Top Banner

of 266

C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

Jun 03, 2018

Download

Documents

patlau
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    1/266

    3GPP2 C.R1002-B

    Version 1.0

    Date: December, 2009

    cdm a2000 Evaluat ion Methodolog y1

    Revis ion B2

    3

    COPYRIGHT 2009

    3GPP2 and its Organizational Partners claim copyright in this document and individual

    Organizational Partners may copyright and issue documents or standards publications in

    individual Organizational Partners name based on this document. Requests for reproductionof this document should be directed to the 3GPP2 Secretariat at [email protected].

    Requests to reproduce individual Organizational Partners documents should be directed to

    that Organizational Partner. Seewww.3gpp2.org for more information.

    4

    mailto:[email protected]://www.3gpp2.org/http://www.3gpp2.org/mailto:[email protected]
  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    2/266

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    3/266

    3GPP2 C.R1002-B v1.0

    CONTENTS

    i

    FOREWORD ...................................................................................................................xiii1

    REFERENCES .................................................................................................................xv2

    1 Introduction ................................................................................................................ 131.1Study Objective and Scope ........................................................................................ 141.2Simulation Description Overview .............................................................................. 15

    2 Evaluation Methodology for the Forward Link .............................................................. 362.1System Level Setup ................................................................................................... 37

    2.1.1 Antenna Pattern ............................................................................................ 382.1.2 System Level Assumptions ............................................................................ 392.1.3 Dynamical Simulation of the Forward Link Overhead Channels ................... 10102.1.4 Reverse Link Modeling in Forward Link System Simulation ......................... 11112.1.5 Signaling Errors .......................................................................................... 11122.1.6 Fairness Criteria .......................................................................................... 1213

    2.1.6.1 Fairness Criterion with the Normalized CDF of the User14Throughput ....................................................................................................... 1215

    2.1.6.1.1 A Generic Proportional Fair Scheduler .............................................. 14162.1.6.2 Fairness Criterion with Geometric Mean and Harmonic Mean ............... 1517

    2.1.7 C/I Predictor Model for System Simulation .................................................. 16182.2Link Level Modeling ................................................................................................ 1619

    2.2.1 Link to System FER mapping ...................................................................... 16202.2.1.1 Quasi-Static Approach with Fudge Factors: .......................................... 17212.2.1.2 Quasi-Static Approach with Short Term FER: ....................................... 17222.2.1.3 Equivalent SNR Approach: .................................................................... 1923

    2.2.2 Channel Models ........................................................................................... 19242.2.2.1 Channels model based on ITU channel model ....................................... 19252.2.2.2 Channels model based on SCM ............................................................. 2126

    2.2.2.2.1 Channel model for system level simulations ...................................... 21272.2.2.2.2 Channel model for link level simulations ........................................... 22282.2.2.2.3 Channel model for virtual decoder generation and verification ........... 2329

    2.2.3 C/I modeling for system simulation ............................................................. 23302.3Simulation Flow and Output Matrices ..................................................................... 2731

    2.3.1 Simulation Flow for the Center Cell Method ................................................. 2732

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    4/266

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    5/266

    3GPP2 C.R1002-B v1.0

    CONTENTS

    iii

    3.1.8 Fairness Criteria .......................................................................................... 5413.1.9 FER Criterion .............................................................................................. 5423.1.10 IoT Criterion ................................................................................................ 543

    3.2Link Level Modeling ................................................................................................ 5543.2.1 Link Level Parameters and Assumptions ..................................................... 555

    3.2.1.1 Frame Erasures .................................................................................... 5563.2.1.2 Target FER ............................................................................................ 5673.2.1.3 Channel Models .................................................................................... 578

    3.2.2 Forward Link Loading .................................................................................. 5893.2.3 Reverse Link Power Control ......................................................................... 5810

    3.3Simulation Requirements ........................................................................................ 59113.3.1

    Simulation Flow .......................................................................................... 59

    12

    3.3.1.1 Soft and Softer Handoff ......................................................................... 59133.3.1.2 Simulation Description ......................................................................... 60143.3.1.3 Layout Files .......................................................................................... 6115

    3.3.2 Outputs and Performance Metrics ............................................................... 62163.3.2.1 General Output Matrices ...................................................................... 62173.3.2.2 Data Services and Related Output Matrices .......................................... 62183.3.2.3 1xEV-DV Systems Only ......................................................................... 6419

    3.3.2.3.1 Voice Services and Related Output Matrices ...................................... 64203.3.2.3.2 Mixed Voice and Data Services .......................................................... 6421

    3.3.2.4 Mixed Rev. 0 and Rev. A Mobiles (1xEV-DO Systems Only) ................... 65223.3.2.5 UMB Systems Only ............................................................................... 65233.3.2.6 Link Level Output ................................................................................. 6624

    3.4Calibration Requirements ....................................................................................... 66253.4.1 Link Level Calibration .................................................................................. 66263.4.2 System Level Calibration ............................................................................. 6627

    3.4.2.1 1xEV-DV System Calibration ................................................................ 66283.4.2.2 1xEV-DO System Calibration ................................................................ 66293.4.2.3 UMB System Calibration ....................................................................... 6730

    3.4.2.3.1 Scheduler .......................................................................................... 68313.51xEV-DO Baseline Simulation Procedures .............................................................. 7132

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    6/266

    3GPP2 C.R1002-B v1.0

    CONTENTS

    iv

    3.5.1 Access Terminal Requirements and Procedures: .......................................... 7113.5.2 Access Network Requirements and Procedures: ........................................... 7223.5.3 Simulation Procedures ................................................................................ 723

    4 Traffic Service Models ................................................................................................ 7544.1Forward Link Services............................................................................................. 755

    4.1.1 Service Mix (1xEV-DV Systems Only) ........................................................... 7564.1.2 TCP Model ................................................................................................... 7574.1.3 HTTP Model ................................................................................................. 818

    4.1.3.1 HTTP Traffic Model Characteristics ....................................................... 8194.1.3.2 HTTP Traffic Model Parameters ............................................................. 8310

    4.1.3.2.1 Packet Arrival Model for HTTP/1.0-Burst Mode ................................. 85114.1.3.2.2

    Packet Arrival Model for HTTP/1.1-Persistent Mode .......................... 87

    12

    4.1.4 FTP Model ................................................................................................... 90134.1.4.1 FTP Traffic Model Characteristics .......................................................... 90144.1.4.2 FTP Traffic Model Parameters................................................................ 9015

    4.1.5 WAP Model .................................................................................................. 92164.1.6 Near Real Time Video Model ........................................................................ 93174.1.7 Voice Model (1xEV-DV Systems Only) .......................................................... 95184.1.8 Delay Criteria .............................................................................................. 9519

    4.1.8.1 Performance Criteria for Near Real Time Video ...................................... 96204.1.8.2 Delay Criterion for WAP Users............................................................... 9621

    4.2Reverse Link Services ............................................................................................. 96224.2.1 Service Mix (1xEV-DV Systems Only) ........................................................... 9623

    4.2.1.1 Data Model ........................................................................................... 97244.2.1.2 Traffic Model ......................................................................................... 9725

    4.2.2 TCP Modeling .............................................................................................. 98264.2.3 FTP Upload / Email ................................................................................... 103274.2.4 HTTP Model ............................................................................................... 10428

    4.2.4.1 HTTP Traffic Model Parameters ........................................................... 105294.2.4.2 Packet Arrival Model for HTTP ............................................................. 107304.2.4.3 Forward Link Delay Model for HTTP Users .......................................... 10931

    4.2.5 WAP Users ................................................................................................. 11032

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    7/266

    3GPP2 C.R1002-B v1.0

    CONTENTS

    v

    4.2.6 Reverse Link Delay Criteria for HTTP/WAP ................................................ 11214.2.7 Mobile Network Gaming Model .................................................................. 11324.2.8 Voice Model (1xEV-DV Systems Only) ........................................................ 1143

    4.3Common Traffic Models Applicable for Both Forward Link and Reverse Link4Services ................................................................................................................ 1145

    4.3.1 Voice over IP(VoIP) ..................................................................................... 11464.3.1.1 Source Configuration Files .................................................................. 11474.3.1.2 Source Files ........................................................................................ 11484.3.1.3 Simulation Specifics ........................................................................... 11594.3.1.4 VoIP Statistics..................................................................................... 116104.3.1.5 Source Mix .......................................................................................... 117114.3.1.6 Scheduler Statistics ............................................................................ 11712

    4.3.2 Video Telephony(VT) .................................................................................. 117134.3.2.1 Source Configuration Files .................................................................. 117144.3.2.2 Source Files ........................................................................................ 117154.3.2.3 Simulation Specifics ........................................................................... 118164.3.2.4 VT Statistics ....................................................................................... 119174.3.2.5 Source Mix .......................................................................................... 120184.3.2.6 Scheduler Statistics ............................................................................ 12019

    4.3.3

    Data Demand Spatial Distribution Models And Methodology To20 Determine Network Capacity .............................................................................. 120214.3.3.1 Charactersitics of Data Demand in Wireless Wide-Area Networks ....... 120224.3.3.2 Capacity Modeling .............................................................................. 120234.3.3.3 Proposed Data Demand Spatial Distribution Model ............................. 12124

    4.3.3.3.1 Central cell demand distribution pattern ......................................... 122254.3.3.3.2 Time varying demand distribution pattern ...................................... 122264.3.3.3.3 Micro demand distribution model .................................................... 12327

    5 heterogeneous deployment Modeling ........................................................................ 125285.1Heterogeneous deployment modeling .................................................................... 12529

    5.1.1 Cost231-Walfisch-Ikegami-NLOS model parameter values ......................... 125305.2Macro-cellular deployment modeling ..................................................................... 12531

    Appendix A: Lognormal description ............................................................................... 12732Appendix B: Antenna Orientation ................................................................................. 12833

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    8/266

    3GPP2 C.R1002-B v1.0

    CONTENTS

    vi

    Appendix C: Definition of System Outage and Voice Capacity ........................................ 1301Appendix D: Formula to define various throughput and Delay Definitions ..................... 1312Appendix E: Link budget ............................................................................................... 1343Appendix F: Quasi-static Method for Link Frame Erasures Generation and Dynamically4

    Simulated Forward Link Overhead Channels ................................................................. 1415Appendix G: Equalization .............................................................................................. 1526Appendix H: Max-Log-Map Turbo Decoder Metric .......................................................... 1557Appendix I: 19 Cell Wrap-Around Implementation ......................................................... 1578Appendix J: Link Level Simulation Parameters .............................................................. 1619Appendix K: Joint Technical Committee (JTC) Fader ..................................................... 16510Appendix L: Largest Extreme Value Distribution ........................................................... 16911Appendix M: Reverse Link Output Matrices ................................................................... 17012

    M.1 Output Matrix ..................................................................................................... 17013M.1.1 1xEV-DV Systems ............................................................................................. 17014M.1.2 1xEV-DO Systems ............................................................................................ 17715M.2 Definitions ........................................................................................................... 18216

    Appendix N: Link Prediction Methodology for Uplink System Simulations ...................... 18517N.1 Definition of Required Terms ................................................................................ 18818

    N.1.1 Channel Estimation SNR, ,i p ........................................................................ 18819N.1.2 Non-Gaussian Penalty, NG ............................................................................ 18920N.1.3 Reference Curves ............................................................................................ 18921

    Appendix O: Reverse Link Hybrid ARQ: Link Error Prediction Methodology Based on Convex22

    Metric............................................................................................................................ 19123O.1 Convex Metric based on Channel Capacity Formula ............................................. 19124O.2 Equivalent SNR Method based on Convex Metric (ECM) ....................................... 19425

    O.2.1 Overview of the Procedure .............................................................................. 19426O.2.2 Detailed Procedure ......................................................................................... 19527O.2.3 Combining Procedure for H-ARQ .................................................................... 19728

    Appendix P: Pilot SINR Estimation For Power-Control Command Update in Link-Level29

    Simulations ................................................................................................................... 19830Appendix Q: 1xEV-DV Reverse Link Simulation and Scheduler Procedures ................... 19931

    Q.1.1 Mobile station Requirements and Procedures .................................................... 19932

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    9/266

    3GPP2 C.R1002-B v1.0

    CONTENTS

    vii

    Q.1.2 Base Station Requirements and Procedures ...................................................... 2021Q.1.3 Scheduler Requirements and Procedures .......................................................... 2042

    Q.1.3.1 Scheduling, Rate Assignment and Transmission Timeline ........................... 2053Q.1.3.2 Scheduler Description and Procedures ........................................................ 2074

    Q.2 Baseline specific simulation parameters ............................................................... 2105Appendix R: Modeling of D_RL(request) and D_FL(Assign) ............................................. 2136Appendix S: Symbol SNR Modeling for CDM transmission with Rake demodulation ...... 2197Appendix T: Equivalent SNR Approach for OFDM Transmission and Demodulation ...... 2228T.1 Coherence Loss due to Doppler ............................................................................. 2229T.2 Inter-tone Interference (ITI) due to Doppler ........................................................... 22210T.3 Channel Estimation Loss and Pilot Weighted Combining (PWC) ............................ 22211T.4 Antenna Combining with Receive Diversity ........................................................... 223

    12

    T.5 Averaging SNR in the constrained capacity domain .............................................. 22413Appendix U: File formats for VoIP and VT model ............................................................ 22614

    U.1 Source Configuration File Format......................................................................... 22615U.2 Source File Format ............................................................................................... 22616U.3 Per-AT Data Reporting Format for VoIP ................................................................ 22617U.4 Network Statistics for VoIP ................................................................................... 22718U.5 Per-AT Data Reporting Format for VT ................................................................... 22719U.6 Network Statistics for VT ...................................................................................... 22720

    Appendix V: Channel parameters for furge factor .......................................................... 22921Appendix W: link level statistics for generating the short-term FER curves for link-to-22

    system mapping ............................................................................................................ 24123W.1 Terminology ......................................................................................................... 24124W.2 PER and SINR Definitions .................................................................................... 24225W.3 Examples ............................................................................................................ 24326

    Appendix X: MTD Antenna Pattern model ...................................................................... 2452728

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    10/266

    3GPP2 C.R1002-B v1.0

    CONTENTS

    viii

    This page intentionally left blank.1

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    11/266

    3GPP2 C.R1002-B v1.0

    FIGURES

    ix

    Figure 2.1.1-1 Antenna Pattern for 3-Sector Cells .............................................................. 31Figure 2.3.1-1 Simulation Flow Chart .............................................................................. 292Figure 3.1.3-1: Simplified Call Setup Timeline for 1xEV-DV. (Timeline for 1xEV-DO is the3

    same by modifying 320 ms to 427 ms) ....................................................................... 504Figure 4.1.2-1 Control Segments in TCP Connection Set-up and Release.......................... 765Figure 4.1.2-2 TCP Flow Control During Slow-Start; l= Transmission Time over the Access6

    Link; rt= Roundtrip Time .......................................................................................... 777Figure 4.1.2-3 Packet Arrival Process at the Base Station for the Download of an Object8

    Using TCP; PW = the Size of the TCP Congestion Window at the End of Transfer of the9

    Object; Tc=c(Described in Figure 4.1.2-2) .................................................................. 8010Figure 4.1.3-1 Packet Trace of a Typical Web Browsing Session ....................................... 8111Figure 4.1.3-2 Contents in a Packet Call .......................................................................... 8212Figure 4.1.3-3 A Typical Web Page and Its Content .......................................................... 82

    13

    Figure 4.1.3-4 Modeling a Web Page Download ................................................................. 8514Figure 4.1.3-5 Download of an Object in HTTP/1.0-Burst Mode ....................................... 8715Figure 4.1.3-6 Download of Objects in HTTP/1.1-Persistent Mode .................................... 8916Figure 4.1.4-1 Packet Trace in a Typical FTP Session ....................................................... 9017Figure 4.1.4-2 Model for FTP Traffic ................................................................................. 9218Figure 4.1.5-1 Packet Trace for the WAP Traffic Model ...................................................... 9319Figure 4.1.6-1 Video Streaming Traffic Model ................................................................... 9420Figure 4.2.2-1: Modeling of TCP three-way handshake ..................................................... 9921Figure 4.2.2-2: TCP Flow Control During Slow-Start; l = Transmission Time over the22

    Access Link (RL); rt= Roundtrip Time ...................................................................... 10023Figure 4.2.2-3 Packet Arrival Process at the mobile Station for the Upload of a File Using24

    TCP .......................................................................................................................... 10325Figure 4.2.4-1: Example of events occurring during web browsing. ................................. 10526Figure 4.2.5-1: Packet Trace for the WAP Traffic Model ................................................... 11127Figure B-1 Center Cell Antenna Bearing Orientation diagram ......................................... 12828Figure B-2 Orientation of the Center Cell Hexagon ......................................................... 12829Figure B-3 Mobile Bearing orientation diagram example. ................................................ 12930Figure D-1: Description of arrival and delivered time for a packet and a packet call. ...... 13331Figure F-1 Flowchart for QPSK modulation .................................................................... 14532Figure F-2 Prediction methodology for higher order modulations without pure Chase33

    combining ................................................................................................................ 14634

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    12/266

    3GPP2 C.R1002-B v1.0

    FIGURES

    x

    Figure F-3 Prediction methodology for higher order modulations with pure Chase1

    combining (this corresponds to Case 1) .................................................................... 1472Figure F-4 Obtaining sample values of

    s tE /N and indicators of packet errors ............... 1483

    Figure F-5 Determining the Doppler penalty by evaluating the predictor performance .... 1494Figure H-1 QAM Receiver Block Diagram ........................................................................ 1565Figure I-1 Wrap-around with 9 sets of 19 cells showing the toroidal nature of the wrap-6

    around surface......................................................................................................... 1587Figure I-2: The antenna orientations to be used in the wrap-around simulation. The arrows8

    in the Figure show the directions that the antennas are pointing. ............................ 1609Figure K-1: I and Q Fade Multiplier Generation .............................................................. 16510Figure N-1: Outline of Equivalent SNR Method. .............................................................. 18511Figure O-1. Approximate channel capacities at BPSK and QPSK signaling (Gaussian12

    signaling case is plotted as a reference). ................................................................... 193

    13Figure Q-1: Set point adjustment due to rate transitions on R-SCH ................................ 20414Figure Q-2 Scheduling Delay Timing .............................................................................. 20515Figure Q-3: Parameters associated in mobile station scheduling on RL ........................... 20616Figure R-1: PDF of FL transmission delays of ESCAM on F-PDCH .................................. 21617Figure R-2: ESCAM delays on F-PDCH ........................................................................... 21718Figure T-1 Constrained Capacity Curve for 16-QAM ....................................................... 22519

    20

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    13/266

    3GPP2 C.R1002-B v1.0

    TABLES

    xi

    Table 2.1-1 Forward System Level Simulation Parameters .................................................. 41Table 2.1-2 Details of Self-Interference Values Resulting in 13.5 dB of Maximum C/I for2

    CDM Transmission with Rake Demodulation ............................................................... 83Table 2.1-3 Details of Self-Interference Values Resulting in 17.8 dB of Maximum C/I for4

    CDM Transmission with Rake Demodulation ............................................................... 85Table 2.1-4 Details of Self-Interference Values Resulting in 17 dB of Maximum C/I for6

    OFDM Transmission and Demodulation ....................................................................... 97Table 2.1-5 Signaling Errors ............................................................................................. 128Table 2.1-6 Criterion CDF ................................................................................................ 139Table 2.1-7 Web Browsing Model Parameters ................................................................... 1410Table 2.2-1 Channel Models ............................................................................................. 1911Table 2.2-2 Fractional Recovered Power and Fractional UnRecovered Power ..................... 2012Table 2.2-3 Relative Power of each Multipath Model (in dB) .............................................. 2013Table 2.2-4 Delay of each Multipath Model (in ns) ........................................................... 2014Table 2.3-1 Required 1xEV-DV Simulation Evaluation Comparison Cases Table .............. 3415Table 3.1-1 Reverse Link System Level Simulation Parameters ......................................... 4516Table 3.1-2 Backhaul bandwidth used by signaling and measurement messages ............. 5117Table 3.1-3 CDF Criterion for FTP Upload MS .................................................................. 5418Table 3.4-1 Default 1xEV-DO RL MAC Transition Probabilities ......................................... 6719Table 4.1-1 HTTP Traffic Model Parameters ...................................................................... 8420Table 4.1-2 FTP Traffic Model Parameters ........................................................................ 9121Table 4.1-3 WAP Traffic Model Parameters ....................................................................... 9322Table 4.1-4 Video Streaming Traffic Model Parameters ..................................................... 9523Table 4.2-1: Traffic Configurations ................................................................................... 9724Table 4.2-2 Delay components in the TCP model for the RL upload traffic ...................... 10125Table 4.2-3: FTP Characteristics ..................................................................................... 10426Table 4.2-4: HTTP Traffic Model Parameters ................................................................... 10727Table 4.2-5 Points to obtain the average transmission rate (ATR) given the geometry and28

    channel model of a user ........................................................................................... 11029Table 4.2-6: WAP Traffic Model Parameters .................................................................... 11230Table 4.2-7 Reverse link delay criteria for HTTP request ................................................. 11231Table 4.2-8 Mobile network gaming traffic model parameters ......................................... 11332Table E-1 Link-Budget Template for the Reverse Link..................................................... 13533

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    14/266

    3GPP2 C.R1002-B v1.0

    TABLES

    xii

    Table E-2 Link-Budget Template for the Forward Link .................................................... 1371Table E-3 Propagation Index and Log-Normal Sigma Values from [20] ............................ 1402Table J-1 Link Level Simulation Parameters for Forward Link ........................................ 1613Table J-2 Link Level Simulation Parameters for Reverse Link ......................................... 1634Table K-1: Coefficients of the 6-tap FIR Filter ................................................................. 1655Table K-2: Coefficients of the 8-tap FIR Filter ................................................................. 1656Table K-3: Coefficients of the 11-tap Filter ...................................................................... 1667Table K-4: Coefficients of the 28-tap Filter ...................................................................... 1668Table K-5: Jakes (Classic) Spectrum IIR Filter Coefficients ............................................. 1679Table M-1 Required statistics output in excel spread sheet for the base station side ....... 17010Table M-2 Required statistics output in excel spread sheet for the base station side ....... 17611Table M-3 Required statistics output in excel spread sheet for the base station side ....... 177

    12

    Table N-1. Notations used. ............................................................................................. 18613Table R-1: D_RL(request) delay for Method a .................................................................. 21314Table R-2: D_RL(request) delay for Method b .................................................................. 21415Table R-3: D_FL(assign) delay for Method a .................................................................... 21416Table R-4: D_FL(assign) delay for Method b (excluding F-PDCH scheduling delay) .......... 21517Table R-5: Reference table for mean transmission times vs Geometry ............................. 21718

    19

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    15/266

    3GPP2 C.R1002-B v1.0

    FOREWORD

    xiii

    This document was prepared by Technical Specification Group C of the Third Generation 31

    Partnership Project 2 (3GPP2).2

    Revision 0 of this document was used for the evaluation and analysis leading to the3

    development of the following cdma2000 systems specifications: cdma20001 Revision C4

    (1xEV-DV), cdma2000 Revision D (1xEV-DV), and cdma2000 High Rate Packet Data Air5 Interface Revision A (1xEV-DO).6

    Revision A of this document also includes evaluation methodology for cdma2000 High Rate7

    Broadcast-Multicast Packet Data Air Interface (1xEV-DO BCMCS) and UMB (Ultra Mobile8

    Broadband)2.9

    Revision B of this document further includes evaluation methodology to handle more10

    practical deployment scenarios such as using actual traffic models, data demand11

    differential in networks, heterogeneous deployment, etc, and evaluation methodology for12

    reverse link transmit diversity for cdma2000 High Rate Packet Data Air Interfacce (1xEV-13

    DO).14

    15

    1 cdma2000 is the trademark for the technical nomenclature for certain specifications and

    standards of the Organizational Partners (OPs) of 3GPP2. Geographically (and as of the date of

    publication), cdma2000 is a registered trademark of the Telecommunications Industry Association

    (TIA-USA) in the United States.

    2 Ultra Mobile Broadband and (UMB) are trade and service marks owned by the CDMA

    Development Group (CDG).

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    16/266

    3GPP2 C.R1002-B v1.0

    FOREWORD

    xiv

    This page intentionally left blank.1

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    17/266

    3GPP2 C.R1002-B v1.0

    REFERENCES

    xv

    Normative References1

    The following specifications contain provisions which, through reference in this text,2

    constitute provisions of this Specification. At the time of publication, the editions indicated3

    were valid. If the specification version number is included, the reference is specific. Parties4

    implementing this Specification should use the specific versions of the indicated5

    specification. If the specification version number is not included, the reference is non-6specific. Parties implementing this Specification are encouraged to investigate the7

    possibility of applying the most recent editions of the indicated specifications.8

    [1] ETSI TR 101 12, Universal Mobile Telecommunications System (UMTS); Selection9

    procedures for the choice of radio transmission technologies of the UMTS (UMTS 30.0310

    v3.2.0)11

    [2] ITU-RM.1225, Guidelines for Evaluation of Radio Transmission Technologies for IMT-12

    2000.13

    [3] A. Viterbi, Principles of Spread Spectrum Communication, Addison-Wesley, 1995.14

    [4] F. Ling, Optimal Reception, performance bound, and cutoff rate analysis of reference-15assisted coherent CDMA communications with applications, IEEE Trans. on Commun.,16

    46(10), pp. 15831592, October 1999.17

    [5] Motorola, "HTTP Traffic Models for 1xEV-DV Simulations", Contribution 3GPP2-C50-18

    Eval-20010212-004.19

    [6] Motorola, " HTTP Traffic Models for 1xEV-DV Simulations (v2)", Contribution 3GPP2-20

    C50-Eval-20010321-002-HTTP-traffic.21

    [7] R. Fielding, J. Gettys, J. C. Mogul, H. Frystik, L. Masinter, P. Leach, and T. Berbers-Lee,22

    "Hypertext Transfer Protocol - HTTP/1.1", RFC 2616, HTTP Working Group, June 1999.23

    ftp://ftp.Ietf.org/rfc2616.txt.24

    [8] B. Krishnamurthy and M. Arlitt, "PRO-COW: Protocol Compliance on the Web",25

    Technical Report 990803-05-TM, AT&T Labs, August 1999,26

    http://www.research.att.com/~bala/papers/procow-1.ps.gz.27

    [9] Lucent, "Comments on HTTP traffic model", Contribution 3GPP2-C50-Eval-20010323-28

    001-traffic-comments.29

    [10] J. Cao, William S. Cleveland, Dong Lin, Don X. Sun., "On the Nonstationarity of30

    Internet Traffic", Proc. ACM SIGMETRICS 2001, pp. 102-112, 2001.31

    [11] B. Krishnamurthy, C. E. Wills, "Analyzing Factors That Influence End-to-End Web32

    Performance", http://www9.org/w9cdrom/371/371.html33

    [12] H. K. Choi, J. O. Limb, "A Behavioral Model of Web Traffic", Proceedings of the seventh34

    International Conference on Network Protocols, 1999 (ICNP '99), pages 327-334.35

    [13] F. D. Smith, F. H. Campos, K. Jeffay, D. Ott, "What TCP/IP Protocol Headers Can Tell36

    Us About the Web", Proc. 2001 ACM SIGMETRICS International Conference on37

    Measurement and Modeling of Computer Systems, pp. 245-256, Cambridge, MA June38

    2001.39

    http://www.research.att.com/~bala/papers/procow-1.ps.gzhttp://www.research.att.com/~bala/papers/procow-1.ps.gzhttp://www.research.att.com/~bala/papers/procow-1.ps.gz
  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    18/266

    3GPP2 C.R1002-B v1.0

    REFERENCES

    xvi

    [14] P. Barford and M Crovella, "Generating Representative Web Workloads for Network and1

    Server Performance Evaluation" In Proc. ACM SIGMETRICS International Conference on2

    Measurement and Modeling of Computer Systems, pp. 151-160, July 1998.3

    [15] S. Deng. Empirical Model of WWW Document Arrivals at Access Link. In Proceedings4

    of the 1996 IEEE International Conference on Communication, June 19965

    [16] W. R. Stevens, "TCP/IP Illustrated, Vol. 1", Addison-Wesley Professional Computing6

    Series, 1994.7

    [17] Motorola, "Comments on Data Traffic Mix", Contribution 3GPP2-C50-Eval-20010321-8

    006-Mot-traffic-mix.9

    [18] UMTS 30.03 V3.2.0 "Universal Mobile Telecommunications Systems (UMTS); Selection10

    procedures for the choice of radio transmission technologies of the UMTS, 1998-04, pg 33-11

    35.12

    [19] K. C. Claffy, "Internet measurement and data analysis: passive and active13

    measurement", http://www.caida.org/outreach/papers/Nae/4hansen.html.14

    [20] ITU, Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000,15

    Recommendation ITU-R M.1225, 1997.16

    [21] Bob Love and Frank Zhou, Comments on Qualcomm Link Budget for 1xEV -DV,17

    Motorola contribution 3GPP2-C50-Eval-20001205-001 to the Evaluation Ad Hoc, December18

    5, 2000.19

    [22] Tao Chen, Link Budget Examples for 1xEV-DV Proposal Evaluation, Rev. 2,20

    QUALCOMM contribution 3GPP2-C50-Criteria Ad Hoc-20001115-002 to the WG5 Criteria21

    Ad Hoc, November 15, 2000.22

    [23] Louay Jalloul, Comments on Path Loss Models for System Simulations, Motorola23

    contribution 3GPP2-C50-WG5-20001116-003 to the Simulation Ad Hoc, November 16,242000.25

    [24] Steve Dennett, The cdma2000 ITU-R RTT Candidate Submission (0.18), July 27,26

    199827

    [25] Working Group 5 evaluation ad hoc chair, 1xEV -DV Evaluation Methodology28

    Addendum, version 6, 3GPP2 TSG-C contribution to Working Group 5 in the Portland,29

    Oregon meeting, C50-20010820-026, August 20, 2001.30

    [26] 3GPP2/TSG-C - C50-Eval-20010329-001, Link Error Prediction Methodology, Lucent31

    Technologies, March 2001.32

    [27] 3GPP2/TSG-C C30-20030217-010, Link Prediction Methodology for Reverse Link33 System Simulations, Lucent Technologies, February 2003.34

    [28] 3GPP2/TSG-CC30-20030217-010A Link Prediction Methodology for Uplink System35

    Level SimulationsAnalysis, Lucent Technologies, February 2003.36

    [29] TIA/EIA-IS-2000.2, Mobile Station-Base Station Compatibility Standard for Dual-37

    Mode Wideband Spread Spectrum Cellular System, June, 2002.38

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    19/266

    3GPP2 C.R1002-B v1.0

    REFERENCES

    xvii

    [30] Ramakrishna, S., Holtzman, J.M., A scheme for throughput maximization in a dual-1

    class CDMA system, Selected Areas in Communications, IEEE Journal on, Vol. 16 Issue:2

    6, page 830844, Aug. 1998.3

    [31] F. Kelly, Charging and rate control for elastic traffic, European Trans. On4

    Telecommunications, vol. 8, pp. 33-37, 1997.5

    [32] L3NQS, Results of L3NQS Simulation Study, 3GPP2-C50-20010820-011, August6

    2001.7

    [33] Doug Reed, Modified Hata path loss model used in 3GPP2 , 3GPP2 Contribution8

    C30-20040920-012, Motorola.9

    [34] 3GPP2/TSG-CC30-20040823-063R1 Qualcomm, Confidence Interval, August 23rd,10

    2004.11

    [35] Ye Li, Leonard Cimini, Bounds on the Interchannel Interference of OFDM in Time-12

    Varying Impairments, IEEE Transactions on Communications, Vol 49, No. 3, March 2001.13

    [36] 3GPP2/TSG-C WG3 contribution, C30-20060413-006, SampleSrcConfigFile_VTMix614

    AT, April 2006.15

    [37] 3GPP2/TSG-C WG3 contribution, C30-20060413-005, MSOWithBlankingSourceFile,16

    April 2006.17

    [38] 3GPP2/TSG-C WG3 contribution, C30-20060327-030A, FixedRateFixedQualityVideo18

    SourceFile, April 2006.19

    [39] 3GPP2 C.S0076-0 v1.0, Discontinuous Transmission (DTX) of Speech in cdma200020

    Systems, December, 2005.21

    [40] 3GPP2/TSG-C WG1 contribution, C12-20051012-006, Video Database for 3GPP222

    multimedia services, October 2005.23

    [41] 3GPP2/TSG-C WG3 contribution, C30-20030915-006, SCM-135 Channel Model Text,24

    September 2006.25

    [42] 3GPP2/TSG-C WG3 contribution, C30-20060823-005, FL VoIP packet arrival with26

    jitter.dat,, August 2006.27

    [43] 3GPP2/TSG-C WG3 contribution, C30-20080114-030, Updated location files for28

    calibration,January 2008.29

    [44] 3GPP2/TSG-C WG3 contribution, C30-20080114-029, Effective SNR AWGN Curves,30

    January 2008.31

    [45] 3GPP2/TSG-C WG3 contribution, C30-20080331-012R3, Performance Evaluation32

    Parameters,March 2008.33

    [46] 3GPP2/TSG-C WG3 contribution, C30-20080114-021R2, Calibration output metrics,34

    January 2008.35

    [47] 3GPP2/TSG-C WG3 contribution, C30-20071203-020R2, SNR to CQI mapping in36

    calibration,December 2007.37

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    20/266

    3GPP2 C.R1002-B v1.0

    REFERENCES

    xviii

    [48] 3GPP2/TSG-C WG3 contribution, C30-20090615-025A, MTD antenna pattern files,1

    June 2009.2

    3

    Informative References4

    The following documents do not contain provisions of the Specification. They are listed to5 aid in better understanding this Specification.6

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    21/266

    3GPP2 C.R1002-B v1.0

    1

    1 INTRODUCTION1

    1.1 Study Objective and Scope2

    The objective of this document is to explain the set of definitions, assumptions, and a3

    general framework for simulating cdma2000 systems (e.g., 1xEV-DV and 1xEV-DO) and4UMB(Ultra Mobile Broadband) systems to arrive at system wide voice, data, or both voice5

    and data performance on the forward and reverse links.6

    This document was used in the evaluation and analysis leading to the development of the7

    following specifications: cdma2000 Revision C (1xEV-DV), cdma2000 Revision D (1xEV-DV),8

    cdma2000 High Rate Packet Data Air Interface Revision A (1xEV-DO), cdma2000 High Rate9

    Broadcast-Multicast Packet Data Air Interface (1xEV-DO BCMCS) and UMB.10

    This document also defines the necessary framework for simulating the performance of11

    cdma2000 and UMB systems with proposed enhancements that are not part of the current12

    cdma2000 and UMB family of specifications. The proponent(s) of any proposal shall provide13

    the details required so that other companies can evaluate the proposal independently. The14proponent(s) of any simulation results shall provide the details required so that other15

    companies can repeat the simulation independently. The information about the simulations16

    will include the predictors being used, and the reported results will include the prediction17

    errors (bias and standard deviation).18

    1.2 Simulation Description Overview19

    Determining voice and high rate packet data system performance requires a dynamic20

    system simulation tool to accurately model feedback loops, signal latency, protocol21

    execution, and random packet arrival in a multipath-fading environment. The packet22

    system simulation tool will include Rayleigh and Rician fading and evolve in time with23

    discrete steps (e.g., time steps of 1.25 ms or 1.67 ms). The time steps need to be small24enough to correctly model feedback loops, latencies, scheduling activities, and25

    measurements of the proposed system.26

    27

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    22/266

    3GPP2 C.R1002-B v1.0

    2

    This page intentionally left blank.1

    2

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    23/266

    3GPP2 C.R1002-B v1.0

    3

    2 EVALUATION METHODOLOGY FOR THE FORWARD LINK1

    2.1 System Level Setup2

    2.1.1 Antenna Pattern3

    The antenna pattern used for each sector, reverse link and forward link, is plotted inFigure4

    2.1.1-1 and is specified by5

    2

    3

    min 12 , , where 180 180.mdB

    A A

    2.1-16

    dB3 is the 3 dB beamwidth, and dBAm 20 is the maximum attenuation.7

    -25

    -20

    -15

    -10

    -5

    0

    -180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

    Horizontal Angle - Degrees

    Gain-dB

    8

    Figure 2.1.1-1 Antenna Pattern for 3-Sector Cells9

    2.1.2 System Level Assumptions10

    The parameters used in the simulation are listed in Table 2.1-1. Where values are not11

    shown, the values and assumptions used shall be specified in the simulation description.12

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    24/266

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    25/266

    3GPP2 C.R1002-B v1.0

    5

    Parameter Value Comments

    Forward Link

    Overhead

    Channel

    Resource

    Consumption

    Circuit

    switched

    and packet

    switched

    data

    systems

    (e.g., 1xEV-

    DV)

    Pilot, Paging and Sync

    overhead: 20%.

    Any additional overhead

    needed to support other

    control channels (dedicated

    or common) must be

    specified and accounted for

    in the simulation

    Packet

    switched

    data

    systems

    (e.g., 1xEV-

    DO)

    FL MAC, Preamble and Pilot

    channel overhead shall be

    considered. The portion of

    times the Control Channel

    (CC) (38.4 kbps or 76.8

    kbps) is sent shall be set as

    a fixed TDM overhead.

    CC portion is assumed to be

    6.25% of the total time. Any

    additional overhead must be

    specified and accounted for

    in the simulation.

    Mobile Noise Figure 10.0 dB

    Thermal Noise Density -174 dBm/Hz

    Carrier Frequency 2 GHz

    BS Antenna Gain with Cable

    Loss

    15 dB 17 dB BS antenna gain; 2

    dB cable loss

    MS Antenna Gain -1 dBi

    Other Losses 10 dB Applicable to all fading

    models

    Fast Fading Model Based on Speed SeeTable 2.2-1.The fadingmodel is specified in

    Appendix K. With dual

    antenna receiver, the fading

    processes on the paths from

    a given BS to the MS receive

    antennas are mutually

    independent.

    Active SetMembership

    Circuit

    switched and

    packet

    switched

    data systems

    (e.g., 1xEV-

    DV)

    Up to 3 members are in the

    Active Set if the pilot Ec/Io

    is larger than T_ADD = -18

    dB (=9 dB below the FL pilot

    Ec/Ior) based on the FL

    evaluation methodology

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    26/266

    3GPP2 C.R1002-B v1.0

    6

    Parameter Value Comments

    Packet

    switched

    data systems

    (e.g., 1xEV-

    DO)

    Up to 3 members are in the

    Active Set if the pilot Ec/Io

    is larger than T_ADD = -9 dB

    based on the FL evaluation

    methodology

    Finger Assignment

    Threshold (T_PATH)

    -12 dB A finger may be assigned to

    a multipath component only

    if its (Ec/Io) exceeds the

    finger assignment threshold.

    This parameter should be

    used only for 1xEV-DO

    BCMCS.

    (SeeAppendix S)

    Maximum Number of Paths

    assigned to Rake fingers(MAX_NUM_PATHS)

    8 for single RX-antenna

    receivers, and

    4 for dual RX-antenna

    receivers

    This is the maximum

    number of paths to whichRake fingers may be

    assigned at the MS.

    Delay Spread Model SeeTable 2.2-1 andTable

    2.2-2

    Fast Cell Site Selection Disable. The overhead shall

    be accounted for if it is used

    in the proposal.

    Forward Link

    Power

    Control

    Circuit

    switched and

    packet

    switched

    data systems

    (e.g., 1xEV-

    DV)

    (If used on

    dedicated

    channel)

    Power Control loop delay:

    two PCGs1

    Update Rate: Up to 800Hz

    PC BER: 4%

    1One PCG/slot delay in link level modeling (measured from the time that the SIR is sampled to the

    time that the BS changes TX power level.)

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    27/266

    3GPP2 C.R1002-B v1.0

    7

    Parameter Value Comments

    Packet

    switched

    data systems

    (e.g., 1xEV-

    DO)

    (If used on

    MAC

    channels)

    Power Control loop delay:

    two slots1

    Update Rate: Up to 600 Hz

    PC BER: 4%,

    Based on DRC feedback

    BS Maximum PA Power 20 Watts

    Site to Site distance 2.5 km

    1.9 km Determined by RL Link

    Budget of 1xEV-D0 Rev-A

    2.0 km Default site to site distance

    for UMBTotal Path Loss Threshold 140 dB This term includes the MS

    and BS antenna gains, cable

    and connector losses, other

    losses, and shadowing, but

    not fading. A subscriber

    whose total path loss on the

    best forward link exceeds the

    Total Path Loss Threshold is

    redropped. This value

    should be applied when site-

    to-site distance is 1.9km and2.0km.

    Maximum C/I achievable,

    where C is the

    instantaneous total received

    signal from the serving base

    station(s) (usually also

    referred to as rx_Ior(t), or

    or(t)), and I is the

    instantaneous total

    interference level (usually

    13.5 dB and 17.8 dB for

    CDM transmission with

    Rake demodulation

    17 dB 18.1 dB1, and 28dB2

    for OFDM transmission and

    demodulation

    13.5 dB for typical current

    subscriber designs for IS-95

    and cdma2000 1x systems;

    17.8 dB for improved

    subscriber designs for 1xEV-

    DV and 1xEV-DO systems;

    18.1dB and 28dB for

    improved subscriber designs

    for UMB. The details on howthese values were derived

    1The max AN C/I of 18.5 dB and the max AT C/I of 29dB are assumed. 18.1dB is the geometric

    mean of those two values.

    2C/I required to meet 1% FER for the packet of 64QAM, code rate 3/4, and 2x2 SCW in channel of

    PedB 3km/h is 26dB. 28dB max C/I is obtained by adding 2 dB margin.

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    28/266

    3GPP2 C.R1002-B v1.0

    8

    Parameter Value Comments

    also referred to as Nt(t)). are inTable 2.1-2, Table

    2.1-3,andTable 2.1-4.(C/I)maxfor other

    transmission/demodulation

    schemes shall be providedwith justification, by the

    system proponents.

    1

    Table 2.1-2 Details of Self-Interference Values Resulting in 13.5 dB of Maximum C/I2

    for CDM Transmission with Rake Demodulation3

    Contribution of Self-Interference )(/ iselfor II Note

    Base-band pulse shaping waveform 16.5dB IS-95 Tx filter and matched

    Rx filter

    Radio noise floor 20dB With improved Tx-Rx. Noise

    performance

    ADC quantization noise 20dB 4-bit A/D converter

    Adjacent channel interference 27dB 1.25 MHz spacing

    4

    Table 2.1-3 Details of Self-Interference Values Resulting in 17.8 dB of Maximum C/I5

    for CDM Transmission with Rake Demodulation6

    Contribution of Self-Interference )(/ iselfor II Note

    Base-band pulse shaping waveform 24 dB IS-95 Tx filter with 64-tap

    Rx filter

    Radio noise floor 20 dB For Tx RHO increased to

    99%

    ADC quantization noise 31.9 dB 6-bit A/D converter

    Adjacent channel interference 27 dB 1.25 MHz spacing

    7

    8

    9

    10

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    29/266

    3GPP2 C.R1002-B v1.0

    9

    Table 2.1-4 Details of Self-Interference Values Resulting in 17 dB of Maximum C/I for1

    OFDM Transmission and Demodulation2

    Contribution of Self-Interference )(/ iselfor II Note

    Base-band pulse shaping waveform Not Applicable OFDM transmission anddemodulation to eliminate

    pulse ISI

    Radio noise floor 20dB With improved Tx-Rx. Noise

    performance

    ADC quantization noise 20 dB 4-bit A/D converter

    Adjacent channel interference Not applicable Guard tones to eliminate

    ACI

    3

    The maximum C/I achievable in the subscriber receiver is limited by several sources,4including inter-chip interference induced by the base-band pulse shaping waveform, the5

    radio noise floor, ADC quantization error, and adjacent carrier interference. For 1xEV-DO6

    BCMCS, the noise floor associated with the maximum C/I limitation is modeled as7

    described in Section2.2.2 andAppendix S.8

    In the system level simulation, the noise floor associated with the maximum C/I limitation9can be characterized by the parameter , given by10

    ma x/1

    IC 2.1-211

    where ma xIC denotes the maximum achievable C/I for the subscriber receiver. As12indicated in Table 2.1-1,

    ma xIC is assumed to be 13.5 dB for the current IS-95 and13

    cdma2000 1X subscriber receivers, and 17.8 dB for improved 1xEV-DV/1xEV-DO designs.14Thus, = 0.045 and = 0.0166 for maximum C/I values of 13.5 dB and 17.8 dB,15

    respectively.16

    In the system level simulation for CDM transmission with Rake demodulation, the effective17C/I shall be given by18

    combined

    effective

    )/(

    1

    1

    IC

    IC 2.1-319

    where combined

    IC is the instantaneous signal-to-interference ratio after pilot-weighted20

    combining of the Rake fingers (see section 2.2.2 for detail). The effective signal-to-21

    interference ratio, effective

    IC , accounts for the interference sources associated with the22

    maximum C/I limitation, and shall be used as the C/I observed by the mobile station23

    receiver.24

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    30/266

    3GPP2 C.R1002-B v1.0

    10

    The channel between the serving cell and the subscriber is modeled using the channel1

    models defined in section 2.2.2. The channel between any interfering cell and the2

    subscriber can be modeled as a one-path Rayleigh fading channel, where the Doppler of the3

    fading process is randomly chosen based on the velocities specified inTable 2.2-1 and its4

    corresponding probabilities.5

    If transmit diversity is used in cdma2000 1x and 1xEV-DV systems, the transmit diversity6PA size shall be the same as the main PA size, 12.5% of the main PA power shall be used7

    for the Pilot Channel and 7.5% for the Paging Channel and Sync Channel. The Transmit8

    Diversity Pilot Channel power is half the power of the Pilot Channel. For example, if the9

    main PA size is 20 W, then the transmit diversity PA size is 20 W, 2.5 W of the main PA is10

    for the Pilot Channel, 1.5 W of the main PA for the Paging Channel and Sync Channel, and11

    1.25 W of the transmit diversity PA is for the Transmit Diversity Pilot Channel.12

    2.1.3 Dynamical Simulation of the Forward Link Overhead Channels13

    Dynamically simulating the overhead channels for 1xEV-DV or 1xEV-DO systems is14

    essential to capture the dynamic nature of power and code space allocation to these15 channels. The simulations shall be done as follows:16

    1) The performance of the new overhead channels (other than the Pilot, Sync, and17

    Paging Channels for 1xEV-DV systems or the Pilot and control channels for 1xEV-18

    DO systems) must be included in the system level simulations. The Pilot Channel,19

    Sync Channel, and Paging Channel are taken into account as part of the fixed20

    overhead (power and code space) in 1xEV-DV systems. For 1xEV-DO systems, the21

    Pilot, preamble, and the total FL MAC shall be transmitted at full BTS power (20 W),22

    and the 38.4 kbps and 76.8 kbps Control Channels are taken into account as part23

    of the fixed overhead (as a fixed percentage of the total transmission time).24

    2) There are two types of these new overhead channels: static and dynamic. A static25

    overhead channel requires fixed base station power. A dynamic overhead channel26

    requires dynamic base station power.27

    3) The system level simulations do not directly include the coding and decoding of28

    these new overhead channels. There are two aspects that are important for the29

    system level simulation: the required Ec/Ior during the simulation interval (e.g., a30

    power control group or slot) and demodulation performance (detection, miss, and31

    error probabilitywhatever is appropriate).32

    4) The link level performance is evaluated off-line by using separate link-level33

    simulations. A quasi-static approach shall be used to conduct the link-level34

    simulation. The performance is characterized by curves of detection, miss, false35

    alarm, and error probability (whatever is appropriate) versus Eb/No.36

    5) For static overhead channels, the system simulation should compute the received37

    Eb/No.38

    6) For dynamic overhead channels with open-loop control only, the simulations should39

    take into account the estimate of the required forward link power that needed to be40

    transmitted to the mobile station. For dynamic overhead channels that use closed41

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    31/266

    3GPP2 C.R1002-B v1.0

    11

    loop feedback, the base station allocates forward link power based upon the1

    combination of open-loop and closed-loop feedback. During the reception of2

    overhead information, the system simulation should compute the received Eb/No.3

    7) Once the received Eb/No is obtained, then the various miss error events should be4

    determined. The impact of these events should then be modeled. The false alarm5

    events are evaluated in link-level simulation, and the simulation results will be6included in the evaluation report. The impact of false alarm, such as delay increases7

    and throughput reductions for both the forward and reverse links, will be8

    appropriately taken into account in system-level simulation.9

    8) The Walsh space utilization shall be modeling dynamically for 1xEV-DV systems.10

    9) All new overhead channels shall be modeled.11

    10)If a proposal adds messages to an existing channel (overhead or otherwise), the12

    proponent shall justify that this can be done without creating undue loading on this13

    channel. If a proposal requires an additional overhead channel of the type that is14

    already in the system under evaluation, then the proposal shall include the power15 required for this channel. The system level and link level simulation required for16

    this modified overhead channel as a result of the new messages shall be performed17

    according to 3) and 4), respectively.18

    2.1.4 Reverse Link Modeling in Forward Link System Simulation19

    The proponents shall only model feedback errors (e.g., power control, acknowledgements,20

    rate indication, etc.) and measurements (e.g., C/I measurement) without explicitly modeling21

    the reverse link and reverse link channels. In addition to supplying the feedback error rate22

    average and distribution, the measurement error model and selected parameters, the23

    estimated power level required for the physical reverse link channels will be supplied24

    (including those used for fast cell selection even though it is not going to be explicitly25modeled for the 1xEV-DV or 1xEV-DO system simulations).26

    2.1.5 Signaling Errors27

    Signaling errors shall be modeled and specified as inTable 2.1-5.28

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    32/266

    3GPP2 C.R1002-B v1.0

    12

    Table 2.1-5 Signaling Errors1

    Signaling Channel Errors Impact

    ACK/NACK channel Misinterpretation, missed

    detection, or false detection

    of the ACK/NACK message

    Transmission (frame or

    encoder packet) error or

    duplicate transmission

    Explicit Rate Indication Misinterpretation of rate One or more transmission

    errors due to decoding at a

    different rate (modulation

    and coding scheme)

    User identification channel A user tries to decode a

    transmission destined for

    another user; a user misses

    transmission destined to it.

    One or more transmission

    errors due to HARQ/IR

    combining of wrong

    transmissions

    Rate or C/I feedbackchannel (DRC or equivalent) Misinterpretation of rate orC/I for DRC feedback

    information

    Potential transmission errors

    Fast cell site selection

    signaling, e.g., transmit

    sector indication, transfer of

    H-ARQ states etc.

    Misinterpretation of selected

    sector; misinterpretation of

    frames to be retransmitted.

    Transmission errors

    Proponents shall quantify and justify the signaling errors and their impacts in the2

    evaluation report. As an example, if an ACK is misinterpreted as a NACK (duplicate3

    transmission), the packet call throughput will be scaled down by (1-pACK), wherepACKis the4

    ACK error probability.5

    2.1.6 Fairness Criteria6

    2.1.6.1 Fairness Criterion with the Normalized CDF of the User Throughput7

    Because maximum system capacity may be obtained by providing low throughput to some8

    users, it is important that all mobile stations be provided with a minimal level of9

    throughput. This is called fairness. The fairness is evaluated by determining the10

    normalized cumulative distribution function (CDF) of the user throughput, which meets a11

    predetermined function in two tests (seven test conditions). The same scheduling12

    algorithm shall be used for all simulation runs. That is, the scheduling algorithm is13

    not to be optimized for runs with different traffic mixes. The proponent(s) of any14proposal are also to specify the scheduling algorithm.15

    Let Tput[k] be the throughput for user k. The normalized throughput with respect to the16

    average user throughput for user k, ]k[T~

    put is given by17

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    33/266

    3GPP2 C.R1002-B v1.0

    13

    ][iTavg

    ][kT]k[T

    ~

    puti

    put

    put 2.1-41

    The CDF of the normalized throughputs with respect to the average user throughput for all2

    users is determined. This CDF shall lie to the right of the curve given by the three points in3

    Table 2.1-6.4

    Table 2.1-6 Criterion CDF5

    Normalized

    Throughput w.r.t

    average user

    throughput

    CDF

    0.1 0.1

    0.2 0.2

    0.5 0.5

    6

    This CDF shall be met for the seven test conditions given in the following two tests:7

    Test 1for FTP, six test conditions8

    Single path Rayleigh fading9

    3, 30, 100 km/h10

    All FTP users, with buffers always fullNote that this model differs from the11

    FTP traffic model specified in section4.1.412 10, 20 users dropped uniformly in a sector13

    80% (for cdma2000 1x and 1xEV-DV systems) or 100% (for 1xEV-DO14systems) of BS power available for data users; max. BS power = 20 w15

    Full BS power from other cells16

    The 6 test conditions are the combinations 3, 30, and 100 km/h with 10 and1720 FTP users per sector18

    Test 2for HTTP, one test condition19

    Single path Rayleigh fading20

    3 km/h21

    HTTP users, with traffic model provided inTable 2.1-7Note that this traffic22model differs from the HTTP traffic model specified in section4.1.323

    44 users dropped uniformly in a sector24

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    34/266

    3GPP2 C.R1002-B v1.0

    14

    70% (for cdma2000 1x and 1xEV-DV systems) or 100% (for 1xEV-DO1systems) of BS power available for data users; max. BS power = 20 w2

    Full BS power from other cells3

    4

    Table 2.1-7 Web Browsing Model Parameters5

    Process Random Variable Parameters

    Packet Calls Size Pareto with cutoff =1.2, k=4.5 Kbytes, m=2

    Mbytes, = 25 Kbytes

    Time Between Packet

    Calls

    Geometric = 5 seconds

    2.1.6.1.1 A Generic Proportional Fair Scheduler6

    Although the proponent of a proposal is free to use any scheduler, a generic proportional-7

    fair scheduler [31,32], for full-buffer traffic model, with a priority function Pi(k) is given8

    below for reference:9

    ( )ii

    i

    R kP k

    T k

    2.1-510

    where k is the slot index, )(kRi is the data rate potentially achievable for the i-th mobile11

    station based upon the reported C/I and the power available to the F-PDCH, kTi is the12average fairness throughput of the i-th mobile station up to time k, and is the fairness13exponent factor with the default value chosen as 0.75. Users with the highest priority are14

    selected for service. The number of users selected is dependent upon the number of users15to be serviced simultaneously. The average fairness throughput can be calculated as16

    follows:17

    ( 1) - 1

    ( 1) (1 ) ( 1) - 1

    i

    i

    i i

    T k if the i th MS was not scheduled at time k T k

    T k N k if the i th MS was scheduled at time k

    2.1-618

    where19

    -3

    3

    1.25 101 for 1x EV-DV Systems

    =1.67 10

    1 for 1xEV-DO Systems

    t

    t

    2.1-720

    tis set to 1.5s, Ni(k-1)is the number of bits delivered to the MS at time k-1 and Tishould be21

    initialized to a small value greater than zero.22

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    35/266

    3GPP2 C.R1002-B v1.0

    15

    2.1.6.2 Fairness Criterion with Geometric Mean and Harmonic Mean1

    The fundamental problem of using the fairness criterion with the normalized cdf of the user2

    throughput is that this fairness criterion takes the form of an absolute bound on relative3

    throughput. This means that it is possible that when there is extra capacity available for4

    some users but not for others, the potential extra service is disallowed, as it would violate5

    the fairness criteria. Yet it is surely always of positive benefit to be able to improve the6service of some users, while not reducing service on any other users.7

    A second problem is that the fairness criterion with the normalized cdf of the user8

    throughput is divorced from the final metric, the sum-throughput. The fairness criterion9

    effectively defines a set of feasible allocations, and the goal becomes to maximize the sum-10

    throughput over this feasible set. This problem is generally non-trivial, and often leads to11

    iterative simulation runs searching for this optimal point for each set of simulation12

    parameters, especially since it is difficult a priori to know if a given scheduling policy will13

    lead to a feasible allocation. The complex tradeoffs made to find this optimal allocation are14

    non-trivial and often non-transparent, and in the end are not really the appropriate15

    tradeoffs in realistic networks, due to the artificial nature of the fairness bound.16In this criterion a single metric is determined from the set of full-buffer throughputs which17

    applies different weighting (in the form of utility) to different levels of throughput. This18

    metric is to be optimized for each simulation scenario and used for comparison across19

    proposals. Due to the nature of the variable weighting across rates, a limitation on the20

    distribution of MS throughputs is a direct result of optimizing the metric. Hence no further21

    criterion on throughput fairness is required. This method is to be used both for pure full-22

    buffer simulations and for mixed simulations which include full-buffer users. In the latter23

    case, only the throughputs of the full-buffer users are used for these comparisons.24

    There are two separate metrics that are to be used for full-buffer performance comparison,25

    the first using geometric mean (GM) and the second using harmonic mean (HM). We refer26 to these as GMM (geometric mean method) and HMM (harmonic mean method),27

    respectively. The comparison methods under GMM and HMM are identical, other than the28

    specific metric computation. When using GMM, network resources should be allocated to29

    optimize the GM, and when using HMM they should be allocated to optimize the HM.30

    Hence, a separate simulation run is performed for the GMM and HMM comparisons.31

    Let rbe the vector of throughputs from the simulation run of the full-buffer MSs in the32network, let S be the set of sectors, and let sM be the set of full-buffer MSs for which33

    sector s is the serving sector, and which are not in outage. The GMM metric is computed34

    as35

    Ss

    N

    Mi

    is

    t

    s

    s

    rNN

    rsec

    GMM1:)(U 2.1-836

    where tNsec is the number of sectors in the network (57 in the standard layout), and sN is37

    the number of mobiles in sM . The HMM metric is computed as38

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    36/266

    3GPP2 C.R1002-B v1.0

    16

    Ss

    Mi is

    s

    t

    srN

    NN

    r11

    11:)(U

    sec

    HMM 2.1-91

    The following steps are to be performed for the full-buffer throughput comparison:2

    1) Determine if GMM or HMM will be used3

    2) Run the simulation (FL or RL, as desired), which includes some full-buffer users,4

    optimizing resource allocation as appropriate for GMM or HMM5

    3) From the full-buffer throughput rvector determine )(UGMM r or )(UHMM r using6

    the appropriate equation above7

    4) Report the )(UGMM r or )(UHMM r value as appropriate for comparison across8

    proposals9

    5) Report MS Relative throughput and average sector throughput as well10

    11

    2.1.7 C/I Predictor Model for System Simulation12

    Each company shall use their own prediction methodology and describe the prediction13

    method in enough detail so other companies can replicate the simulations. This shall14

    include the timing diagram from measurements at the mobile to scheduling decisions at the15

    base station based on those measurements. Furthermore, this delay shall be explicitly16

    modeled in the system level simulator.17

    2.2 Link Level Modeling18

    2.2.1 Link to System FER mapping19

    The performance characteristics of individual links used in the system simulation are20

    generated a priori from link level simulations. Link level simulation parameters are21

    specified in Appendix J.22

    Turbo Decoder Metric and Soft Value Generation into Turbo Decoder shall be as specified23

    in Appendix H.24

    The quasi-static approach with fudge factors or with short term FER shall be used to25

    generate the frame erasures for both the 1xEV-DV packet data channel and the 1xEV-DO26

    Forward Traffic Channel (FTC), dynamically simulated forward link overhead channels,27

    voice and SCH (applicable only to 1xEV-DV), as described below. Equivalent SNR approach28

    shall be used to generate the frame erasures for the OFDM-based forward traffic channel29

    (FTC) in 1xEV-DO BCMCS, as described below.30

    If the BCMCS proposal uses a Reed Solomon (RS) outer code, then the frame erasures31

    generated above constitute the erasure events at the input to the outer code. This is used to32

    generate packet erasures at the output of the RS decoder as follows:33

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    37/266

    3GPP2 C.R1002-B v1.0

    17

    Suppose the RS code is specified by the ordered triple (N, K, R), where N is number of octets1

    in a RS code word, K is the number of data octets in a RS code word, and R=N-K is the2

    number of parity octets in a RS code word. Each code word of the RS code contains a data3

    octet from N consecutive turbo coded packets. A set of N consecutive turbo coded packets4

    (at the input to the RS decoder) spanned by a RS code word is referred to as an error5

    control block. An error control block contains K data packets and R parity packets. If an6error control block contains at most R packet erasures, then the RS outer code recovers all7

    erasures in the error control block, and all K data packets in the error control block are8

    successfully passed on to the higher layer. If the error control block contains more than R9

    packet erasures, then the unerased data packets in the error control block are passed on to10

    the higher layer, while the remaining data packets constitute erasure events at the output11

    of the RS outer code.12

    13

    2.2.1.1 Quasi-Static Approach with Fudge Factors:14

    Quasi-static approach with fudge factors shall be used for 1xEV-DV Packet Data Channel,15 1xEV-DO FTC, and Dynamically Simulated Forward Link Overhead Channel.16

    The aggregated Es/Nt is computed over a transmission period and mapped to an FER using17

    AWGN curves. The proponent shall select one of two possible methods to determine the18

    FER:19

    a) Map the aggregated Es/Nt directly to the AWGN curve corresponding to the given20

    modulation and coding.21

    b) Adjust the aggregated Es/Nt for the given modulation and coding and lookup a22

    curve obtained using a reference modulation and coding.23

    Furthermore the proponents shall account for an additional Es/Nt loss at higher Dopplers24

    for either method.25

    Full details of the quasi-static frame error modeling with fudge factors are given in the26

    Appendix F.27

    2.2.1.2 Quasi-Static Approach with Short Term FER:28

    The quasi-static approach with short term FER may be used to generate frame erasures for29

    voice, SCH, and F-PDCH for 1xEV-DV systems. The quasi-static approach with short term30

    FER may be used to generate frame (i.e. physical-layer packet) erasures for the Forward31

    Traffic Channel (FTC) for 1xEV-DO systems.32

    A full set of short term FER vs. average Eb/Nt per frame curves is generated as a function33 of radio configurations, transmission diversity schemes (if applicable), channel models,34

    different ways of soft hand-off (SHO), different SHO imbalances, and geometries. The35

    number of curves should be reduced if possible, provided that this wont unduly affect the36

    validity of this quasi-static approach.37

    All companies shall use the same set of short term FER vs. average Eb/Nt per frame.38

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    38/266

    3GPP2 C.R1002-B v1.0

    18

    In the system-level simulation, the average Eb/Nt per frame is computed as follows. First,1

    the average Eb/Nt is calculated in a PCG (slot). The short-term average Eb/Nt per frame is2defined as the average of the average Eb/Nt for all Ns PCGs (slots) in a frame (physical3

    layer packet), i.e.,4

    sN

    n nt

    b

    st

    b

    N

    E

    NN

    E

    1

    1 2.2-15

    where (Eb/Nt)n is the average Eb/Nt in the n-th PCG (slot) in a frame (physical-layer6

    packet). Note that finger combining and self-interference are applied before the average7

    Eb/Nt in a PCG (slot) is calculated. Once the Eb/Nt is calculated as in the above equation,8

    it is used to look up the corresponding link level short term FER vs. average Eb/Nt per9

    frame curves for the specific condition (i.e., radio configuration, transmission diversity (if10

    applicable) scheme, channel model, way of soft hand-off (SHO), SHO imbalance(s), and11

    geometry). A frame erasure event is then generated based on the FER value.12

    If a short term FER vs. average Eb/Nt per frame curve is not available for a condition, the13

    curve should be computed by interpolating those curves for similar conditions (e.g.,14between the factors for closest geometries available).15

    The short term FER vs. average Eb/Nt per frame curves shall be generated as follows:16

    1. The link-level simulation is conducted for a specific condition. The average Eb/Nt in a17

    frame and the frame erasure indicator for the frame are recorded. For 1xEV-DV18

    systems, the average Eb/Nt per frame is computed as follows in the link-level19

    simulation20

    sN

    n

    k

    kn

    t

    k

    kn

    b

    t

    b

    n

    Sm

    N

    E

    12),(

    2),(

    16

    1 2.2-221

    where n is the index of PCG in a frame and k is the index of symbols within a PCG.22),( kn

    bS is the signal component in the k-th received coded symbol in the n-th PCG,),( kn

    tn 23

    is the noise and interference component in the k-th received symbol in the n-th PCG in24

    a frame, and mis the inverse of the code rate (i.e., 4 for RC3 and 2 for RC4, etc). For25

    1xEV-DO systems, the average Eb/Nt per slot is computed as follows in the link-level26

    simulation27

    K

    k

    L

    llkn

    t

    lkn

    s

    n

    t

    b

    N

    E

    MN

    E

    1 1),,(

    ),,(1

    )( 2.2-328

    where M equals to the number of information bits per packet; n is the slot index and29k is the symbol index within a slot; l is the path index, where the total number of30

    captured paths is denoted by L; the total number of symbols per slot is K;31),,( lkn

    sE denotes the signal energy in the k-th received symbol in the n-th slot in the32

    physical-layer packet at the l-th RAKE finger, and),,( lkn

    tN denotes the noise and33

    interference variance in the k-th received symbol in the n-th slot in the physical-34

    layer packet seen at the l-th RAKE finger.35

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    39/266

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    40/266

    3GPP2 C.R1002-B v1.0

    20

    the percentage of users with that channel model in each sector. The JTC fader (see1

    Appendix K) shall be used to generate the Jakes fading samples.2

    For CDM transmissions with Rake demodulation, each multipath model (Pedestrian A,3

    Vehicular A/B etc) is characterized in terms of the number of Rake fingers (resolvable4

    paths), the Delay and Fractional Recovered Power (FRP) of each finger, and the Fractional5

    UnRecovered Power (FURP). The FRP and FURP are given in Table 2.2-2. FURP shall6contribute to the interference of the finger demodulator outputs as an independent fader.7

    The power on all fingers (including FURP) for each channel model shall be normalized so8

    that the total power for that channel model adds up to unit one.9

    Table 2.2-2 Fractional Recovered Power and Fractional UnRecovered Power10

    Model Finger1

    (dB)

    Delay Finger2

    (dB)

    Delay (Tc) Finger3

    (dB)

    Delay (Tc) FURP (dB)

    Ped-A -0.06 0.0 -18.8606

    Ped-B -1.64 0.0 -7.8 1.23 -11.7 2.83 -10.9151Veh-A -0.9 0.0 -10.3 1.23 -10.2759

    11

    The delay values given inTable 2.2-2 are for information purposes and do not need to be12

    accounted for in the system simulation.13

    For OFDM transmission and demodulation of 1xEV-DO BCMCS, each multipath model14

    (Pedestrian A, Vehicular A/B etc) is characterized in terms of the total number of paths,15

    together with actual power-delay profile of the multipath channel. For each multipath16

    model, the power on all paths shall be normalized so that the total power adds up to one.17

    The parameters of the multipath models for OFDM transmission and demodulation are18

    given inTable 2.2-3 andTable 2.2-4.19

    Table 2.2-3 Relative Power of each Multipath Model (in dB)20

    Model # Paths 1 2 3 4 5 6

    Ped-A 4 0 -9.7 -19.2 -22.8

    Ped B 6 0 -0.9 -4.9 -8.0 -7.8 -23.9

    Veh-A 6 0 -1.0 -9.0 -10.0 -15.0 -20.0

    21

    Table 2.2-4 Delay of each Multipath Model (in ns)22

    Model # Paths 1 2 3 4 5 6

    Ped-A 4 0 110 190 410

    Ped B 6 0 200 800 1200 2300 3700

    Veh-A 6 0 310 710 1090 1730 2510

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    41/266

    3GPP2 C.R1002-B v1.0

    21

    The channel between the serving sector(s) and the subscriber is modeled using the1

    multipath profiles defined above. The channel between any interfering sector and the2

    subscriber can be modeled as a one-path Rayleigh fading channel, where the Doppler of the3

    fading process is randomly chosen based on the velocities and its corresponding4

    probabilities specified inTable 2.2-1.5

    2.2.2.2 Channels model based on SCM6

    2.2.2.2.1 Channel model for system level simulations7

    The 3GPP2/3GPP spatial channel model (SCM) [41] shall be used for all system level8

    simulations. The Urban Macro-cellular environment is mandatory and the parameters of9

    Table 2.2-5 shall be used for configuring the model.10

    Table 2.2-5 Macro-cellular Environment Parameters11

    Channel Scenario Urban Macro

    Number of paths (N) 6

    Number of sub-paths (M) per-path 20

    Mean AS at BS E( AS )=15 deg

    AS at BS as a lognormal RV

    10 ^ , ~ (0,1)AS AS ASx x

    15deg

    AS = 1.18, AS = 0.210

    ASAoDASr / 1.3

    Per-path AS at BS (Fixed) 2 deg

    BS per-path AoD Distribution standarddistribution

    ),0( 2AoD where ASASAoD r

    Mean AS at MS E(AS, MS)=68 deg

    Per-path AS at MS (fixed) 35 deg

    MS Per-path AoA Distribution (Pr)),0( 2AoA

    Delay spread as a lognormal RV

    10 ^ , ~ (0,1)DS DS DSx x

    DS = -6.18

    DS = 0.18

    Mean total RMS Delay Spread E( DS

    )=0.65 s

    DSdelaysDSr / 1.7

    Lognormal shadowing standard deviation,

    SF

    8.9dB

    Pathloss model (dB), d is in meters 28.6 + 35log10(d)

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    42/266

    3GPP2 C.R1002-B v1.0

    22

    The velocity profile is shown in Table 2.2-6. Because of the choice of urban macrocell,1

    velocities are biased towards pedestrian speeds.2

    3

    Table 2.2-6 Quantized Velocity Profile4

    Percentage Velocity (km/h)

    35% 3

    30% 30

    20% 60

    15% 120

    The carrier frequency for all simulations is assumed to be 2.0 GHz.5

    2.2.2.2.2 Channel model for link level simulations6

    For link-level simulations, that excludes link to system mapping simulations, spatially7

    extended ITU profiles will be used.8

    Table 2.2-7 ITU Profiles for Link Level Simulations9

    ITU Model Velocity (km/h)

    AWGN 0

    Ped-A 3

    Ped-B {3,30}

    Veh-A {30,120}For technologies that use a cyclic prefix, the path location will be equal to the closest10

    integer sample number, i.e. no FURP modeling is needed.11

    12

    Table 2.2-8 ITU Profiles Spatial Extension Parameters13

    Channel Scenario Urban Macro

    AS at BS AS =150

    Per-path AS at BS (Fixed) 2 deg

    AS at MS AS, MS=680

    Per-path AS at MS (fixed) 350

    AoDs As specified inTable 2.2-9

    AoAs As specified inTable 2.2-9

    14

  • 8/12/2019 C.R1002-B v1.0 Evaluation Methodology-IncludeChannelModel

    43/266

    3GPP2 C.R1002-B v1.0

    23

    Table 2.2-9 Path power, AoD, AoA1

    Path Power Path AOD (rad) Path AoA (rad)

    Ped-A 0.889345301 0.346314033 1.737577272

    0.095295066 -0.05257642 -1.556450.010692282 -1.817837659 -1.049078459

    0.00466735 -0.836999548 0.345571431

    Ped-B 0.405688403 -0.13638548 1.319340881

    0.329755914 0.302249557 -0.119072067

    0.131278194 0.496051618 0.901442565

    0.064297279 0.544719913 -1.424448314

    0.067327516 0.212670549 -3.062670939

    0.001652695 -0.604134536 -1.202289294

    Veh-A 0.48500285 -0.46084874 -0.780118399

    0.385251458 -0.897480352 -1.729577654

    0.061058241 -0.525726742 1.792547973

    0.048500285 0.00282531 1.776985779

    0.015337137 -1.016095677 1.386034573

    0.004850029 0.245512493 3.50389557

    The fading coefficient generation will be the one described in section 5.3 of the23GPP2/3GPP SCM [41].3

    2.2.2.2.3 Channel model for virtual decoder generati