Top Banner
Comprehensive model evaluation of PM 2.5 species over Japan: Comparison among AERO5, AERO6, and AERO6- VBS models The 13th Annual CMAS Conference, October 28, 2014 ー Contents ー 1. Introduction PM 2.5 in Japan / PM 2.5 modelling 2. Methodology Chemical transport models / Observations 3. Results Model evaluations 4. Summary ー Acknowledgement ー Funds Environment Research and Technology Development Fund (5-1408, S12-1, 5B-1101) Technical support: K. Suto and T. Noguchi (NIES) Yu Morino , Tatsuya Nagashima, Seiji Sugata, Kei Sato, Kiyoshi Tanabe, Akinori Takami, Hiroshi Tanimoto, and Toshimasa Ohara National Institute for Environmental Studies, Japan
21

Comprehensive model evaluation of PM 2.5 species over Japan: - Comparison among AERO5,

Jan 02, 2016

Download

Documents

Candace Ford

Comprehensive model evaluation of PM 2.5 species over Japan: - Comparison among AERO5, AERO6 , and AERO6-VBS models. Yu Morino , Tatsuya Nagashima , Seiji Sugata , Kei Sato, Kiyoshi Tanabe, Akinori Takami , Hiroshi Tanimoto , and Toshimasa Ohara - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

Comprehensive model evaluation of PM2.5 species over Japan: - Comparison among AERO5, AERO6, and AERO6-VBS models

The 13th Annual CMAS Conference, October 28, 2014

ー Contents ー 1. Introduction - PM2.5 in Japan / PM2.5 modelling

 2. Methodology - Chemical transport models /

Observations

 3. Results - Model evaluations

 4. Summary ー Acknowledgement ーFunds : Environment Research and Technology Development Fund (5-1408, S12-1, 5B-1101)Technical support: K. Suto and T. Noguchi (NIES)

Yu Morino, Tatsuya Nagashima, Seiji Sugata, Kei Sato, Kiyoshi Tanabe,

Akinori Takami, Hiroshi Tanimoto, and Toshimasa Ohara National Institute for Environmental Studies, Japan

Page 2: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

Urban (N=12)Rural (N=5)Roadside (N=16)

PM2.5 in Japan

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

PM2.5 environmental standard

in Japan (Sept. 2009 ‒)

Annual mean: 15 μg m-3

Daily mean: 35 μg m-3

Temporal variations during 2001-2010

Ministry of Environment (2012)

PM2.

5 con

cent

ratio

ns

Ministry of Environment (2013)

PM2.5 standard was not attained in western Japan and Tokyo Metropolitan Area.

PM2.5 env. standard○ : Attained■▲ : Not-attained

Spatial variations in 2012

Attained

Unattained

1. Introduction

Page 3: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

PM2.5 modelling in Tokyo Metropolitan Area (in summer 2007)

Model intercomparison of PM2.5 species (Morino et al., JSAE, 2010)(CMAQ v4.7.1 and CMAQ 4.6 were used.)

All models significantly underestimated OA.

-1.0

-0.5

0.0

0.5

1.0

r (

(PM

2.5))

4321S1 S2 S3 S4

r ((PM2.5))

30

20

10

0

PM

2.5 (g

m-3

)

4321S1 S2 S3 S4

Mean (PM2.5)

Obs (TEOM)

-1.0

-0.5

0.0

0.5

1.0r

(NO

3- )

4321S1 S2 S3 S4

r (NO3-)

-1.0

-0.5

0.0

0.5

1.0

r (S

O42-

)

4321S1 S2 S3 S4

r (SO42-

)

-1.0

-0.5

0.0

0.5

1.0

r (O

A)

4321S1 S2 S3 S4

r (OA)

8

6

4

2

0

OA

(g

m-3

)

4321S1 S2 S3 S4

Mean (OA)

6

4

2

0

SO

42- (g

m-3

)

4321S1 S2 S3 S4

Mean (SO42-

)

Obs M1 M2 M3 M4

10

8

6

4

2

0

NO

3- (

g m

-3)

4321S1 S2 S3 S4

Mean (NO3-)

-1.0

-0.5

0.0

0.5

1.0

r (

(PM

2.5))

4321S1 S2 S3 S4

r ((PM2.5))

30

20

10

0

PM

2.5 (g

m-3

)

4321S1 S2 S3 S4

Mean (PM2.5)

Obs (TEOM)

-1.0

-0.5

0.0

0.5

1.0

r (N

O3- )

4321S1 S2 S3 S4

r (NO3-)

-1.0

-0.5

0.0

0.5

1.0

r (S

O42-

)

4321S1 S2 S3 S4

r (SO42-

)

-1.0

-0.5

0.0

0.5

1.0

r (O

A)

4321S1 S2 S3 S4

r (OA)

8

6

4

2

0

OA

(g

m-3

)

4321S1 S2 S3 S4

Mean (OA)

6

4

2

0

SO

42- (g

m-3

)

4321S1 S2 S3 S4

Mean (SO42-

)

Obs M1 M2 M3 M4

10

8

6

4

2

0

NO

3- (

g m

-3)

4321S1 S2 S3 S4

Mean (NO3-)

S1: Komae, S2: Kisai, S3: Maebashi, S4: Tsukuba

Org

anic

aer

osol

-1.0

-0.5

0.0

0.5

1.0

r (

(PM

2.5)

)

4321S1 S2 S3 S4

r ((PM2.5))

30

20

10

0

PM

2.5 (g

m-3

)

4321S1 S2 S3 S4

Mean (PM2.5)

Obs (TEOM)

-1.0

-0.5

0.0

0.5

1.0

r (N

O3- )

4321S1 S2 S3 S4

r (NO3-)

-1.0

-0.5

0.0

0.5

1.0

r (S

O42-

)

4321S1 S2 S3 S4

r (SO42-

)

-1.0

-0.5

0.0

0.5

1.0

r (O

A)

4321S1 S2 S3 S4

r (OA)

8

6

4

2

0

OA

(g

m-3

)

4321S1 S2 S3 S4

Mean (OA)

6

4

2

0

SO

42- (g

m-3

)

4321S1 S2 S3 S4

Mean (SO42-

)

Obs M1 M2 M3 M4

10

8

6

4

2

0

NO

3- (g

m-3

)

4321S1 S2 S3 S4

Mean (NO3-)

1. Introduction

Fossil-SOA: Underestimation by a factor of 6-8

Model evaluation of fossil- and biogenic SOA (Morino et al., ES&T, 2010)(CMAQ–MADRID was used.)

Biogenic-SOA: Underestimation by a factor of 1.5 - 2

Page 4: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

#Gas #  Reaction

Aerosolmodels

MCM v3.2 5731 16933 Pankow

CACM-MADRID2

366 366 MADRID2

SAPRC99-AERO4

79 214 AERO4

SAPRC99-AERO5

88 224 AERO5

SAPRC99-VBS

92 214#1 VBS

#1: exclude aging reactions

MCM, CACM-MADRID: Explicitly simulate multi-generation oxidation

AERO4, AERO5: Yield modelsVolatility Basis Set (VBS): Grouping of

SVOC and IVOC based on volatility

    from CMAQ-MADRID

CMAQ v4.6

CMAQ v4.7.1

Intercomparison of SOA models in TMA (in summer 2004)

(Morino et al., JGR, in revisions)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

P(S

OA

) (g

m-3/h

r)

20151050

R(VOC+OH) (ppbv/hr)

6

5

4

3

2

1

0

P(S

OA

) (

g m

-3/h

r)

(d)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

P(S

OA

) (g

m-3/h

r)

403020100P(Ox) (ppbv/hr)

6

5

4

3

2

1

0

P(S

OA

) (

g m

-3/h

r)

(c)

40

30

20

10

0

P(O

x) (

pp

bv/h

r)

20151050

R(VOC+OH) (ppbv/hr)

(c)

25

20

15

10

5

0

SO

A (g

m-3

)

12080400Ox (ppbv)

5

4

3

2

1

0

SO

A (

g m

-3)

Obs AERO4 CACM VBS AERO5 MCM

(a)

ObsS=0.193 mgm-3/ppbv

VBSS=0.130

CACMS=0.016

OthersS=0.003-0.011

1. Introduction

Page 5: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

Background of PM2.5 modelling in Japan SOA models:

– OA concentrations were largely underestimated by yield and mechanical models in TMA, Japan.

– VBS model better reproduced SOA in TMA.

Limitation of observational data:– Simultaneous measurement of PM2.5 chemical composition were limited in Japan.

→ Model evaluation of PM2.5 species were spatially and temporally limited.

– Simultaneous measurements of PM2.5 species over Japan were conducted in

2012.

1. Introduction

Objectives of this study

Model performance of PM2.5 chemical composition were

evaluated using the observational data over Japan in 2012. Results of three simulation models, including the VBS model,

were compared.

Page 6: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

Global-scale CTMMIROC-ESM-CHEM

Δx = 300 km

Regional-scale CTMWRF/CMAQ

Δx = 60km Δx = 15km

Chemical transport models

Models ChemicalModules

Aerosolmodules

① CMAQ v4.7.1 SAPRC99 AERO5② CMAQ v5.0.2 CB05 AERO6③ CMAQ v5.0.2 CB05 AERO6VBS

Target Emission data Spatial resol.

Anthropogenic (Japan)

JATOP ~1km (vehicles) ~10km (others)

Anthropogenic (Easi Asia)

REAS v2.1 0.25°

Biomass burning GFED v3.1 0.5°

Volcano AEROCOM/JMA Points

Biogenic VOC MEGAN v2.10 ~0.04°

Three versions of CMAQ

Setups of emission data

2. Methodology

Page 7: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

SOA models ー yield modelsAERO5

AERO6

PNCOM

POC

aging

AERO6

Carlton et al., 2010

2. Methodology

Page 8: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

Merit 1 :

Merit 2 :

SOA (V)

POA

VOC

Emission sources

SVOC1cond./evapo.

oxidation

VBS model

Yield model

emis.

emis.

SOA (I/S)

agingagingSVOC1

SVOC2

SVOC3

cond./evapo. cond./

evapo.

emis.SVOC3

aging

SVOC2

aging

cond./evapo.

Merit 1

Merit 2

Simulate primary emissions and oxidation (aging) of SVOC/IVOC (semi-/intermediate- VOC)

Simulate aging processes of oxidation products from VOCs

2. Methodology

SOA models ー Volatility basis-set (VBS) model

Page 9: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

45

40

35

30

145140135130

2

467

9

10

12

1

35

8

11

13Remote Urban/

ruralKyusyu #1:Tsushima #2:DazaifuChugoku #3:Oki #4:Matsue

Kinki #5:Kyotango #6: Osaka#7:Otsu

Chubu #8:Tateyama#11:Sadoseki

#9:Toyama#10:Niigata

Hokkaido #13:Rishiri #12:Sapporo

■Periods:  - Winter: Jan 9 – 20 - Spring: May 6 – 12 - Summer: Jul 24 – Aug 1

■Points

Observations of PM2.5 species in 20122. Methodology

■Sampling duration: 6 h or 12 h

■Target species - Ion (SO4

2–, NO3–, NH4

+): IC - Carbon (EC and OC) : TOT (IMPROVE protocol)

Page 10: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

SO42–

NO3–

NH4+

EC

OA

45

40

35

30

145140135130

2

467

9

10

12

1

35

8

11

13

#6: Osaka#7: Shiga

#5: Kyotango

#6 Urban ( Osaka) #7 Urban (Shiga) #5 Rural (Kyotango)

Temporal variations of PM2.5 species (winter)3. Results

5

4

3

2

1

0

EC

(g

m-3

)

7/23 7/25 7/27 7/29 7/31 8/2

UTC (year of 2012)

Oki AERO5 AERO6 AERO6-VBS (Vd5 )Observation

Page 11: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

SO42– ・ Largely underestimated

both in urban and remote areas.

NO3– ・ Overestimated at all

sites.・ Better reproduced when Vd of HNO3&NH3 were enhanced (×5). (Neuman et al., 2004; Shimadera et al., 2014)

NH4+ ・ Combined trends of SO4

2– and NO3

–.

EC ・ Well reproduced at the urban site and underestimated at the rural site.

OA ・ Large underestimation・ Similar results by the all three models.

5

4

3

2

1

0

EC

(g

m-3

)

7/23 7/25 7/27 7/29 7/31 8/2

UTC (year of 2012)

Oki AERO5 AERO6 AERO6-VBS (Vd5 )Observation

3. Results Temporal variations of PM2.5 species (winter)

#6 Urban ( Osaka) #7 Urban (Shiga) #5 Rural (Kyotango)

Page 12: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

3. Results

SO42– ・ Generally reproduced,

though some peaks were underestimated.

NO3– ・ Low NO3

– was reproduced.

NH4+ ・ Combined trends of SO4

2– and NO3

–.

EC ・ Reproduced at the urban site and underestimated at the rural site.

OA ・ Underestimated by the yield models.・ VBS better reproduced the observation.

5

4

3

2

1

0

EC

(g

m-3

)

7/23 7/25 7/27 7/29 7/31 8/2

UTC (year of 2012)

Oki AERO5 AERO6 AERO6-VBS (Vd5 )Observation

Temporal variations of PM2.5 species (summer)

VBS Obs AERO5AERO6

#6 Urban ( Osaka) #7 Urban (Shiga) #5 Rural (Kyotango)

Page 13: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

3. Results

20

15

10

5

0

Mo

del

201612840

3 4612

1011 91 275

133 4

6121011 91 27513

3 4612

1011 91 27513

3 4

612

10 11 91 275

13

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

34612119127513346121191275133461211912751334612119127513

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

3 461210

119

12

75133 4

6121011

9

1275

133 461210

119

1275

133 4

612

10

11

9

1

27

513

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Mo

del

3.02.01.00.0

6

129

7

513

6

129

7

513

6

129

7

513

6

12

9

7

513

8

6

4

2

0

Mo

del

86420

Obs.

612 9 7513

612 9 75

136

12 9 7513

6

12 97

5

13

20

15

10

5

0

Mo

del

201612840

346

12 10119

1275

13346

12 1011 912

7513

346

12 1011 9

1275

1334

6

1210119

12

75

13

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

34612

1011

912 7

513

34612

1011

912 7

51334

6121011

912 7

513

346

121011 912

7513

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

346

12 1011

912

75

13 34612 1011

91275

13346

12 10119

1275

13 3 4 612 10

11

91

275

13

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Mo

del

3.02.01.00.0

6

129 7

13

6

129

7

13

6

129

7

13

6

12

9

7

13

8

6

4

2

0

Mo

del

86420

Obs.

612 9 7

13

6

129

7

136

12 9 713

6

129

7

13

20

15

10

5

0

Mo

del

201612840

387 4610119 125387 4610119 125387 4610119 12538 7 461011 9 125

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

3

8

74

6

1011 9

12

53

8

746

1011 9

12

5

3

8

74 6

1011 9

12

5

3

8

74

6

1011 9

1 2

5

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

38

7 461011 9

1 2

538

7 461011 9

1 253

87 46

1011 91 2

53

87 4 6

1011 91 2

5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Mo

del

3.02.01.00.0

38

74

6

912

538

74

6

912

538

74

6

912

538

7

4

6

91

2

5

8

6

4

2

0

Mo

del

86420

Obs.

38

746

91 253

874

691 253

874

691 253

8

746

9

1 2

5

Winter Spring20

15

10

5

0

Mod

el

201612840

387 4610119 125387 4610119 125387 4610119 12538 7 461011 9 125

T AERO5 T AERO6T AERO6VBS ( T Vd5)

SO42–

NO3–

NH4+

EC

OA

Comparison of observed and simulated PM2.5 species

45

40

35

30

145140135130

2

467

9

10

12

1

35

8

11

13

Urban/ruralRemote

VBS AERO5AERO6

Mod

el

Observed

Summer

Vd×5

Page 14: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

20

15

10

5

0

Mod

el

201612840

387 4610119 125387 4610119 125387 4610119 12538 7 461011 9 125

T AERO5 T AERO6T AERO6VBS ( T Vd5)

Comparison of observed and simulated PM2.5 species3. Results

20

15

10

5

0

Mo

del

201612840

3 4612

1011 91 275

133 4

6121011 91 27513

3 4612

1011 91 27513

3 4

612

10 11 91 275

13

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

34612119127513346121191275133461211912751334612119127513

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

3 461210

119

12

75133 4

6121011

9

1275

133 461210

119

1275

133 4

612

10

11

9

1

27

513

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Mo

del

3.02.01.00.0

6

129

7

513

6

129

7

513

6

129

7

513

6

12

9

7

513

8

6

4

2

0

Mo

del

86420

Obs.

612 9 7513

612 9 75

136

12 9 7513

6

12 97

5

13

20

15

10

5

0

Mo

del

201612840

346

12 10119

1275

13346

12 1011 912

7513

346

12 1011 9

1275

1334

6

1210119

12

75

13

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

34612

1011

912 7

513

34612

1011

912 7

51334

6121011

912 7

513

346

121011 912

7513

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

346

12 1011

912

75

13 34612 1011

91275

13346

12 10119

1275

13 3 4 612 10

11

91

275

13

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Mo

del

3.02.01.00.0

6

129 7

13

6

129

7

13

6

129

7

13

6

12

9

7

13

8

6

4

2

0

Mo

del

86420

Obs.

612 9 7

13

6

129

7

136

12 9 713

6

129

7

13

20

15

10

5

0

Mo

del

201612840

387 4610119 125387 4610119 125387 4610119 12538 7 461011 9 125

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

3

8

74

6

1011 9

12

53

8

746

1011 9

12

5

3

8

74 6

1011 9

12

5

3

8

74

6

1011 9

1 2

5

7

6

5

4

3

2

1

0

Mo

del

5.02.50.0

38

7 461011 9

1 2

538

7 461011 9

1 253

87 46

1011 91 2

53

87 4 6

1011 91 2

5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Mo

del

3.02.01.00.0

38

74

6

912

538

74

6

912

538

74

6

912

538

7

4

6

91

2

5

8

6

4

2

0

Mo

del

86420

Obs.

38

746

91 253

874

691 253

874

691 253

8

746

9

1 2

5

Winter Spring Summer

SO42– ・ Underestimated in winter

and spring.・ Well reproduced in summer.

NO3– ・ Overestimated in winter and

spring.・ Better reproduced when we enhance Vd (×5) of HNO3&NH3.

NH4+ ・ Combined characteristics of

SO42– and NO3

–.

EC ・ Well reproduced (with some variability).

OA ・ Underestimated over the three seasons・ Better reproduced by the VBS.

Mod

el

Observed

VBS AERO5AERO6

Page 15: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

CMAQ v4.7.1SAPRC99-AERO5

CMAQ v5.0.2CB05-AERO6

In spring and summer, AERO6VBS simulated the highest OA over Japan.

Simulated spatial distributions of organic aerosol3. Results

OA (μg m

-3)O

A (μg m-3)

OA (μg m

-3)

Spring (May)Winter (Jan.) Summer (Jul.)

CMAQ v5.0.2CB05-AERO6VBS

Page 16: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

In spring and summer, AERO6VBS simulated the highest OA over Japan.

Simulated spatial distributions of organic aerosol3. Results

AERO6VBS–AERO5AERO6VBS

AERO6VBS–AERO6AERO6VBS

Winter (Jan.) Spring (May) Summer (Jul.)

RatioO

A (μg m-3)

CMAQ v5.0.2CB05-AERO6VBS

Page 17: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

High OA concentrations by the AERO6VBS model are due to

high ASOA concentrations.

Simulated average OA over Japan3. Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

AERO

5

AERO

6

AERO

6VBS

AERO

5

AERO

6

AERO

6VBS

AERO

5

AERO

6

AERO

6VBS

Jan. May Jul

BSOA

ASOA

POA

OA

conc

entr

ation

s (μ

g m–3

)

Winter (Jan.) Spring (May) Summer (Jul.)

Page 18: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

Summary Performance of three simulation models on PM2.5 species were

evaluated over Japan in 2012.

Concentrations of SO42– , NO3

–, and NH4+ were well reproduced by

the all models in summer, while SO42– was underestimated NO3

was overestimated in winter and spring. OA concentrations were underestimated by all the models in

winter and spring. OA concentrations were largely underestimated by AERO5 and

AERO6 summer, and better reproduced by AERO6-VBS because higher ASOA was simulated by AERO6-VBS.

Page 19: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,
Page 20: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

AERO6VBS TsimpidiAnthro. BB Anthro.

Nonvolatile 0.4 0.27C*=10^(-2) 0.03C*=10^(-1) 0.06C*=10^(0) 0.26 0.27 0.09C*=10^(1) 0.40 0.42 0.14C*=10^(2) 0.51 0.54 0.18C*=10^(3) 1.43 1.50 0.30C*=10^(4) 0.40C*=10^(5) 0.50C*=10^(6) 0.80

AERO6VBS Tsimpidik(AVOC +OH) 2×10^(-11) 1×10^(-11)k(BVOC +OH) 0 0k(S/IVOC +OH) 4×10^(-11) 4×10^(-11)

Uncertainty analysis of VBS SOA yields SVOC emission profiles

SVOC aging reaction rates (cm3/molec/sec)

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

ALK5, high-NOx

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

ALK5, low-NOx

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

ARO1, high-NOx

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

ARO1, low-NOx

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

ARO2, high-NOx

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

ARO2, low-NOx

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

TERP, high-NOx

0.01

0.1

1

10

100

Yi (

%)

0.1 1 10 100 1000M0 (g m

-3)

TERP, low-NOx

Lane, EST, 2008 Lane, AE, 2008 Tsimpidi, 2010 AERO4 AERO5 AERO6VBS

Page 21: Comprehensive model evaluation of  PM 2.5 species over Japan:      - Comparison  among AERO5,

Uncertainty analysis of VBS

Simulation [SOA]/[Ox] [V-SOA]/[Ox] [SI-SOA]/ [Ox] POA (μg m-3/ppmv) (μg m-3/ppmv) (μg m-3/ppmv) (μg m-3)

Standard 151.3 93.7 57.6 0.27 No aging 1.3 1.3 – 0.19 Aging of BVOC 152.6 95.0 57.6 0.27 Aging rate × 10 503.4 343.9 159.5 0.29 Aging rate ÷ 10 6.4 4.3 2.1 0.20 SVOC of Shrivastava et al. [2011] 290.4 117.7 172.8 1.45 SVOC of Tsimpidi et al. [2010] (low volatility case) 115.8 86.0 29.7 0.60 SVOC of Tsimpidi et al. [2010] (high volatility case) 188.3 101.0 87.3 0.28 Nonvolatile POA 89.1 89.1 – 2.36Nonvolatile POA/no aging 15.5 15.5 – 2.36AERO6VBS 178.0 94.6 83.4Obs 192.6 2.36