Digression into Geometry Status of geometry and logic Euclidean vs Non-Euclidean Geometry Topology Is space real? Sklar “Space, Time and Space@me” pgs. 13-46; “Philosophy of Physics” pgs. 53-91
DigressionintoGeometryStatusofgeometryandlogicEuclideanvsNon-EuclideanGeometryTopologyIsspacereal?Sklar“Space,TimeandSpace@me”pgs.13-46;“PhilosophyofPhysics”pgs.53-91
• Egyp@ansdevelopedgeometryasaprac@calscience.
• GreekgeometryculminatedinEuclid’swork(300BC)
• Star@ngfromdefini@ons,axioms,postulates,logiconederivestheorems:a2+b2=c2
• Defini@onsrelatewordstothereader’sintui@on“alineisanelementoflengthwithnobreath.”Nophysicalobjectisaperfectline.Howtodefine?
• Axiomsarecommonno@ons(logic).• Postulatesrelatetogeometricalideas.
Euclid
Axioms:1. Thingsequaltothesamethingareequaltoeachother.2. Equalsaddedtoequalsyieldequals.3. Equalsremovedfromequalsyieldequals.4. Coincidentfiguresareequaltooneanotherinallrespects.5. Awholeisgreaterthananyofitsparts.
Postulates1. Twopointsdetermineastraightline.2. Astraightlinemaybeextendedinastraightlineineitherdirec@on.3. Aboutanypointacircleofaspecifiedradiusexists.4. Allrightanglesareequal.5. Ifastraightlinefallingacrosstwostraightlinesmakesthesumoftheinterior
anglesonthesamesidelessthantworightangles,thenthetwostraightlinesintersect,ifsufficientlyextended,onthatside.
OR5.’Throughapointoutsideagivenlineoneandonlyonelinecanbedrawnwhichdoesnotintersectagivenline,nomaaerhowfaritisextended.
• Therearefurtherimplicitassump@ons:No@onofalimi@ngopera@on,e.g.theareaandcircumferenceofacircle.
• Whyarethepostulatestrueinourworld?Especiallythe5thpostulate.
• Whyislogicortheprocedurecorrect?• Euclidiangeometryisaparadigmofthededuc@vemethod.Can/shouldwemakephysicslikegeometry?
• Straightlinescanbeconstructedoncewehaveastraightedge.Empricalfact:dolinesmeet?– Defini@on:whatisaline?
Furtherdevelopments
• Descartes(1596-1650)relatedgeometrytoalgebra– P=(x,y)=r– straightline:a.r=b– Circle:(r-c)2=d2
• Wedon’thavetodrawpicturesbutonlymanipulatesymbols.Butwhatdothesymbolsmeanintherealworld?
• CalculusdevelopedbyLeibnitzandNewtonallowedmoregeneralobjectsthanlinesandcircles.
• Newton:geometryisthesimplestscience.Itisempirical!• Leibnitz(Plato)theaxiomsareself-evident• Kant:Geometryformulatesthestructureofoursenses.
Non-EuclidianGeometry• Isthe5thpostulatederivablefromotherassump@ons?
Thereweremanyaaemptsduring200yearsbutnosuccess.
• Inthe18thand19thcentury,non-Euclidiangeometrieswereconstructed.Replacethe5thpostulateby:– Noparallels(Reimann):Throughagivenpointoutsidealinealllines
intersectthefirstlineandtheyareoffinitelength– Manyparallels(LobachevskiandGauss)Aninfinityoflinescanbe
drawnfromagivenpointwithoutintersec@on.
"triangle"
Sphere:Saddle:
"triangle"
Howtoprovealternategeometriesareconsistent
Riemann– Point– Line– Triangle– distance
Euclid– Pointonasphere– Greatcircle– SphericalTriangle– Arclength
Relatethemtoaknownconsistenttheory.• Mapthemintoalgebralikeanaly@cgeometry• Riemanngeometryin2Dislikesphericalgeometryin3D.
• EverystatementinRiemanngeometryistranslatedintoastatementinsphericalgeometry.QED
Hence:alterna@vegeometriesexist!!
Hilbert(1898)axiomizedgeometriesmuchmoreexplicitlythanEucliddid
– Everythingwasdefinedintermsofprimi@ves:points,lines,planes….
– Byremovingaxiomsone-by-one,manytypesofgeometriescanbeconstructed
– Defini@onsisaprocesswherebynewtermsacquiremeaningintermsofprimi@ves.
– HilbertcandisentangletheEuclideansystem.– Notonlyisthe5thpostulatearbitrary.
Gauss’s(1777-1855)CurvedGeometry– Al@tudeshouldnotenterin.(E.g.Thesurfaceoftheearth.)– Define“coordinatesasacon@nuousfamilyofcurves,agrid– Geometryisspeciifedbyadistancemetricg12(r)– Definea“geodesic”astheshortestpathbetween2points.
Generaliza@onofaline.a2+b2=c2???– Therecanbemul@plelinesbetween2points(considercirclesfrom
thenorthtosouthpole)– GeometryislocallyEuclidean:smalltrianglesobeyEuclid’slaws.– Thereisanintrinsiccurvaturedeterminedbyanglesanddistances
withinthesurface.Inahomogenousspacegisconstanteverywhere.– ButspecifyinggisNOTenough.Wemustalsospecifythetopology.
• AplaneandthesurfaceofacylinderarebothEuclideanbuttheyaredifferent.
• Theycanonlybedis@nguishedbyglobalmeasurements.
ChoicesofCoordinates
012345678910
012345678910
Eitherofthesegrids(blackorblue)isOK!Howcanyoukeepthesamelawsofphysics?
Distancesareafunc@onnotjustofthedifferenceinthecoordinatelabelsbutalsoofa“metrictensor”fielddefinedateachcoordinatepoint.
Topology• Curvedgeometryallowsdifferentconnectedness,
i.e.“topologies”,e.g.howmanyholes.• Consideracylindricaluniverse:
t
x
The local geometry of a cylinder is flat, but one coordinate is cyclic. If our universe had this topology, there would be a preferred reference frame, the one with the time axis along the cylinder, as shown.
• WouldthismeanthatGalileanrela@vityiswrong?• Isthegeometryoftheuniversea“law”orjusta“fact”?
• Consider a donut universe : • The local geometry is curved. • The time coordinate is cyclic. • How can one distinguish past from future here? • What about causality?
There may be valid solutions to GR with this problem.
t x
IsEuclideangeometrycorrect?
• Plato:Thesensedworldisanephemeralapproxima@ontothe‘true’worldofidealessences.Reasontellsusmoreaboutthattrueworldthanmeresensa@oncanprovide.
• Aristotle:thefundamentalproposi@onsareself-evident.• Hume(1711-1776):Whateverweclaimaboutreality,onlysensesare
available.Thereare2typesofstatements:– Apriori:theonlyunpackmeaningsofwords“Allbachelorsare
unmarried”– Aposterioricanberejectedinlightofexperience.
• Kant(1724-1804):Therearenon-trivialaprioriproposi@ons;meaningfulstatementsthatareirrefutable.– Thereexistsarealworld;sensa@onscomefromoutsidethereforethereexistsan
outside.– Ourpercep@onsarestructuredbyourmind– Spaceand@meareapriori.– Wecan’timagineaworldwithout@meorspace.– Wecanimaginebeingblindordeafbut@meless?– Statementsareirrefutablebecausethat’showwethinkaboutit.
Empiricistposi@on
• Anythingmeaningfulcanberefuted.• Geometryisanexperimentalscience.• Whatisaline?Weneedanopera@onaldefini@on.
– Astraightedge(rulerscanbend)– Abeamoflight(lightdiffracts)
• Whatisapoint?Numbersdescribingwheretoputaninfinitelysmallpar@cle.– Butpar@cleshaveadefinitesizeandwecan’tmeasuretheirposi@on
toarbitraryaccuracy.Quantumeffectslimitus.– Maybetheunderlingrealityisdiscrete.Coordinatesshouldnotbe
con@nuousbutintegerlikestreetaddresses.Istherealwaysapointbetweentwootherpoints?
Poincaréparable• Considera2dworldofadisk.• Measurings@ckesaresensi@vetotemperaturebutif
getscolderthefurtheroutyouare.Length=R2-r2.• Theythinkthediskisinfinitesincetheirs@ckscan
neverreachtheedgeinafinitenumberofsteps.SpaceisLobachevskiwithnega@vecurvature.
• Supposetheyhavelightrayswithindexofrefrac@on1/(R2-r2).Sameconclusion.
HowdoweconvincethemthattheworldisreallyEuclidean?• Poincaré(1854-1912):Anygeometryispossible.
Decideonthebasisofconven@onorconvenience.SinceEuclideangeometryissimpler,useit.
• Einstein:Beamsoflightdefinegeodesics.Equivalenceprincipleimpliesspace-@meiscurved.
EmpiricistreplytoPoincaré(Eddington,Reichenbach)
Alterna@vegeometriescanalwaysexplainanynewdata.WecansaveEuclidbyconven@on.• Thisisatrivialreworkingofthemeaningsoflengthand@me.• Ifpredic@onsarethesame,thetheoriesarethesame.• Inphysicswedefinewhatwemeanbylength.Thenthereisareal
dis@nc@onbetweenEuclideanandnon-Euclideangeometries.• Ifwesayrodsshrinkandexpandthatisanewdefini@on.• Poincarémustintroduceuniversalforces,somethingthatshrinksall
lengths.• Thereisaninterconnec@onbetweengeometricallawsandphysicallaws.
• Howaboutthetopologyofspace?Isthatconven@on?
TAXONOMYOFBELIEFINGEOMETRY
• Disbelievers:everythingistheory,evendefini@onsoflength• Believersinobserva@onalbasis
– Reduc@onists:theory=observa@on,alterna@vesarerewordings.– An@reduc@onists:theoryismorethanobserva@ons
• Skep@cs:nora@onalchoiceispossiblebetweenalterna@vetheories.Wemayneverknowwhatliesbeyondourmeasurements
• Conven@onalists:simplychooseatheory.Thereisnotruerealityonlyconven@on.
• Apriorists:chooseatheoryonthebasisofsimplicity,elegance,ini@alplausibility
Whatwillourstraightlinesbe?• Ifagooddefini@onofastraightlineis"thepathfollowedbyanobjectwhich
experiencesnoforces"wemustrecognize:• Gravityisnotexperienced:inprincipleagravita@onalfieldcannotbefeltlocally.• Astraightlinewouldthenbeapathfollowedbysomesmallobjectinthepresence
ofnoinfluencesotherthangravity,i.e.infreefall.– Thesearecalledspace@megeodesics– Thisisthenon-Euclideangeneraliza@on
ofNewton’s1stlaw.• Ageodesicisdefinedtobetheshortestlinebetween
twopointsonasurface.Inspace@me,thisisgeneralizedtobetheworldlinewhichhasthelargestintervalbetweentwoevents(4-dpoints).
– (“Largest”isanar@factofthe-sign.)
x
ctStay-at-home sister's interval is greater than her travelling sister's.
x
ct
Onthespheretherearenoparallellines.Allgeodesicsintersect.Similarly,theinterpreta@onofthetrajectoryofadroppedballneartheEarthisthatitsworldlineappearstostartoutparalleltotheEarth’s,butinevitablyintersectsit.
Doweneedcurvedspace@me?• The2-dexamplesofcurvedsurfacesallowustolookatthingsfrom
“outside.”However,a2-dpersonconfinedtothesurfaceandwithnoknowledgeofthe3rddimensioncoulds@llinferthecurvaturefromhisowngeometricalmeasurements(e.g.,theanglesoftriangles).That’sthesitua@onwefindourselvesin.Thecurvaturecanbecompletelydefinedandallexperimentalpredic@ons,etc.madewithnoreferencetosomeotherdimensions.– Thisclaimdoesnotmeanthatnootherdimensionsexist,justthattheyare
irrelevanttotheques@onofwhetherourfamiliardimensionsformaflatspace.
• Theimmediateques@onisdoweneedcurvedspace@me,orcanwegetawaywith“flat”geometry?(Sklar,55-67)Wehavealreadyseenthatifwewanttoputacceleratedobserversonaparwithiner@alones,weneedcurvature.Ifwedon’tdothis,thenweneedtosaythattheforcesacceleratedobserversexperiencearepseudoforcesakintothecentrifugalforce.Arethesetwoviewsequivalent?
Isspacereal?• IfGRforcesusintonon-Euclideangeometry,doesthisrequirethatspaceis“real”?
– Arela@onistwouldsaythatthisonlyimpliesthatthegeometricalrela@onsbetweenobjectsisnotwhatwethought.Nosubstan@vespace@meisrequired.
• However,therearetwonewsubstan@valistarguments.– InGRthegravita@onalinterac@onbetweenobjectsismediatedbythe
geometry.Thatis,geometryplaysthesameroleas,e.g.,theelectricfield.Anobjectdistortsthegeometryinitsvicinity.Thisdistor@onaffectsthemo@onofotherobjects,becausethegeodesicsaremodified.Thus,space7meplaysamoredirectroleinthedynamicsthaninNewton’sphysics.
– Finitepropaga@onspeedsgivefieldsmoreofarealityinSR(andGR)thantheyhadbefore.Wealreadysawquitedrama@callyinelectromagne@sm,inwhichwavemo@onofthefieldswaspredictedandthenobserved.GRmakesasimilarpredic@onforthegravita@onalfield.IftheSunweretomovewewouldfeelthechangedgravityattheEarth500secondslater.AstheSunshakesbackandforth,sayastheplanetsorbit,GRsaysitwouldemitgravita@onalradia@on(waves)withmanyofthesameproper@esofEMwaves.
– Gravita@onalwavesareasrealasanyotherobject.Theycarryenergyandmomentum.Theyhaverecentlybeenobserved.
Rela@onistvs.substan@valist• Space-@meseemstohaveobservableproper@esinitself,likeelectromagne@c
fields,etc.• Theseproper@esarefarfromresemblingthoseexpectedforNewton'sspace.• Einstein'soriginalmo@va@onwastodevelopphysicsthatfollowedMach's
principle,butGRdoesnotfollowthatprinciple.(AndMachwasunabletofollowSR,muchlessGR.)ItmaybepossibletoaddMach'sprincipleasaseparaterequirement,i.e.toruleoutthoseGRspace@meswhichdonotobeyMach'sprinciple,butnothingaboutthestructureofGRitselftellsyoutodoso.
• Newtonsaid(ineffect)thattwomasses@edtogetherandspunwouldstretchastringtaut,becausetheywouldneedaforcetokeepthembothaccelera@ngtowardthemiddle,regardlessofthecondi@onorexistenceofanythingelse.Theyhave"absoluteaccelera@on".Machsaidthestringcouldnotgotautbecause"absoluteaccelera@on"ismeaningless-youneedtheotherstuffintheuniversetocreatetheforces.Einsteinabandonsthephrase"absoluteaccelera@on",butGRallowssolu@onsinwhichthestringistaut.Suchasolu@oncaneitherbedescribedastwomassesrota@nginnearlyflatspace-@meorasastrangetwistyspace-@meexer@ngpeculiargravita@onalforces.Butopera@onally,NewtonandEinsteinagreeonwhatthepossibili@esare,andtheyincludethepossibili@esexcludedbyMach.
GRoutgrewitsphilosophicalancestry.
Space@meisbeginningtobecomemoresubstan@althanitwas(contrarytoEinstein’soriginalmo@va@on).Thegeometryofspace@mevariesfromplacetoplaceinawaythatisobservable.Geometryisempirical.KantwaswrongthatitwasonlypossibletoconceiveoftheworldinEuclideanterms.TheworldviolatesEuclid'saxioms.