and  dispersal.  Gondwana  Research,  539  

13:  45-­‐85,  doi:  10.1016/j.gr.2007.07.002.  540  

Goscombe,  B.,  Hand,  M.,  and  Gray,  D.  2003.  Structure  of  the  Kaoko  Belt,  Namibia:  541  

progressive  evolution  of  a  classic  transpressional  orogen.  Journal  of  Structural  542  

Geology,  25:  1049-­‐1081.  543  

Goscombe,  B.,  Hand,  M.,  Gray,  D.,  and  Mawby,  J.  2003.  The  metamorphic  architecture  544  

of  a  transpressional  orogen:  the  Kaoko  Belt,  Namibia.  Journal  of  Petrology,  44:  545  

679-­‐711.  546  

Guj,  P.,  1970.  The  Damara  mobile  belt  in  the  south-­‐western  Kaokoveld,  South  West  547  

Africa.  University  of  Cape  Town  (South  Africa),  Precambrian  Research  Unit,  548  

Bulletin  8,  168  p.  549  

Halverson,  G.P.,  Hoffman,  P.F.,  and  Schrag,  D.P.  2002.  A  major  perturbation  of  the  550  

carbon  cycle  before  the  Ghaub  glaciation  (Neoproterozoic)  in  Namibia:  Prelude  to  551  

snowball  Earth?  Geochemistry,  Geophysics,  Geosystems,  3(6):  1-­‐24,  doi:  552  

10.1029/2001GC000244.  553  

Halverson,  G.P.,  Hoffman,  P.F.,  Schrag,  D.P.,  Maloof,  A.C.,  and  Rice,  A.H.N.  2005.  554  

Toward  a  Neoproterozoic  composite  carbon-­‐isotope  record.  Geological  Society  of  555  

America  Bulletin,  117:  1181-­‐1207,  doi:  10.1130/B25630.1.  556  

Page 19 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 21: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

20  

20  

Hampton,  M.A.,  Lee,  H.J.,  and  Locat,  J.  1996.  Submarine  landslides.  Reviews  of  557  

Geophysics,  34:  33-­‐59.  558  

Heilbron,  M.,  Tupinambá,  M.,  Valeriano,  C.M.,  Armstrong,  R.,  Siva,  L.G.E.,  Melo,  R.S.,  559  

Simonetti,  A.,  Soares,  A.C.P.,  and  Machado,  N.  2013.  The  Serra  da  Bolívia  complex:  560  

The  record  of  a  new  Neoproterozoic  arc-­‐related  unit  at  Ribeira  belt.  Precambrian  561  

Research,  238:  158-­‐175,  doi:  10.1016/j.precamres.2012.09.014.  562  

Hoffman,  P.F.  2011.  Strange  bedfellows:  glacial  diamictite  and  cap  carbonate  from  563  

the  Marinoan  (635  Ma)  glaciation  in  Namibia.  Sedimentology,  58:  57-­‐119,  doi:  564  

10.1111/j.1365-­‐3091.2010.01206.x.  565  

Hoffman,  P.F.,  and  Hartz,  E.H.  1999.  Large,  coherent,  submarine  landslide  associated  566  

with  Pan-­‐African  foreland  flexure.  Geology,  27:  687-­‐690.  567  

Hoffman,  P.F.,  and  Halverson,  G.P.  2008.  Otavi  Group  of  the  western  Northern  568  

Platform,  the  Eastern  Kaoko  Zone  and  the  western  Northern  Margin  Zone.  In  The  569  

Geology  of  Namibia,  Volume  2,  Neoproterozoic  to  Lower  Palaeozoic.  Edited  by  570  

R.McG.  Miller.  Geological  Survey  of  Namibia,  Windhoek,  pp.  13-­‐69–13-­‐135.  571  

Hoffman,  P.F.,  Bellefroid,  E.,  Hodgin,  E.B.,  Johnson,  B.W.,  Kunzmann,  M.,  Sansjofre,  P.,  572  

Strauss,  J.V.,  and  Schrag,  D.P.  2014.  A  Cryogenian-­‐early  Ediacaran  carbonate  shelf  573  

break  dominated  by  glacial  paleotopography,  Fransfontein  Ridge,  Kunene  Region,  574  

Namibia.  Geological  Society  of  America,  2014  Annual  Meeting  Abstracts,  Paper  575  

130-­‐2.  576  

Hoffmann,  K.-­‐H.  1987.  Application  of  tectonostratigraphic  terrane  analysis  in  the  577  

Damara  Province  of  central  and  northern  Namibia.  In  Abstract  Volume,  A.L.  Du  578  

Toit  Golden  Jubilee  Conference  on  Tectonostratigraphic  Terrane  Analysis,  pp.  25-­‐579  

27,  Royal  Society  and  Geological  Society  of  South  Africa,  Cape  Town.    580  

Hoffmann,  K.-­‐H.,  and  Prave,  A.R.  1996.  A  preliminary  note  on  a  revised  subdivision  581  

and  regional  correlation  of  the  Otavi  Group  based  on  glacigenic  diamictites  and  582  

associated  cap  dolostones.  Communications  of  the  Geological  Survey  of  Namibia,  583  

11:  77-­‐82.  584  

Jung,  S.,  Brandt,  S.,  Nebel,  O.,  Hellebrand,  E.,  Seth,  B.,  and  Jung,  C.  2014.  The  P-­‐T-­‐t  585  

paths  of  high-­‐grade  gneisses,  Kaoko  Belt,  Namibia:  Constraints  from  mineral  data,  586  

Page 20 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 22: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

21  

21  

U-­‐Pb  allanite  and  monazite  and  Sm-­‐Nd/Lu-­‐Hf  garnet  ages  and  garnet  ion  probe  587  

data.  Gondwana  Research,  25:  775-­‐796,  doi:  10.1016/j.gr.2013.05.017.  588  

Konopásek,  J.,  Košler,  J.,  Sláma,  J.,  and  Janoušek,  V.  2014.  Timing  and  sources  of  pre-­‐589  

collisional  Neoproterozoic  sedimentation  along  the  SW  margin  of  the  Congo  590  

craton  (Kaoko  Belt,  NW  Namibia).  Gondwana  Research,  26:  386-­‐401,  doi:  591  

10.1016/j.gr.2013.06.021.  592  

Konopásek,  J.,  Košler,  J.,  Tajčmanová,  L.,  Ulirch,  S.,  and  Kitt,  S.  2008.  Neoproterozoic  593  

igneous  complex  emplaced  along  major  tectonic  boundary  in  the  Kaoko  Belt  (NW  594  

Namibia):  ion  probe  and  LA-­‐ICP-­‐MS  dating  of  magmatic  and  metamorphic  595  

zircons.  Journal  of  the  Geological  Society,  London,  165:  153-­‐165.  596  

Konopásek,  J.,  Kröner,  S.,  Kitt,  S.L.,  Passchier,  C.W.,  and  Kröner,  A.  2005.  Oblique  597  

collision  and  evolution  of  large-­‐scale  transcurrent  shear  zones  in  the  Kaoko  Belt,  598  

NW  Namibia.  Precambrian  Research,  136:  139-­‐157.  599  

Lehmann,  J.,  Saalmann,  K.,  Naydenov,  K.V.,  Milani,  L.,  Belyanin,  G.A.,  Zwingmann,  H.,  600  

Charlesworth,  G.,  Kinnaird,  J.A.  2015.  Structural  and  geochronological  constraints  601  

on  the  Pan-­‐African  tectonic  evolution  of  the  northern  Damara  Belt,  Namibia.  602  

Tectonics,  doi:  10.1002/2015TC003899.  603  

Masson,  D.G.,  Harbitz,  C.B.,  Wynn,  R.B.,  Pedersen,  G.,  and  Løvholt,  F.  2006.  Submarine  604  

landslides:  processes,  triggers  and  hazard  prediction.  Philosophical  Transactions  605  

of  the  Royal  Society,  London,  ser.  A,  364:  2009-­‐2039,  doi:  606  

10.1098/rsta.2006.1810.  607  

McGee,  B.,  Collins,  A.S.,  Trindade,  R.I.F.,  and  Jourdan,  F.  2015a.  Investigating  mid-­‐608  

Ediacaran  glaciation  and  final  Gondwana  amalgamation  using  coupled  609  

sedimentology  and  40Ar/39Ar  detrital  muscovite  provenance  from  the  Paraguay  610  

Belt,  Brazil.  Sedimentology,  62:  130-­‐154,  doi:  10.111/sed.12143.  611  

McGee,  B.,  Collins,  A.S.,  Trindade,  R.I.F.,  and  Payne,  J.  2015b.  Age  and  provenance  of  612  

the  Cryogenian  to  Cambrian  passive  margin  to  foreland  basin  sequence  of  the  613  

northern  Paraguay  Belt,  Brazil.  Geological  Society  of  America  Bulletin,  127:  76-­‐614  

86,  doi:  10.1130/B30842.1.  615  

Page 21 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 23: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

22  

22  

McKenzie,  D.P.  1969.  Speculations  on  the  consequences  and  causes  of  plate  motions.  616  

Geophysical  Journal  International  (Geophysical  Journal  of  the  Royal  Astronomical  617  

Society),  18:  1-­‐32.  618  

Miller,  R.McG.  2008.  The  Geology  of  Namibia,  Volume  2,  Neoproterozoic  to  Lower  619  

Palaeozoic.  Geological  Survey  of  Namibia,  Windhoek.  620  

Morley,  C.K.,  King,  R.,  Hillis,  R.,  Tingay,  M.,  and  Backe,  G.  2011.  Deepwater  fold  and  621  

thrust  belt  classification,  tectonics,  structure  and  hydrocarbon  prospectivity:  A  622  

review.  Earth-­‐Science  Reviews,  104:  41-­‐91.  623  

Oyhantçabal,  P.,  Siegesmund,  S.,  Wemmer,  K.,  and  Passchier,  C.W.  2011.  The  624  

transpressional  connection  between  Dom  Feliciano  and  Kaoko  Belts  at  580-­‐550  625  

Ma.  International  Journal  of  Earth  Sciences  (Geologische  Rundschau),  100:  379-­‐626  

390,  doi:  10.1007/s50031-­‐010-­‐0577-­‐3.  627  

Oyhantçabal,  P.,  Siegesmund,  S.,  Wemmer,  K.,  Presnyakov,  S.,  and  Layer,  P.  2009.  628  

Geochronological  constraints  on  the  evolution  of  the  southern  Dom  Feliciano  Belt  629  

(Uruguay).  Journal  of  the  Geological  Society,  London,  166:  1075-­‐1084,  doi:  630  

10.1144/0016-­‐76492008-­‐122.  631  

Rowan,  M.G.,  Peel,  F.J.,  and  Vendeville,  B.C.  2004.  Gravity-­‐driven  fold  belts  on  passive  632  

margins.  In  Thrust  Tectonics  and  Hydrocarbon  Systems.  Edited  by  McClay,  K.R.  633  

American  Association  of  Petroleum  Geologists,  Memoir  82,  pp.  157-­‐182.  634  

SACS  (South  African  Committee  for  Stratigraphy)  1980.  Damara  sequence.  In  635  

Stratigraphy  of  South  Africa,  Part  1.  Edited  by  Kent,  L.E.  Handbook  of  the  636  

Geological  Survey  of  South  Africa,  8:  415-­‐438.  637  

Stanistreet,  I.G.,  and  Charlesworth,  E.G.  1999.  Damaran  basement-­‐cored  fold  nappes  638  

incorporating  pre-­‐collisional  basins,  Kaoko  Belt,  Namibia,  and  controls  on  639  

Mesozoic  supercontinental  breakup.  University  of  Witwatersrand  (South  Africa),  640  

Economic  Geology  Research  Unit,  Information  Circular  332,  14  p.  641  

Stanistreet,  I.G.,  Kukla,  P.A.,  and  Henry,  G.  1991.  Sedimentary  basinal  responses  to  a  642  

late  Precambrian  Wilson  cycle:  The  Damara  orogen  and  Nama  foreland,  Namibia.  643  

Journal  of  African  Earth  Sciences,  13:  141-­‐156.  644  

Suppe,  J.  1984.  Kinematics  of  arc-­‐continent  collision,  flipping  of  subduction,  and  645  

back-­‐arc  spreading  near  Taiwan.  Geological  Society  of  China,  Memoir  6,  pp.  21-­‐33.  646  

Page 22 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 24: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

23  

23  

Tupinambá,  M.,  Heilbron,  M.,  Valeriano,  C.,  Júnior,  R.P.,  Dios,  F.B.,  Machado,  N.,  Silva,  647  

L.G.E.,  Cesar,  J.,  and  Almeida,  J.C.H.  2012.  Juvenile  contribution  of  the  648  

Neoproterozoic  Rio  Negro  Magmatic  Arc  (Ribeira  Belt,  Brazil):  Implications  for  649  

Western  Gondwana  amalgamation.  Gondwana  Research,  21:  422-­‐438,  doi:  650  

10.1016/j.gr.2011.05.012.  651  

Will,  T.M.,  Okrusch,  M.,  and  Gruner,  B.B.  2004.  Barrovian  and  Buchan  type  652  

metamorphism  in  the  Pan-­‐African  Kaoko  belt,  Namibia:  implications  for  its  653  

geotectonic  position  within  the  framework  of  Western  Gondwana.  South  African  654  

Journal  of  Geology,  107:  431-­‐454.  655  

 656  

Figure  captions  657  

Fig.  1.  Interpretations  of  seismic  reflection  profiles  (redrawn  from  Butler  and  Paton  658  

2010;  Armandita  et  al.  2015)  showing  Late  Cretaceous  (A)  and  early  Pliocene  (B)  659  

submarine  landslides  (mass  transport  complexes)  within  fine-­‐grained  terrigeous  660  

and  carbonate  sediments  respectively  on  the  passive  continental  margins  of  661  

southwest  Africa  and  southeast  Borneo.  The  scale  is  the  same  for  each  profile  and  662  

the  Borneo  margin  is  geographically  ‘reversed’  for  kinematic  comparison.  The  663  

Namibian  margin  faces  the  South  Atlantic  Ocean;  the  Borneo  margin  (Paternoster  664  

Platform)  faces  the  South  Makassar  Straits  Basin  and  the  West  Sulawesi  thrust-­‐fold  665  

belt.  The  slides  include  extended  domains  characterized  by  normal-­‐fault  duplexes  666  

(green  lines)  and  shortened  domains  by  thrust  duplexes  (blue  lines),  both  soled  on  a  667  

basal  detachment  (red).  Note  syn-­‐slide  growth  strata  on  the  Namibian  margin.  In  the  668  

South  Makassar  Strait  slide,  the  strain  domains  migrated  down-­‐dip  over  time,  669  

resulting  in  thrusting  succeeded  by  cospatial  normal  faulting.  Planform  of  the  South  670  

Makassar  slide  mass  (C)  shows  its  width  to  be  only  a  fraction  of  its  maximum  671  

translation,  unlike  detachments  of  tectonic  origin.  The  barbed  line  in  C  indicates  the  672  

steep  frontal  ramp  in  B,  not  the  toe  of  the  detachment.  673  

Fig.  2.  Cratons  (clear),  Ediacaran–early  Cambrian  orogenic  belts  (shaded),  and  674  

Mesozoic–Cenozoic  belts  (hachured)  of  southwest  Gondwana.  Dotted  lines  are  the  675  

present  shorelines  of  South  America,  southern  Africa  and  West  Antarctica  in  a  pre-­‐676  

Page 23 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 25: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

24  

24  

drift  reconstruction.  SF  –  Sao  Francisco,  RP  –  Rio  Plata,  P  –  Pampean,  PP  –  677  

Paranápanema,  Zam.  –  Zambesi  belt  (modified  from  Fuck  et  al.  2008).  Black  stars  678  

indicate  the  Dom  Feliciano  –  Ribeira  magmatic  arc,  which  collided  with  the  Congo  679  

craton  to  form  the  Kaoko  belt.    680  

Fig.  3.  Tectonic  map  of  northwest  Namibia  showing  elements  of  the  Congo  and  681  

Kalahari  cratons,  and  the  Kaoko  and  Damara  orogenic  belts  (adapted  from  682  

Hoffmann  1987).    Boxes  in  the  Eastern  Kaoko  zone  (EKz)  frame  the  Ombonde  (Fig.  683  

5)  and  Ombepera  (Fig.  6)  detachment  areas.  Dashed  magenta  line  is  the  boundary  of  684  

the  Kunene  Region.  685  

Fig.  4.  Stratigraphic  column  of  the  Neoproterozoic  Damara  Supergroup  in  the  686  

Eastern  Kaoko  zone  Namibia  (Hoffman  and  Halverson  2008).  (A)  Geologic  periods,  687  

(B)  Groups,  (C)  Subgroups,  (D)  Formations  and  Members,  (E)  radiometric  688  

chronology,  (F)  tectonic  phase,  (G)  generalized  lithology,  (H)  carbonate  C-­‐isotope  689  

composition  in  per  mil  relative  to  the  VPDB  (Vienna  PeeDee  Belemnite)  standard.    690  

Fig.  5.  (A)  Geologic  map  of  the  Grootberg  syncline  (location,  Fig.  3).  Red  line  is  the  691  

Ombonde  detachment  (ticks  on  hangingwall),  a  brittle,  low-­‐angle,  normal-­‐sense  692  

detachment  that  ramps  stratigraphically  downward  from  east  to  west  and  omits  693  

~400  m  of  stratigraphic  section  at  any  location  (Hoffman  and  Hartz  1999).  (B)  694  

Unfolded  W-­‐E  cross-­‐section  showing  ramp-­‐flat  geometry  of  the  detachment  (red  695  

line),  matching  footwall  and  hangingwall  cutoffs  (e.g.,  arrows  b  and  h,  keyed  to  696  

locations  on  map),  and  paleovalley  (d)  filled  by  dolomite-­‐chert  conglomerate  (basal  697  

Renosterberg  Formation)  that  is  incised  across  the  detachment.  Minimum  age  of  the  698  

detachment  is  the  sub-­‐Renosterberg  paleovalley  (d).  Its  maximum  age  is  the  top  of  699  

the  Tsumeb  Subgroup  at  location  (i).  (C)  Unfolded  N-­‐S  cross-­‐section  before  the  700  

detachment  showing  stratigraphic  truncation  of  the  basal  Nabis  Formation  (g),  basal  701  

Rasthof  Formation  (i)  and  basal  Gruis  Formation  (k).  Truncations  are  related  to  702  

episodic  uplift  and  down-­‐to-­‐the-­‐north  rotation  of  the  Makalani  dip-­‐slope,  the  703  

footwall  of  an  inferred  south-­‐dipping,  syn-­‐rift,  normal  fault,  older  and  unrelated  to  704  

the  Ombonde  detachment.    705  

Page 24 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 26: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

25  

25  

Fig.  6.  Geologic  map  of  a  part  of  the  eastern  Kaoko  belt  (location,  Fig.  3),  showing  706  

the  Ombepera  detachment  (red  line  with  ticks  on  the  hangingwall)  exposed  in  three  707  

synclines  (S1-­‐3).  Numbered  lines  indicate  measured  stratigraphic  sections  displayed  708  

graphically  in  Fig.  7  and  9.  The  detachment  widens  (N-­‐S  direction)  from  the  eastern  709  

syncline  to  the  central  and  western  synclines.  The  Ombaatjie  Formation  (dark  710  

green)  in  the  hangingwall  of  the  western  syncline  restores  palinspastically  to  the  711  

east  of  the  same  formation  in  the  footwall  of  the  eastern  syncline.  Abrupt  thinning  of  712  

the  Rasthof  Formation  at  location  a    is  tentatively  interpreted  as  a  lateral  ramp.  713  

Fig.  7.  Axial  (W-­‐E)  section  of  the  Ombepera  detachment  (red  line),  with  graphic  logs  714  

of  measured  sections  of  the  Ombombo,  Abenab  and  lower  Tsumeb  subgroups  715  

(section  1-­‐6  locations,  Fig.  6;  section  8  located  57  km  due  East  of  Section  6).  The  716  

detachment  ramps  stratigraphically  downward  from  east  to  west  in  both  the  717  

hangingwall  and  footwall,  and  430-­‐700  m  of  strata  are  omitted  across  the  718  

detachment  in  each  section.  Inset  in  section  2  shows  depleted  C-­‐isotope  values  in  719  

the  hangingwall,  diagnostic  of  the  Maieberg  Formation  (Fig.  4H).  Keilberg  Member  720  

cut-­‐off  in  the  hangingwall  at  magenta  x  corresponds  to  footwall  cut-­‐off  at  magenta  y.  721  

Ghaub-­‐Keilberg  diamictite-­‐cap  dolostone  interval  is  missing  in  sections  2,  4  and  6.  722  

Field  notebook  section  numbers  given  alongside  columns.  723  

Fig.  8.  Oblique  satellite  image  (GoogleEarth)  looking  northwestward  at  the  eastern  724  

syncline  near  the  village  of  Otjize  (Fig.  6).  The  light  dotted  line  is  the  Ombepera  725  

detachment  where  it  cuts  out  the  lower  Maieberg  and  upper  Ombaatjie  formations.  726  

Measured  sections  are  numbered  as  in  Fig.  7  and  9.  Insets  A  and  B  show  727  

downcuttings  of  different  origin:  (A)  Ghaub  glacial-­‐age  paleovalley  and  (B)  post-­‐728  

Maieberg  extensional  detachment.  Observed  truncation  of  the  lower  Maieberg  729  

Formation  including  its  basal  Keilberg  Member  favours  interpretation  B.  730  

Fig.  9.  Transverse  (N-­‐S)  sections  of  the  Ombepera  detachment  (red  line)  on  both  731  

limbs  of  the  Otjize  syncline  (S3  in  Fig.  6),  with  graphic  logs  of  measured  732  

stratigraphic  sections  (locations,  Fig.  6)  of  the  upper  Abenab  and  lower  Tsumeb  733  

subgroups  (Fig.  4).  The  upper  Ombaatjie  and  lower  Maieberg  formations  are  missing  734  

Page 25 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 27: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

 

 

26  

26  

in  the  axial  zone  of  the  detachment  (sections  4  and  6),  compared  with  sections  to  the  735  

north  (section  5)  and  south  (sections  3  and  7)  of  the  detachment.    736  

 737  

Page 26 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 28: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draftex tended domain

shor tened domain

p o s t - s l i d e s e c t i o n

b a s e o f s y n - s l i d e g r o w t h s t ra t a

p o s t - r i f t s e c t i o n

s y n - r i f t s e c t i o n

0

1

2

3

4

5sec.

(tw

o-w

ay tr

avel

tim

e)

approximately 2x vertical exaggeration

10 km

SW NE

redrawn from Butler and Paton (2010)original seismic line: CGGVeritas and the Virtual Seismic Atlas

NWSE1

2

3

4

5

sec.

(tw

o-w

ay tr

avel

tim

e)

redrawn from Armandita et al. (2015)

Namibian continental margin

S outh M ak assar St rait Bas i n, I ndonesia

Late Miocene

Late Pliocene - Pleistocene

f luid escape

shor

tene

d d

omai

n

exte

nded

dom

ain

SE

NW

10 km

Paternoster PlatformWest Sulawesi thrust-fold bel t

10 km

A

B

C

Page 27 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 29: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

DraftCongo

KalahariAmaz

onia

WAfr

RPP

PP

SF

Damara

Kao

koG

ariep

West

Gondwan

a

East

Afr

ica

n

Zam.

Alto Paraguay

1000 km

Page 28 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 30: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft18o

20o

12o 14o 16o 18o

22o

24o

100 km

NaukluftAllochthon

Kamanjab inlier

O t a v i f o l d b e l t

Kunen e R.A N G O L A

Kalahar i Desert

Omaheke Desert

C o n g o c r a t o n

Rehoboth Inlier

Windhoek

K

homas

zone

Hakos marg

in

Swakop

te

rrane W

Kz

Etendeka

Witvlei zone

EK

z CK

z

Epupa inlier

Er

Namib Desert

KALAHARI CRATONNeoproterozoic - Cambrian cover

Hakos margin: deformed north-facing margin

1.0 - 1.4 Ga basement: Namaqua Belt

Khomas zone: south-facing accretionary prism

Swakop terrane: arc-bearing microcontinent

Outjo zone: Swakop-Congo collision(?) zoneDAMARA BELT (ca 550 Ma)

CONGO CRATON Neoproterozoic cover

1.8 - 2.0 Ga basement

KAOKO BELT (ca 590 Ma)

Central zone: deformed margin

Western (Coastal) zone: accreted forearc

CKz

WKz

Carb. - Cenozoic cover

SKz Southern zone: deformed deep-sea fan

Eastern zone: foreland thrust-fold beltEKz

geosuture thrust (teeth on hangingwall)

134 Ma igneous rocks

L EGEND plateau

S o u t h

A t l a n t i c

O ce a n

Fig. 5

Fig. 6

ST

PS

Outjo zone

SKz

Page 29 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 31: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

DraftHuttenberg

Elandshoek

Maieberg

Ombaatjie

Rasthof

Gruis

Okakuyu

Devede

Beesvlakte

Sesfontein

Renosterberg

Tsu

meb

Ab

enab

Om

bo

mb

o

MU

LDE

N

Ghaub

Chuos

Nabis

NO

SIB

ED

IAC

AR

AN

CR

YO

GE

NIA

NTO

NIA

N SY

N-R

IFT

SH

ELF

(P

OS

T-R

IFT

)FO

RE

DE

EP

Keilberg Mb

dolomite

limestone

marlstone

sandstone

siltstone

diamictitecarbonatediamictite

OTAVI

Legend

635

659717

760

~590

746

(Ma)

-5 0 5 10δ13Ccarb (o/oo VPDB)

-10

A B C D E F G

200

0 (m)

H

400 Isotope dataat Ongongo (46 km SSE of Otj ize).

Page 30 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 32: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

CenozoicCretaceousMulden Gp Renosterberg Fm

upper TsumebMaieberg FmOmbaatjie FmGruis FmRasthof FmBeesvlaakte FmNabis FmbasementOrosirian

Nosib Group

Ombombo

Abenab Subgp

Tsumeb Subgp

Etendeka Group

Ota

vi G

rou

p

0 2 4 6 8 10 kmOmbonde detachmentoblique reverse faultvehicle track

14o05'E 14o10'E 14o15'E

14o10'E14o05'E

14o15'E

19o30'S

19o35'S

19o40'S

19o45'S

KF KF

20.5 km

West East

North South

3.0 km

0.3 km

paleovalley

paleovalley

Ombonde detachment

Makalani dip-slope

Grootberg syncline

10 km

O mbonde R.

A

B

C

Kalahari Group

a b c

d

e f

b h

i

g

h

j

kig

d

j

k

Page 31 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 33: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

7

6

5

4

3

2

12

0 1 2 3

km

N

Se

sfo

nte

in

Th

rust

Okamborombonga

Okaaru

Otji kukutu

Otjo-matemba

Cont ract ional st ruct ures

Ombepera detachment

Graded road C43 O tj i taimo Ri ver

h a n g i n g wa l l

travertine

Ediacaran Tsumeb Subgroup Cryogenian Abenab Subgroup Tonian Ombombo Subgroup

Elandshoek-Huttenberg fms Ombaatjie Formation Okakuyu Formation

Maieberg Formation Gruis Formation Devede Formation

Cryogenian Tsumeb Subgroup Rasthof Formation Beesvlakte Formation

Ghaub (glacial) Formation Chuos (glacial) Formation

Geology by P.F. Ho�man & G.P. Halverson

13o35’00”E 13o40’00”E 13o45’00”E

18o45

’00”

S18

o50

’00”

S

Ombepera

Otjize

S1

S2

S3

a

Page 32 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 34: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

hangingwall

footwall

Datum = base Rasthof Fm

P210

6

P144

1/42

J141

5E1

414

P144

3

P144

4

100

200

300

0

400

-100

-400

-300

-200

-700

-600

-500

600

500

P650

1

P165

9

P650

4P6

500

700

800

900

1100

1000

1200

-800

P150

22

West East

100

200

300

0

400

-100

-400

-300

-200

-700

-600

-500

600

500

700

800

900

1100

1000

1200

-800

(m)

G11

03

1

62 4

strati�ed polymictic diamictitesiltstone w ice-rafted debrisconglomeratequar tz sandstonequar tz siltstoneargillite

tepeed microbialaminiteooid/intraclast grainstonepeloidal grainstone (cap dolomite)columnar or mounded stromatolitethrombolitic microbialaminiterollup microbialaminiteribbonitemarly ribboniterhythmite (dolomite)rhythmite (limestone)

L E G E N DTerrigenous

Carbonate

massive carbonate diamictitestrati�ed carbonate diamictitemassive polymictic diamictite

Rasthof

Gruis

Ombaatjie

Okakuyu

Devede

Chuos

8

P131

7P2

095

Elandshoek

upperMaieberg

middleMaieberg

middleMaieberg

u. Mbg

GhaubKeilberg

Ghaub

Keilberg

Ombaa- tjie

(m)

x

y

57 km4 km7 km4.5 km

P132

6

-10 -5 0δ13C

Page 33 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 35: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft Ar

Ab

Tml

Te

Tmu

Tmu

Te

Ar

AbAg Ag

PALEOVALLEY DETACHMENT

N

Otjize

lateral ramp

lateral rampm ove m e n t

d irection

Keilberg MbC43

Ar

Ab

Ac

Ag

Tml

Od

7

6

54

Tml/Tmu - lower/upper Maieberg Fm Ab - Ombaatjie Fm Ag - Gruis Fm Ar - Rasthof Fm Ac - Chuos FmOd - Devede Fm

Ar

Od

Tmu

Tmu

Tmu

A B

Page 34 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences

Page 36: Early extensional detachments in a contractional orogen · Draft Early extensional detachments in a contractional orogen: coherent, map-scale, submarine slides (mass transport complexes)

Draft

P15024Otj itaimo R.

P6502-3 Okaaru

P9504-7Otjomatemba

P15023Otjikukutu

Ombepera detachment

0

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

400

450

500

P15022 Otjize

-50

-100

-50

-100

Gruis Fm

Ombaatj ie Fm

M aieberg

Fm

up

per

Mai

eber

g F

m

up

per

Mai

eber

g F

m

SW N SE

Stra

tigr

aphi

c he

ight

(m) r

elat

ive

to th

e ba

se o

f the

Om

baat

jie F

m

3

45

67

Rasthof

Fm

Kei lberg Mb

CW CE

Ghaub Fm

rhythmite (seaf loor cement)

cap swaley dolopelarenite

cap tubestone stromatolite

littoral microbialaminite

intraclast-ooid grainstone

columnar stromatolite

ribbonite

marly ribbonite

limestone rhythmite

carbonate diamictite, rudite

terrigenous sandstone

argillite, terrigenous siltstone

Datum = baseOmbaatj ie Fm

cycle b8

b7

b5-6

b1-4

9 km 6 km 6 km 4 km

Page 35 of 35

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences