Top Banner
Chemistry 2100 Lecture 11
103

Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Mar 26, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Chemistry 2100

Lecture 11

Page 2: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Protein Functions

+

PLPL

Binding

Catalysis

Structure

Page 3: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Why Enzymes?• Higher reaction rates• Greater reaction specificity• Milder reaction conditions• Capacity for regulation

COO

OH

O COO

COO

O COO

NH2

OOCCOO

O

OH

OH

COO

NH2

COO

-

-

-

-

-

-

--

Chorismate mutase

• Metabolites have many potential pathways of decomposition

• Enzymes make the desired one most favorable

Page 4: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Specificity: Lock-and-Key Model

• Proteins typically have high specificity: only certain substrates bind

• High specificity can be explained by the complementary of the binding site and the ligand.

•Complementarity in

– size,

– shape,

– charge,

– or hydrophobic / hydrophilic character

•“Lock and Key” model by Emil Fisher (1894) assumes that complementary surfaces are preformed.

+

Page 5: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Specificity: Induced Fit

• Conformational changes may occur upon ligand binding (Daniel Koshland in 1958). – This adaptation is called the induced fit. – Induced fit allows for tighter binding of the

ligand– Induced fit can increase the affinity of the

protein for a second ligand

• Both the ligand and the protein can change their conformations

+

Page 6: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 7: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 8: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Apoenzyme + Coenzyme = Holoenzyme

Page 9: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Apoenzyme + Coenzyme = Holoenzyme

Page 10: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Apoenzyme + Coenzyme = Holoenzyme

Page 11: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Apoenzyme + Coenzyme = Holoenzyme

Page 12: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• increase [reactant]

• increase temperature

• add catalyst

Pote

nti

al Energ

y

Reaction

Reactants

Products

Enzymatic Activity

Page 13: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• increase [reactant]

• increase temperature

• add catalyst

Pote

nti

al Energ

y

Reaction

Reactants

Products

TS

Page 14: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• increase [reactant]

• increase temperature

• add catalyst

Pote

nti

al Energ

y

Reaction

Reactants

Products

Ea

TS

Page 15: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• increase [reactant]

• increase temperature

• add catalyst

Pote

nti

al Energ

y

Reaction

TS

Reactants

Products

Ea

Page 16: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• increase [reactant]

• increase temperature

• add catalyst

Pote

nti

al Energ

y

Reaction

Reactants

Products

Ea

TS

Page 17: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• increase [reactant]

• increase temperature

• add catalyst

Pote

nti

al Energ

y

Reaction

Reactants

Products

Ea

TS

Page 18: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Ea'

• increase [reactant]

• increase temperature

• add catalyst

Reactants

Products

Pote

nti

al Energ

y

Reaction

Ea

TS

Page 19: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

How to Lower G?Enzymes organizes reactive groups into

proximity

Page 20: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

How to Lower G?Enzymes bind transition states best

Page 21: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Pote

nti

al Energ

y

Reaction

O C OH2O +

HO C O– + H+

O

H2O + CO2 HOCO2– + H+

Page 22: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Pote

nti

al Energ

y

Reaction

H2O + CO2 HOCO2– + H+

H2O + O C O

Page 23: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Pote

nti

al Energ

y

Reaction

H2O + CO2 HOCO2– + H+

H2O + O C O

HO C O– + H+

O

Page 24: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Pote

nti

al Energ

y

Reaction

H2O + CO2 HOCO2– + H+

H2O + O C O

HO C O– + H+

O

Page 25: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Pote

nti

al Energ

y

Reaction

H2O + CO2 HOCO2– + H+

O C O

O

H

H

H2O + O C O

HO C O– + H+

O

Page 26: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Pote

nti

al Energ

y

Reaction

H2O + CO2 HOCO2– + H+

O C O

O

H

H

H2O + O C O

HO C O– + H+

O

Ea

Page 27: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

H2O + CO2 HOCO2– + H+

Pote

nti

al Energ

y

Reaction

Ea

Ea'

O C O

O

H

H

H2O + O C O

HO C O– + H+

O

Page 28: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 29: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 30: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 31: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 32: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 33: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 34: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 35: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

[ sucrose-sucrase complex ] H2O

sucrase

sucrose glucose

fructose

sucrase

++

+

Page 36: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

How to Do Kinetic Measurements

Page 37: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Enzyme ActivityFigure 23.3 The effect of enzyme concentration on the rate of an enzyme-catalyzed reaction. Substrate concentration, temperature, and pH are constant.

Page 38: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Enzyme ActivityFigure 23.4 The effect of substrate concentration on the rate of an enzyme-catalyzed reaction. Enzyme concentration, temperature, and pH are constant.

Page 39: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Enzyme ActivityFigure 23.5 The effect of temperature on the rate of an enzyme-catalyzed reaction. Substrate and enzyme concentrations and pH are constant.

Page 40: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Enzyme ActivityFigure 23.6 The effect of pH on the rate of an enzyme-catalyzed reaction. Substrate and enzyme concentrations and temperature are constant.

Page 41: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 42: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 43: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

What equation models this behavior?

Michaelis-Menten Equation

Page 44: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

H2 O

acetic acidcholine (Ch)

acetylcholine (ACh)

OHCH2(CH3 )3 N CH2

CH3CCH2(CH3 )3 N CH2 O

O

CH3CHO

O

+

+

AChE

Page 45: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

H2 O

acetic acidcholine (Ch)

acetylcholine (ACh)

OHCH2(CH3 )3 N CH2

CH3CCH2(CH3 )3 N CH2 O

O

CH3CHO

O

+

+

AChE

Page 46: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

H2 O

acetic acidcholine (Ch)

acetylcholine (ACh)

OHCH2(CH3 )3 N CH2

CH3CCH2(CH3 )3 N CH2 O

O

CH3CHO

O

+

+

AChE

Page 47: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 48: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 49: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

H2 O

acetic acidcholine (Ch)

acetylcholine (ACh)

OHCH2(CH3 )3 N CH2

CH3CCH2(CH3 )3 N CH2 O

O

CH3CHO

O

+

+

AChE

Page 50: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 51: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 52: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 53: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 54: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 55: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 56: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 57: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 58: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

Page 59: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 60: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 61: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 62: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 63: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 64: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 65: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 66: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

H O

Page 67: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

Page 68: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Asp

COOH

His

Ser

NHN

HO

CH2

COO

H

CH3

OCH2(CH3)3N CH2 C O

Glu

••

H

Page 69: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

H2 O

acetic acidcholine (Ch)

acetylcholine (ACh)

OHCH2(CH3 )3 N CH2

CH3CCH2(CH3 )3 N CH2 O

O

CH3CHO

O

+

+

AChE

Page 70: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Inhibitors

• Reversible inhibitors– Temporarily bind enzyme and prevent

activity

• Irreversible inhibitors– Permanently bind or degrade enzyme

Page 71: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Reversible Inhibition

Page 72: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 73: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 74: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 75: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 76: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 77: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 78: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 79: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 80: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 81: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 82: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 83: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 84: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

Irreversible Inhibition

Page 85: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 86: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.
Page 87: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

••

Glu

COOH

O

CH2

NHN

Ser

His

COOH

Asp

Acetylcholinesterase

Page 88: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

••

Glu

COOH

O

CH2

NHN

Ser

His

COOH

Asp

OP

CH3

OCH

CH3

CH3

F

Page 89: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

••

Glu

COOH

O

CH2

NHN

Ser

His

COOH

Asp

OP

CH3

OCH

CH3

CH3

F

Page 90: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

••

Glu

COOH

O

CH2

NHN

Ser

His

COOH

Asp

OP

CH3

OCH

CH3

CH3

F

Page 91: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

••

Glu

COOH

O

CH2

NHN

Ser

His

COOH

Asp

OP

CH3

OCH

CH3

CH3

F

Page 92: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

••

Glu

COOH

O

CH2

NHN

Ser

His

COOH

Asp

OP

CH3

OCH

CH3

CH3

F

Page 93: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

BrBr

succinylcholine

decamethonium bromide

(CH3 )3 N–CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2–N(CH 3 )3

CH2CH2OCCH2CH2COCH2CH2 N(CH 3 )3(CH3 )3 N

O O

Pyridine aldoxime methiodide (PAM)

IN

CH3

CH N OH

Page 94: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• lactase

• rennin

• papain

• high-fructose corn syrup

• pectinase

• clinical assays

Commercial Enzymes

Page 95: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• lactase

• rennin

• papain

• high-fructose corn syrup

• pectinase

• clinical assays

Page 96: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• lactase

• rennin

• papain

• high-fructose corn syrup

• pectinase

• clinical assays

Page 97: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• lactase

• rennin

• papain

• high-fructose corn syrup

• pectinase

• clinical assays

Page 98: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

starch dextrins glucose fructose α-amylase glucoamylase glucose

isomerase

Page 99: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

starch dextrins glucose fructose α-amylase glucoamylase glucose

isomerase

Page 100: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

starch dextrins glucose fructose α-amylase glucoamylase glucose

isomerase

Page 101: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• lactase

• rennin

• papain

• high-fructose corn syrup

• pectinase

• clinical assays

Page 102: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• lactase

• rennin

• papain

• high-fructose corn syrup

• pectinase

• clinical assays

Page 103: Chemistry 2100 Lecture 11. Protein Functions + PL P L Binding Catalysis Structure.

• lactase

• rennin

• papain

• high-fructose corn syrup

• pectinase

• clinical assays