Top Banner
Chem. 412 – Phys. Chem. I H e lm h o ltz F re e E n e rg y (A ) C la p e yron S ta n d a rd S tates G ibbs-H elm holtz T e m p e ra tu re D ependence P h a s e E q u ilib rium C lau siu s-C lap eyron M a s te r E q uatio n s S p o n ta n e ity In d ic ator G ib b s F re e E n e rg y (G ) F re e E n e rg y F unctions
33

Chem. 412 – Phys. Chem. I

Jan 15, 2016

Download

Documents

tale

Chem. 412 – Phys. Chem. I. Free Energy Comparisons. Free Energy Comparisons - I. Free Energy Comparisons - II. Free Energy Comparisons - III. Free Energy Comparisons - IV. Free Energy Comparisons – I – F12. Free Energy Comparisons – II – F12. Free Energy Comparisons – III – F12. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chem. 412 – Phys. Chem. I

Chem. 412 – Phys. Chem. IChem. 412 – Phys. Chem. I

Helm holtz Free Energy (A)

Clapeyron

Standard StatesG ibbs-Helm holtzTem perature Dependence

Phase Equilibrium Clausius-Clapeyron

M aster Equations

Spontaneity Indicator G ibbs Free Energy (G)

Free Energy Functions

Page 2: Chem. 412 – Phys. Chem. I

Free Energy ComparisonsFree Energy Comparisons

Helmholtz F.E. (A) Gibbs F.E. (G)

A = U - TS G = H - TS

@Cont.T=> Asys= Usys - T Ssys @Cont.T=> Gsys = Hsys - T Ssys

If Asys< 0, rxn spontaneous.

(Constant V & T)

If Gsys< 0, rxn spontaneous.

(Constant P & T)

If Asys = 0, rxn @ equilibrium. If Gsys= 0, rxn @ equilibrium.

dA = -PdV – SdT dG = VdP - SdT

Page 3: Chem. 412 – Phys. Chem. I

Free Energy Comparisons - IFree Energy Comparisons - I

Page 4: Chem. 412 – Phys. Chem. I

Free Energy Comparisons - IIFree Energy Comparisons - II

Page 5: Chem. 412 – Phys. Chem. I

Free Energy Comparisons - IIIFree Energy Comparisons - III

Page 6: Chem. 412 – Phys. Chem. I

Free Energy Comparisons - IVFree Energy Comparisons - IV

Helmholtz F.E. (A) Gibbs F.E. (G)

A = U - TS G = H - TS

@Cont.T=> Asys= Usys - T Ssys @Cont.T=> Gsys = Hsys - T Ssys

If Asys< 0, rxn spontaneous.

(Constant V & T)

If Gsys< 0, rxn spontaneous.

(Constant P & T)

If Asys = 0, rxn @ equilibrium. If Gsys= 0, rxn @ equilibrium.

dA = -PdV – SdT dG = VdP - SdT

Page 7: Chem. 412 – Phys. Chem. I

Free Energy Comparisons – I – F12Free Energy Comparisons – I – F12

Page 8: Chem. 412 – Phys. Chem. I

Free Energy Comparisons – II – F12Free Energy Comparisons – II – F12

Page 9: Chem. 412 – Phys. Chem. I

Free Energy Comparisons – III – F12Free Energy Comparisons – III – F12

Page 10: Chem. 412 – Phys. Chem. I

Free Energy Comparisons – III – F11Free Energy Comparisons – III – F11

10

Page 11: Chem. 412 – Phys. Chem. I

Phase DiagramsPhase Diagrams

Page 12: Chem. 412 – Phys. Chem. I

The Phase Diagrams of H2O and CO2

Phase DiagramsPhase Diagrams

Page 13: Chem. 412 – Phys. Chem. I

Phase Transitions: Clapeyron EquationPhase Transitions: Clapeyron Equation

• Over moderate temperature ranges:

pt

pt

VT

H

dT

dP

1

212 ln

T

T

V

HPP

pt

pt

Page 14: Chem. 412 – Phys. Chem. I

Phase Transitions: Clapeyron Equation – I – F14Phase Transitions: Clapeyron Equation – I – F14

Page 15: Chem. 412 – Phys. Chem. I

Phase Transitions: Clapeyron Equation – II – F14Phase Transitions: Clapeyron Equation – II – F14

Page 16: Chem. 412 – Phys. Chem. I

Phase Transitions: Clapeyron Equation – III – F14Phase Transitions: Clapeyron Equation – III – F14

Page 17: Chem. 412 – Phys. Chem. I

Phase Transitions: Clapeyron Equation – I – F13Phase Transitions: Clapeyron Equation – I – F13

Page 18: Chem. 412 – Phys. Chem. I

Phase Transitions: Clapeyron Equation – II – F13Phase Transitions: Clapeyron Equation – II – F13

Page 19: Chem. 412 – Phys. Chem. I

Phase Transitions: Clapeyron Equation – III – F13Phase Transitions: Clapeyron Equation – III – F13

Page 20: Chem. 412 – Phys. Chem. I

Application of Clapeyron EquationApplication of Clapeyron Equation

• Consider: Ice Water (ice, 101 kPa, 273 K) = 0.917x103 kg m-3

(liq, 101 kPa, 273 K) = 0.988x103 kg m-3

Hf = 6.01 kJ mol-1 ( s liq )

• Triple point at 0.6 kPa and 273.16 K

• What is the melting point at 1.5x105 kPa ( 1500 atm ) ? Application: Blade in Ice-Skating.

Mathcad Key

Page 21: Chem. 412 – Phys. Chem. I

Clausius-Clapeyron EquationClausius-Clapeyron Equation

• Applicable only to: s g & liq g equilibria

• Integrated form:

• Indefinite Integrated form:

• T-dep form:

121

2 11ln

TTR

H

P

P V

)(tanln VV

HdepTNontconsRT

HP

TCT

BAP lnln

Page 22: Chem. 412 – Phys. Chem. I

Clausius-Clapeyron Equation - IClausius-Clapeyron Equation - I

Page 23: Chem. 412 – Phys. Chem. I

Clausius-Clapeyron Equation - IIClausius-Clapeyron Equation - II

Page 24: Chem. 412 – Phys. Chem. I
Page 25: Chem. 412 – Phys. Chem. I
Page 26: Chem. 412 – Phys. Chem. I

Clausius-Clapeyron Equation – I – F11Clausius-Clapeyron Equation – I – F11

26

Page 27: Chem. 412 – Phys. Chem. I

Clausius-Clapeyron Equation – II – F11Clausius-Clapeyron Equation – II – F11

Page 28: Chem. 412 – Phys. Chem. I

Standard States & GorxnStandard States & Gorxn

• Po for gas: ideal gas; Po = 101.325 kPa non-ideal gas; (leave for now) for liquid: pure liquid at Po

for solid: most stable crystalline structure at Po

• To for all substances: 298.15 K exactly• So

o = 0 at 0 K for pure crystals

Hof(To) = 0 for elements at reference state

G convention must follow that of H & S

Grxn from formation values

Page 29: Chem. 412 – Phys. Chem. I

Substance Hf (kJ/mol) Gf (kJ/mol) S (J mol-1 K-1)

C(s, diamond) 1.88 2.84 2.43

C(s, graphite) 0 0 5.69

Page 30: Chem. 412 – Phys. Chem. I
Page 31: Chem. 412 – Phys. Chem. I

P/T-Dependent EquationsP/T-Dependent Equations

• Variation of G with P for an ideal gas:

• Variation of G with T:

• Variation of KP with T:

Prxno

o

o KRTGP

PnRTGG lnln

2

1

22,

11, 2

/

/

T

T

rxnrxnTG

TGdT

T

H

T

Gd

To

To

tconsTR

HK rxnP tan

1ln

Page 32: Chem. 412 – Phys. Chem. I

P/T-Dependent EquationsP/T-Dependent Equations

Page 33: Chem. 412 – Phys. Chem. I

Helm holtz Free Energy (A)

Clapeyron

Standard StatesGibbs-Helm holtzTem perature Dependence

Phase Equilibrium Clausius-Clapeyron

M aster Equations

Spontaneity Indicator G ibbs Free Energy (G)

Free Energy Functions

A = U - TS G = H - TS

If Asys< 0, rxn spontaneous.

(Constant V & T)

If Gsys< 0, rxn spontaneous.

(Constant P & T)

dA = -PdV – SdT dG = VdP - SdT

pt

pt

VT

H

dT

dP

)ln( Prxn

o KRTG