Click here to load reader
Oct 13, 2020
1
DATA HIDING TECHNIQUES IN STEGANOGRAPHY USING FIBONACCI
SEQUENCE AND KNIGHT TOUR ALGORITHM
MOHAMMED ABDULLAH KHALAF
UNIVERSITI TEKNOLOGI MALAYSIA
4
DATA HIDING TECHNIQUES IN STEGANOGRAPHY USING FIBONACCI
SEQUENCE AND KNIGHT TOUR ALGORITHM
MOHAMMED ABDULLAH KHALAF
A project report submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Engineering ( Computer & Microelectronics System )
Faculty of Electrical Engineering
Universiti Teknologi Malaysia
JUNE 2016
iii
To my virtuous supervisor who taught me in a truthful, fair, and honorable way
To my colleagues in the Universiti Teknologi Malaysia
To all those who contributed to the success of this research
I dedicate this research to you
iv
ACKNOWLEDGEMENT
Initially, all praise is to Allah, the most kind and the merciful for helping me
to accomplish this study. Special appreciation goes to my parents, friends, studying
colleagues and supervisors for standing beside me in the good and bad times spent to
complete this research. The great effort goes to Dr. Nasrul Humaimi Mahmood for
support me to complete this research praying to Allah Almighty to grant him all that
is good.
v
ABSTRACT
The foremost priority in the information and communication technology era,
is achieving an efficient and accurate steganography system for hiding information.
The developed system of hiding the secret message must capable of not giving any
clue to the adversaries about the hidden data. In this regard, enhancing the security
and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the
steganography system is the main issue to be addressed. This study proposed an
improved for embedding secret message into an image. This newly developed
method is demonstrated to increase the security and capacity to resolve the existing
problems. A binary text image is used to represent the secret message instead of
normal text. Three stages implementations are used to select the pixel before random
embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm
to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For
secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8
bitplane to 12 bitplane. The proposed method is distributed over the entire image to
maintain high level of security against any kind of attack. Gray images from the
standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are
implemented for benchmarking. The results show good PSNR value with high
capacity and these findings verified the worthiness of the proposed method. High
complexities of pixels distribution and replacement of bits will ensure better security
and robust imperceptibility compared to the existing systems in the literature.
vi
ABSTRAK
Keutamaan pertama di dalam maklumat dan komunikasi dalam era teknologi,
adalah mencapai sistem steganografi yang cekap dan tepat untuk menyembunyikan
maklumat. Sistem yang dibangunkan menyembunyi mesej rahsia, mestilah mampu
tidak memberi apa-apa petunjuk kepada musuh mengenai data tersembunyi. Dalam
hal ini, meningkatkan keselamatan dan kapasiti dengan mengekalkan Nisbah Puncak
Isyarat-Hingar (PSNR) sistem steganografi adalah isu utama yang perlu ditangani.
Kajian ini mencadangkan lebih baik untuk menerapkan mesej rahsia ke dalam imej.
Kaedah yang baru dibangunkan menunjukkan kebolehan untuk meningkatkan
keselamatan dan keupayaan untuk menyelesaikan masalah yang sedia ada. Satu imej
teks binari digunakan untuk mewakili mesej rahsia dan bukannya teks normal. Tiga
peringkat pelaksanaan digunakan untuk memilih piksel sebelum membenam secara
rawak untuk memilih blok (64 × 64) piksel, diikuti oleh algoritma Knight Tour untuk
memilih sub-blok (8 × 8) piksel, dan akhirnya dengan pemilihan piksel secara rawak.
Turutan Fibonacci digunakan untuk penguraian piksel dari 8 bitplan ke 12 bitplan
untuk membenam maklumat secara rahsia. Kaedah yang dicadangkan diaplikasikan
ke seluruh imej untuk mengekalkan tahap keselamatan yang tinggi terhadap sebarang
serangan. Imej kelabu dari set data piawai (USC-SIPI) termasuk Lena, Peppers,
Baboon dan Jurukamera dilaksanakan sebagai penanda aras. Keputusan
menunjukkan nilai PSNR baik dengan kapasiti tinggi dan penemuan ini
mengesahkan kebenaran tentang kaedah yang dicadangkan. Kerumitan tinggi taburan
piksel dan penggantian bit akan memastikan keselamatan yang lebih baik dan lebih
teguh berbanding dengan sistem yang sedia ada.
vii
TABLE OF CONTENTS
CHAPTER TITLE PAGE
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xix
LIST OF SYMBOLS xx
1 INTRODUCTION 1
1.1 Introduction 1
1.2 Problem Background 3
1.2.1 Security Issues in Steganography 3
1.2.2 Embedding method Issues in
Steganography
4
1.2.4 Capacity 5
1.3 Steganography Model 6
1.4 Problem Statements 7
1.5 Objective of the Study 8
1.6 Scope of the Study 9
1.7 Significant of the Study 9
viii
1.8 Thesis Overview 10
2 LITERATURE REVIEW 11
2.1 Introduction 11
2.2 History of information hiding 12
2.3 Steganography 14
2.3.1 Steganography Definition 14
2.3.1.1 Steganography
Classification
15
2.3.1.2 Structure of Steganography 16
2.3.1.4 Steganography applications 17
2.3.1.5 Steganography techniques 18
2.3.2 Image Preparation 19
2.3.2.1 Fibonacci decomposition 19
2.3.2.2 Knight Tour 22
2.3.3 Embedding Methods 30
2.3.3.1 LSB Substitution Method 31
2.3.3.2 Pixel Value Differencing
(PVD)
32
2.3.3.3 Histogram Based Method 34
2.3.3.4 Spread Spectrum Method 34
2.3.3.5 DCT Domain
Steganography
35
2.3.4 Attacks on Steganography 36
2.3.4.1 Human Visual System
(HVS) attack
38
2.3.4.2 Chi-square (X2) Attack 40
2.4 Summary 46
3 METHODOLOGY 47
3.1 Introduction 47
3.2 Research Framework 48
3.2.1 Data preparation 50
3.2.2 Cover image and Fibonacci 51
ix
3.2.3 Pixels Decomposition using Fibonacci 54
3.3 Secret message preparation 56
3.4 Random Stage (RND) in Proposed Method 57
3.5 Knight Tour (KT) in Proposed method 62
3.6 Pixel Selection in Proposed method 68
3.7 Imperceptibility Evaluation 60
3.8 Chi-square (χ2) Attack Implementation 69
3.9 Embedding Process 70
3.10 Extracting Process 73
3.11 Summary 76
4 RESULTS AND DISCUSSION 77
4.1 Introduction 77
4.2 Implementation Results 78
4.2.1 Imperceptibility 78
4.2.1.1 PSNR Results 79
4.2.2 Visual Attack 83
4.3 Summary 89
5 CONCLUSION AND FUTURE WORK 90
5.1 Thesis Summary 90
5.2 Work Summary 90
5.2.1 Pre-processing Stage 91
5.2.2 Pixel Selection Stage 91
5.2.3 Embedding and Evaluation 92
5.3 Contributions of The Study 92
5.4 Future Work 93
REFERENCES 94
x
LIST OF TABLES
TABLE NO. TITLE PAGE
2.1 Summary of reviewed literatures (2012-2016) 44
3.1 Table 3.1 Impact of each Fibonacci bitplane into
whole image 51
3.2 Impact of each Binary bitplane into the whole
image 52
3.3 The decimal and binary representation for lower
case letters and whitespace 56
4.1 PSNR of Lena 512x512 pixel cover image after
embedding variable size payloads 80
4.2 PSNR of Peppers 512x512 pixel cover image after
embedding variable size payloads 80
4.3 PSNR of Cameraman 512x512 pixel cover image
after embedding variable size payloads 80
4.4 PSNR of Baboon 512x512 pixel cover image after
embedding variable size payloads 81
4.5 PSNR of Lake 512x512 pixel cover image after
embedding variable size payloads
81
4.6 PSNR of Pirate 512x512 pixel cover image
embedding variable size payloads 81
xi
LIST OF FIGURES
FIGURE NO. TITLE PAGE
1.1 Steganography domain 2
1.2 Embedding methods for spatial domain 5
1.3 The model of steganography and steganalysis 6
2.1 Classification of steganography 15
2.2 Classification of security system (Atawneh, S., et
al., 2013) 16
2.3 Image steganog