Click here to load reader
Jul 08, 2020
CH.4. STRESS Continuum Mechanics Course (MMC)
2
Overview
Forces Acting on a Continuum Body
Cauchy’s Postulates
Stress Tensor
Stress Tensor Components Scientific Notation Engineering Notation Sign Criterion
Properties of the Cauchy Stress Tensor Cauchy’s Equation of Motion Principal Stresses and Principal Stress Directions Mean Stress and Mean Pressure Spherical and Deviatoric Parts of a Stress Tensor Stress Invariants
Lecture 1 Lecture 1
Lecture 2
Lecture 3 Lecture 4
Lecture 5
Lecture 6
Lecture 7
https://youtu.be/cmwjCla3wbY?t=00m00s https://youtu.be/Pkg5fAtpQ5s?t=00m00s https://youtu.be/9c9jhomP13A?t=00m00s https://youtu.be/S-2-rYkEfho?t=00m00s https://youtu.be/AaO37g-0zYo?t=00m00s https://youtu.be/WHEmfz8ks4Y?t=00m00s https://youtu.be/H0AZ81WPLZw?t=00m00s https://youtu.be/sq0625Wk5PM?t=00m00s
3
Overview (cont’d)
Stress Tensor in Different Coordinate Systems Cylindrical Coordinate System Spherical Coordinate System
Mohr’s Circle
Mohr’s Circle for a 3D State of Stress Determination of the Mohr’s Circle
Mohr’s Circle for a 2D State of Stress 2D State of Stress Stresses in Oblique Plane Direct Problem Inverse Problem Mohr´s Circle for a 2D State of Stress
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 13
https://youtu.be/4yBrjDzm82M?t=00m00s https://youtu.be/79rbGpRn_jE?t=00m00s https://youtu.be/JNM93noleY4?t=00m00s https://youtu.be/Tx_eR_SBHrs?t=00m00s https://youtu.be/cOTJfCvAGqI?t=00m00s https://youtu.be/3xIGagdCfZo?t=00m00s
4
Overview (cont’d)
Mohr’s Circle a 2D State of Stress (cont’d) Construction of Mohr’s Circle Mohr´s Circle Properties The Pole or the Origin of Planes Sign Convention in Soil Mechanics
Particular Cases of Mohr’s Circle
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17
https://youtu.be/3xIGagdCfZo?t=00m00s https://youtu.be/k5Co-Arw-IQ?t=00m00s https://youtu.be/NbyBSEslOz8?t=00m00s https://youtu.be/4D1XCZ97bPE?t=00m00s https://youtu.be/4oHsHfLbgKg?t=00m00s
5
Ch.4. Stress
4.1. Forces on a Continuum Body
6
Forces acting on a continuum body: Body forces. Act on the elements of volume or mass inside the body. “Action-at-a-distance” force. E.g.: gravity, electrostatic forces, magnetic forces
Surface forces. Contact forces acting on the body at its boundary surface. E.g.: contact forces between bodies, applied point or distributed
loads on the surface of a body
Forces Acting on a Continuum Body
( ),V V t dVρ= ∫f b x
( ),S V t dS∂= ∫f xt
body force per unit mass
(specific body forces)
surface force per unit surface (traction vector)
https://youtu.be/Pkg5fAtpQ5s?t=00m00s
7
Ch.4. Stress
4.2. Cauchy’s Postulates
8
1. Cauchy’s 1st postulate. The traction vector remains unchanged for all surfaces passing through the point and having the same normal vector at .
2. Cauchy’s fundamental lemma (Cauchy reciprocal theorem)
The traction vectors acting at point on opposite sides of the same surface are equal in magnitude and opposite in direction.
Cauchy’s Postulates
t
n P P
( ),P=t t n
REMARK The traction vector (generalized to internal points) is not influenced by the curvature of the internal surfaces.
( ) ( ), ,P P= − −t n t n
P
REMARK Cauchy’s fundamental lemma is equivalent to Newton's 3rd law (action and reaction).
https://youtu.be/9c9jhomP13A?t=00m00s
9
Ch.4. Stress
4.3. Stress Tensor
10
The areas of the faces of the tetrahedron are:
The “mean” stress vectors acting on these faces are
The surface normal vectors of the planes perpendicular to the axes are
Following Cauchy’s fundamental lemma:
Stress Tensor
1 1
2 2
3 3
S n S S n S S n S
= = =
( ) ( ) ( ) 1 2 3
1 * 2 * 3 ** * * * * 1 2 3
* *
ˆ ˆ ˆ( , ), ( , ), ( , ), ( , )
1, 2,3 ;
t t x n t t x e t t x e t t x e
x x i
S S S S
S i SS i S
= − = − − = − − = −
∈ = ∈ → mean value theorem
REMARK
The asterisk indicates an mean value over the area.
{ }T1 2 3n , n , n≡nwith
1 1 2 2 3 3ˆ ˆ ˆ; ;= − = − = −n e n e n e
( ) ( ) ( ) ( ) { } not
i i iˆ ˆ, , i 1, 2,3t x e t x e t x− = − =− ∈
https://youtu.be/S-2-rYkEfho?t=00m00s
11
Let be a continuous function on the closed interval , and differentiable on the open interval , where .
Then, there exists some in such that: I.e.: gets its “mean value” at the interior of
Mean Value Theorem
[ ]: a, bf → R
[ ]a,b ( )a,b ( )a,b
a b< *x
( ) ( )* 1 df x f x Ω
= Ω Ω ∫
[ ]: a, bf → R
( )*f x [ ]a,b
https://youtu.be/S-2-rYkEfho?t=02m10s
12
From equilibrium of forces, i.e. Newton’s 2nd law of motion:
Considering the mean value theorem,
Introducing and ,
Stress Tensor
( ) ( ) ( )
1 2 3
1 2 3 V S S S S V
dV dS dS dS dS dVρ ρ+ + − + − + − =∫ ∫ ∫ ∫ ∫ ∫b t t t t a
( ) ( ) ( )1 2 3* * * * * * 1 2 3( ) V S S S S ( ) Vρ ρ+ − − − =b t t t t a
resultant body forces
resultant surface forces
{ }1,2,3i iS n S i= ∈ 1 3
V Sh=
( ) ( ) ( )1 2 3* * * * * * 1 2 3
1 1( ) S S S S ( ) 3 3
h S n n n hSρ ρ+ − − − =b t t t t a
i i i i i V V V V
m dV dS dV dV dm
ρ ρ ρ ∂
= = + = =∑ ∑ ∫ ∫ ∫ ∫R f a b t a a
13
If the tetrahedron shrinks to point O,
The limit of the expression for the equilibrium of forces becomes,
Stress Tensor
( ) ( ), i iO n− =t n t 0( ) ( ) ( ) 1 2 3* * * * * *
1 2 3 1 1( ) ( ) 3 3
h n n n hρ ρ+ − − − =b t t t t a
* *
h 0 h 0
1 1lim ( ) lim ( ) 3 3
h hρ ρ → →
= =
b a 0
( ),= t nO
( )1= t ( )2= t ( )3= t
( ) ( ) ( ) ( ) { } ( ) ( )
i i
i i* * * S S i i
* * * S S
h 0
h 0
ˆ ˆlim , i 1, 2,3
lim , ,
x x t x e t e
x x t x n t n
O
O
O,
O →
→
→ = ∈ → =
https://youtu.be/S-2-rYkEfho?t=14m14s
14
P
Considering the traction vector’s Cartesian components :
In the matrix form:
( ) ( )
( )
( ) ( )
( )
,
,
,
i i
i j j i i ij
ij
P n
P n n
P P
σ σ
= ⇒
= = = ⋅
t n t
t n t
t n n σ
( ) ( ) ( ) ( ) ( )
{ } ( ) ˆ ˆ( )
, 1, 2,3 i i
j j ij j
i ij j
P t P i j
P t P
σ
σ
= = ∈ =
t e e
ˆ ˆσ= ⊗e eij i jσ Cauchy’s Stress Tensor
[ ] [ ] [ ] {1,2,3}
T j i ij ji i
T
t n n j
σ σ = = ∈
= t nσ
( )1t ( )2t ( )3t
( )1 1t
( )2 1t
( )3 1t
Stress Tensor
https://youtu.be/AaO37g-0zYo?t=00m00s
15
REMARK 2 The Cauchy stress tensor is constructed from the traction vectors on three coordinate planes passing through point P.
Yet, this tensor contains information on the traction vectors acting on any plane (identified by its normal n) which passes through point P.
Stress Tensor
REMARK 1 The expression is consistent with Cauchy’s postulates:
( ) ( ),t n n σP P= ⋅ ( ),t n n σP = ⋅ ( ),t n n σP − = − ⋅ ( ) ( ), ,P P= − −t n t n
11 12 13
21 22 23
31 32 33
σ σ σ σ σ σ σ σ σ σ
≡
https://youtu.be/AaO37g-0zYo?t=06m30s
16
Ch.4. Stress
4.4.Stress Tensor Components
17
Cauchy’s stress tensor in scientific notation
Each component is characterized by its sub-indices: Index i designates the coordinate plane on which the component acts. Index j identifies the coordinate direction in which the component acts.
Scie