Top Banner
17| Fa’y Acid Catabolism © 2013 W. H. Freeman and Company 21| Lipid Biosynthesis
169

Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Jan 16, 2017

Download

Science

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

17|  Fa'y  Acid  Catabolism  

© 2013 W. H. Freeman and Company

21|  Lipid  Biosynthesis  

Page 2: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Oxida=on  of  fa'y  acids  is  a  major  energy  source  in  many  organisms  

•  About  one-­‐third  of  our  energy  needs  comes  from  dietary  triacylglycerols  

•  About  80%  of  energy  needs  of  mammalian  heart  and  liver  are  met  by  oxida<on  of  fa=y  acids!!    

•  Many  hiberna<ng  animals,  such  as  grizzly  bears,  rely  almost  exclusively  on  fats  as  their  source  of  energy  (and  water  during  their  long-­‐term  sleep)  

Page 3: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fats  provide  efficient  fuel  storage  

•  The  advantage  of  fats  over  polysaccharides:  –  Fa=y  acids  carry  more  energy  per  carbon  because  they  are  more  reduced  

–  Fa=y  acids  carry  less  water  along  because  they  are  nonpolar  (aggregate  in  lipid  droplets  and  are  unsolvated)  

 

•  Glucose  and  glycogen  are  for  short-­‐term  energy  needs,  quick  delivery  

•  Fats  are  for  long-­‐term  (months)  energy  needs,  good  storage,  slow  delivery    

Page 4: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fat  Storage  in  White  Adipose  Tissue  

Nuclei

“Squeezed”

Page 5: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Dietary  fa'y  acids  are  absorbed  in  the  vertebrate  small  intes=ne  

Emulsification by biological detergents (bile)

Breakdown of TAG to DAG, MAG, FFA and glycerol

Uptake by intestinal cells

Chylomicrons (lipoproteins)

Bloodstream to target tissues

2nd breakdown of TAG

Used for energy (muscles) or reesterified for energy (adipose)

Remaining chylomicrons go to liver and enter by RME à used for ketone bodies synthesis. When diet contains more f.a. than needed, liver converts them to TAG and packages them into VLDL to be transported to adipocytes

Page 6: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Lipids  are  transported    in  the  blood  as  chylomicrons  

Apoliporpotein + lipids particles = lipoprotein Lipoproteins range in density: VLDL to VHDL

Page 7: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Hormones  trigger  mobiliza=on    of  stored  triacylglycerols  

• Hydrolysis  of  TAGs  is  catalyzed  by  lipases    -­‐  can  produce  MAGs,  DAGs,  FFA  and  glycerol  

• Some  lipases  are  regulated  by  hormones  glucagon  and  epinephrine    Recall:  •   Epinephrine  means:  “We  need  energy  now”      •   Glucagon  means:  “We  are  out  of  glucose”    

 

Page 8: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Hormones  trigger  mobiliza=on    of  stored  triacylglycerols  

•  Perilipins  –  proteins  that  coat  lipid  droplets  and  restrict  access  to  lipids  to  prevent  premature  mobiliza<on  

•  ê[glc]blood  è  glucagon  èè  PKA  è  phosphoryla<on  of  hormone-­‐sensi<ve  lipase  &  perilipin  è  dissocia<on  of  CGI  and  ac<va<on  of  adipose  triacylglycerol  lipase  monoacylglycerol  lipase  hydrolyzes  MAGs   Serum albumin binds up to 10 f.a. noncovalently

Page 9: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Glycerol  from  fats  enters  glycolysis  

• Only  5%  of  biologically-­‐ac<ve  energy  of  TAG  is  in  glycerol  

• Glycerol  kinase  ac<vates  glycerol  at  the  expense  of    ATP  

• Subsequent  reac<ons    recover  more  than  enough    ATP  to  cover  this  cost  

• Allows  limited  anaerobic  catabolism  of  fats  

Page 10: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fa'y  Acid  Transport  into  Mitochondria  

• Fats  are  degraded  into  fa=y  acids  and  glycerol  in  the  cytoplasm  of  adipocytes  

• Fa=y  acids  are  transported  to  other  <ssues  for  fuel  • β-­‐oxida<on  of  fa=y  acids  occurs  in  mitochondria    

• Small  (<  12  carbons)  fa=y  acids  diffuse  freely  across  mitochondrial  membranes  

• Larger  fa=y  acids  (most  free  fa=y  acids)  are  transported  via  acyl-­‐carni<ne/carni<ne  transporter  (carni=ne  shu'le)  

• Three  steps:  

Page 11: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Conversion  of  a  fa'y  acid  to  a  fa'y  acyl–CoA    (1)  

Nucleophilic attack by f.a. anion

Phosphoester linkage between f.a. carboxyl and α phosphate of ATP

Thioester linkage between f.a. carboxyl and thiol group of CoA-SH Hydrolysis of PPi to 2Pi is highly exergonic and pulls the first reaction forward

Page 12: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Acyl-­‐Carni=ne/Carni=ne  Transport  

(2)  

(3)  

Transesterification to carnitine

Transesterification to CoA

2 separate pools of CoA: Matrix CoA à used mostly in oxidative degradation (pyr, f.a., a.a.) Cytosolic CoA à used in biosynthesis of f.a.

Carnitine-mediated entry is the rate limiting step for oxidation of f.a. in mito

Page 13: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Stages  of  Fa'y  Acid  Oxida=on  

•  Stage  1  consists  of  oxida<ve  conversion  of  two-­‐carbon  units  into  acetyl-­‐CoA  via  β-­‐oxida<on  with  concomitant  genera<on  of  NADH  and  FADH2    

–  involves  oxida<on  of  β  carbon  to  thioester  of  fa=y  acyl-­‐CoA  

•  Stage  2  involves  oxida<on  of  acetyl-­‐CoA  into  CO2  via  citric  acid  cycle  with  concomitant  genera<on  NADH  and  FADH2    

•  Stage  3  generates  ATP  from  NADH  and  FADH2  via  the  respiratory  chain  

Page 14: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Stages  of  Fa'y  Acid  Oxida=on  

Page 15: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

The  β-­‐Oxida=on  Pathway    Each  pass  removes  one  acetyl  moiety  in  the  form  of  acetyl-­‐CoA.  

Palmitate (C16) undergoes seven passes through the oxidative sequence

Formation of each acetyl-CoA requires removal of 4 H atoms {2 e– pairs and 4 H+})

Page 16: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  1:  Dehydrogena=on  of  Alkane  to  Alkene  

•  Catalyzed  by  isoforms  of  acyl-­‐  CoA  dehydrogenase  (AD)  on    the  mitochondrial  inner    membrane  –  Very-­‐long-­‐chain  AD    (VLCAD,  12–18  carbons)  

–  Medium-­‐chain  AD  (MCAD,    4–14  carbons)  

–  Short-­‐chain  AD  (SCAD,  4–8  carbons)  •  Results  in  trans  double  bond,  different  from  naturally  occurring  

unsaturated  fa=y  acids,  between  α  and  β  C  

•  Analogous  to  succinate  dehydrogenase  reac<on  in  the  CAC  –  Electrons  from  bound  FAD  transferred  directly  to  the  electron-­‐  transport  

chain  via  electron-­‐transferring  flavoprotein  (ETF)  

Page 17: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  2:  Hydra=on  of  Alkene  

•  Catalyzed  by  two  isoforms  of  enoyl-­‐CoA  hydratase:  –  Soluble  short-­‐chain  hydratase  (crotonase)  – Membrane-­‐bound  long-­‐chain  hydratase,  part  of  trifunc<onal  complex  

•  Water  adds  across  the    double  bond  yielding    alcohol  

•  Analogous  to  fumarase    reac<on  in  the  CAC  –  Same  stereospecificity  

Page 18: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  3:    Dehydrogena=on  of  Alcohol  

•  Catalyzed  by  β-­‐hydroxyacyl-­‐CoA  dehydrogenase  •  The  enzyme  uses  NAD  cofactor  as  the  hydride  acceptor  

•  Only  L-­‐isomers  of  hydroxyacyl  CoA  act  as  substrates  

•  Analogous  to  malate  dehydrogenase  reac<on  in  the  CAC  

•  The  first  three  steps    create  a  much  less    stable  C-­‐C  bond,    where  the  α  C  is  bound    to  2  carbonyl  groups  

Page 19: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  4:    Transfer  of  Fa'y  Acid  Chain  

•  Catalyzed  by  acyl-­‐CoA  acetyltransferase  (thiolase)  via  covalent  mechanism  –  The  carbonyl  carbon  in  β-­‐ketoacyl-­‐CoA  is  electrophilic  –  Ac<ve  site  thiolate  acts  as  nucleophile  and  releases  acetyl-­‐CoA  

–  Terminal  sulfur  in  CoA-­‐SH    acts  as  nucleophile  and    picks  up  the  fa=y  acid  chain    from  the  enzyme  

•  The  net  reac<on  is    thiolysis  of    a  carbon-­‐carbon  bond  

Page 20: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Trifunc=onal  Protein  (TFP)  

•  Hetero-­‐octamer  –  Four  α  subunits  

•  enoyl-­‐CoA  hydratase  ac<vity  •  β-­‐hydroxyacyl-­‐CoA  dehydrogenase  ac<vity  •  Responsible  for  binding  to  membrane  

–  Four  β  subunits  •  long-­‐chain  thiolase  ac<vity  

•  May  allow  substrate  channeling  •  Associated  with  mitochondrial  inner  membrane  •  Processes  fa=y  acid  chains  with  12  or  more  carbons  •  Shorter  chains  are  processed  by  soluble  individual  enzymes  in  the  matrix  

Page 21: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Similar  mechanisms  introduce  carbonyls  in  other  metabolic  pathways  

Page 22: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fa'y  Acid  Catabolism  for  Energy  •  For  palmi<c  acid  (C16)  

–  Repea<ng  the  above  four-­‐step  process  six  more  <mes  (7  total)  results  in  eight  molecules  of  acetyl-­‐CoA    •  FADH2  is  formed  in  each  cycle  (7  total)  •  NADH  is  formed  in  each  cycle  (7  total)  

•  Acetyl-­‐CoA  enters  citric  acid  cycle  and  further  oxidizes  into  CO2  –  This  makes  more  GTP,  NADH,  and  FADH2  

•  Electrons  from  all  FADH2  and  NADH  enter  ETC  

•  Transfer  of  e–s  from  FADH2  and  NADH  to  O2  yields  1  H2O  per  pair  (camels  and  hiberna<ng  animals!)  

             Palmitoyl-­‐CoA  +  7CoA  +  7O2  +  28Pi+  28ADP  à  8  acetyl-­‐CoA  +  28ATP  +  7H2O  (β  oxida<on)              Palmitoyl-­‐CoA  +  23O2  +  108Pi+  108ADP  à  CoA  +  108ATP  +  16CO2  +  23H2O  (full  oxida<on)    

Page 23: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

NADH  and  FADH2  serve  as  sources  of  ATP  

Page 24: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 25: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Oxida=on  of  Unsaturated  Fa'y  Acids  •  Naturally  occurring  Unsaturated  Fa=y  acids  contain  cis  double  bonds  –  Are  NOT  a  substrate  for  enoyl-­‐CoA  hydratase  

•  Two  addi<onal  enzymes  are  required  –  Isomerase:  converts  cis  double  bonds    star<ng  at  carbon  3  to  trans  double  bonds  

–  Reductase:  reduces  cis  double  bonds  not  at  carbon  3  

•  Monounsaturated  fa=y  acids  require  the  isomerase  •  Polyunsaturated  fa=y  acids  require  both  enzymes    

Page 26: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Oxida=on  of  Monounsaturated  Fa'y  Acids  

Oleate (18:1 Δ9)

converted to oleoyl-CoA and imported into mito via carnitine shuttle

Page 27: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Oxida=on  of  Polyunsaturated  

Fa'y  Acids  

Linoleate (Δ9,Δ12)

Page 28: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

First  double  bond  requires  isomeriza=on  

Page 29: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Second  requires  reduc=on/isomeriza=on  

Page 30: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Oxida=on  of  odd-­‐numbered  fa'y  acids  

•  Most  dietary  fa=y  acids  are  even-­‐numbered  •  Many  plants  and  some  marine  organisms  also  synthesize  odd-­‐numbered  fa=y  acids  

•  Propionyl-­‐CoA  forms  from  β-­‐oxida<on  of  odd-­‐numbered  fa=y  acids  

•  Bacterial  metabolism  in  the  rumen  of  ruminants  also  produces  propionyl-­‐CoA    

•  Oxida<on  is  iden<cal  to  even-­‐numbered  long-­‐chain  fa=y  acids,  but  the  last  pass  through  β-­‐oxida<on  is  a  fa=y  acyl-­‐CoA  with  a  5-­‐C  fa=y  acid  that  is  cleaved  to  give  acetyl-­‐CoA  and  propionyl-­‐CoA    

Page 31: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Carboxyla=on  of  Propionyl-­‐CoA  

Page 32: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Isomeriza=on  to  Succinyl-­‐CoA  à  CAC  

Page 33: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Isomeriza=on  in  propionate  oxida=on  requires  coenzyme  B12  

Page 34: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Complex  Cobalt-­‐Containing  Compound:  Coenzyme  B12  

•  Very unstable bond •  Breaks to yield –CH2

. and Co3+

•  Used to transfer the hydrogen atom to a different C in the molecule (isomerization)

•  No mixing of the transferred H atom with the hydrogen of the solvent (H2O)

•  The formation of this complex cofactor occurs in one of two known reactions that cleaves a triphosphate from ATP

Page 35: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Fa'y  Acid    Synthesis  and  Breakdown  

Cytosol

•  Occurs  only  when  need  for  energy  requires  it  •  2  pathways  for  f.a.CoA  in  liver:  TAG  synthesis  in  cytosol  or  f.a.  oxida<on  in  mito  •  Transfer  into  mito  is  rate  limi<ng,  once  f.a.  are  in  mito  they  WILL  undergo  oxida<on  

Concn  increases  when  CHO  is  well-­‐supplied  Inhibi<on  of  shu=le  ensures  oxida<on  of  f.a.  is  inhibited  when  ñenergy  

ñ[NADH]/[NAD+] ý ñAcetyl-CoA ý

Page 36: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Gene=c  defects  in  fa'y  acyl-­‐CoA  dehydrogenases  

•  Inability  to  oxidize  fats  for  energy  has  serious  effects  on  health  

•  More  than  20  human  gene<c  defects  in  f.a.  transport  and  metabolism  occur  

•  MCAD  (medium  chain  acyl-­‐CoA  dehydrogenase)  deficiency  is  the  most  common  syndrome  in  European  popula<ons    

 -­‐  Unable  to  oxidize  f.a.  of  6  –  12  Cs    -­‐  If  diagnosed  aoer  birth,  the  infant  can  be          treated  with  low  fat,  high  carbohydrate  diet  

Page 37: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

β-­‐Oxida=on  in  Mitochondria  vs.  Peroxisomes  

•  Differ  in  the  first  step:          -­‐  passes  e–s  directly  to  O2  forming  H2O2  which  is  quickly  removed  by  the  ac<on  of  catalase                  -­‐  energy  is  lost  as  heat  instead  of  producing  ATP  •  Differ  in  f.a.  specificity:            -­‐  more  ac<ve  on  very  long  f.a.  and  branched  f.a.  (α  oxida=on)            -­‐  process  long  chain  f.a.  into  shorter  ones  which  are  exported  to  mito  to  complete  oxida<on  •  Zellweger  syndrome  –  inability  to  m  make  peroxisomes  

Page 38: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

ω  oxida=on  •  In  the  ER  of  liver  and  kidney  •  For  f.a.  with  10  –  12  Cs  •  Addi<on  of  OH  by  a  mixed  func=on  oxidase  (cytochrome  P450)  

•  Alcohol  dehydrogenase  oxidizes  OH    to  aldehyde  

•  Aldehyde  dehydrogenase  oxidizes    aldehyde  to  acid  

•  CoA  can  a=ach  to  either  end  and  β    oxida<on  resumes  

Page 39: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Forma=on  of  Ketone  Bodies  

•  Entry  of  acetyl-­‐CoA  into  citric  acid  cycle  requires  oxaloacetate  

•  When  oxaloacetate  is  depleted,  acetyl-­‐CoA  is  converted  into  ketone  bodies  (acetone,  acetoacetate  and  D-­‐β-­‐hydroxybutyrate)  –  Frees  Coenzyme  A  for  con<nued  β-­‐oxida<on  

–  Acetone  is  exhalled  –  Acetoacetate  and  β-­‐HB  are  transported  in  the  blood    

•  Under  starva<on  condi<ons,  the  brain  can  use  ketone  bodies  for  energy  

•  The  first  step  is  reverse  of  the  last  step  in  the  β-­‐oxida<on:  thiolase  reac<on  joins  two  acetate  units  

Page 40: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Release  of  Free  Coenzyme  A  

Another condensation with acetyl-CoA yields HMG-CoA

Page 41: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Forma=on  of  Ketone  Bodies  

Cleaved into acetoacetate and acetyl-CoA

Specific for the D-isomer; don’t confuse it with L-β-hydroxyacyl-CoA DH of β oxidation

Untreated diabetes à [acetoacetate] is high à more acetone produced à exhaled (odor)

Page 42: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Ketone  Bodies  as  fuel  In extrahepatic tissues: Ketone bodies can be used as fuels in all tissues except the liver The liver is a producer, not a consumer, of ketone bodies

ß CAC Found in all tissues except the liver

Page 43: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Liver  is  the  source  of  ketone  bodies  •  Produc<on  of  ketone  

bodies  increases  during  starva<on  (and  diabetes)  

•  Ketone  bodies  are  released  by  liver  to  bloodstream  

•  Organs  other  than  liver  can  use  ketone  bodies  as  fuels  

•  High  levels  of  acetoacetate  and  β-­‐hydroxybutyrate  lower  blood  pH  dangerously  (acidosis)  

•  Acidosis  due  to  ketone  bodies  -­‐  ketoacidosis  

Page 44: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 45: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Lipids  fulfill  a  variety  of  biological  func=ons  

•  Energy  storage  •  Cons<tuents  of    membranes  •  Anchors  for  membrane  proteins  •  Cofactors  for  enzymes  •  Signaling  molecules  •  Pigments  •  Detergents  •  Transporters  •  An<oxidants  

Page 46: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Catabolism  and  anabolism  of  fa'y  acids  proceed  via  different  pathways  

•  Catabolism  of  fa=y  acids  (excergonic  and  oxida=ve)  –  produces  acetyl-­‐CoA  –  produces  reducing  power  (NADH  and  FADH2)  

–  ac<va<on  of  fa=y  acids  by  CoA  –  takes  place  in  the  mitochondria    

•  Anabolism  of  fa=y  acids  (endergonic  and  reduc=ve)  –  requires  acetyl-­‐CoA  and  malonyl-­‐CoA    

–  requires  reducing  power  from  NADPH  

–  ac<va<on  of  fa=y  acids  by  2  different  –SH  groups  on  protein    –  takes  place  in  cytosol  in  animals,  chloroplast  in  plants  

Page 47: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Subcellular  localiza=on  of  lipid  metabolism  

Page 48: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Overview  of  Fa'y  Acid  Synthesis  

•  Fa=y  acids  are  built  in  several  passes,  processing  one  acetate  unit  at  a  <me.  

•  The  acetate  is  coming  from  ac<vated  malonate  in  the  form  of  malonyl-­‐CoA.  

•  Each  pass  involves  reduc<on  of  a  carbonyl  carbon  to  a  methylene  carbon.      

Page 49: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Malonyl-­‐CoA  is  formed  from  acetyl-­‐CoA  and  bicarbonate  

•  The  reac<on  carboxylates  acetyl  CoA  •  Catalyzed  by  acetyl-­‐CoA  carboxylase  (ACC)  

–  Enz  has  three  subunits:  • One  unit  has  Bio<n  covalently  linked  to  Lys  • Bio<n  carries  CO2  •  In  animals,  all  three  subunits  are  on  one  polypep<de  chain  

– HCO3−  (bicarbonate)  is  the  source  of  CO2  

Page 50: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

The  Acetyl-­‐CoA  Carboxylase  (ACC)  Reac=on  •  Two-­‐step  rxn  similar  to  carboxyla<ons  catalyzed  by  pyruvate  carboxylase  (gluconeogenesis)  and  propionyl-­‐CoA  carboxylase  (odd  f.a.  metabolism)    

•  CO2  binds  to  bio<n  -  CO2  is  ac<vated  by  a=achment  to  N  in  ring  of  bio<n  

Page 51: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Synthesis  of  fa'y  acids  is  catalyzed  by  fa'y  acid  synthase  (FAS)  

•  FAS  system:  –  Catalyzes  a  repea<ng  four-­‐step  sequence  that  elongates  the  fa=y  acyl  chain  by  two  carbons  at  each  step  

–  Uses  NADPH  as  as  the  electron  donor  –  Uses  two  enzyme-­‐bound  -­‐SH  groups  as  ac<va<ng  groups  

•  FAS  I  in  vertebrates  and  fungi  •  FAS  II  in  plants  and  bacteria  

Page 52: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

FAS  I  vs.  FAS  II  

FAS  I  •  Single  polypep<de  chain  in  

vertebrates  •  Leads  to  single  product:    

palmitate  16:0  •  C-­‐15  and  C-­‐16  are  from  the  

acetyl  CoA  used  to  prime  the  rxn  

FAS  II  •  Made  of  separate,  diffusible  

enzymes  •  Makes  many  products  

(saturated,  unsaturated,  branched,  many  lengths,  etc.)  

•  Mostly  in  plants  and  bacteria  

Page 53: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fa'y  Acid  Synthesis  •  Overall  goal:    a=ach  two-­‐C  acetate  unit  from  malonyl-­‐CoA  to  a  

growing  chain  and  then  reduce  it  •  Reac<on  involves  cycles  of  four  enzyme-­‐catalyzed  steps  

–  Condensa<on  of  the  growing  chain  with  ac<vated  acetate  –  Reduc<on  of  carbonyl  to  hydroxyl  –  Dehydra<on  of  alcohol  to  trans-­‐alkene  –  Reduc<on  of  alkene  to  alkane  

•  The  growing  chain  is  ini<ally  a=ached  to  the  enzyme  via  a  thioester  linkage  

•  During  condensa<on,  the  growing  chain  is  transferred  to  the  acyl  carrier  protein  (ACP)  

•  Aoer  the  second  reduc<on  step,  the  elongated  chain  is  transferred  back  to  fa=y  acid  synthase  

Page 54: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

The  General  Four-­‐Step  Fa'y  Acid  Synthase  I  Reac=on  in  Mammals  (1)  

Prep:    Malonyl  CoA  and  acetyl  CoA  (or  longer  fa=y  acyl  chain)  are  bound  to  FAS  I    

 -­‐  bind  via  thioester  terminus  of  a  Cys  of  the  FAS    -­‐  ac<vates  the  acyl  group  

Step  1:    Condensa<on  rxn  a=aches  two  C  from  malonyl  CoA  to  the  a=ached  acetyl-­‐CoA  (or  longer  fa=y  acyl  chain)  

-­‐  also  releases  CO2  from  malonyl-­‐CoA  -­‐  the  decarboxyla<on  facilitates  the  rxn  -­‐  creates  β-­‐keto  intermediate  

Page 55: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  1  of  FAS  I:    Elonga=on  

Page 56: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  2:    1st  Reduc<on:    NADPH  reduces  the  β-­‐keto  intermediate  to  an  alcohol    

Step  3:    Dehydra<on:    OH  group  from  C-­‐2  and  H  from  neighboring  CH2  are  eliminated,  crea<ng  double  bond  (trans-­‐alkene)  

Step  4:    2nd  Reduc<on:    NADPH  reduces  double  bond  to  yield  saturated  alkane  Step  5:  Transloca<on:  The  growing  chain  is  moved  from  ACP  to  –SH  on  FAS  

The  General  Four-­‐Step  Fa'y  Acid  Synthase  I  Reac=on  in  Mammals  

Page 57: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Steps  2-­‐4  of  the  FAS  I  rxn  

Page 58: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Overall  Palmitate  Synthesis  

Page 59: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Acyl  Carrier  Protein  (ACP)  serves  as  a  shu'le  in  fa'y  acid  synthesis  

•  Contains  a  covalently  a=ached  prosthe<c  group  4’-­‐phosphopantetheine  –  Flexible  arm  to  tether  acyl  chain  while  carrying  intermediates  from  one  enzyme  subunit  to  the  next  

•  Delivers  malonate  to  the  fa=y  acid  synthase  

•  Shu=les  the  growing  chain  from  one  ac<ve  site  to  another  during  the  four-­‐step  reac<on  

Page 60: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Charging  ACP  and  FAS  I  with  acyl  groups  ac=vates  them  

•  Two  thiols  must  be  charged  with  the  correct  acyl  groups  before  condensa<on  rxn  can  begin  –  Thiol  from  4’-­‐phosphopantethine  in  ACP  

–  Thiol  from  Cys  in  fa=y  acid  synthase  

1) Acetyl  group  of  acetyl-­‐CoA  is  transferred  to  ACP  –  Catalyzed  by  malonyl/acetyl-­‐CoA  transferase  (MAT)  –  ACP  passes  this  acetate  to  the  Cys  of  the  β-­‐ketoacyl-­‐ACP  synthase  (KS)  

domain  of  FAS  I  

2)  ACP  –SH  group  is  re-­‐charged  with  malonyl  from        malonyl-­‐CoA  

Page 61: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Charging,  Ac=va=on  with  ACP,  and  the  Four-­‐Step  Sequence  of  Mammalian  Fa'y  

Acid  Synthesis  

Page 62: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 63: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 64: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

•  Ac<vated  acetyl  and  malonyl  groups  form  acetoacetyl-­‐ACP  and  CO2    –  Claisen  condensa<on  rxn  

•  Catalyzed  by  β-­‐ketoacyl-­‐ACP  synthase  (KS)  

•  Coupling  condensa<on  to  decarboxyla<on  of  malonyl-­‐CoA  makes  the  rxn  energe<cally  favorable  

Page 65: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

•  Carbonyl  at  C-­‐3  is  reduced  to  form  D-­‐β-­‐hydroxybutyryl-­‐ACP  – NADPH  is  e−  donor  

•  Catalyzed  by  β-­‐ketoacyl-­‐ACP  reductase  (KR)  

Page 66: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

•  OH  and  H  removed  from  C-­‐2  and  C-­‐3  of  β-­‐hydroxybutyryl-­‐ACP  to  form  trans-­‐Δ2-­‐butenoyl-­‐ACP  

•  Catalyzed  by  β-­‐hydroxyacyl-­‐ACP  dehydratase  (DH)  

Page 67: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

•  NADPH  is  the  electron  donor  to  reduce  double  bond  of  trans-­‐Δ2-­‐butenoyl-­‐ACP  to  form  butyryl-­‐ACP  

•  Catalyzed  by  enoyl-­‐ACP  reductase  (ER)  

Page 68: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 69: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 70: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Enzymes  in  Fa'y  Acid  Synthase  

•  Condensa<on  with  acetate  –  β-­‐ketoacyl-­‐ACP  synthase  (KS)  

•  Reduc<on  of  carbonyl  to  hydroxyl  –  β-­‐ketoacyl-­‐ACP  reductase  (KR)  

•  Dehydra<on  of  alcohol  to  alkene  –  β-­‐hydroxyacyl-­‐ACP  dehydratase  (DH)  

•  Reduc<on  of  alkene  to  alkane  –  enoyl-­‐ACP  reductase  (ER)  

•  Chain  transfer/charging    – Malonyl/acetyl-­‐CoA  ACP  transferase  

Page 71: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

The  Transferase  and  FAS  rxns  are  repeated  in  new  rounds  

•  Product  of  first  round    is  butyryl-­‐ACP  –  (bound  to  phosphopantetheine-­‐SH  group  of  ACP)  

•  Butyrul  gp  is  transferred  to  the  Cys  of  β-­‐ketoacyl-­‐ACP  synthase  –  In  the  first  round,  acetyl-­‐CoA  was  bound  here  

•  New  malonyl-­‐CoA  binds  to  ACP  •  Aoer  new  round  of  four  steps,  six-­‐C  product  is  made  (bound  to  ACP)  

Page 72: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Beginning  of  the  Second  Round  of  Fa'y  Acid  Synthesis  

Page 73: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Stoichiometry  of  Synthesis  of  Palmitate  (16:0)  

1)  7  acetyl-­‐CoAs  are  carboxylated  to  make  7  malonyl-­‐CoAs…  using  ATP  

 

7  AcCoA  +  7  CO2  +  7  ATP  à  7  malCoA  +  7  ADP  +  7  Pi    

2)  Seven  cycles  of  condensa<on,  reduc<on,  dehydra<on  and  reduc<on…using  NADPH  to  reduce  the  β-­‐keto  group  and  trans-­‐double  bond  

AcCoA  +  7  malCoA  +  14  NADPH  +  14  H+  àPalmitate  +  7  CO2  +  8  CoA  +  14  NADP+  +  6  H2O  

Note:    Eukaryotes  have  one  addi<onal  energy  cost.    (Next  slide)  

Page 74: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Acetyl-­‐CoA  is  transported  into  the  cytosol  for  fa'y  acid  synthesis    

•  In  nonphotosynthe<c  eukaryotes…  •  Acetyl-­‐CoA  is  made  in  the  mitochondria  •  But  fa=y  acids  are  made  in  the  cytosol  •  So  Acetyl-­‐CoA  is  transported  into  the  cytosol  with  a  cost  of  2  ATPs  

•  Therefore,  cost  of  FA  synthesis  is  3  ATPs  per  2-­‐C  unit  

Page 75: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fa'y  acid  synthesis  occurs  in  cell  compartments  where  NADPH  levels  are  high  

•  Cytosol  for  animals,  yeast  •  Chloroplast  for  plants  

•  Sources  of  NADPH:  –  In  adipocytes:    pentose  phosphate  pathway  and  malic  enzyme    

–  NADPH  is  made  as  malate  converts  to  pyruvate  +  CO2  

–  In  hepatocytes  and  mammary  gland:    pentose  phosphate  pathway  •   NADPH  is  made  as  glucose-­‐6-­‐phosphate  converts  to  ribulose  6-­‐phosphate  

–  In  plants:    photosynthesis  

Page 76: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Pathways  for  NADPH  Produc=on  

Page 77: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Acetyl-­‐CoA,  generated  in  the  mitochondria,  is  shu'led  to  the  cytosol  as  citrate  

•  In  most  eukaryotes,  the  acetyl-­‐CoA  for  lipid  synthesis  is  made  in  the  mitochondria  –  But  lipid  synthesis  occurs  in  the  cytosol  

• And  there  is  no  way  for  acetyl-­‐CoA  to  cross  mitochondrial  inner  membrane  to  the  cytosol  

•  So  acetyl-­‐CoA  is  converted  to  citrate  –  Acetyl-­‐CoA  +  oxaloacetate  à  citrate  

• Same  rxn  as  occurs  in  CAC  • Catalyzed  by  citrate  synthase  • Citrate  passes  through  citrate  transporter  

Page 78: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Citrate  is  cleaved  to  regenerate  acetyl-­‐CoA  

•  Citrate  (now  in  cytosol)  is  cleaved  by  citrate  lyase  –  Regenerates  acetyl-­‐CoA  and  oxaloacetate  –  Rxn  requires  ATP  – Acetyl-­‐CoA  can  now  be  used  for  lipid  synthesis  

• What  happens  to  the  oxaloacetate  because  there  is  no  oxaloacetate  transporter  either?      

Page 79: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Oxaloacetatecyt  is  converted  to  malate    

•  Malate  dehydrogenase  in  cytosol  reduces  oxaloacetate  to  malate  

•  Two  poten<al  fates  for  malate:  –  Can  be  converted  to  NADPHcyt  and  pyruvatecyt  via  the  malic  enzyme  •  NADPH  used  for  lipid  synthesis  •  Pyruvatecyt  sent  back  to  mito  via  pyruvate  transporter  •  Converted  back  to  oxaloacetatemito  by  pyruvate  carboxylase,  requires  ATP  

–  Can  be  transported  back  to  mito  via  malate  -­‐α-­‐ketoglutarate  transporter  •  Malatemito  is  reoxidized  to  oxaloacetatemito  

Page 80: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Shu'le  for  Transfer  of  Acetyl  Groups  from  Mitochondria  to  Cytosol  

Page 81: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fa'y  acid  synthesis  is  =ghtly  regulated  via  ACC  

•  Acetyl  CoA  carboxylase  (ACC)  catalyzes  the  rate-­‐limi<ng  step  –  ACC  is  feedback-­‐inhibited  by  palmitoyl-­‐CoA  –  ACC  is  acEvated  by  citrate  

•  Remember  citrate  is  made  from  acetyl-­‐CoAmito  

•  Citrate  signals  excess  energy  to  be  converted  to  fat  –  When  [acetyl-­‐CoA]mito  ↑,  converted  to  citrate…citrate  exported  to  cytosol  

Page 82: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Importance  of  Citrate  to  Regula=on  of  Fa'y  Acid  Synthesis    

•  In  animals,  citrate  s<mulates  fa=y  acid  synthesis!  –  Precursor  for  acetyl-­‐CoA    

• Sent  to  cytosol  and  cleaved  to  become  AcCoA  when  AcCoA  and  ATP  ↑  (energy  excess)  

– Allosteric  ac<vator  of  ACC  –  Inhibitor  of  PFK-­‐1  

• Reduces  glycolysis  

Page 83: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

ACC  is  also  regulated  by  covalent  modifica=on  

•  Inhibited  when  energy  is  needed  •  Glucagon  and  epinephrine:    

–  reduce  sensi<vity  of  citrate  ac<va<on  –  lead  to  phosphoryla<on  and  inac<va<on  of  ACC  via  PKA  • ACC  is  ac<ve  as  dephosphorylated  monomers  • When  phosphorylated,  ACC  polymerizes  into  long  inac<ve  filaments  

• Dephosphoryla<on  reverses  the  polymeriza<on  

 

Page 84: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Fa'y  Acid  Synthesis  in  Vertebrates  

Page 85: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Addi=onal  Modes  of  Regula=on  in  Fa'y  Acid  Synthesis  

•  Changes  in  gene  expression  –  Example:    Fa=y  acids  (and  eicosanoids)  bind  to  transcrip<on  factors  called  Peroxisome  Proliferator-­‐Ac=vated  Receptors  (PPARs)  à  inducing  gene  expression  of  some  genes  

•  Reciprocal  regula<on  – Malonyl-­‐CoA  inhibits  fa=y  acid  import  into  mito  

• One  of  many  ways  to  ensure  that  fat  synthesis  and  oxida<on  don’t  occur  simultaneously  

Page 86: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Palmitate  can  be  lengthened  to  longer-­‐chain  fa'y  acids  

•  Elonga<on  systems  in  the  endoplasmic  re<culum  and  mitochondria  create  longer  fa=y  acids  

•  As  in  palmitate  synthesis,  each  step  adds  units  of  2  C  

•  Stearate  (18:0)  is  the  most  common  product  

Page 87: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Palmitate  and  stearate  can  be  desaturated  

•  Palmitate(16:0)àpalmitoleate(16:1;  Δ9)    •  Stearate  (18:0)àoleate  (18:1;  Δ9)    

–  Catalyzed  by  fa=y  acyl-­‐CoA  desaturase  in  animals    • Also  known  as  the  fa=y  acid  desaturases  • Requires  NADPH;  enzyme  uses  cytochrome  b5  and  cytochrome  b5  reductase  

Note  that  this  is  a  Δ9-­‐desaturase!      It  reduces  the  bond  between  C-­‐9  and  C-­‐10.  

 

Page 88: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Vertebrate  fa'y  acyl  desaturase  is  a  non-­‐heme,  iron-­‐containing,  mixed  func=on  

oxidase  

•  O2  accepts  four  electrons  from  two  substrates  •  Two  electrons  come  from  saturated  fa=y  acid  •  Two  electrons  come  from  ferrous  state  of  cytochrome  b5  

Page 89: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Desatura=on  of  a  Fa'y  Acid  by  Fa'y  Acyl-­‐CoA  Desaturase  

Page 90: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Plants  can  desaturate  posi=ons  beyond  C-­‐9  

•  Humans  have  Δ4,  Δ5,  Δ6,  and  Δ9  desaturases  but  cannot  desaturate  beyond  Δ9  

•  Plants  can  produce:  –  linoleate  18:2(Δ9,12)  –  α-­‐linolenate  18:3  (Δ9,12,15)  

•  These  fa=y  acids  are  “essen=al”  to  humans  –  Polyunsaturated  fa=y  acids  (PUFAs)  help  control  membrane  fluidity  

–  PUFAs  are  precursors  to  eicosanoids  •  Implica<ons  of  stearoyl-­‐ACP  desaturase  (SCD)  on  obesity  

–  SCD1-­‐mutant  mice  are  resistant  to  diet-­‐induced  obesity!  

Page 91: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Oxidases,  Monooxygenases,    and  Dioxygenases  

Many  enzymes  use  oxygen  as  an  e−  acceptor,  but  not  all  of  them  incorporate  oxygen  into  the  product.  

 

•   Oxidases  do  not  incorporate  oxygen  into  the  product  –  Oxygen  atoms  usually  end  up  in  H2O2  

•   Oxygenases  do  incorporate  oxygen  into  the  product  –  Monooxygenases  incorporate  one  of  the  oxygen  atoms  into  the  product  

–  Dioxygenases  incorporate  both  oxygen  atoms  into  the  product  

Page 92: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Monooxygenases  incorporate  one  oxygen  into  the  product    

AH  +  BH2  +  O-­‐O  àA-­‐OH  +  B  +  H2O  •   Product  is  ooen  hydroxylated,  so  also  called  hydroxylases  or  mixed-­‐func=on  oxygenases  

–  Example:    Phenylanine  hydroxylase  hydroxylates  phenylalanine  to  form  tyrosine  

–  Deficiency  causes  phenylketonuria  (PKU)  

Page 93: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Cytochrome  P450s  are  monooxygenases    

•  Important  in  drug  metabolism  •  Hydroxylate  nonpolar  molecules  

–  usually  inac<va<ng  them  and  making  them  more  H2O-­‐soluble  for  excre<on  

•  If  two  drugs  (or  alcohol  and  a  drug)  use  the  same  P450,  they  will  compete,  and  levels  of  the  drug  or  alcohol  will  not  be  cleared  as  quickly  –  Can  be  deadly  

Page 94: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Dioxygenases  incorporate  two  oxygens  in  the  product  

•  Usually  metalloproteins  – Ac<ve  sites  have  Fe  or  Mn  ions  

•  Rxns  ooen  involve  opening  an  aroma<c  ring  

•  Example:  Tryptophan  2,3-­‐dioxygenase  

Page 95: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Eicosanoids  are  potent  short-­‐range  hormones  made  from  arachidonate  

•  Eicosanoids  are  paracrine  signaling  molecules  •  They  include  prostaglandins,  leukotrienes,  thromboxanes  

•  Created  from  arachidonic  acid,  20:4  (Δ5,8,11,14)    •  Arachidonate  is  incorporated  into  the  phospholipids  of  membranes  

•  In  response  to  s<muli  (hormone,  etc.),  phospholipase  A2  is  ac<vated  and  a=acks  the  C-­‐2  fa=y  acid,  releasing  arachidonate  

Page 96: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Prostaglandins  are  made  by  prostaglandin  H2  synthase  (cyclooxygenase,  COX)  

•  COX  (aka  PGH2  synthase)  is  a  bifunc<onal  ER  enzyme:  

•  Step  1:    cyclooxygenase  ac<vity  of  PGH2  synthase  adds  2  O2  to  form  PGG2  

•  Step  2:    peroxidase  ac<vity  converts  peroxide  to  alcohol,  creates  PGH2  

•  PGH2  is  precursor  to  other  eicosanoids  

Page 97: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Conversion  of  Arachidonate  to  Prostaglandins  and  Other  Eicosanoids  

•  Thromboxane  synthase  present  in  thrombocytes  converts  PGH2  to  thromboxane  A2    

•  Induce  the  constric<on  of  blood  vessels  and  blood  clovng  

•  Low  doses  of  aspirin  reduce  the  risk  of  heart  a=acks  and  strokes  by  reducing  thromboxane  produc<on      

Page 98: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

PGH2  synthase  has  two  isoforms  

•  COX-­‐1  catalyzes  synthesis  of  prostaglandins  that  regulate  gastric  mucin  secreEon  

•  COX-­‐2  catalyzes  synthesis  of  prostaglandins  that  mediate  pain,  inflammaEon,  and  fever  

Page 99: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

NSAIDs  inhibit  cyclooxygenase  ac=vity  

•  Aspirin  (Acetylsalicylate)  is  an  irreversible  inhibitor  – Acetylates  a  Ser  in  the  ac<ve  site  –  Blocks  ac<ve  site  in  both  COX  isozymes  

•  Ibuprofen  and  naproxen  are  compe<<ve  inhibitors  –  Resemble  substrate,  also  block  the  ac<ve  site  in  both  isozymes  

– Undesired  side  effects  such  as  stomach  irritaEon,  why?  

Page 100: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

A  Few  NSAIDs  that  Inhibit  PGH2  

Arachidonate (substrate)

Advil, motrin Aleve

Page 101: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

COX-­‐2-­‐specific  inhibitors  have  a  checkered  history    

•  Developed  to  inhibit  prostaglandin  forma<on  without  harming  stomach  

•  Includes  Vioxx,  Bextra,  and  Celebrex  •  Vioxx  and  Bextra  removed  from  market  due  to  increased  rates  of  stroke  and  heart  a=ack  –  May  disrupt  balance  between  blood-­‐thinning  prostacyclin  and  blood-­‐clovng  thromboxanes  

Page 102: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Leukotriene  synthesis  also  begins  with  arachidonate  

•  O2  is  added  to  arachidonate  via  lipoxygenases  •  Creates  species  that  differ  in  the  posi<on  of  the  OOH  group  •  Not  inhibited  by  NSAIDs  

Page 103: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 104: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Biosynthesis  of  Triacylglycerols  •  Synthesized  or  ingested  fa=y  acids  are  either  stored  for  energy  or  used  in  membranes  depending  on  the  needs  of  the  organism  

   •  Animals  and  plants  store  fat  for  fuel  

–  Plants:  in  seeds,  nuts  –  Typical  70-­‐kg  human  has  ~15  kg  fat  

• Enough  to  last  12  wks  • Compare  with  12  hrs’  worth  glycogen  in  liver  and  muscle  

•  Animals  and  plants  and  bacteria  make  phospholipids  for  cell  membranes  

Page 105: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

The  precursor  for  the  backbone  of  fat  and  phospholipids  is  glycerol  3-­‐phosphate  

•  Both  pathways  start  by  the  forma<on  of  fa=y  acyl  esters  of  glycerol    

•  The  substrates  are  fa=y  acyl-­‐CoAs  and  L-­‐glycerol  3-­‐phosphate  

•  Most  glycerol  3-­‐phosphate  comes  from  dihydroxyacetone  phosphate  (DHAP)  from  glycolysis  –  via  glycerol  3-­‐phosphate  dehydrogenase      

•  Some  glycerol  3-­‐phosphate  made  from  glycerol  –  via  glycerol  kinase  –  Minor  pathway  in  liver  and  kidney  only  

Page 106: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Acyl  transferases  a'ach  two  fa'y  acids  to  glycerol  3-­‐phosphate  

•  Phospha<dic  acid  is  the  precursor  to  TAGs  and  phospholipids  –  Made  of  glycerol  3-­‐phosphate  +  2  fa=y  acids  

–  Fa=y  acids  are  a=ached  by  acyl  transferases    

–  Release  of  CoA  

Page 107: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

To  make  TAG,  phospha=dic  acid  is  dephosphorylated  and  acylated    

•  Phospha<dic  acid  phosphatase  (lipin)  removes  the  3-­‐phosphate  from  the  phospha<dic  acid  –  Yields  1,2-­‐diacylglycerol  

•  Third  carbon  is  then  acylated  with  a  third  fa=y  acid  –  Yields  triacylglycerol  

Page 108: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Conversion  of  Phospha=dic  Acid  into  Triacylglycerol  

Page 109: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Triacylglycerol  Synthesis  by  Insulin  

•  Insulin  results  in  s<mula<on  of  triacylglycerol  synthesis  

•  Lack  of  insulin  results  in:  –  Increased  lipolysis  –  Increased  fa=y  acid  oxida<on  

• Some<mes  to  ketones,  if  citric  acid  cycle  intermediates  (oxaloacetate)  that  react  with  acetyl  CoA  are  depleted  

–  Failure  to  synthesize  fa=y  acids  

Page 110: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Fat  Metabolism  by  Glucagon  and  Epinephrine  

•  Glucagon  and  epinephrine  result  in  s<mula<on  of  triacylglycerol  breakdown  (mobiliza<on  of  fa=y  acids)  – Also  decrease  glycolysis  – Also  increase  gluconeogenesis  

Page 111: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Triacylglycerol  breakdown  and  re-­‐synthesis  create  a  fu=le  cycle  

•  Seventy-­‐five  percent  of  free  fa=y  acids  (FFA)  released  by  lipolysis  are  reesterified  to  form  TAGs  rather  than  be  used  for  fuel  –  Some  recycling  occurs  in  adipose  <ssue  –  Some  FFA  from  adipose  cells  are  transported  to  liver,  remade  into  TAG,  and  re-­‐deposited  in  adipose  cells  

•  Although  the  distribu<on  between  these  two  paths  may  vary  (the  flux  of  FFA  into  and  out  of  the  adipose),  overall,  the  percentage  of  FFA  being  esterified  remains  at  ~75%.  

Page 112: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

The  Triacylglycerol  Cycle  *  In  mammals,  TAG  molecules  are  broken  down  and  resynthesized  in  a  TAG  cycle  even  during  starva<on.        

Page 113: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Benefits  of  this  fu=le  cycle?  

•  Recycling  con<nues  even  in  starvaEon  •  Specula<on:  

–  energy  reserve  for  “fight  or  flight”  crises  that  might  occur  during  fas<ng  

•  The  total  #  of  FFA  in  flux  may  change  but  the  %  recycled  remains      –  unless  a  pharamacological  interven<on  happens  (i.e.,  thiazolidinedione  drugs,  type  2  DM)  

Page 114: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

What  is  the  source  of  the  glycerol  3-­‐phosphate  needed  for  fa'y  acid  

reesterifica=on?  

•  During  lipolysis  (s<mulated  by  glucagon  or  epinephrine),  glycolysis  is  inhibited  –  So  DHAP  is  not  readily  available  to  make  glycerol  3-­‐phosphate  

•  And  adipose  cells  don’t  have  glycerol  kinase  to  make  glycerol  3-­‐phosphate  on-­‐site  

•  So  cells  make  DHAP  via  glyceroneogenesis  

Page 115: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Glyceroneogenesis  makes  DHAP  for  glycerol  3-­‐phosphate  genera=on  

•  Glyceroneogenesis  contains  some  of  the  same  steps  of  gluconeogenesis  –  Converts  pyruvate  à  DHAP  –  Basically,  a  shortened  version  of  gluconeogenesis  in  the  liver  and  adipose  <ssue  

•  Explains  why  adipose  cells  express  pyruvate  carboxylase  and  PEPCK  even  though  fat  cells  don’t  make  glucose  

Page 116: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Glyceroneogenesis  

Page 117: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  PEPCK  expression  is  =ssue-­‐dependent  

•  Cor<sol  and  glucagon  both  increase  PEPCK  expression  in  liver.  –  Results  in  more  TAG  synthesis,  so  more  released  to  the  blood  

•  Cor<sol  and  other  glucocor<coids  decrease  PEPCK  expression  in  adipose  <ssue  –  ↓  glyceroneogenesis  in  adipose  means  less  recycling;  more  FFA  are  released  into  the  blood  

–  Most  glycerol  freed  from  TAG  in  adipose  is  sent  to  liver  and  converted  to  glucose  

 

Page 118: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Glyceroneogenesis  via  Glucocor=coid  Hormones  

Page 119: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Cor=sol  and  glucagon  can  elevate  blood  sugar  

1)  ↑  PEPCK  expression  in  liver  à↑  gluconeogenesis  (so  ↑  [glucose])  

2)  ↓  PEPCK  expression  in  adipose  <ssue  à  glycerol  freed,  sent  to  liver,  converted  to  glucose  

3)  Plus,  the  FFA  associated  with  increased  flux  through  TAG  cycle  à  interfere  with  glucose  uptake  in  muscle,  keep  [glucose]blood  high  à  may  lead  to  insulin  resistance  (type  2  DM)  

Page 120: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Thiazolidinedione  drugs  target  insulin  resistance  by  increasing  glyceroneogenesis  

•  Elevated  FFA  levels  seem  to  promote  insulin  resistance  

•  Thiazolidinediones  upregulate  PEPCK  in  adipose  <ssue  via  PPARγ,  lead  to  ↑  glyceroneogenesis,↑  resynthesis  of  TAG  in  adipose  <ssue  and  ↓  release  of  FFA  

•  Thus  the  drugs  promote  sensi<vity  to  insulin  

Page 121: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Thiazolidinediones/Glitazones  

Have  this  group    in  common  

Avandia  (Rosiglitazone)  –  removed  from  market  due  to  associa<on  with  heart  a=ack  

Pioglitazone  (Actos)  

Page 122: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Glyceroneogenesis  via  Thiazolidinediones  

Page 123: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Biosynthesis  of  Membrane  Phospholipds  

•  Begin  with  phospha<dic  acid  or  diacylglycerol  

•  A=ach  head  group  to  C-­‐3  OH  group  –  C-­‐3  has  OH,  head  group  has  OH  

–  New  phospho-­‐head  group  created  when  phosphoric  acid  condenses  with  these  two  alcohols  

–  Eliminates  two  H2O  

Page 124: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Further  Details  on  A'aching  the  Head  Group    

•  Either  one  of  the  alcohols  is  ac<vated  by  a=aching  to  CDP  (cy<dine  diphosphate)    

•  The  free  (not  bound  to  CDP)  alcohol  then  does  nucleophilic  a=ack  on  the  CDP-­‐ac<vated  phosphate  

•  Releases  CMP  and  a  glycerophospholipid   E. coli: CDP-DAG

Eukaryotes: both

Page 125: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Synthesis  of  Phospha=dylethanolamine  and  Phospha=dylcholine  in  Yeast  

•  Phospha<dylserine  is  decarboxylated  to  phospha7dylethanolamine  –  phospha<dylserine  decarboxylase  

•  Phospha<dylethanolamine  acted  on  by  S-­‐adenosylmethionine  (methyl  group  donor),  adds  three  methyl  groups  to  amino  group  à  phopsha7dylcholine  (lecithin)  –  Catalyzed  by  methyltransferase  

Page 126: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Phospholipid  Synthesis  in  Mammals  •  Phospha7dylserine  isn’t  synthesized  from  CDP-­‐diacylglycerol  as  it  is in  yeast  and  bacteria  

•  Made  “backwards” from  PE  or  PC  via    head  group  exchange    rxns  –  Catalyzed  by  specific  synthases  –  Pathway  “salvages”  the  choline  

Page 127: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Sphingolipids  are  made  in  four  steps  

1)  Synthesis  of  sphinganine  from  palmitoyl-­‐CoA  and  serine  

2)  A=achment  of  fa'y  acid  via  amide  linkage  3)  Desatura=on  of  N-­‐acylsphinganine  

(dihydroceramide)  • Yields  N-­‐acylsphingosine  (ceramide)  

4)    A=achment  of  head  group  • Can  yield  a  cerebroside  or  ganglioside    

ER

Golgi

Page 128: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 129: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Phospholipids  must  be  transported  from  the  ER  to  membranes  

•  Phospholipids  are:    –  synthesized  in  the  smooth  ER  –  transported  to  Golgi  complex  for  addi<onal  synthesis  

•  Must  be  inserted  into  specific  membranes  in  specific  propor7ons  but  can’t  diffuse  because  they  are  nonpolar  

•  So  transported  in  membrane  vesicles  that  fuse  with  target  membrane  

•  Details  of  the  process  are  not  well-­‐understood  

Page 130: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 131: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 132: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Four  Steps  of  Cholesterol  Synthesis  

1)  Three  acetates  condense  to  form  5-­‐C  mevalonate  

2)  Mevalonate  converts  to  phosphorylated  5-­‐C  isoprene  

3)  Six  isoprenes  polymerize  to  form  the  30-­‐C  linear  squalene  

4)  Squalene  cyclizes  to  form  the  four  rings  that  are  modified  to  produce  cholesterol      

Page 133: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  1:    Forma=on  of  Mevalonate  from  Acetyl-­‐CoA  

•  2  Acetyl-­‐CoAs  àAcetoacetyl-­‐CoA  –  Catalyzed  by  acetyl-­‐CoA  acyl  transferase  

(thiolase)  

•  Acetyl-­‐CoA  +  Acetoacetyl-­‐CoA  à  β-­‐hydroxyl-­‐β-­‐methylglutaryl-­‐CoA  (HMG-­‐CoA)  –  Catalyzed  by  HMG-­‐CoA  synthase  

•  NOT  the  mitochondrial  HMG-­‐CoA  synthase  used  in  ketone  body  forma<on  

•  HMG-­‐CoA  +  2  NADPH  àmevalonate  –  Catalyzed  by  HMG-­‐CoA  reductase  –  Rate-­‐limi7ng  step  and  point  of  

regula7on!  –  HMG-­‐CoA  reductase  is  a  target  for  some  

cardiovascular  drugs  

Page 134: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Sta=n  drugs  inhibit  HMG-­‐CoA  reductase  to  lower  cholesterol  

•  Sta<ns  resemble  HMG-­‐CoA  and  mevalonate  à  compe<<ve  inhibitors  of  HMG-­‐CoA  reductase  

•  First  sta<n,  lovasta<n,  was  found  in  fungi  •  Lowers  serum  cholesterol  by  ~20  –  40%  •  Also  reported  to  improve    circula<on,  stabilize  plaques  by  removing  chol    from  them,  reduce  vascular  inflamma<on  

•  Most  circulaEng  chol  comes    from  internal  manufacture  rather  than  the  diet  

Page 135: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  2:    Conversion  of  Mevalonate  to  Two  Ac=vated  Isoprenes  

•  3  PO43−  transferred  stepwise  from  

ATP  to  mevalonate  •  Decarboxyla<on  and  hydrolysis  

creates  a  diphosphorylated  5-­‐C  product  (isoprene)  with  a  double  bond  

•  Isomeriza<on  to  a  second  isoprene  

•  The  two  “ac<vated”  isoprene  units  are  Δ3-­‐isopentyl  pyrophosphate  and  dimethylallyl  pyrophosphate  

Page 136: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  3:    Six  Ac=vated  Isoprene  Units  Condense  to  Form  Squalene  

•  The  two  isoprenes  join  head  -­‐to-­‐tail,  displacing  one  set  of  diphosphates  à  forms10-­‐C  geranyl  pyrophopshate  

•  Geranyl  pyrophosphate  joins  to  another  isopentenyl  pyrophosphate  à  forms  15-­‐C  farnesyl  pyrophosphate  

•  Two  farnesyl  pyrophosphates  join  head-­‐to-­‐head  to  form  phosphate-­‐free  squalene  

 

Page 137: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Step  4:    Conversion  of  Squalene  to  Four-­‐Ring  Steroid  Nucleus  

•  Squalene  monooxygenase  adds  one  oxygen  to  the  end  of  the  squalene  chain  à  forms  squalene  2,3-­‐epoxide  

•  Here  pathways  diverse  in  animal  cells  vs.  plant  cells  

•  The  cycliza<on  product  in  animals  is  lanosterol,  which  converts  to  cholesterol  

•  In  plants,  the  epoxide  cyclizes  to  other  sterols  such  as  s<gmasterol  

Page 138: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Conversion  of  Squalene  to  Cholesterol  

Page 139: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Fates  of  Cholesterol  Aner  Synthesis  

•  In  vertebrates,  most  cholesterol  synthesized  in  the  liver,  then  exported:  -  As  bile  acids,  biliary  cholesterol  or  cholesteryl  esters  

•  Other  <ssues  convert  cholesterol  into  steroid  hormones,  etc.  

Page 140: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Bile  Acids  Assist  in  Emulsifica=on  of  Fats  

•  Bile  is  stored  in  the  gall  bladder,  secreted  into  small  intes<ne  aoer  fa=y  meal  

•  Bile  acids  such  as  taurocholic  acid  emulsify  fats  –  Surround  droplets  of  fat,    increase  surface  area  for    a=ack  by  lipases  

Page 141: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Cholsteryl  esters  are  more  nonpolar  than  cholesterol  

•  Contain  a  fa=y  acid  esterified  to  the  oxygen  –  Comes  from  a  fa=y  acyl-­‐CoA  – Makes  the  cholesterol  more  hydrophobic,  unable  to  enter  membranes  

•  Transported  in  lipoproteins  to  other  <ssues  or  stored  in  liver    

Page 142: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Cholesterol  and  other  lipids  are  carried  on  lipoprotein  par=cles  

•  Lipids  are  carried  through  plasma  on  spherical    par<cles    –  Surface  is  made    of  apolipoprotein    and  phospholipid    monolayer  

–  Interior  contains  cholesterol,  TAGs,  cholesteryl  esters    

Page 143: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Four  Major  Classes  of  Lipoprotein  Par=cles  

•  Named  based  on  posi<on  of  sedimenta<on  (density)  in  centrifuge  

•  Large  enough  to  see  in  electron  microscope  •  Includes:  

–  Chylomicrons  (largest  and  least  dense)  –  Very  low-­‐density  lipoproteins  (VLDL)  –  Low-­‐density  lipoproteins  (LDL)  –  High-­‐density  lipoproteins  (HDL)  –  smallest,  most  dense  

Page 144: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Electron  Microscope  Pictures  of  Lipoproteins  

Page 145: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 146: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Apolipoproteins  in  Lipoproteins  

•  “Apo”  for  “without”…    –  So  “apolipoprotein”  refers  to  the  protein  part  of  a  lipoprotein  par<cle  

•  Provide  sites  for  the  par<cle  to  bind  to  cell  surface  receptors,  ac<vate  enzymes,  etc.  

•  At  least  ten  have  been  characterized  in  humans  

Page 147: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis
Page 148: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Chylomicrons  carry  fa'y  acids  to  =ssues  

•  Have  more  TAG  and  less  protein  à  hence,  least  dense.  

•  Have  ApoB-­‐48,  ApoE,  and  ApoC-­‐II  

•  ApoC-­‐II  ac<vates  lipoprotein  lipase  to  allow  FFA  release  for  fuel  in  adipose  <ssue,  heart,  and  skeletal  muscle  

Page 149: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Chylomicron  remnants  deposit  their  cholesterol  in  the  liver  

• When  chylomicrons  are  depleted  of  their  TAG,  “remnants”  go  to  liver  

•  ApoE  receptors  in  liver  bind  the  remnants,  take  them  up  by  endocytosis  

•  Remnants  release  their  cholesterol  in  the  liver  

Page 150: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

VLDLs  transport  endogenous  lipids    

•  Cholesteryl  esters  and  TAGs  from  excess  FA  and  cholesterol  are  packed  into  very  low-­‐density  lipoproteins  (VLDL)  

•  Excess  carbohydrate  in  the  diet  can  also  be  made  into  TAG  in  the  liver  and  packed  into  VLDL  

•  Contain  apoB-­‐100,  apoC-­‐I,  apoC-­‐II,  apoC-­‐III,  and  apoE  

Page 151: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

VLDLs  take  TAGs  to  adipose  =ssue  and  muscle  

•  Again,  ApoC-­‐II  ac<vates  lipoprotein  lipase  to  release  free  fa=y  acids  

•  Adipocytes  take  up  the  FFA,  reconvert  them  to  TAGs,  and  store  them  in  lipid  droplets  

• Muscle  uses  the  TAG  for  energy  

Page 152: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

VLDL  remnants  become  LDL  

•  Removal  of  TAG  from  VLDL  produces  LDL  •  Because  TAG  removed,  LDL  is  enriched  in  cholesterol/chloesteryl  esters    

•  ApoB-­‐100  is  the  major  apolipoprotein  

Page 153: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

LDLs  carry  cholesterol  from  liver  to  muscle  and  adipose  =ssue  

• Muscle  and  adipose  <ssue  have  LDL  receptors,  recognize  apoB-­‐100    à  Enable  myocytes  and  adipocytes  to  take  up  cholesterol  via  receptor-­‐mediated  endocytosis  

Page 154: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Cholesterol  Uptake  by  Receptor-­‐Mediated  Endocytosis  

Page 155: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Familial  hypercholesterolemia  is  associated  with  LDL  receptor  muta=ons  

• Muta<ons  in  LDL  receptor  prevent  normal  uptake  of  LDL  by  liver  and  other  <ssues  

•  LDL  accumulates  in  blood  •  Heterozygous  individuals  have  risk  of  heart  a=ack  greater  than  normal  

•  Homozygous  individuals  have  much  increased  risk  of  heart  a=ack  

Page 156: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

HDL  carries  out  reverse  cholesterol  transport  

•  HDLs  contain  a  lot  of  protein  –  Including  ApoA-­‐I  and    lecithin-­‐cholesterol  acyl    transferase  (LCAT)  •  Catalyzes  the  forma<on  of    cholesteryl  esters  from    lecithin  and  cholesterol  

•  Enzyme  converts  chol  of    chylomicron  and    VLDL  remnants  to    cholesteryl  esters  

•  HDL  picks  up  cholesterol  from  cells  and  returns  them  to  the  liver  

Page 157: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Five  Modes  of  Regula=on  of  Cholesterol  Synthesis  and  Transport  

1)  Covalent  modifica<on  of  HMG-­‐CoA  reductase  

2)  Transcrip<onal  regula<on  of  HMG-­‐CoA  gene  

3)  Proteoly<c  degrada<on  of  HMG-­‐CoA  reductase  

4)  Ac<va<on  of  ACAT,  which  increases  esterifica<on  for  storage  

5)  Transcrip<onal  regula<on  of  the  LDL  receptor  

Page 158: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Cholesterol  Metabolism  

Page 159: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

HMG-­‐CoA  reductase  is  most  ac=ve  when  dephosphorylated  

1)  AMP-­‐dependent  protein  kinase  -­‐  when  AMP  rises,  kinase  phosphorylates  the  enzyme  à  ac<vity  ↓,  cholesterol  synthesis  ↓  

2)   Glucagon,  epinephrine  -­‐  cascades  lead  to  phosphoryla<on,  ↓  ac<vity  

3)  Insulin  -­‐  cascades  lead  to  dephosphoryla<on,↑  ac<vity  

Covalent    modifica=on  provides  short-­‐term  regula=on.  

LOW Energy Level

Page 160: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Longer-­‐term  Regula=on  of  HMG-­‐CoA  Reductase  through  Transcrip=onal  Control  

•  Sterol  regulatory  element-­‐binding  proteins  (SREBPs)  – When  sterol  levels  are  high,  SREBP  is  in  ER  membrane  with  other  proteins    

– When  sterol  levels  decline,  complex  is  cleaved,  moves  to  the  nucleus  

–  SREBP  ac<vates  transcrip<on  of  HMG-­‐CoA  reductase  and  LDL  receptor  as  well  as  other  genes  à  more  cholesterol  produced  and  imported  

Page 161: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  Cholesterol  Synthesis  by  SREBP  

Page 162: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Regula=on  of  HMG-­‐CoA  Reductase  by  Proteoly=c  Degrada=on  

•  Insig  (insulin-­‐induced  gene  protein)  senses  cholesterol  levels.  –  Binds  to  HMG-­‐Co-­‐A  reductase,  –  Triggers  ubiquina<on  of  HMG-­‐CoA  reductase  –  Targets  the  enzyme  for  degrada<on  by  proteasomes  

– Also  prevents  the  synthesis  of  HMG-­‐CoA  reductase  (complexing  and  inhibi<ng  SREBP)  

Page 163: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Cardiovascular  disease  (CVD)  is  mul=-­‐factorial  

•  Very  high  LDL-­‐cholesterol  levels  tend  to  correlate  with  atherosclerosis  – Although  many  heart  a=ack  vic<ms  have  normal  cholesterol,  and  many  people  with  high  cholesterol  do  not  have  heart  a=acks  

•  Low  HDL-­‐cholesterol  levels  are  nega<vely  associated  with  heart  disease  

Page 164: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

How  Plaques  Form  

•  LDL  with  partly  oxidized  fa=y  acyl  groups  s<cks  to  the  lining  of  arteries  

•  A=racts  macrophage  cells  of  the  immune  system  

•  These  cells  don’t  regulate  their  uptake  of  sterols,  so  they  accumulate  cholesterol  and  cholesteryl  esters  

•  The  macrophages  become  foam  cells  (named  for  appearance)  

Page 165: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

How  Plaques  Form  (cont.)  

•  Foam  cells  undergo  apoptosis  •  Remnants  accumulate,  along  with  scar  <ssue,  etc.  

•  Can  occlude  a  blood  vessel  or  break  off  and  travel  to  another  artery  

•  Occlusion  of  blood  vessels  in  the  heart  cause  heart  a=ack;  occlusion  in  the  brain  causes  stroke  

Page 166: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Familial  Hypercholesterolemia  

•  Due  to  gene<c  muta<on  in  LDL  receptor  •  Impairs  receptor-­‐mediated  uptake  of  cholesterol  from  LDL      

•  Cholesterol  accumulates  in  the  blood  and  in  foam  cells  

•  Regula<on  mechanisms  based  on  cholesterol  sensing  inside  the  cell  don’t  work  

•  Homozygous  individuals  can  experience  severe  CVD  as  youths  

Page 167: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Reverse  cholesterol  transport  by  HDL  explains  why  HDL  is  cardioprotec=ve  

•  HDL  picks  up  cholesterol  from  non-­‐liver  <ssues,  including  foam  cells  at  growing  plaques  

•  ABC  (ATP-­‐Binding  Casse=e)  transporters  bring  cholesterol  from  inside  the  cell  to  the  plasma  membrane  

•  HDL  carries  cholesterol  back  to  liver  

Page 168: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Reverse  Cholesterol  Transport  

Page 169: Chapters 17,21 Fatty acid catabolism , Lipid biosynthesis

Ques=on  7  (Take  home  exam)    Due:  NEXT  WEEK  ([email protected])  

•  Please  solve  ques=ons:  1.   6  (uncouplers)  2.   17  (ATP  turnover)  3.   22  (alanine)  4.   24  (diabetes)  For  wri[en  answers,  I  prefer  to  have  them  typed  in  Word.  I  can  accept  the  assignment  in  one  file  sent  to  my  email.  For  answers  that  require  solving  mathemaEcally,  you  can  either  type  them  or  write  them  down  and  scan  them.