Top Banner
Flexion transversale des ouvrages à poutres Poutres sous chaussées et poutres latérales ENPC – MSGCE – Projet d’ouvrage d’art 2015 Mathieu MULS – Responsable d’études SYSTRA
25

Chargement sur entretoise

Jan 02, 2017

Download

Documents

trannguyet
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chargement sur entretoise

Flexion transversale des ouvrages à poutresPoutres sous chaussées et poutres latérales

ENPC – MSGCE – Projet d’ouvrage d’art 2015Mathieu MULS – Responsable d’études SYSTRA

Page 2: Chargement sur entretoise

Contenu du cours

1. IntroductionObjectifs du cours

Ponts à poutre: rôles des éléments transversaux

Méthodes de calcul

2. Méthode de CourbonHypothèses de base

Réaction des poutres sur une entretoise chargée

Flexion des poutres principales

Efforts tranchants dans les poutres principales

Calcul des entretoises

Exemple

3. Méthode de Guyon-Massonnet Rappels

But de la méthode

Calcul du moment longitudinal

Calcul du moment transversal

Calcul du moment de torsion

Exemple

Page 2

Documents de référence:• Projet et construction de Ponts – J.A.

Calgaro, M. Virlogeux• Annales de l’I.T.B.T.P. - article C. Massonnet• Conception et calcul des éléments

transversaux dans les ponts-routes mixtes –J.C. Focriat, J. Roche

Page 3: Chargement sur entretoise

Flexion transversale des ponts à poutres

INTRODUCTION

Page 3

Page 4: Chargement sur entretoise

Introduction: objectifs du cours

Position du problème: Travée indépendante dont le tablier supposé droit est constituéde poutres solidarisées par des entretoises qui leur sont perpendiculaires.Objectifs: Calcul des efforts dans les poutres et entretoises lorsque le chargement estponctuel et excentré.

Page 4

Page 5: Chargement sur entretoise

• Transmission du poids de la dalle et des charges verticales aux poutres

• Entretoisement:• conservation de l’alignement des poutres,

• conservation des angles des sections

• Contreventement: report des charges transversales sur les appareils d’appui

• Stabilisation des poutres contre le déversement

• Transmission des réactions de vérinage

Introduction: Rôle des éléments transversaux

Page 5

Page 6: Chargement sur entretoise

Introduction : différentes méthodes de calcul

Nombreuses méthodes de calcul

• Section déformable vs. Section indéformable

• Poutres sans entretoise -> section déformable(fonctionnement différent des méthodes classiques de RDM pour les poutres)

• Entretoises -> rigidité -> section indéformable

Page 6

Section déformable indéformable

Méthode deCourbon

NON OUI

Méthode deGuyon-Massonnet

OUI OUI

Page 7: Chargement sur entretoise

Flexion transversale des ponts à poutres

METHODE DE COURBON

Page 7

Page 8: Chargement sur entretoise

Méthode de Courbon: hypothèses de base

• Poutres :• Parallèles

• Solidarisées par des entretoises perpendiculaires aux poutres

• Portée des poutres > 2 * longueur d’une entretoise

• Inertie des poutres suivant la même loi de variation en fonction de l’abscisse (à un facteur deproportionnalité près)

• Résistance à la torsion supposée négligeable

• Entretoises :• Inertie comparable à celle des poutres

• Supposées infiniment rigides

Page 8

Page 9: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Chargement sur entretoise – Réaction de poutres

• Charge sur une entretoise infiniment rigide

• Points homologues des poutres situés sur l’entretoise sont alignés

• Lois d’inertie des poutres = proportionnelles

-> pour toute section, les points homologues des poutres sont alignés

(indépendamment des autres entretoises)

• Conséquences :

• Déformation transversale = linéaire

• Réactions = proportionnelles aux flèches (fonction de l’inertie de chaque poutre)

• Réaction Ri de la poutre i sur l’entretoise est de la forme :

Page 9

Page 10: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Calcul des réactions

• Equilibre de l’entretoise :

• Choix du repère (position du point x=0) :

• Calcul des réactions :

• Cas particulier : poutres de même inertie et de même espacement :

• Poutre 1 = poutre de rive la plus proche du point d’application de la charge P

• Poutre n = poutre de rive la plus éloignée du point d’application de la charge P

Page 10

Page 11: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Flexion des poutres principales

• Charge disposée au droit de l’entretoise :Moments fléchissant dans les poutres = proportionnels aux réactions Ri

• Charge disposée hors de l’entretoise :Si les entretoises sont rapprochées, on admet une erreur minime sur les moments.On suppose les moments fléchissant dans les poutres proportionnels aux réactions Ri(Comme si le tablier était doté d’une infinité d’entretoises rigides rapprochées).

• En pratique:On détermine le moment fléchissant total M(x) en considérant le tablier comme unepoutre sans dimension transversale, on répartit ce moments en moments Mi(x) dansles différents poutres selon :

Avec n poutres identiques:

Page 11

Page 12: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Effort tranchant dans les poutres principales

• Près des appuis :Flèches des poutres deviennent petites par rapport aux flèches de courbure desentretoises.

-> effet répartiteur des entretoises disparait

• 2 zones distinctes sont considérées :• Zone A : entre les appuis et la 1ère entretoise• Zone B : entre les 1ères entretoises

Page 12

Page 13: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Effort tranchant dans les poutres principales

• Calcul en zone B :On admet la même répartition que pour le moment fléchissant :

Si poutres identiques :

Page 13

Page 14: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Effort tranchant dans les poutres principales

• Calcul en zone A :Interpolation linéaire selon l’abscisse relative /d entre :

• Vi’ au droit de l’appui : répartition nulle = calcul comme pour poutres indépendantes

• Vi’’ au droit de la 1ère entretoise : répartition complète = calcul comme en zone B

• Calcul de Vi’: on suppose les dalles articulées sur les poutres et découpées en bandestransversales de faible largeur :

où est l’abscisse du pointd’application de la charge

• Effort tranchant dans la poutre i:

Page 14

Page 15: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Calcul des entretoises

• Charge disposée au droit de l’entretoise :Calcul des efforts dans l’entretoise à partir des réactions des poutres sur lesentretoises

• Charge disposée entre 2 entretoises Ej et Ej+1 :On admet que son action sur l’entretoise Ej est équivalente à celle d’une chargeconcentrée P’

• de même excentricité que P

• appliquée sur l’entretoise Ej

• d’intensité : P’ = P (l – b)/l

Où : l = distance entre entretoises Ej et Ej+1

b = distance entre le point d’application de P et l’entretoises Ej

Page 15

Page 16: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Modalités d’application :

• Isoler les poutres du tablier en affectant à chacune une largeur du hourdis participantOn se contente d’attribuer aux poutres intermédiaires des largeurs de hourdis équivalentaux entraxes des poutres.

Attention :

• Largeur participante des tables de compression limitée dans les codes.

• Ne pas attribuer la même zone de hourdis à 2 poutres différentes

• Largeur participante limitée à 1/10 de la portée de la travée (à partir du nu des poutres dans untablier béton, à partir de l’axe des poutres dans le cas du métal)

• Largueur participante réduite au voisinage des appuis et aux extrémités

Page 16

Page 17: Chargement sur entretoise

Etude des tabliers à section droite indéformableMéthode des entretoises rigides = Méthode de Courbon

Commentaires :

• Bonne corrélation des résultats entre :• Méthode de Courbon

• Théorie de torsion gênée ou non uniforme (avec inertie de torsion propre deséléments négligée), qui considère également une section transversale indéformable-> Bonne estimation des effets d’excentrement des charges par la méthode deCourbon

• Méthode de Courbon bien adaptée pour les tabliers en béton armé ou précontraintPour ossatures mixtes ou métalliques : effets de gauchissement sur les semellesinférieures non négligeables (non pris en compte par la méthode de Courbon)-> Théorie de torsion non uniforme préférable

Page 17

Page 18: Chargement sur entretoise

Flexion transversale des ponts à poutres

METHODE DE GUYON-MASSONNET

Page 18

Page 19: Chargement sur entretoise

Méthode de Guyon-Massonnet: Notations

Page 19

• 1 travée indépendante de portée L et de largeur 2b• L’ossature est constituée par une poutraison croisée de poutres et d’entretoises.• Poutres de section constante, identiques et équidistantes de a• Entretoises de section constante, identiques et équidistantes de λ

• Modules d’élasticité du béton:• Longitudinal : E

• Transversal : G

• De Poisson : ν

• Paramètres:• De flexion:

• De torsion:

• La flèche verticale du point (x,y) est notée : w(x,y)

q =b

L

rP

rE

4

a =gP +gE

2 rPrE

Page 20: Chargement sur entretoise

Méthode de Guyon-Massonnet: Principes et hypothèses de base

Hypothèses:• La dalle est droite, possède deux bords libres et deux bords simplement appuyés• Coefficient de poisson = 0 (béton, ν=0,15) • On admet que l’effet de la répartition des charges transversales est la même que si les charges se réduisaient

à leur premier terme de leur développement en séries de Fourier suivant l’axe de la dalle.

Principe:• On remplace la structure réelle discontinue par une structure fictive continue ayant pour rigidité en flexion et

torsion dans le sens longitudinal et transversal, les valeurs moyennes qu’ont ces rigidités dans la structureréelle.

• On considère donc une dalle orthotrope qui permet de résoudre l’équation différentielle du 4ème ordreobtenue en écrivant l’équilibre d’un petit élément (dx, dy) autour d’un nœud soumis à la charge P=pdxdy

Page 20

rP

¶4w

¶x4+ (gP +gE )

¶4w

¶x2¶y2+ rE

¶4w

¶y4= p(x, y)

Page 21: Chargement sur entretoise

Méthode de Guyon-Massonnet : Résolution de l’équation différentielle

La solution de l’équation se résout en développant la charge appliquée en série deFourier, dans le sens Ox.

Exemples de développement en série de Fourier:• Charge P uniforme

• Charge P constante entre les abscisses d et (d+c)

• Charge P concentrée à l’abscisse d

Page 21

p(x) =4p

p

1

2q+11

¥

å sin(2q+1)px

L

p(x) =4p

p

1

n1

¥

å sin np (d + c / 2

L)sin np (

c

2L)sinnp (

x

L)

p(x) =2p

L 1

¥

å sin np (d

L)sinnp (

x

L)

Page 22: Chargement sur entretoise

Méthode de Guyon-Massonnet : Flexion longitudinale

Pour réduire l’erreur due à l’assimilation de P à une charge répartie sinusoïdale, onopère en 2 temps:

• Calcul du moment longitudinal moyen Mxm que développerait la charge P si elleétait uniformément répartie dans le sens transversal.

• Pour tenir compte de l’excentricité réelle e de la charge P on multiplie le résultat parle coefficient de répartition K(y).

• Influence de KLes tables de Guyon-Massonnet donnent les valeurs de K(y,e,θ) pour α=0 et 1. On interpole pour des valeurs intermédiaires : K(α)=K0+(K1-K0) α0,5

Page 22

M x(x, y) = M xmi (x)Ki (ei, y)i

å

Page 23: Chargement sur entretoise

Méthode de Guyon-Massonnet: Flexion transversale

Le moment transversal par unité de largeur engendrépar une charge sinusoïdale vaut:

Les tables de Massonnet donnent la valeurs de μ pour α =0 et 1. Pour une valeur intermédiaire, prendre

Page 23

M y(x, y) = m1(q,e1, y)bp1 sin(p x

L)

P = p1 sin(p x

L)

m1qa = m1q

a=0 + a .(m1qa=1 - m1q

a=0 )

Page 24: Chargement sur entretoise

Méthode de Guyon-Massonnet : Torsion

Le moment de torsion par unité de largeur, vaut:

Les tables de Guyon-Massonnet donnent les valeurs de τ(θ,y,e) pour α=1

Pour une autre valeur de α, prendre

Page 24

L

xpbMyx

L

xpbMxy

ep

e

ep

p

cos..).(

cos..).(

t (a) = t1 a

Page 25: Chargement sur entretoise

Méthode de Guyon-Massonnet : Divers

Dans le cas de poutres de section variable ou continue on peut remplacer la travéeconsidérée par une travée indépendante fictive de même portée L, et ayant pourrigidités:• De flexion: ρ’P telle qu’elle prenne la même flèche que la travée réelle sous l’action

d’une charge concentrée à mi-portée.• De torsion: γ’P telle que sa section médiane prenne la même rotation sous l’action

d’un couple de torsion à mi-portée.

L’hypothèse ν = 0 pour laquelle les tables ont été construites est admissible dans le cas où le tablier n’est pas contraint transversalement (libre de se déformertransversalement). Dans le cas d’un tablier doublement précontraint, on prendraν = 0,15.L’influence de ν est négligeable sur K mais sensible sur μ. Rowe (concrete bridge design – C. Books – Londres 1962) a dressé des tables de μ1 pour ν = 0,15

On pourra admettre : Myréel = (My)ν=0 +ν(Mx)ν=0

Page 25

(ma )n=0.15 = (m1)0.15 + a . (m1)0.15 - (m1)0[ ]