Top Banner

of 28

Diktat Drainase

Oct 30, 2015

Download

Documents

Temmy Surya

perhitungan dreinase
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

BAB I

BAB I

DRAINASE1.1 Definisi drainase

Kata drainase (drainage) berasal dari kata to draim yang berarti mengeringkan atau mengalirkan air, adalah terminologi yang digunakan untuk menyatakan sistem-sistem yang berkaitan dengan penanganan masalah kelebihan air, baik di atas maupun di bawah permukaan tanah. Namun secara umum drainase dapat didefinisikan sebagai suatu tindakan teknis untuk mengurangi kelebihan air, baik yang berasal dari air hujan, rembesan, maupun kelebihan air irigasi dari suatu kawasan atau lahan, sehingga fungsi kawasan atau lahan tidak terganggu.

Sedangkan drainase perkotaan adalah ilmu drainase yang mengkhususkan pengkajian pada kawasan perkotaan yang erat kaitannya dengan kondisi lingkungan fisik dan lingkungan sosial budaya yang ada dikawasan kota tersebut. Pengertian darinase perkotaan tidak terbatas pada teknik pembuangan air yang berlebihan namun lebih luas lagi menyangkut keterkaitannya dengan aspek kehidupan yang berada di dalam kawasan perkotaan.

1.2 Fungsi drainase

Adapun fungsi dari saluran drainase adalah sebagai berikut:1. Mengendalikan limpasan air hujan yang berlebih

2. Menurunkan tinggi permukaan air tanah

3. Mengendalikan erosi dan longsor pada tanah disekitar saluran drainase

4. Menciptakan lingkungan yang bersih dan teratur

5. Memelihara agar jalan tidak tergenang air hujan dalam waktu yang cukup lama, sehingga tidak mengakibatkan kerusakan konstruksi jalan.

Banjir merupakan kata yang sangat popular di Indonesia, khususnya pada musim hujan, mengingat hampir semua kota di Indonesia mengalami bencana banjir. Peristiwa ini hampir setiap tahun berulang, namun permasalahan ini sampai saat ini belum terselesaikan bahkan cenderung makin meningkat baik frekuensinya, luasannya, kedalamannya, maupun durasinya. Jika dirunut akar permasalahan banjir di perkotaan adalah sebagai berikut :

1. pertambahan penduduk yang sangat cepat, di atas rata-rata pertumbuhan nasional akibat urbanisasi, baik migrasi musiman maupun permanen. Pertambahan penduduk yang tidak diimbangi dengan penyediaan sarana dan prasarana perkotaan yang memadai mengakibatkan pemanfaatan lahan perkotaan menjadi sembrawut

2. pemanfaatan lahan yang tidak tertib

3. tingkat kesadaran masyarakat yang masih rendah dan kurang peduli terhadap penting dan perlunya memecahkan permasalahan yang dihadapi kota

4. kesadaran terhadap hukum, perundangan dan kaidah-kaidah yang berlaku.

1.3 Jenis drainase

Jenis-jenis drainase dapat diklasifikasikan berdasarkan sejarah terbentuknya,letak bangunan, fungsi serta menurut konstruksinya.

1. Menurut Sejarah Terbentuknya

a) Drainase alamiah (natural drainage)

Drainase ini terbentuk secara alamiah dan tidak terdapat bangunan-bangunan penunjang seperti (bangunan pelimpah, pasangan batu/beton, gorong-gorong dan lain-lain)

b) Drainase buatan (arficial drainage)

Drainase ini dibuat dengan maksud dan tujuan tertentu sehingga memerlukan bangunan-bangunan khusus seperti : (saluran pasangan batu/beton, gorong-gorong, pipa-pipa dan lain sebagainya.

2. Menurut Letak Bangunan

a) Drainase permukaan tanah (surface drainage)

Saluran drainase yang berada di atas permukaan tanah berfungsi untuk mengalirkan air limpasan permukaan

b) Drainase bawah permukaan (subsurface drainage)

bertujuan untuk mengalirkan air limpasan permukaan melalui media di bawah permukaan tanah (pipa-pipa), dikarenkan alasan tertentu, yaitu tuntutan artistik, tuntutan fungsi permukaan tanah yang tidak membolehkan adanya saluran dipermukaan tanah seperti lapangan sepakbola, lapangan terbang, taman dll.

3. Menurut Fungsinya

a) Single purpose

berfungsi mengalirkan satu jenis air buangan, misalnya air hujan saja atau jenis air buangan yang lain seperti limbah domestik, air limbah industri dan lain-lain

b)Multi purpose

berfungsi mengalirkan beberapa jenis air buangan baik secara bercampur maupun bergantian.

4. Menurut Konstruksinya

a) Saluran terbuka

yaitu saluran yang lebih cocok untuk drainase air hujan yang terletak di daerah yang mempunyai luasan yang cukup atau drainase air non hujan yang tidak membahayakan kesehatan atau mengganggu lingkungan

b) Saluran tertutup

yaitu saluran yang umumnya sering dipakai untuk aliran air kotor (air yang mengganggu kesehatan dan lingkungan) atau untuk saluran yang terletak di tengah kota.

1.4 Pola jaringan drainase

1) Siku

Dibuat pada daerah yang mempunyai topografi sedikit lebih tinggi dari pada sungai. Sungai sebagai saluran pembuang akhir berada di tengah kota

saluran cabang saluran utama2) Paralel

Saluran utama terletak sejajar dengan saluran cabang. Dengan saluran cabang (sekunder) yang cukup banyak dan pendek-pendek, apabila terjadi perkembangan kota, saluran-saluran akan dapat menyesuaikan diri

saluran cabang

saluran utama saluran cabang

saluran utama

3) Grid Iron

Untuk daerah dimana sungainya terletak di pinggir kota, sehingga saluran-saluran cabang dikumpulkan terlebih dahulu pada saluran pengumpul

Saluran cabang

Saluran utama

Saluran pengumpul 4) Alamiah

Fungsinya sama seperti pola siku, hanya saja beban sungai pada pola alamiah lebih besar

saluran cabang

saluran utama5) Radial

Digunakan pada daerah berbukit, sehingga pola saluran memencar ke segala arah

6) Jaring-jaring

Mempunyai saluran-saluran pembuang yang mengikuti arah jalan raya dan cocok untuk daerah dengan topografi datar

1.5 Sumber air buangan

Drainase melayani pembuangan kelebihan air pada suatu kota dengan cara mengalirkannya melalui permukaan tanah atau lewat di bawah permukaan tanah, untuk dibuang ke sungai, laut atau danau. Kelebihan air tersebut dapat berupa air hujan, air limbah domestik maupun air limbah industri. Oleh karena itu, drainase perkotaan harus terpadu dengan sanitasi, sampah, pengendalian banjir kota dan lain-lain. Sumber air buangan kota dibagi menjadi: dari rumah tangga, perdagangan, industri sedang dan ringan, pendidikan, kesehatan, tempat peribadatan dan sarana rekreasi.

Estimasi mengenai total aliran air buangan dibagi dalam tiga hal yaitu :

1. Air buangan domestik (maksimum aliran air buangan domestik untuk daerah yang dilayani pada periode waktu tertentu)2. Infiltrasi air permukaan dan air tanah (daerah pelayanan dan sepanjang pipa)

3. Air buangan industri dan komersial : tambahan aliran maksimum dari daerah-daerah industri dan komersial.

BAB II

ASPEK HIDROLOGI

Hidrologi adalah suatu ilmu yang menjelaskan tentang kehadiran gerakan air di alam, meliputi berbagai bentuk air yang menyangkut perubahan-perubahan antara keadaan cair, padat dan gas dalam atmosfir, di atas dan di bawah permukaan tanah.2.1 Intensitas curah hujan

Intensitas curah hujan adalah besarnya jumlah hujan rata-rata yang dinyatakan dalam tinggi hujan atau volume hujan tiap satuan waktu. Untuk perencanaan saluran drainase jumlah data curah hujan paling sedikit dalam jangka waktu 10 tahun terakhir. Dalam SNI-03-3424-1994 disebutkan bahwa intensitas curah hujan dihitung berdasarkan data-data sebagai berikut :

1. Data curah hujan

Merupakan data curah hujan harian maksimum dalam setahun dinyatakan dalam mm/hari. Data curah hujan diperoleh dari lembaga Meteorologi dan Geofisika, jumlah data curah hujan paling sedikit dalam jangka 10 tahun.

2. Periode ulang

Karakteristik hujan menunjukkan bahwa hujan yang besar tertentu mempunyai periode ulang tertentu, periode ulang rencana untuk selokan samping ditentukan 5 tahun. Klasifikasi periode hujan untuk perkotaan adalah :

2 tahun untuk daerah-daerah perkotaan dan perumahan

5 tahun untuk daerah perdagangan

10 tahun untuk daerah jalur hijau dan lapangan terbuka.

3. Lamanya waktu curah hujan

Ditentukan berdasarkan hasil penyelidikan Van Breen, bahwa hujan terkonsentrasi selama 4 jam dengan jumlah hujan sebesar 90% dari jumlah hujan 24 jam. Jika tidak ada waktu untuk mengamati besarnya intensitas hujan atau disebabkan oleh tidak adanya alat untuk mengamati, dapat ditempuh dengan cara empiris menggunakan beberapa metode, yaitu :

1. Mononobe,

Dimana:

R24 = tinggi hujan maksimum dalam 24 jam dalam mm

tc= lama waktu konsentrasi dalam jam

I= intensitas hujan dalam mm/jam

2. Talbot,

3. Sherman,

Rumus ini cocok untuk curah hujan dengan jangka waktu pendek ( > 2 jam )4. Ishiguro

2.2 Waktu konsentrasi (T)

Waktu konsentrasi adalah waktu yang diperlukan untuk mengalirkan aliran air dari titik yang apling jauh pada daerah aliran ke titik kontrol yang ditentukan di bagian hilir suatu saluran.

Pada prinsipnya waktu konsentrasi dapat dibagi menjadi:

a) Inlet time (t0) yaitu waktu yang diperlukan oleh air untuk mengalir di atas permukaan tanah menuju saluran drainase

b) Counduit time (td) yaitu yang diperlukan oleh air untuk mengalir di sepanjang saluran sampai titik kontrol yang ditentukan dibagian hilir.

Waktu konsentrasi dapat dihitung dengan rumus tc = t0 + tdt0 = dan td =

dimana :

tc = waktu konsentrasi (menit)

Lo = jarak dari titik terjauh ke fasilitas drainase (m)

L = panjang sluran (m)

nd = koefisien hambatan (pembacaan tabel)

S = kemiringan daerah pengaliran (%)

V = kecepatn air yang diizinkan berdasarkan jenis material (m/dtk)

Lama waktu mengalir di dalam saluran (td) ditentukan dengan rumus sesuai dengan kondisi saluran alami, sifat-sifat hidroliknya sukar ditentukan, maka td dapat ditentukan dengan menggunakan perkiraan kecepatan air. Waktu konsentrasi besarnya sangat bervariasi dan dipengaruhi oleh faktor-faktor berikut:

a) Luas daerah pengaliran

b) Panjang saluran drainase

c) Kemiringan dasar saluran

d) Debit dan kecepatan aliran

Tabel 2.1Hubungan kondisi lapis permukaan dgn koefisian hambatan

NoKondisi lapis permukaannd

1

2

3

4

5

6

7Lapisan semen dan aspal beton

Permukaan licin dan kedap air

Permukaan licin dan kokoh

Tanah dengan rumput tipis dan gundul dengan permukaan sedikit kasar

Padang rumput dan rerumputan

Hutan gundul

Hutan rimbun dan hutan gundul rapat dengan hamparan rumput jarang sampai rapat0,013

0,02

0,10

0,20

0,40

0,60

0,80

2.3 Koefisien pengaliran Koefisien pengaliran adalah suatu koefisien yang menunjukkan perbandingan antara besarnya jumlah air yang dialirkan oleh suatu jenis permukaan terhadap jumlah air yang ada (SNI-03-3424-1994). Harga koefisien pengaliran suatu daerah tidaklah tetap sepanjang tahun, tetapi berubah-ubah sesuai kejenuhan tanah. Koefisien pengaliran harus didasarkan pada pertimbangan lahan yang paling mendekati dan dipertimbangkan terhadap keragaman tata guna lahan. Faktor yang mempengaruhi besarnya aliran pada saluran antara lain :

1. Keadaan hujan.

2. Luas dan bentuk aliran.

3. Tingkat kejenuhan tanah.

4. Daya tampung saluran dan sekitarnya.

5. Kemiringan daerah aliran dan dasar saluran.

Berdasarkan tata cara perencanaan drainase SNI-03-3424-1994, luas daerah pengaliran batas-batasnya tergantung dari daerah pembebasan dan daerah sekelilingnya ditetapkan seperti pada Gambar 2.1 berikut :

L1 L2 L3

Gambar 2.1 Daerah pengaliran

sumber: SNI 1994

dimana :

L= batas daerah pengaliran yang diperhitungkan (L1 + L2 + L3)

L1= ditetapkan dari as jalan sampai bagian tepi perkerasan

L2= ditetapkan dari tepi perkerasan yang ada sampai tepi bahu jalan

L3= tergantung dari keadaan setempat dan panjang maksimum 100 m. Besaran ini dipengaruhi oleh tata guna lahan, kemiringan lahan, jenis dan kondisi lahan. Pemilihan koefisien pengaliran harus memperhitungkan adanya perubahan tata guna lahan dikemudian hari. Bila daerah pengaliran terdiri dari beberapa tipe kondisi permukaan yang mempunyai nilai C yang berbeda.

dimana :

C = Koefisien pengaliran gabungan

C1,C2,C3 = Koefisien pengaliran yang sesuai dengan tipe kondisi permukaan

A1,A2,A3 = Luas daerah pengaliran yang diperhitungkan sesuai dengan kondisi

permukaan

Harga koefisien pengaliran suatu daerah tidaklah tetap sepanjang tahun, tetapi berubah sesuai dengan kejenuhan tanah. Berikut ini ada beberapa nilai hubungan antara koefisien pengaliran dengan beberapa kondisi yang disajikan dalam tabel berikut ini.

Tabel 2.2 Koefisien pengaliran berdasarkan tata guna lahan

KawasanTata guna lahanC

Perdagangan

Industri

Pemukiman

Daerah hijau dan

lain-lain Pusat perdagangan Daerah sekitarnya

Kurang padat Padat Pemukiman dengan sedikit tanah terbuka Perumahan Pemukiman dengan tanah terbuka dan taman

Taman dan lapangan batu Lapangan atletik Lapangan golf Sawah dan hutan0,70 0,950,50 0,70

0,50 0,80

0,60 0,90

0,65 0,80

0,50 0,70

0,30 0,50

0,10 0,25

0,20 0,35

0,20 0,40

0,10 0,30

Tabel 2.3 Hubungan kondisi permukaan tanah dengan koefisien pengaliran (C)

No Kondisi permukaan tanahKoefisien pengaliran (C)

1

2

3

4

5

6

7

8

9

10

11

12Jalan beton dan jalan aspal

Jalan kerikil dan jalan tanah

Bahu jalan :

Tanah berbutir halus

Tanah berbutir kasar

Batuan massif keras

Batuan massif lunak

Daerah perkotaan

Daerah pinggiran kota

Daerah industri

Pemukiman padat

Pemukiman tidak padat

Taman dan kebun

Persawahan

Perbukitan

Pegunungan0,70 0.95

0,40 0,70

0,40 0,65

0,10 0,20

0,70 0,85

0,60 0,75

0,70 0,95

0,60 0,70

0,60 0,90

0,40 0,60

0,40 0,60

0,20 0,40

0,45 0,60

0,70 0,80

0,75 0,90

sumber: SNI 03 3424 1994 Tabel 2.5 Hubungan tipe daerah aliran dgn koefisien pengaliran (C)

Tipe daerah aliranJenis daerah aliranHarga C

RerumputanTanah pasir, datar 2 %

Tanah pasir, sedang 2 7 %

Tanah pasir, curam 7 %

Tanag gemuk, datar 2 %

Tanah gemuk, seang 2 7 %

Tanah gemuk, curam 7 %0,05 0,10

0,10 0,15

0,15 0,20

0,13 0,17

0,18 0,22

0,25 0,35

Bisnis Daerah kota lama

Daerah pinggiran0,75 0,95

0,50 0,70

Perumahan Daerah sederhana

Multi unit, terpisah

Multi unit, tertutup

Sub urban

Daerah rumah apartemen0,30 0,50

0,50 0,60

0,60 0,75

0,25 0,40

0,50 0,70

Industri Daerah ringan

Daerah berat0,50 0,80

0,60 0,90

Pertamanan, kuburan

Tempat bermain

Halaman kereta api

Daerah tidak dikerjakan

Jalan

AtapBeraspal

Beton

batu0,10 0,25

0,20 0,35

0,20 0,40

0,10 0,30

0,70 0,95

0,80 0,95

0,70 0,85

0,75 0,95

2.4 Frekuensi curah hujan Curah hujan yang diperlukan untuk mengetahui profil muka air sungai dan rancangan suatu drainase adalah curah hujan rata-rata diseluruh daerah yang bersangkutan, bukan curah hujan pada suatu titik tertentu, curah hujan ini disebut curah hujan wilayah atau daerah dan dinyatakan dalam mm. Menentukan curah hujan rerata harian maksimum daerah dilakukan berdasarkan pengamatan beberapa stasiun pencatat hujan.

Analisis frekuensi curah hujan digunakan untuk menentukan debit banjir maksimum yang terjadi pada daerah aliran drainase dalam periode ulang tertentu. Analisis frekuensi adalah memilih distribusi yang mewakili sifat-sifat statistik sebaran data debit drainase atau pun data hujan tersebut. Dalam menganalisis curah hujan ada beberapa metode yang digunakan, yaitu :1. Metode normal

Metode ini disebut juga distribusi Gauss yang paling dikenal adalah bentuk bell, yang dituliskan dalam bentuk rata-rata dan simpangan baku.

dan

dimana:

= perkiraan nilai yang diharapkan terjadi dengan periode ulang T tahun

= nilai rata-rata hitung

S = deviasi standar

faktor frekuensi (nilai reduksi Gauss)

2. Metode log normal

Jika variabel acak Y = log X terdistribusi secara normal, maka X dikatakan mengikuti metode log normal yang ditulis dalam bentuk rata-rata dan simpangan baku.

dan

dimana:

= perkiraan nilai yang diharapkan terjadi dengan periode ulang T tahun

= nilai rata-rata hitung

S = deviasi standar

faktor frekuensi

3. Metode log-Person III

Tiga parameter penting dalam Log-Person III yaitu harga rata-rata, simpangan baku dan koefisien kemencengan. Langkah perhitungan Log-Person III yaitu:

Hitung harga rata-rata curah hujan

Hitung harga simpangan baku(standar deviasi)

Hitung koefisien kemencengan

Hitung logaritma hujan/banjir periode ulang T

Dimana K adalah variabel standar untuk X yang besarnya tergantung koefisien kemencengan G Tabel 2.6 Koefisien kemencengan (K)

Waktu balik dalam tahun

Koefisien251025501002001000

KPeluang (%)

5020104210,50,1

3.0-0.3960.4201.1802.2783.1524.0514.9707.250

2.5-0.3600.5181.2502.2623.0483.8454.6526.600

2.2-0.3300.5741.2842.2402.9703.7054.4446.200

2.0-0.3070.6090.3022.2192.9123.6054.2985.910

1.8-0.2820.6431.3182.1932.8483.4994.1475.660

1.6-0.2540.6751.3292.1632.7803.3883.9905.390

1.4-0.2250.7051.3372.1282.7063.2713.8285.110

1.2-0.1950.7321.3402.0872.6263.1493.6614.820

1.0-0.1640.7581.3402.0432.5423.0223.4894.540

0.9-0.1480.7691.3392.0182.4982.9573.4014.395

0.8-0.1320.7801.3361.9982.4532.8913.3124.250

0.7-0.1160.7901.3331.9672.4072.8243.2234.105

0.6-0.0990.8001.3281.9392.3592.7553.1323.960

0.5-0.0830.8081.3231.9102.3112.6863.0413.815

0.4-0.0660.8161.3171.8802.2612.6152.9493.670

0.3-0.0500.8241.3091.8492.2112.5442.8563.525

0.2-0.0330.8301.3011.8182.1592.4722.7633.380

0.1-0.0170.8361.2921.7852.1072.4002.6703.235

0.00.0000.8421.2821.7512.0542.3262.5763.090

-0.10.0170.8361.2701.7162.0002.2522.4822.950

-0.20.0330.8501.2581.6801.9452.1782.3882.810

-0.30.0500.8531.2451.6431.8902.1042.2942.675

-0.40.0660.8551.2311.6061.8342.0292.2012.540

-0.50.0830.8561.2161.5671.7771.9552.1082.400

-0.60.0990.8571.2001.5281.7201.8802.0162.275

-0.70.1160.8571.1831.4881.6631.8061.9262.150

-0.80.1320.8561.1661.4481.6061.7331.8372.035

-0.90.1480.8541.1471.4071.5491.6601.7491.910

-1.00.1640.8521.1281.3661.4921.5881.6641.800

-1.20.1950.8441.0861.2821.3791.4491.5011.625

-1.40.2250.8321.0411.1981.2701.3181.3511.465

-1.60.2540.8170.9941.1161.1661.1971.2161.280

-1.80.2820.7990.9451.0351.0691.0871.0971.130

-2.00.3070.7770.8950.9590.9800.9900.9951.000

-2.20.3300.7520.8440.8880.9000.9050.9070.910

-2.50.3600.7110.7710.7930.7980.7990.8000.802

-3.00.3960.6360.6600.6660.6660.6670.6670.668

4. Metode Gumbel.

Metode Gumbel merupakan suatu cara perhitungan menurut statistik untuk menetapkan curah hujan maksimum dengan periode ulang tertentu. Langkah-langkah perhitungan dalam pemakaian metode Gumbel adalah :

1. Mencari data curah hujan maksimum tahunan (Ri) sebanyak n tahun.

2. Mencari nilai rata-rata (mean).

3. Mencari nilai standar deviasi.

4. Mencari nilai reduced mean (Yn), reduced standard deviation (Sn) dan reduced variate (Yt).

5. Mencari nilai curah hujan rancangan (Rt).

Besarnya nilai masing-masing harga Yt, Yn, dan nilai Sn dengan periode ulang tertentu dapat dilihat pada tabel berikut ini.

dimana :

XT= Besar curah hujan untuk periode ulang T tahun (mm)

= Curah hujan maksimum rata-rata selama tahun pengamatan (mm)

Sx

= Standar deviasi

xi= Jumlah curah hujan

n= Jumlah tahun yang ditinjau Tabel 2.7 Reduced variate (Yt)

Periode ulang (T) tahunNilai Yt

2

5

10

20

25

50

75

100

200

250

5000,3668

1,5004

2,2510

2,9709

3,1993

3,9028

4,3117

4,6012

5,2969

5,5206

6,2149

Tabel 2.8 Reduced mean (Yn)

N0123456789

100.49520.49960.50350.50700.51000.51280.51570.51810.52020.5520

200.52360.52520.52680.52830.52960.30900.53200.53320.53430.5353

300.53620.53710.53800.53880.53960.54020.54100.54180.54240.5430

400.54360.54420.54480.54530.54580.54630.54680.54730.54770.5481

500.54850.54890.54930.54970.55010.55040.55080.55110.55150.5518

600.55210.55240.55270.5530.55330.55350.55380.55400.55430.5545

700.55480.55500.55520.55550.55570.55590.55610.55630.55650.5567

800.55690.55700.55720.55740.55760.55780.55800.55810.55830.5585

900.55860.55870.55890.55910.55920.55930.55950.55960.55980.5599

1000.56000,56020,56030,56040,56060,56070,56080,56090,56100,5611

Tabel 2.9 Reduced standard deviation (Sn)

N0123456789

100.94960.96970.98330.99711.00951.02061.03161.04411.04931.0565

201.06281.06961.07541.08111.08641.09151.09611.10441.10471.1086

301.11241.11591.11931.12261.12551.12851.13131.13391.13631.1388

401.14131.14161.14581.14801.14991.15191.15381.15571.15741.1590

501.1607116231.19381.16581.16671.16811.16961.17081.17211.1734

601.17471.17571.17771.17821.17921.18031.18141.18241.18341.1844

701.18541.18621.18731.18811.18901.18981.19031.19151.19231.1930

801.19831.19451.19551.19581.19671.19731.19801.19871.19941.2001

901.20071.20131.20201.20261.20321.20381.20441.20491.20551.2060

1001.20651,20691,20731,20771,20811,20841,20871,20901,20931,2096

BAB III

ASPEK HIDROLIKA

3.1 Kecepatan aliran

Agar keadaan saluran terjamin terhadap adanya pengaruh dari aliran air, maka kecepatan aliran disesuaikan dengan kondisi dari tanah saluran sehingga kecepatan maksimum yang terjadi tidak merusak terhadap dinding maupun dasar saluran yang direncanakan. Untuk mendapatkan kecepatan air pada saluran dengan menggunakan persamaan rumus kecepatan aliran seragam, yaitu :

1. Rumus Manning

(satuan Inggris)

(satuan Metrik)

2. Rumus Strickler,

3. Rumus Chezy,

dimana:

V = kec.aliran (m/dtk)

R = jari-jari hidrolik(m)

C = koefisien Chezy

n = koefisien kekasaran Manning

K = koefisien kekasaran Strikler

I= kemiringan saluran (%)

Untuk menentukan kekasaran dinding saluran berdasarkan masing-masing persamaan rumus yang ada, maka nilai kecepatan aliran yang diizinkan dapat dilihat berdasarkan tabel berikut. Tabel 3.1 Koefisien kekasaran dari Manning

Jenis sarana drainaseKoefisien (n)

1. Tidak di perkeras

tanah

pasir dan kerikil

dasar saluran batuan

2. Dibuat di tempat

a. Beton

semen mortar

beton

b. Batu belah

pasangan batu adukan basah

pasangan batu adukan kering

3. Dipasang di tempat

pipa beton sentrifugal

pipa beton

pipa bergelombang0,020 0,025

0,025 0,040

0,025 0,035

0,010 0,013

0,013 0,018

0,015 0,030

0,025 0,035

0,011 0,014

0,012 0,016

0,016 0,025

Tabel 3.2 Koefisien kekasaran Manning untuk drainase perkotaan

Jenis saluranKoefisien (n)

1. Saluran galian

Saluran tanah

Saluran pada batuan, digali merata

2. Saluran dengan lapisan perkerasan

Lapisan beton seluruhnya

Lapisan beton pada kedua sisi saluran

Lapisan blok beton pracetak

Pasangan batu, diplester

Pasangan batu, diplester pada kedua sisi saluran

Pasangan batu, disiar

Pasangan batu kosong

3. Saluran alam

Berumput

Semak-semak

Tidak beraturan, banyak semak dan pohon, batang pohon banyak jatuh ke saluran0,022

0,035

0,015

0,020

0,017

0,020

0,022

0,025

0,030

0,027

0,050

0,150

Tabel 3.3 Hubungan kemiringan saluran dgn kecepatan aliran

Kemiringan saluran I (%)Kecepatan rata-rata V (m/detik)

0 - < 1

1 - < 2

2 - < 4

4 - < 6

6 - < 10

10 - < 150,40

0,60

0,90

1,20

1,50

2,40

Tabel 3.4 Kekasaran dinding saluran

Dinding saluranKondisi Bazin (m)Kutter dan Manning (n)

Kayu Papan rata dipasang rapi

Papan rata kurang rapi

Papan kasar dipasang rapi

Papan kasar kurang rapi

Halus

Dikeliling

Sedikit kurang rata0,60

-

0,16

-

0,06

0,30

-0,010

0,012

0,012

0,014

0,010

0,015

0,020

Pasangan batuPlesteran semen halus

Plesteran semen dan pasir

Beton dilapisi kayu

Batu bata, kosongan yang baik kasar

Pasangan batu, keadaan jelek

Beton dilapisi baja0,06

-

0,16

0,30

-

-0,010

0,012

0,013

0,015

0,020

0,012

Batu kosongHalus dipasang rata

Batu bongkar, batu pecah, batu belah, batu guling dipasang dengan semen

Kerikil halus padat0,16

0,46

-0,013

0,017

0,020

Tanah Rata dan dalam keadaan baik

Rata dan dalam keadaan biasa

Dengan batu-batu dan tumbuhan

Dalam keadaan jelek

Sebagian terganggu oleh batu0,85

-

1,30

-

1,750,020

0,022

0,025

0,035

0,050

Tabel 3.5 Kekasaran dinding (K) menurut Stickler

Macam-macam dasar saluranHarga (K)

Saluran lama dengan dinding sangat kasar atau tidak teratur

Saluran lama dengan dinding kasar

Saluran yang akan diberikan tanggul dan saluran tersier

Saluran drainase baru tanpa tanggul

Saluran primer dan sekunder dengan debit < 7,50 M3 dtk

Saluran terpelihara baik dengan debit > 10 M3 dtk

Saluran dengan pasangan batu kosong

Saluran dengan dinding pasangan batu pecah yang baik dan beton tidak diplester atau dihalus

Saluran dengan dinding halus atau dinding kayu> 36

38

40

43,5

45 47,5

50

50

60

90

3.2 Debit banjir rencana

Debit banjir rencana adalah besarnya debit banjir yang direncanakan akan terjadi pada periode ulang tertentu, misalnya banjir 15 tahun adalah banjir yang akan terjadi pada tiap 10 tahun sekali. Debit banjir rencana dengan periode ulang tertentu dapat dihitung dengan menggunakan data debit sungai dan dapat pula dengan data curah hujan. Untuk mennghitung debit banjir rencana pada daerah perkotaan pada umumnya dikehendaki pembuangan air secepatnya agar jangan ada genangan air.

Besarnya debit rencana dihitung dengan memakai metode rasional kalau daerah alirannya kurang dari 80 ha, Untuk daerah aliran yang lebih luas sampai dengan 5000 ha dapat digunakan metode rasional yang diubah. Hubungan kondisi permukaan tanah dan koefisien pengaliran dan besarnya koefisien pengaliran dengan berbagai macam kondisi catchment area dapat dilihat pada tabel berikut.

Tabel 3.6 Koefisien pengaliran (Run off)

NoKondisi catchment areaKoefisien run off

1Bergunung dan curam0,75-0,90

2Pegunungan tersier0,70-0,80

3Sungai dengan hutan di bagian atas dan bawahnya0,50-0,70

4Tanah datar yang ditanami0,45-0,60

5Sawah waktu diairi0,70-0,85

6Sungai bergunung0,75-0,85

7Sungai daratan0,45-0,75

Beberapa metode yang digunakan untuk menganalisis debit banjir rencana. Estimasi debit banjir dapat diklasifikasikan berdasarkan pada luas DAS yang akan ditinjau sebagaimana dimuat dalam Tabel berikut.

Tabel 3.7 Metode analisis debit banjir rencana dan luas DAS

Luas DAS (km2)Metode yang umum digunakan

< 2,5Pendekatan infiltrasi, metode Rasional

< 250Metode Rasional, hidrograf satuan, analisis frekuensi, hubungan puncak banjir dan areal drainase

250 5000Hidrograf satuan, analisis frekuensi, hubungan puncak banjir dan areal drainase

> 5000Penelusuran banjir, hidrograf satuan, analisis frekuensi, hubugan puncak banjir dan areal drainase

Tabel 3.8 Kriteria desain hidrologi sistem drainase perkotaan

Luas DAS (Ha)Periode ulang (Tahun)Metode perhitungan debit banjir

< 102Rasional

10 1002 5Rasional

101 5005 20Rasional

> 50010 - 25Hidrograf satuan

Persamaan rumus metode Rasional adalah:

dimana :

Qr = Debit rencana dengan masa ulang T tahun (m3/detik)

C = Koefisien pengaliran

I = Intensitas curah hujan (mm/jam)

A = Luas daerah aliran dalam (ha)

3.3 Kemiringan saluran

Kemiringan tanah di tempat dibuatnya fasilitas saluran drainase ditentukan dari hasil pengukuran di lapangan, untuk menghitung kemiringan selokan samping dan gorong-gorong pembuang air.

Gambar 3.1 Penampang kemiringan tanah

3.4 Tinggi jagaan

Tinggi jagaan adalah jarak vertikal dari permukaan air pada kondisi desain saluran yang tak tergerus. Menurut SNI 03-3424-1994 : 24 tinggi jagaan dari suatu saluran adalah jarak vertikal dari puncak tanggul sampai permukaan air pada kondisi perencanaan. Tinggi jagaan direncanakan untuk dapat mencegah peluapan air akibat gelombang serta fluktuasi permukaan air, misalnya berupa gerakan angin serta pasang surut. Besarnya tinggi jagaan bervariasi mulai dari 20 cm untuk saluran kecil sampai lebih dari 1,5 m untuk saluran besar. Sedangkan tinggi jagaan tergantung dari beberapa faktor, seperti ukuran saluran, kecepatan aliran, adanya air hujan yang masuk dan pengaruh air balik (pasang). Sebagai perkiraan awal, tinggi jagaan dapat ditentukan sebagai berikut :

Tabel 3.9 Hubungan debit saluran dengan nilai tinggi jagaan

Debit (Q) m3/detikTinggi jagaan (m)

< 1

1 2

2 5

6 10

11 15

15 50

50 150

> 1500,4

0,5

0,6

0,7

0,8

0,9

1,2

1,5

3.5 Debit air buangan dari pemukiman

Pada dasarnya perencanaan saluran drainase adalah untuk menampung air kotoran atau buangan penduduk suatu daerah. Untuk menghitung air untuk jumlah penduduk sama air yang dibuang kebutuhan air rata-rata tiap orang 150 liter/hari sedangkan faktor maksimum air bersih 1,75 faktor buangan maksimum dipakai 0,90. Debit air buangan adalah debit air kotor yang berasal dari buangan hasil aktifitas penduduk yang berasal dari limbah rumah tangga, bangunan umum atau instansi pemerintah, bangunan komersil dan sebagainya. Untuk menganalisis jumlah air kotor atau air buangan yang akan dialirkan kesaluran drainase harus diketahui jumlah kebutuhan air rata-rata dan jumlah penduduk pada kawasan tersebut.

Untuk perhitungan jumlah kebutuhan air buangan rata-rata perhari maksimum dan debit buangan air kotor maksimum adalah :

1. Kebutuhan air bersih maksimum :

= Kebutuhan air rata-rata x faktor maksimum

= 150 x 1,75

= 262,60 liter/hari/jiwa

2. Kebutuhan air buangan maksimum :

= Kebutuhan air bersih maksimum x faktor maksimum

= 262,6 x 0,90

= 236,25 liter/hari/jiwa

3. Jumlah air buangan rata-rata perhari maksimum (qm) :

= Jumlah air buangan maksimum x 24 jam

= 236,25 : 24

= 9,85 liter/hari/jiwa

4. Debit air buangan maksimum (Qpeak) :

Qpeak = p x qmaks

Dimana :

= 2,297

Sehingga :

Qpeak = p x qmaks

= 2,297 x 9,850

= 22,63 liter/jam/jiwa

= 22,63 x 10-6 m3 : 3600/detik/jiwa

= 6,286 x 10-6 m3/detik/jiwa

Cara lain dalam menghitung kebutuhan air buangan rumah tangga yaitu dengan memperkirakan sesuai dengan lingkungan disekitar saluran, untuk tiap-tiap saluran debit air buangan rumah tangga dibagi dalam beberapa bagian, yaitu :

1. Daerah perumahan = 90 liter/orang/hari2. Bangunan industri = 10 m3/industri/hari3. Perkantoran

= 30 liter/orang/hari4. Sarana umum :a. Sekolah

= 20 liter/orang/harib. Tempat ibadah = 3 m3/gedung/haric. Tempat penginapan = 30 liter/orang/harid. Pertokoan

= 1 m3/toko/harie. Bioskop

= 5 m3/gedung/hari Dari jumlah pemakaian air tersebut dapat diperkirakan berapa besarnya air buangan yang harus ditampung dan dialirkan melalui riolering kota yaitu sebesar 80 % dari kebutuhan air yang ditetapkan.3.6 Bentuk penampang drainase

Pemilihan bentuk penampang drainase didasarkan pada pertimbangan kemudahan pelaksanaan, stabilitas saluran penggunaan ruang, debit yang dialirkan dan lain-lain. Dalam merencanakan dimensi drainase harus diusahakan agar dapat memperoleh dimensi yang ekonomis. Dimensi yang ekonomis adalah saluran yang dapat melewatkan debit maksimum untuk luas penampang basah, kekasaran, dan kemiringan dasar tertentu. Bentuk penampang melintang drainase secara umum dapat dijelaskan sebagai berikut ini.

1. Bentuk trapesium

Pada umumnya saluran bentuk trapesium ini terbuat dari tanah, namun dimungkinkan juga bentuk ini dari pasangan batu dan beton. Saluran ini membutuhkan ruang atau lahan yang cukup dan berfungsi untuk mengalirkan air hujan, air rumah tangga maupun air irigasi. Saluran ini merupakan saluran serba guna yang sering digunakan karena mudah pekerjaannya.

Luas (A)

=

Keliling basah (P)

=

Jari-jari hidrolis (R)

=

Lebar puncak (T)

=

Kedalaman hidrolis (D)=

Faktor penampang (Z)

=

Tinggi jagaan (W)

=

2. Bentuk persegi

Saluran drainase ini berbentuk persegi tidak banyak membutuhkan ruangan dan lahan, terbuat dari pasangan batu dan beton. Umumnya dalam pelaksanaan bentuk persegi panjang menggunakan pasangan beton. Saluran drainase ini berfungsi sebagai saluran air hujan, air buangan rumah tangga maupun saluran irigasi.

Gambar 3.3 penampang drainase persegi

Luas (A)

= b x h

Luas penampang basah Saluran (Fd)=

Keliling basah (P)

= b + 2 x h

Jari-jari hidrolis (R)

=

Lebar puncak (T)

= b

Kedalaman hidrolis (D)

= h

Faktor penampang (Z)

=

Kecepatan aliran (V)

= Tinggi jagaan (W)

=

3. Bentuk lingkaran

Saluran ini berupa saluran terbuat dari pasangan bata atau kombinasi pasangan pipa beton, dengan bentuk dasar saluran yang bulat memudahkan pengangkutan bahan endapan atau limbah. Saluran drainase ini berfungsi sebagai saluran air hujan, air limbah rumah tangga dan irigasi.

Gambar 3.4 Penampang drainase ingkaran

Luas (A)

=

Keliling basah (P)

=

Jari-jari hidrolis (R)

=

Lebar puncak (T)

=

Kedalaman hidrolis (D)=

Faktor penampang (Z)

=

= Besarnya sudut dalam radial

d = Tinggi saluran yang tergenang air (m)

4. Saluran berbentuk segitiga

Saluran berbentuk segitiga hanya dipakai pada saluran-saluran kecil, biasanya hanya untuk selokan dan laboratorium karena itu saluran ini jarang sekali digunakan.

Gambar 3.5 Penampang drainase segitiga

Luas (A)

=

Keliling basah (P)

=

Jari-jari hidrolis (R)

=

Kemiringan taludnya tergantung dari besarnya debit air(Q), dapat dilihat pada tabel berikut.

Tabel 3.10 Kemiringan talud berdasarkan besar Q

Debit air (m3/dtk)Kemiringan talud

0,00-0,751 : 1

0,75-151 : 1,5

15-801 : 0,2

BAB IV

DRAINASE KHUSUS

4.1 Drainase lapangan terbang

Drainase pada lapangan udara dibuat dengan tujuan yaitu:

1. Mempertahankan daya dukung tanah dengan mengurangi masuknya air

2. Menjaga agar landasan pacu (runway) dan bahu landasan pacu (shoulder) tidak digenangi air yang dapat membahayakan operasi penerbangan.

Pada tahap perencanaan drainase untuk lapangan terbang perlu diperhatikan hal-hal sebagai berikut:

1. Saluran drainase harus di bawah muka tanah dan tidak memotong landasan pacu (runway) karena apabila memerlukan perawatan tidak mengganggu kelancaran aktifitas dari lapangan udara tersebut

2. Air dari luar wilayah landasan terbang tidak boleh membebani sistem drainase lapangan terbang, jadi perlu adanya drainase tersendiri dikawasan sekitarnya yang biasanya disebut hill foot drain.

Perencanaan drainase lapangan udara mempunyai beberapa persyaratan yang harus dipenuhi yaitu:

a) Kemiringan runway memanjang maksimum 1%

b) Kemiringan shoulder melintang maksimum 2,5-5%

c) Kemiringan runway melintang maksimum 1,5%

d) Banjir 1x dalam 10 tahun.4.2 Drainase lapangan olah raga

Sistem draianse untuk lapangan olah raga bertujuan untuk untuk mengeringkan lapangan olah raga agar tidak terjadi genangan air apabila terjadi hujan hal ini disebabkan karena bila terjadi genangan air maka akan dapat mengganggu dan membahayakan pemakai lapangan. Oleh karena itu diusahakan agar air dapat cepat meresap ke dalam tanah(secara infiltrasi).

Adapun kriteria perencanaan drainase lapangan olah raga yang harus diperhatikan adalah sebagai berikut:

Konstruksi sistem drainase diusahakan agar dapat mengeringkan dengan cepat, tetapi tidak mengganggu pertumbuhan rumput

Daerah yang akan ditangani cukup luas dan tidak memungkinkan untuk dibuat suatu lobang pemasukan(inlet)

Tidak ada erosi tanah, limpasan permukaan sekecil mungkin

Infiltrasi sebesar mungkin

Pembebanan air dari luar dihilangkan dengan membuat saluran disekeliling lapangan.

4.3 Drainase Jalan Raya

Tujuan pembuatan saluran drainase jalan raya adalah sebagai berikut:

Mencegah terkumpulnya genangan air hujan yang dapat mengganggu transportasi

Menjaga kadar air tanah badan/pondasi jalan berumur panjang

Mencegah erosi tanah

Mencegah kelongsoran lereng

Menambah keindahan kota

Sedangkan kriteria perencanaan sistem drainase jalan yaitu:

Luas daerah yang akan dikeringkan(ROW)

Perkiraan hujan maksimum

Kemiringan dari daerah sekitarnya dan kemungkinan pengaliran serta pembuangannya

Karakteristik tanah dasar(permeabilitas dan kecenderungan mengikis tanah lain)

Ketinggian rata-rata dari muka air tanah

Dalam minimum dari permukaan yang dibutuhkan untuk melindungi pipa saluran drainase dari beban lalu lintas.

4.4 Sistem banjir kanal

Banjir kanal merupakan salah satu alternatif untuk mengurangi beban banjir di pusat kota. Konsep dasar banjir kanal tidak jauh berbeda dengan jalan tol dalam sistem transportasi jalan raya, yaitu mengurangi beban lalu lintas dalam kota yang tidak mungkin ditingkatkan kapasitasnya.

Pertambahan penduduk perkotaan yang cepat mengakibatkan kepadatan penduduk di pusat kota menjadi tinggi dan perluasan kawasan permukiman tak dapat dihindari. Sungai-sungai yang melewati kota menjadi semakin sempit akibat sampah dan sedimen, dan juga bangunan-bangunan liar di kanan kiri sungai. Sementara itu perluasan permukiman ke arah hulu kota mengakibatkan debit banjir bertambah besar.

Normalisasi sungai untuk meningkatkan kapasitasnya bukan lagi menjadi cara yang ampuh dan mudah dilakukan untuk menanggulangi banjir. Dampak sosialnya sangat kompleks dan rumit, karena menyangkut pembebasan lahan dan pemindahan penduduk. Dalam kondisi yang demikian, dimungkinkan normalisasi hanya untuk mengatasi banjir yang bersifat lokal, sementara banjir kiriman dari hulu harus dialihkan ke laur atau pinggiran kota melalui saluran khusus yang disebut kanal banjir.

Banjir kanal dapat direncankan lebih leluasa dengan kapasitas yang lebih besar, dan dapat berfungsi sebagai saluran bebas hambatan, karena:

1. letaknya di luar atau pinggiran kota, sehingga kemungkinan besar masih banyak lahan kosong, atau paling tidak lahan yang belum padat yang dapat dipakai, sehingga tidak diperlukan pemindahan penduduk

2. jauh dari lokasi pusat kota, permukiman dan industri, sehingga limbah yang masuk ke sungai lebih sedikit

3. merupakan saluran baru di luar kota, kapasitasnya besar, sehingga dapat melayani drainase kawasan yang lebih luas

4. operasi dan pemeliharaan kanal banjir lebih murah dan mudah dilakukan karena tersedia lahan dan jalan inspeksi yang cukup

4.5 Sistem Polder

Secara konseptual, ada 2 alternatif penyelesaian untuk pemanfaatan (reklamasi) dataran rendah, yaitu:

1. sistem timbunan (land filing)

Sistem timbunan merupakan cara pemanfaatan dataran rendah dengan cara menimbun lahan dengan material tanah sehingga mencapai elevasi aman, di atas muka air laut pasang dan gelombang laut atau muka air sungai tertinggi. Dengan sistem ini, daerah yang ditimbun menjadi aman dari pengaruh pasang surut dan banjir, sekaligus dapat dikembangkan sistem drainase air hujan maupun air limbah secara gravitasi.

Timbunan tanah

Muka air tetap Muka tanah asli

2. sistem polder

Polder didefinisikan sebagai suatu kawasan/lahan reklamasi dengan kondisi awal mempunyai muka air tanah tinggi, yang diisolasi secara hidrologis dari daerah disekitarnya dan kondisi muka air dapat dikendalikan.

Pada sistem polder, elevasi tanah dibiarkan pada ketinggian aslinya, sedangkan airnya diturunkan atau dikeringkan dengan sistem pengontrolan dengan sistem tanggul dan pompa atau manajemen lainnya.

Tanggul keliling Muka air awal

Muka air diturunkan

oleh sistem polder

Faktor yang menjadi pertimbangan dalam memilih sistem reklamasi yang akan dipakai meliputi:

penggunaan lahan baru

faktor keamanan yang disyaratkan

ketersediaan material

faktor biaya

Secara umum, sistem polder cocok untuk pengembangan lahan pertanian pada lahan yang daya dukungnya kecil. Sementara untuk pengembangan industri, sistem penimbunan lebih cocok.

DAFTAR PUSTAKA

1. Hasmar. 2002. Drainase Perkotaan. Edisi Pertama. Yogyakarta: Penerbit UII.

2. Hendarsin. 2000. Perencanaan Teknik Jalan Raya. Edisi pertama. Bandung: Politeknik Negeri Bandung Jurusan Teknik Sipil.

3. Karuniadi, 2005. Teori dan Aplikasi Hidrologi. Cetakan Pertama. Semarang: UPT UNNES Press.

4. Mardjono et al. 1998. Drainase Perkotaan. Cetakan Pertama. Jakarta: Penerbit UPT Universitas Taruma Nagara.

5. SNI 03-3424. 1994. Tata Cara Perencanaan Umum Drainase Perkotaan. Jakarta: Penerbit Departemen Pekerjaan Umum.

6. Sudjarwadi. 1990. Teknik Drainase. Jakarta: Penerbit PAU UGM.

7. Suripin. 2004. Sistem Drainase Perkotaan yang Berkelanjutan. Edisi Pertama. Yogyakarta: Penerbit Andi Offset

EMBED AutoCAD.Drawing.15

Gambar 3.2 Penampang drainase trapesium

_1281287997.unknown

_1282712721.unknown

_1282775170.unknown

_1282779791.unknown

_1282797785.unknown

_1282799057.unknown

_1282799105.unknown

_1282799029.unknown

_1282779861.unknown

_1282775636.unknown

_1282779711.unknown

_1282779686.unknown

_1282775424.unknown

_1282713406.unknown

_1282713522.unknown

_1282775099.unknown

_1282713426.unknown

_1282713468.unknown

_1282712881.unknown

_1282700303.unknown

_1282712482.unknown

_1282712569.unknown

_1282712364.unknown

_1282700029.unknown

_1282700235.unknown

_1281288098.unknown

_1008237784.unknown

_1008241281.unknown

_1228627127.unknown

_1272344806.unknown

_1275611939.unknown

_1008243317.unknown

_1008254447.unknown

_1008248702.dwg

_1008242305.unknown

_1008242858.unknown

_1008242260.unknown

_1008241256.unknown

_1008241268.unknown

_1008241234.unknown

_1008239880.unknown

_1008236247.unknown

_1008237750.unknown

_1008237756.unknown

_1008236381.unknown

_1008236515.unknown

_1008236794.unknown

_1008236486.unknown

_1008236298.unknown

_1008235408.unknown

_1008236190.unknown

_1008235379.unknown

_1008235407.unknown