Top Banner
Big Ideas in Mathematics for Future Middle Grades Teachers and Elementary Math Specialists Big Ideas in Euclidean and Non-Euclidean Geometries John Beam, Jason Belnap, Eric Kuennen, Amy Parrott, Carol E. Seaman, and Jennifer Szydlik (Updated Summer 2017)
175

Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

Jul 08, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

BigIdeasinMathematicsforFutureMiddleGradesTeachersandElementaryMathSpecialists

BigIdeasinEuclideanandNon-EuclideanGeometries

JohnBeam,JasonBelnap,EricKuennen,AmyParrott,CarolE.Seaman,andJenniferSzydlik

(UpdatedSummer2017)

Page 2: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

2

ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense.Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by-nc-nd/4.0/orsendalettertoCreativeCommons,POBox1866,MountainView,CA94042,USA.

Page 3: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

3

DearFutureTeacher,Wewrotethisbooktohelpyoutoseethestructurethatunderlieselementaryandmiddleschoolmathematics,togiveyouexperiencesreallydoingmathematics,andtoshowyouhowchildrenthinkandlearn.Wefullyintendthiscoursetotransformyourrelationshipwithmath.Asteachersoffuturemathteachers,wecreatedorgatheredtheactivitiesforthistext,andthenwetriedthemoutwithourownstudentsandmodifiedthembasedontheirsuggestionsandinsights.Weknowthatsomeoftheproblemsaretough–youwillgetstucksometimes.Pleasedon’tletthatdiscourageyou.There’smuchvalueinwrestlingwithanidea. Allourbest,

John,Jason,Eric,Amy,Carol&Jen

Page 4: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

4

Hey!Readthis.Itwillhelpyouunderstandthebook. Theonlywaytolearnmathematicsistodomathematics. PaulHalmosThisbookwaswrittentopreparefuturemiddlegrades(Grades6-8)teachersandelementarymathematicsspecialistsforthemathematicalworkofteaching.Thefocusofthismoduleisgeometry,andmathematicsdoesn’tgetanybetterthanthat.Geometryallowsustothinkspatially,toseestructureinartandform,andtocreateandvisualizenew“worlds”withdifferentrules.Doestheword“geometry”calltomindthetwo-column-proofofyourhighschooldays?Longagomathematicseducatorsdecidedthatgeometryclasswouldbeagoodplacetoshowcasetheimportanceofdefinitions,reasoning,andproofinmathematicalthinking–really,thesethingsarevitalinallareasofmathematics–notjustgeometry–andifyouuseanyofourothermodules,you’llseethatthisisso.However,ifthetwo-columnproofhasruinedgeometryforyou,thenforgetaboutit.Youdon’tneedtodoanyhere.Youarefreetoreasoninanyformyouseefitaslongasyoucancommunicateyourargumenttoothers.Afterall,wemathematiciansrarelywriteaproofinsuchaform.We’dhatetobeconstrainedinthatway.Geometryisadomainforactionandactivities.TheNationalCouncilofTeachersofMathematics(NCTM)advocatesthatmiddlegradesstudentsdraw,measure,visualize,compare,transform,andclassifygeometricobjects(NCTM,2000).(Notealltheactionverbs!)Wewilldoallthesethingsinthismodule.Theideasinthisbookarefundamentallyimportantforyourstudentstounderstandandsotheyarefundamentallyimportantforyoutounderstand.Eachofthemodulesinthisserieswaswrittenbytwoormoreauthors.Toprepareourselvestowritethistext,westudiedfourStandards-basedcurriculumprojectsformiddleschoolstudents(thebooksyourfuturestudentsmightuse).ThoseprojectsareMathematicsinContext,ConnectedMathematics,MATHThematics,andMathScape.Alloftheseareactivity-basedandStandards-basedcurricula.Thismeansthatthemiddleschoolmaterialswerewrittensothatyourfuturestudentswillsolveproblemsandcreateunderstandingsbasedonconcreteexperiences.Incaseyouareskepticalaboutthesetypesofmaterialsforyourfuturestudents,letusassureyouthattheybetterencourageandsupportthetypesofbehaviorsandthinkingthatmathematiciansvaluethandotraditionalmaterials.Furthermore,theresearchsuggeststhatschoolsthatadoptStandards-basedmaterialsformorethantwoyearsshowsignificantlyhighertestscoresoneventraditionalmeasuresofmathematicalunderstandingthanmatchedschoolsthatadopttraditionalcurricula(Reys,Reys,Lapan,&Holliday,2003;Riordan&Noyce,2001;Briars,2001;Griffen,Evans,Timms,&Trowell,2000;Mullisetal.,2001).Weassureyouthattheideasyouwillmeetinthesepagesarevitallyconnectedtothemathematicscurriculumofyourfuturestudents,andwehopethatthetextiswritteninawaythatmakestheseconnectionsapparenttoyou.

In2000theNationalCouncilofTeachersofMathematics’(NCTM)wrotestandardsingeometryforGrades6-8.NCTMisthenationalorganizationforschoolmathematicsteachers.Readthese

Page 5: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

5

standardscarefully,andasyouworktheproblemsinthistext,thinkabouthowtheyfitwithinthesecategories.NCTMGeometryStandardforGrades6–8 Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentsto—

Ingrades6–8allstudentsshould—

Analyzecharacteristicsandpropertiesoftwo-andthree-dimensionalgeometricshapesanddevelopmathematicalargumentsaboutgeometricrelationships

•preciselydescribe,classify,andunderstandrelationshipsamongtypesoftwo-andthree-dimensionalobjectsusingtheirdefiningproperties;

•understandrelationshipsamongtheangles,sidelengths,perimeters,areas,andvolumesofsimilarobjects;

•createandcritiqueinductiveanddeductiveargumentsconcerninggeometricideasandrelationships,suchascongruence,similarity,andthePythagoreanrelationship.

Specifylocationsanddescribespatialrelationshipsusingcoordinategeometryandotherrepresentationalsystems

•usecoordinategeometrytorepresentandexaminethepropertiesofgeometricshapes;

•usecoordinategeometrytoexaminespecialgeometricshapes,suchasregularpolygonsorthosewithpairsofparallelorperpendicularsides.

Applytransformationsandusesymmetrytoanalyzemathematicalsituations

•describesizes,positions,andorientationsofshapesunderinformaltransformationssuchasflips,turns,slides,andscaling;

•examinethecongruence,similarity,andlineorrotationalsymmetryofobjectsusingtransformations.

Usevisualization,spatialreasoning,andgeometricmodelingtosolveproblems

•drawgeometricobjectswithspecifiedproperties,suchassidelengthsoranglemeasures;

•usetwo-dimensionalrepresentationsofthree-dimensionalobjectstovisualizeandsolveproblemssuchasthoseinvolvingsurfaceareaandvolume;

•usevisualtoolssuchasnetworkstorepresentandsolveproblems;•usegeometricmodelstorepresentandexplainnumericalandalgebraicrelationships;

•recognizeandapplygeometricideasandrelationshipsinareasoutsidethemathematicsclassroom,suchasart,science,andeverydaylife.

ReprintedwithpermissionfromPrinciplesandStandardsforSchoolMathematics,©2000bytheNationalCouncilofTeachersofMathematics.Allrightsreserved.NCTMdoesnotendorsethecontentvalidityofthesealignments.BuildingontheworkofNCTM,morerecentlyagroupofleadersatthestate-levelhaveworkedtoarticulatestandardsinmathematicsthatprovidemorefocusedguidanceforteachersofeachgrade.ThiseffortresultedintheCommonCoreStateStandardsinMathematics,“astate-ledefforttoestablishasharedsetofcleareducationalstandardsforEnglishlanguageartsandmathematicsthatstatescanvoluntarilyadopt.Thestandardshavebeeninformedbythebestavailableevidenceandthehigheststatestandardsacrossthecountryandglobeanddesignedbyadiverse

Page 6: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

6

groupofteachers,experts,parents,andschooladministrators…”(asfoundJanuary11,2012attheirwebsite:http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf).Asofthetimeofpublicationofthistext,moststateshadofficiallyadoptedthesestandards,andsoitisimportantforyoutoknowthemandthecontentandpracticesthattheyadvocate.BelowyouwillfindtheCommonCoreStateStandardsStandardsforMathematicalPracticeandtheContentStandardsforGeometryforgrades6–8asfoundathttp://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

CommonCoreStateStandardsforMathematicalPractice

Childrenshould…

1. Makesenseofproblemsandpersevereinsolvingthem.2. Reasonabstractlyandquantitatively.3. Constructviableargumentsandcritiquethereasoningofothers.

4. Modelwithmathematics.

5. Useappropriatetoolsstrategically.

6. Attendtoprecision.

7. Lookforandmakeuseofstructure.

8. Lookforandexpressregularityinrepeatedreasoning

Page 7: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

7

CommonCoreStateStandardsforGeometry:

GeometryGradeSix:Solvereal-worldandmathematicalproblemsinvolvingarea,surfacearea,andvolume.

1. Findtheareaofrighttriangles,othertriangles,specialquadrilaterals,andpolygonsbycomposingintorectanglesordecomposingintotrianglesandothershapes;applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

2. Findthevolumeofarightrectangularprismwithfractionaledgelengthsbypackingitwithunitcubesoftheappropriateunitfractionedgelengths,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengthsoftheprism.ApplytheformulasV=lwhandV=bhtofindvolumesofrightrectangularprismswithfractionaledgelengthsinthecontextofsolvingreal-worldandmathematicalproblems.

3. Drawpolygonsinthecoordinateplanegivencoordinatesforthevertices;use

coordinatestofindthelengthofasidejoiningpointswiththesamefirstcoordinateorthesamesecondcoordinate.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

4. Representthree-dimensionalfiguresusingnetsmadeupofrectanglesandtriangles,andusethenetstofindthesurfaceareaofthesefigures.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

GeometryGradeSeven:Draw,construct,anddescribegeometricalfiguresanddescribetherelationshipsbetweenthem.

1. Solveproblemsinvolvingscaledrawingsofgeometricfigures,includingcomputingactuallengthsandareasfromascaledrawingandreproducingascaledrawingatadifferentscale.

2. Draw(freehand,withrulerandprotractor,andwithtechnology)geometricshapeswithgivenconditions.Focusonconstructingtrianglesfromthreemeasuresofanglesorsides,noticingwhentheconditionsdetermineauniquetriangle,morethanonetriangle,ornotriangle.

3. Describethetwo-dimensionalfiguresthatresultfromslicingthree-dimensionalfigures,asinplanesectionsofrightrectangularprismsandrightrectangularpyramids.

Page 8: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

8

Asmathematicianswewillalsoconveytoyouthebeautyofoursubject.Mathematiciansviewmathematicsasthestudyofpatternsandstructures.Wewanttoshowyouhowtoreasonlikeamathematician–andwewantyoutoshowthistoyourstudentstoo.Thiswayofreasoningisjust

GeometryGradeEight:Understandcongruenceandsimilarityusingphysicalmodels,transparencies,orgeometrysoftware.

1. Verifyexperimentallythepropertiesofrotations,reflections,andtranslations:a. Linesaretakentolines,andlinesegmentstolinesegmentsofthesamelength.b. Anglesaretakentoanglesofthesamemeasure.c. Parallellinesaretakentoparallellines.

2. Understandthatatwo-dimensionalfigureiscongruenttoanotherifthesecondcanbe

obtainedfromthefirstbyasequenceofrotations,reflections,andtranslations;giventwocongruentfigures,describeasequencethatexhibitsthecongruencebetweenthem.

3. Describetheeffectofdilations,translations,rotations,andreflectionsontwo-dimensionalfiguresusingcoordinates.

4. Understandthatatwo-dimensionalfigureissimilartoanotherifthesecondcanbe

obtainedfromthefirstbyasequenceofrotations,reflections,translations,anddilations;giventwosimilartwo-dimensionalfigures,describeasequencethatexhibitsthesimilaritybetweenthem.

5. Useinformalargumentstoestablishfactsabouttheanglesumandexteriorangleoftriangles,abouttheanglescreatedwhenparallellinesarecutbyatransversal,andtheangle-anglecriterionforsimilarityoftriangles.Forexample,arrangethreecopiesofthesametrianglesothatthesumofthethreeanglesappearstoformaline,andgiveanargumentintermsoftransversalswhythisisso.

UnderstandandapplythePythagoreanTheorem.

6. ExplainaproofofthePythagoreanTheoremanditsconverse.

7. ApplythePythagoreanTheoremtodetermineunknownsidelengthsinrighttrianglesinreal-worldandmathematicalproblemsintwoandthreedimensions.

8. ApplythePythagoreanTheoremtofindthedistancebetweentwopointsinacoordinatesystem.

Solvereal-worldandmathematicalproblemsinvolvingvolumeofcylinders,cones,andspheres.

9. Knowtheformulasforthevolumesofcones,cylinders,andspheresandusethemtosolvereal-worldandmathematicalproblems.

Page 9: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

9

asimportantasanycontentyouteach.Whenyoustandbeforeyourclass,youarearepresentativeofthemathematicalcommunity;wewillhelpyoutobeagoodone.Noonecandothisthinkingforyou.Mathematicsisn’tasubjectyoucanmemorize;itisaboutwaysofthinkingandknowing.Youneedtodoexamples,gatherdata,lookforpatterns,experiment,drawpictures,think,tryagain,makearguments,andthinksomemore.Thebigideasofgeometryarenotalwayseasy.EachsectionofthisbookbeginswithaClassActivity.Theactivityisdesignedforsmall-groupworkinclass.Someactivitiesmaytakeyourclassaslittleas30minutestocompleteanddiscuss.Othersmaytakeyoutwoormoreclassperiods.Nosolutionsareprovidedtoactivities–youwillhavetosolvethemyourselves.TheReadandStudy,ConnectionstotheMiddleGrades,andHomeworksectionsarepresentedwithinthecontextoftheactivityideas.

Page 10: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

10

TableofContentsLetnoonedestituteofgeometryentermydoors.

InscriptionovertheentrancetoPlato’sacademyCHAPTER1:ARGUINGFROMAXIOMSClassActivity1:TownRules…………..……………..……….…...…….………...……………………………………..p.14 AxiomaticSystemsandModels TheLanguageofMathematics NCTMReasoningandProofStandards ClassActivity2A:TwoFiniteGeometries………........…………..……………….……………………………….p.20

AffineandProjectiveFiniteGeometryAxioms Parallelism

Negation,Quantifiers,ConverseandContrapositiveformsCommonCoreStandardsforMathematicalPractice

ClassActivity2B:PointsofPappus….……….……….…………………….……………………………………………p.32 ClassActivity3:ReadingEuclid…………………………..……………………………………………………………….p.33 Euclid’sAxioms EuclideanLinesandAngles ClassActivity4:ConstructionZone……………………………………………………………………….……………..p.40 StraightEdgeandCompassConstruction SegmentandAngleBisectorsClassActivity5:IfYouBuildit….…………………………………………………………………………………….…….p.46 MoreConstructions Polygons TriangleCongruenceTheoremsSummaryofBigIdeasfromChapterOne………………………………………………………………………………p.52

CHAPTER2:LEARNINGANDTEACHINGEUCLIDEANGEOMETRYClassActivity6:CircularReasoning…..……………………….……….………………………………….....…….…p.54

EuclideanCircles Incenter,Orthocenter,CircumcenterandCentroid vanHielelevels

Page 11: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

11

ClassActivity7:FindingFormulas………………..……………………………………………………..……………….p.62 LengthandArea MakingSenseofMeasurementFormulas ScalingClassActivity8:PlayingPythagoras…………..…………………………………………………………………….….p.67 ThePythagoreanTheorem ClassActivity9:NothingbutNet………………………………………………………………………………………….p.72 VolumeandSurfaceArea RightversusObliquePrisms PolyhedraClassActivity10:Slides,TurnsandFlips…………………….…………………….....................................p.78 RigidMotionsofthePlane

ClassActivity11:TransformativeThinking……………………………………..…………………………………..p.86

CompositionsofRigidMotionsClassActivity12:ExpandingandContracting……………………………………………………………………..…p.87

Dilations Similarity

ClassActivity13:StrictlyPlatonic(Solids)……………………………………………………………………………..p.91 SymmetriesinSpace

Congruence ClassActivity14:BuriedTreasure……………………….……………………………………………………………….p.98 TheCartesianPlane AnalyticGeometry

ClassActivity15:PlagueofLocus….……………………………………………………………………………………p.105 TheConicSections

EquationsofThingsGeometric ClassActivity16:ComparingStandards……………………...………………………………………………….....p.111 SummaryofBigIdeasfromChapterTwo…………….……………………………………………………………..p.112

Page 12: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

12

CHAPTER3:EXPLORINGSTRANGENEWWORLDS:NON-EUCLIDEANGEOMETRIESClassActivity17:LifeonaOne-SidedWorld…………………………….…………………………………..……p.114 TheMöbiusStrip TheKleinBottle IdentificationSpacesClassActivity18:LifeinaTaxicabWorld…………………………………....……………………………………..p.119 MeasuringDistance CirclesandTriangles ClassActivity19:LifeonaSphericalWorld…………………………………….………………………………….p.124 LinesandDistance Parallelism TrianglesonaSphere ClassActivity20:LifeonaHyperbolicWorld……………………………………..................................p.132 ParallelLinesinHyperbolicSpace Triangles,Rectangles,andaRight-AngledPentagonClassActivity21:LifeinaFractalWorld……………………………………………………………………………..p.137 SelfSimilarity:NaturalandMathematical PerimeterandArea TheIterativeProcessandDimensionSummaryofBigIdeasfromChapterThree………………………………………………………………………….p.145

APPENDICES

References………………………………………………………………..……………………………………………………….p.147Euclid’sTheoremsandPostulates….………………………………………………………………….............…...p.148Glossary………………………………………………………………………….....................................................p.154PolygonCut-outs……………………………………………………………………………………………………………….p.165HyperbolicPaperTemplate………………………………………………………………………………………………..p.170

Page 13: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

13

CHAPTERONE

ArguingfromAxioms

Page 14: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

14

ClassActivity1:TownRules

Themathematicianstartswithafewpropositions,theproofofwhichissoobviousthattheyarecalledselfevident.Therestofhisworkconsistsofsubtledeductionsfromthem.

ThomasHenryHuxley(MSQ) WelcometothesuperfuntownofHilbert!Wehaveafewrulesherejusttobesureallourresidentshaveplentyoffriendsandhobbies.InHilbert,aclubisamembershiplist,andnotwodistinctclubshavethesamemembershiplist.Herearetheruleslegislatedforourclubs:

a) Everytwotownspeoplehaveaclubtowhichtheybothbelong,andthatclubisunique(meaningthatforeachpairofpeoplethereisonlyonesuchclub).

b) Everyclubhasatleasttwomembers.

c) Noclubcontainsallthetownspeople.

d) Ifyounameaclubandatownspersonwhoisnotamemberofthatclub,therewillbe

oneandonlyoneclubthatpersonbelongstothathasnomembersincommonwiththefirstclub.

WeareinterestedinhowmanypeoplecouldliveinHilbertandfollowtheserules.Checkfortownpopulationsofonethroughfive.Ineachcase,arguethatyouarecorrect.Anyconjectures(guesses)abouttownpopulationslargerthanfive?

Page 15: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

15

ReadandStudy Geometryisthescienceofcorrectreasoningonincorrectfigures.

GeorgePolya(MQP)Whatisgeometryallabout?Duringthiscoursewewilltrytogiveyouseveraldifferentwaysofthinkingaboutgeometry.Thefirstisthis:Geometryisthestudyofidealshapesandspacesandtherelationshipsthatexistamongthem.Thewordidealisimportant.Geometry–andallmathematicsforthatmatter–isnotaboutrealobjects.Thinkaboutit,haveyoueverseenacircle?You’veseenplentyofrepresentationsofcircles,butanactualcircle(allpointsinaplaneequidistantfromagivenpoint)existsonlyinourminds.Andsodopointsandplanes.Allmathematicalobjectsarelikethis–theyareideas.Doinggeometry(andallmathematics)inaformalsensemeansstartingwithsomedefined(andsomeundefined)idealobjects,andsomerules(calledaxioms)andreasoningtoseewhatis“true”abouttheobjects.Weput“true”inquotes,becausewedon’tmeantrueinatheologicalsense,butratherwemean“true”withinthesystemwehavecreated.Hilbertisanexampleofanaxiomaticsystem.Wedescribedanobjectcalleda“club,”wegaveyousomerules(axioms)aboutthebehavioroftheseclubs,andthenweleftyoufigureoutwhatwas“true”aboutthetown.Hilbertisalsoageometry.Changetherulesabouttownspeopleandclubstorulesaboutpointsandlinesandyouwillseewhatwemean.TakeaminutetocomparethefollowingrulestotheonesintheTownRulesactivity.(Didyounoticetheitalics?Thatisyoursignaltodosomething.Mathematiciansreadmathbookswithpencilinhand.Weanswerquestionsandverifyanythingtheauthorsclaimtobetrue.Startdoingthistoo.Theitalicswillhelpyouremembertoslowdownandthinkwhileyouread.)

a) Everytwopointsareonauniqueline.b) Everylinecontainsatleasttwopoints.c) Nolinecontainsallthepoints.d) Ifyounamealineandapointnotontheline,therewillbeoneandonlyone

lineonthepointthatisparalleltothegivenline.Axiomaticsystemsincludefiveparts:undefinedterms(like‘member’),definedterms(like‘club’),axioms(like“Everyclubhasatleasttwomembers.”),theorems(thingsyoucandeducefromtheaxioms,like‘Hilbertcannothaveapopulationofexactlytwopeople.’)andproofsoftheorems(argumentsthatthetheoremsaretruebasedontheaxioms).

Page 16: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

16

Okay,beforewegoanyfurther,let’sclarifysomeofthelanguagethatmathematiciansusetotalkabouttheprocessofdoingmathematics.Herearesomeimportantdefinitions:

1) axiom:arulethatthemathematicalcommunityhasdecidetoacceptastruewithoutproof.Anaxiomisanassumption.

2) conjecture:aconjectureisahypothesisoraguessaboutwhatistruegiventheaxioms.Forexample,aftersomeexperiencewithHilbert,youmighthaveconjecturedthatthenumberofpeopleinHilbertmustbeaperfectsquare.

3) inductivereasoning:comingtoaconclusionbasedonexamples.Imightnoticethatthesun

rosethedaybeforeyesterday,itroseyesterday,anditrosetoday;soImightconcludethatthesunwillrisetomorrow.Thisisinductivereasoning.Thistypeofreasoningisoftenusedtogenerateaconjecture,butitisnotconsideredsufficientevidencebymathematicianstoproveageneralstatement.

4) deductivereasoning:comingtoconclusionbasedontheaxiomsandlogic.Thistypeof

reasoningisthehallmarkofmathematicalargument.

5) counterexample:acounterexampleisaspecificexamplethatshowsthataconjectureisfalse.Giveanexampleofacounterexample.

6) proof:amathematicalproofconsistsofadeductiveargumentthatestablishesthetruthof

aclaim.

7) theorem:atheoremisamathematicalstatementthathasbeenproventobetrue.Forexample,itisatheoremthatHilbertcannothaveapopulationofexactlythreepeople.Thisisnotstatedasaspecificaxiom,butyoucandeducethisbasedontheaxioms.Ourargumentgoessomethinglikethis:

SupposeAbe,Ben,andCalliveinHilbert.Then,becauserule(a)saysthateachpairmustbelongtoauniqueclubtogether,wemusthaveClub1consistingof,say,AbeandBen,Club2consistingofAbeandCal,andClub3consistingofBenandCal.Makecertainyouunderstandwhywemusthavethesethreeclubswhenwefollowrule(a).Wecannothave3peopleinanyclubbecauserule(c)statesthatallofthetownspeoplecannotbelongtooneclubtogether.Andwecannothaveanyclubsofonlyonepersonbecauserule(b)saysthateachclubmusthaveatleasttwomembers.SoClubs1,2,and3aretheonlypossibleclubswecanmakeandwemusthaveeachofthemtofollowrule(a).Makecertainyouunderstandwhyrules(b)and(c)forceustoconcludethatClubs1,2,and3aretheonlypossibleclubswecanmake.

Page 17: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

17

Thuswehaveonlyonecase(Clubs1,2,and3)toinvestigatewithrespecttorule(d).Rule(d)saysthatifInameaclub(say,Club2)andapersonnotinthatclub(say,Ben),ImustfindoneandonlyoneotherclubtowhichBenbelongsthatdoesnotcontainAbeorCal.Butthatisnotpossiblesincethereareonlytwootherclubs,Club1whichcontainsAbeandClub3whichcontainsCal.Makecertainyouunderstandwhywecannotfollowrule(d).Therefore,sincewehavealreadyarguedthatwecannotformanyotherclubs,thereisnowayBencanbelongtoaclubwithoutAbeorCal.Thusrule(d)cannotbemetwithexactlythreepeoplelivinginHilbertandwehavemadeourargumentitisnotpossibleforexactlythreepeopletoliveinHilbert.

Takesometimehereandaskyourselfifyoureallyunderstandwhatyoujustread.Didyouanswerallofthequestions?Canyouexplaintheargumenttosomeoneelse?Moststudentsareinthehabitofreadingtextbookstoocasually.Theprevioussectionistough–itcouldeasilytakeacarefulreader20to30minutestoreadtheprecedingfourparagraphswithunderstanding.Rememberwhatwesaidaboutmathematiciansreadingslowlyandthoughtfullywithapencilinhand?Takingthetimetoreadthistextlikeamathematicianwouldisoneofthesurestwaystodeepenyourunderstandingofgeometry.(Anotherwayistodoallthehomeworkproblemswiththesametypeofcarefulthought.)Thereareacoupleofthingswestriveforwhencreatinganaxiomaticsystem.First,weneedthattheaxiomsbeconsistent.Inotherwords,theaxiomsshouldn’tcontradictoneanother.Second,wewantthesystemasleanaspossible–noredundancy.If(andonlyif)theaxiomsareconsistent,thenthereexistsamodelforthesystem.(KurtGödelprovedthistheoremin1930.)Inmakingtheargumentaboveweattemptedtocreateamodelofthesystemforthreepeople.Wegavespecificnamestothethreepeople(Abe,Ben,andCal)andnamesandmemberliststothethreeclubsweformed:Club1={Abe,Ben},Club2={Abe,Cal},andClub3={Ben,Cal}.Toformamodelwesimplyidentifyeachobjectinthesystemwithaconcreterepresentationinsuchawaythatthedefinitionsandrulesofthesystemmakesense.Amodelisakindof“superexample.”Itisaconcretewayto“see”amathematicalstructure.ThereareseveralpossiblemodelsforthefirstthreerulesofthePeopleandClubssystemforthreepeople.Wealreadysawthatthepeoplecouldbenamedandtheclubscouldbemodeledassetsofnames.Foranothermodel,wecouldleteachpersonbeoneofthelettersA,B,Candletaclubberepresentedbyalinesegment.Thismodelwouldlooklikethis:

B

A C

Page 18: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

18

Eventhoughthesetwomodelslookdifferenttheyrepresentthesamesystem,thesamesetofinformationabouttherelationshipsbetweenthethreepeople(points)andtheclubs(lines)towhichtheybelong.Sometimesitisveryusefultohavemorethanonewaytolookat,orrepresent,thesamethinginmathematics.Itisimportanttorecognizewhendifferent-lookingobjectshavethesameunderlyingstructureorthesamesetofproperties.Youprobablyfoundafour-personmodelforthetownofHilbert.MaybeyouthoughtofasetofnamesandclubmembershipliststhatsatisfiedallHilbert’saxioms.Perhapsyoudrewasetofpointsandlinestoshowclubsthatmetalltheaxioms.Inanycase,youcreatedasetofobjectsandinterpretationsfortheundefinedtermsinsuchamannerthatalltheaxiomsweretrueatthesametimeusingyourinterpretations.Thatis,youcreatedamodelfortheaxiomsystem.Iftheaxiomsarenotconsistent,therecanbenomodel.Readthiswholesectionagain.Itisimportanttounderstandtheseideas.Andnowwecangiveyouaseconddefinitionofgeometry.Ageometryisanaxiomaticsystemaboutobjectscalled“points”andcollectionsofpointscalled“lines”andtherelationshipsbetweenpointsandlines,thatiswesayapointis“on”alineandalineis“on”(orcontains)apoint.Itmaysurpriseyoutolearnthattheremanygeometries.Euclideangeometryistheonetaughtinschool,anditisveryusefulforworkingonflatsurfaces.However,ifwewanttotalkaboutlinesandtrianglesonacurvedsurfacesuchasasphere(alsoapracticalconcern,sinceweliveonthesurfaceofasphere),weneedadifferentgeometry.TherulesofEuclidcan’tallbeobeyedonasphere.TheHilbertsystemforfourpeopleisalsoageometry.Beforewemoveontomakesomeconnectionstothemiddlegrades,thereareseveralimportantwordsusedintheTownRulesthatweneedtotalkabout.Thewordsareevery,unique,atleast,oneandonlyone,andall.Thesewordsareexamplesofwhatmathematicianscallquantifiers,wordsthattellussomethingimportantabouthowmanyobjectsareinvolvedinthestatement.Otherquantifyingwordsandphrasesaresome,exactly,atmost,each,thereis.Itiscrucialtounderstandthedistinctionsbetweenthesewordsandtousethemcarefullyinmakingarguments.Youwillbeaskedtodosointhehomeworkset. Homework: Childrenarenotvesselstobefilled,butlampstobelighted. HenrySteeleCommager

1) GobackanddoallthethingsinitalicsintheReadandStudysection.

2) Considerthefollowingsixstatements.Whichcarrythesamemeaning?Whichcanbetrueatthesametime,eventhoughtheydonotcarrythesamemeaning?Why?Whichcannotbetrueatthesametime?Why?

a) Thereisacatlivinginmyhouse.

Page 19: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

19

b) Therearethreecatslivinginmyhouse.c) Ihaveexactlyonedoglivinginmyhouse.d) Thereisoneandonlyonedoglivinginmyhouse.e) Thereareatleastthreeanimalslivinginmyhouse.f) Someoftheanimalslivinginmyhousehavefourlegs.

3) Underlineeachofthequantifiersfoundinthestatementsintheprecedingproblem.

Explainwhateachonetellsyouaboutthenumberofanimalslivinginmyhouse

4) Provethat1+2+3+….+(n–1)+n=½[n×(n+1)].

5) Hereisanaxiomaticsystemwiththeundefinedtermscorner,square,andonandthefollowingaxioms:

I. Thereisasquare.II. Eachsquareisonexactlyfourdistinctcorners.III. Foreachsquare,thereareexactlyfourdistinctsquareswithexactlytwocorners

onthegivensquare.IV. Eachcornerisonexactlyfourdistinctsquares.

a) Createaninfinitemodelintheplaneforthissystem.b) Createafinitemodelforjustthefirstthreeaxioms(inotherwords,yoursetofobjects

willbefinite).c) Seeifyoucancreateafinitemodelforallfouraxioms.

6) HereareaxiomsforTriadGeometry:

I. Thereareexactlythreepoints.II. Eachpairofpointsisonexactlyoneline.III. Nolinecontainsallthepoints.

a) Makeamodelforthisfinitegeometryusingdotsaspointsandsegmentsaslines.Can

therebemorethanoneconfigurationthatsatisfiestheseaxioms?Explain.b) Nowmakeamodelusinglettersaspointsandpairsoflettersaslines.c) YourfirstmodelwiththedotsandsegmentswasaEuclideanmodel(onebasedon

geometryintheinfiniteflatplane)anditmighthavebeenmisleadingbecauselinesegmentsintheEuclideansensedonotexistinfinitegeometry.ListsomeotherfamiliarEuclideanobjectsthatdon’texistinanyfinitegeometry.

Page 20: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

20

ClassActivity2A:TwoFiniteGeometries

Projectivegeometryisallgeometry. ArthurCayley(MQS)HereisanaxiomaticsystemforAffinePlaneFiniteGeometries:Wehaveafinitesetof‘points’and‘lines’sothatthefollowingaretrue(notethatagain‘point,’‘line’and‘on’areundefinedterms):

I. Everytwodistinctpointshaveexactlyonelineonthemboth.II. Givenalineandapointnotonthatline,thereisexactlyonelineonthe

pointthathasnopointsonthefirstline.III. Everylineisonatleasttwopoints.IV. Thereexistthreenon-collinearpoints.

Anaffineplanewithnpointsoneachlineissaidtohaveordern.

a) Sketchamodelforanaffineplaneoforder2.b) IsHilbertanaffinegeometry?Explain.c) Hereismodelforanaffineplaneoforder3.Checktoseethatitsatisfiesallthe

axioms.

Affineplaneoforder3

(Thisactivityiscontinuedonthenextpage.)

Page 21: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

21

HereisanaxiomaticsystemforProjectivePlaneFiniteGeometries.

I. Everytwodistinctpointshaveexactlyonelineonthemboth.II. Everytwolineshaveexactlyonepointonthemboth.III. Everylineisonatleastthreepoints.IV. Thereexistthreenon-collinearpoints.

Aprojectiveplaneofordernhasn+1pointsoneachline.Wearegoingtodescribehowtosketchamodelofaprojectiveplaneofordertwobystartingwithamodeloftheaffineplaneofordertwo(seebelow)andaddingsomestructure.Hereistheplanforyourgrouptofollow:Collectthelinesparalleltoeachotherinaclass(inourpicture,eachsetofmutuallyparallellinesisthesamecolor).Foreachofthen+1classesofparallellines(inthiscasetherearethreeclasses),addanewpointthatwillbeoneachofthoselines(youmayneedtoextendthemandcurvethemaroundsothattheyintersect).Thenaddanothernewlinecontainingexactlyallofthesen+1newpoints.Tryit.

d) Howmanypointsareoneachline?Howmanylinesoneachpoint?Howmanypointstotalareinaprojectiveplaneoforder2?Howmanylines?

e) Givenalineandapointnotontheline,howmanylinesaretherethroughthegivenpointthatareparalleltothegivenline?

Page 22: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

22

ReadandStudy

...tocharacterizetheimportofpuregeometry,wemightusethestandardformofamovie-disclaimer:Noportrayalofthecharacteristicsofgeometricalfiguresorofthespatialpropertiesofrelationshipsofactualbodiesisintended,andanysimilaritiesbetweentheprimitiveconceptsandtheircustomarygeometricalconnotationsarepurelycoincidental.

CarlG.Hempel,inTheWorldofMathematicsAfinitegeometryconsistsofafinitenumberofobjects(typicallycalledpoints)andtheirrelationships(typicallydescribedintermsofpointsbeing‘on’lines).Theterms‘point,’‘line,’andtherelationship‘on’areusuallyundefined.Thepropertiesareestablishedbyasetofaxiomsthatgoverntherelationships.Hilbertisanexampleofafinitegeometryifwethinkofpeopleaspointsandclubsaslinesandthetownrulesastheaxioms.TriadGeometryisanotherexampleofafinitegeometry. Therearetwotypesoffinitegeometriesthatareofparticularinteresttomathematicians:affineandprojective.(Infactsomemathematiciansdefineafinitegeometryinsuchawaythatthesearetheonlytwotypesoffinitegeometries.)Themodelyoumadeintheclassactivityisanexampleofourfirstprojectivegeometry.Whatistheprimarydistinctionbetweenthesetwoflavorsoffinitegeometry?Inaffineplanegeometry,throughapointnotonagivenline,wegetoneparallelline.Inprojectiveplanegeometry,wegetnone.Lookattheaxiomsforeachgeometrytoseewhichaxiomtellsyouaboutparallelism.Itmighthelptorecallthattwolineskandlareparallel,writtenk||l,iftheyareinthesameplaneandnopointisonbothkandl.Mathematicianshaveproventhataffineplanesofordernexistwhenevern=pk(wherepisprimeandkisawholenumber).Butwedon’tknowyetwhichothervaluesofngiveusaffineplanes.Wecallthatanopenquestion.Peopleareprobablyworkingonitrightnow. Intheclassactivity,youworkedtounderstandaxiomsandcreatemodelsfortheaxiomaticsystems.Weknowthatworkingwithaxiomsisn’teasy.Asyouworkonthistext,pleasekeepinmindthatouraimistohelpyouunderstandwhatageometryisfromtheperspectiveofmathematicians.Thespecificgeometriesweintroduceandthespecifictheoremsaboutthemarenotasimportantastheideathattherearemanygeometries,eachwithitsownaxiomsanditsownmodels,andthereisawayofthinkingandalanguagethatweusetostudythemall.ThisReadandStudyisdevotedtothelanguageofmathematicsthatyouwillneedtostudyaxiomsystems.Inparticular,belowwe’lldiscussseveraldistinctionsthatarenotalwaysimportantineverydayspeechbutarevitalforunderstandingmathematicalarguments.

Page 23: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

23

Let’sdoit.Distinction1:(Astatementanditsnegation).IfwehavesomestatementP,thenthenegationofPisthestatement“NotP.”IfPistrue,then“notP”isfalse.AndifPisfalse,then“notP”istrue.Forexample,thenegationofthestatement,“Ilovegeometry,”isthestatement“Idonotlovegeometry.”Distinction2:(orversusand.)Hereisacasewhenmath-speakdiffersabitfromeverydayconversation.Whenamathematiciansayssomethinglike‘xisanelementofAorB,’(HereassumeAandBaresets–noticehowweusecapitalstodenotesetsandsmalllettersforelementsofsets–thisisprettytypical–butnotaruleoranything)shemeansthatxcouldbeinA,xcouldbeinBorxcouldbeinbothatthesametime.Whenshesays‘xisanelementofAandB”shemeansxisdefinitelyinboth.Decidewhethereachofthefollowingstatementsistrue:

1) Asquarehasfoursidesandatrianglehasfoursides.2) Asquarehasfoursidesoratrianglehasfoursides.3) Asquarehasfoursidesandatrianglehasthreesides.4) Asquarehasfoursidesoratrianglehasthreesides

Nowlet’sseehowwenegatean“and”sentencelike3)Asquarehasfoursidesandatrianglehasthreesides.Noticethatfortheabovesentencetobetrue(whichitis),bothpartsmustbetrue.Iftheabovesentenceisnottruetheneitherasquaredoesn’thavefoursidesoratriangledoesn’thavethreesides.Thatmeansthenegationisthesentence:

Asquaredoesnothavefoursidesoratriangledoesnothavethreesides.Inotherwords,“not(AandB)”means“(notA)or(notB).”Stopandthinkthisthrough.Writethenegationofthesentence:Iatepeasandpotatoes.Whataboutthenegationofan“or”sentence?Consider(true)sentence2):Asquarehasfoursidesoratrianglehasfoursides.Forthistobefalse,bothasquarecan’thavefoursidesandatrianglecan’thavefoursides.So“not(PorQ)”isequivalentto“(notP)and(notQ).”

Asquaredoesnothavefoursidesandatriangledoesnothavefoursides.

Writethenegationofthesentence:xisanelementofsetAorxisanelementofsetB.

Page 24: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

24

Distinction3:(converseversuscontrapositive)Manymathematicalstatementsareconditionalstatements(“if-then”statements).Herearesomeexamples.Decidewhethereachistrueorfalse,andineachcaseexplainyourthinking.

1) Ifapolygonisasquare,thenitisarectangle.

2) Ifapolygonisarectangle,thenitisasquare.

3) IfyouliveinLosAngeles,thenyouliveinCalifornia.

4) Ifyoudon’tliveinCalifornia,thenyoudon’tliveinLosAngeles.

5) IfitisFriday,thentomorrowisSaturday.

Mathematicianscallthestatement‘IfQ,thenP’theconverseof‘IfP,thenQ’.SoStatement2istheconverseofStatement1above.Notethatthosetwostatementsarenotlogicallyequivalent(notalwaystrueatthesametime.).Astatementoftheform‘IfnotQ,thennotP’iscalledthecontrapositiveofthestatement‘IfP,thenQ.’Thecontrapositiveformislogicallyequivalentto‘IfP,thenQ”.SoStatement3andStatement4abovearelogicallyequivalentstatements.Thinkaboutittomakesurethatseemsright.WhatistheconverseofStatement5above?Howaboutthecontrapositive?Sometimeswhenyouwanttoprovethatanif/thenstatementistrue,itiseasiertoprovethatthecontrapositivestatementistruethanitistoprovetheoriginalstatementistrue.Andthepointhereisthatbyprovingthecontrapositiveyoualsoprovetheoriginal(becausetheyareequivalentstatements).Distinction4:(“Thereexists…”versus“Forall…”)Recallthatthesesentencestartersarecalledquantifiers,andtheytellyouwhetherthestatementisclaimingthatsomethingexists(thereisatleastone),orwhetherthestatementisageneralone(meaningthatitistrueforeverycase).Herearesomeexamples:

1) Everyclubhasatleastfourmembers.

2) Thereexistsaclubwithexactlyfourmembers.

3) Foreveryclubandforeachtownspersonwhoisnotamemberofthatclub,therewillexistoneandonlyoneclubthatpersonbelongstothathasnomembersincommonwiththefirstclub.

Noticethatthefirststatementmakesaclaimaboutallclubs,whereasthesecondstatementonlymakesaclaimaboutatleastoneclub.Thethirdstatementusesacombinationofquantifiers–whichbringsustoournextdistinction.

Page 25: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

25

Distinction5:(‘Thereexistsanx,suchthatforally…’versus‘Forally,thereexistsanx,suchthat…’)Belowaretwostatementsthatmeanexactlythesamethinginreallifetalk,buthavequitedifferentmeaningsinmathematics.Canyoufigureouthowthefollowingstatementsmightbedifferent? Thereissomeoneforeveryone. Foreveryone,thereissomeone.Inmathematics-speak,thefirststatementsaysthatthereisonepersonfortheentiregroup--onepersonwhoisforallofus.Thesecondstatementsaysthateachofushasourownspecialperson.Foreachofus,thereissomeone,andmysomeonemaybedifferentfromyours(atleastIhopeso).Herearesomeexamplesofhowthislooksinamathematicalcontext.Decidewhethereachistrueorfalse.Makeanargumentineachcase.Fornow,assumebothxandymustbeintegers(elementsoftheset{…-3,-2,-1,0,1,2,3…}).

a) Forallx,thereexistsay,suchthatx+y=0.b) Thereexistsanx,suchthatforally,x+y=0.c) Thereexistsanx,suchthatforally,xy=0d) Forallxandforally,x+yisaninteger.e) Forallxandforally,x+y=7.f) Thereexistsanxandthereexistsay,suchthatx+y=7.g) Forallx,thereexistsaysuchthatx+y=7.

ConnectionstotheMiddleGrades:

Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsinconstructingarguments.

Youmayhavenoticedthatwehavebeentalkingquiteabitaboutfacetsof“doingmathematics”ingeneralinthesefirstsections.Thisisbecauseyourmathematicalpractices–yourhabitsofmindandhabitsofbehaviorregardingmath–willprovideacontextforallofyourthinkingandworkingeometry,andtheywillalsogiveyourfuturestudentsamodelofwhatitmeanstodomathematics.BuildingontheworkoftheNationalCouncilofTeachersofMathematics(NCTM),theteamofeducatorsandmathematicianswhowrotetheCommonCoreStandardsforMathematicssingledouteightStandardsforMathematicalPracticethatstudentsshouldlearnduringthecourseof

Page 26: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

26

theirschooling.Itwillbeyourjob,astheirteacher,tohelpthemtoestablishthesemathematicspractices.CarefullyreadthebelowCommonCoreStandardsforMathematicalPractices(CommonCoreStateStandardsasfoundathttp://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf).Wewillreturntothesethroughoutthetext.

Mathematics|StandardsforMathematicalPracticeTheStandardsforMathematicalPracticedescribevarietiesofexpertisethatmathematicseducatorsatalllevelsshouldseektodevelopintheirstudents.Thesepracticesrestonimportant“processesandproficiencies”withlongstandingimportanceinmathematicseducation.ThefirstofthesearetheNCTMprocessstandardsofproblemsolving,reasoningandproof,communication,representation,andconnections.ThesecondarethestrandsofmathematicalproficiencyspecifiedintheNationalResearchCouncil’sreportAddingItUp:adaptivereasoning,strategiccompetence,conceptualunderstanding(comprehensionofmathematicalconcepts,operationsandrelations),proceduralfluency(skillincarryingoutproceduresflexibly,accurately,efficientlyandappropriately),andproductivedisposition(habitualinclinationtoseemathematicsassensible,useful,andworthwhile,coupledwithabeliefindiligenceandone’sownefficacy).

1. Makesenseofproblemsandpersevereinsolvingthem.Mathematicallyproficientstudentsstartbyexplainingtothemselvesthemeaningofaproblemandlookingforentrypointstoitssolution.Theyanalyzegivens,constraints,relationships,andgoals.Theymakeconjecturesabouttheformandmeaningofthesolutionandplanasolutionpathwayratherthansimplyjumpingintoasolutionattempt.Theyconsideranalogousproblems,andtryspecialcasesandsimplerformsoftheoriginalprobleminordertogaininsightintoitssolution.Theymonitorandevaluatetheirprogressandchangecourseifnecessary.Olderstudentsmight,dependingonthecontextoftheproblem,transformalgebraicexpressionsorchangetheviewingwindowontheirgraphingcalculatortogettheinformationtheyneed.Mathematicallyproficientstudentscanexplaincorrespondencesbetweenequations,verbaldescriptions,tables,andgraphsordrawdiagramsofimportantfeaturesandrelationships,graphdata,andsearchforregularityortrends.Youngerstudentsmightrelyonusingconcreteobjectsorpicturestohelpconceptualizeandsolveaproblem.Mathematicallyproficientstudentschecktheiranswerstoproblemsusingadifferentmethod,andtheycontinuallyaskthemselves,“Doesthismakesense?”Theycanunderstandtheapproachesofotherstosolvingcomplexproblemsandidentifycorrespondencesbetweendifferentapproaches.

Page 27: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

27

2. Reasonabstractlyandquantitatively.Mathematicallyproficientstudentsmakesenseofquantitiesandtheirrelationshipsinproblemsituations.Theybringtwocomplementaryabilitiestobearonproblemsinvolvingquantitativerelationships:theabilitytodecontextualize—toabstractagivensituationandrepresentitsymbolicallyandmanipulatetherepresentingsymbolsasiftheyhavealifeoftheirown,withoutnecessarilyattendingtotheirreferents—andtheabilitytocontextualize,topauseasneededduringthemanipulationprocessinordertoprobeintothereferentsforthesymbolsinvolved.Quantitativereasoningentailshabitsofcreatingacoherentrepresentationoftheproblemathand;consideringtheunitsinvolved;attendingtothemeaningofquantities,notjusthowtocomputethem;andknowingandflexiblyusingdifferentpropertiesofoperationsandobjects.

3. Constructviableargumentsandcritiquethereasoningofothers.Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsinconstructingarguments.Theymakeconjecturesandbuildalogicalprogressionofstatementstoexplorethetruthoftheirconjectures.Theyareabletoanalyzesituationsbybreakingthemintocases,andcanrecognizeandusecounterexamples.Theyjustifytheirconclusions,communicatethemtoothers,andrespondtotheargumentsofothers.Theyreasoninductivelyaboutdata,makingplausibleargumentsthattakeintoaccountthecontextfromwhichthedataarose.Mathematicallyproficientstudentsarealsoabletocomparetheeffectivenessoftwoplausiblearguments,distinguishcorrectlogicorreasoningfromthatwhichisflawed,and—ifthereisaflawinanargument—explainwhatitis.Elementarystudentscanconstructargumentsusingconcretereferentssuchasobjects,drawings,diagrams,andactions.Suchargumentscanmakesenseandbecorrect,eventhoughtheyarenotgeneralizedormadeformaluntillatergrades.Later,studentslearntodeterminedomainstowhichanargumentapplies.Studentsatallgradescanlistenorreadtheargumentsofothers,decidewhethertheymakesense,andaskusefulquestionstoclarifyorimprovethearguments.

4. Modelwithmathematics.Mathematicallyproficientstudentscanapplythemathematicstheyknowtosolveproblemsarisingineverydaylife,society,andtheworkplace.Inearlygrades,thismightbeassimpleaswritinganadditionequationtodescribeasituation.Inmiddlegrades,astudentmightapplyproportionalreasoningtoplanaschooleventoranalyzeaprobleminthecommunity.Byhighschool,astudentmightusegeometrytosolveadesignproblemoruseafunctiontodescribehowonequantityofinterestdependsonanother.Mathematicallyproficientstudentswhocanapplywhattheyknowarecomfortablemakingassumptionsandapproximationstosimplifyacomplicatedsituation,realizingthatthesemayneedrevisionlater.Theyareabletoidentifyimportantquantitiesinapracticalsituationandmaptheirrelationshipsusingsuchtoolsasdiagrams,two-waytables,graphs,flowchartsandformulas.Theycananalyzethoserelationshipsmathematicallytodrawconclusions.Theyroutinelyinterprettheirmathematicalresultsinthecontextofthesituationandreflectonwhethertheresultsmakesense,possiblyimprovingthemodelifithasnotserveditspurpose.

Page 28: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

28

5. Useappropriatetoolsstrategically.

Mathematicallyproficientstudentsconsidertheavailabletoolswhensolvingamathematicalproblem.Thesetoolsmightincludepencilandpaper,concretemodels,aruler,aprotractor,acalculator,aspreadsheet,acomputeralgebrasystem,astatisticalpackage,ordynamicgeometrysoftware.Proficientstudentsaresufficientlyfamiliarwithtoolsappropriatefortheirgradeorcoursetomakesounddecisionsaboutwheneachofthesetoolsmightbehelpful,recognizingboththeinsighttobegainedandtheirlimitations.Forexample,mathematicallyproficienthighschoolstudentsanalyzegraphsoffunctionsandsolutionsgeneratedusingagraphingcalculator.Theydetectpossibleerrorsbystrategicallyusingestimationandothermathematicalknowledge.Whenmakingmathematicalmodels,theyknowthattechnologycanenablethemtovisualizetheresultsofvaryingassumptions,exploreconsequences,andcomparepredictionswithdata.Mathematicallyproficientstudentsatvariousgradelevelsareabletoidentifyrelevantexternalmathematicalresources,suchasdigitalcontentlocatedonawebsite,andusethemtoposeorsolveproblems.Theyareabletousetechnologicaltoolstoexploreanddeepentheirunderstandingofconcepts.

6. Attendtoprecision.Mathematicallyproficientstudentstrytocommunicatepreciselytoothers.Theytrytousecleardefinitionsindiscussionwithothersandintheirownreasoning.Theystatethemeaningofthesymbolstheychoose,includingusingtheequalsignconsistentlyandappropriately.Theyarecarefulaboutspecifyingunitsofmeasure,andlabelingaxestoclarifythecorrespondencewithquantitiesinaproblem.Theycalculateaccuratelyandefficiently,expressnumericalanswerswithadegreeofprecisionappropriatefortheproblemcontext.Intheelementarygrades,studentsgivecarefullyformulatedexplanationstoeachother.Bythetimetheyreachhighschooltheyhavelearnedtoexamineclaimsandmakeexplicituseofdefinitions.

7. Lookforandmakeuseofstructure.Mathematicallyproficientstudentslookcloselytodiscernapatternorstructure.Youngstudents,forexample,mightnoticethatthreeandsevenmoreisthesameamountassevenandthreemore,ortheymaysortacollectionofshapesaccordingtohowmanysidestheshapeshave.Later,studentswillsee7×8equalsthewellremembered7×5+7×3,inpreparationforlearningaboutthedistributiveproperty.Intheexpressionx2+9x+14,olderstudentscanseethe14as2×7andthe9as2+7.Theyrecognizethesignificanceofanexistinglineinageometricfigureandcanusethestrategyofdrawinganauxiliarylineforsolvingproblems.Theyalsocanstepbackforanoverviewandshiftperspective.Theycanseecomplicatedthings,suchassomealgebraicexpressions,assingleobjectsorasbeingcomposedofseveralobjects.Forexample,theycansee5–3(x–y)2as5minusapositivenumbertimesasquareandusethattorealizethatitsvaluecannotbemorethan5foranyrealnumbersxandy.

Page 29: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

29

Homework:

Discoveryconsistsofseeingwhateverybodyhasseenandthinkingwhatnobodyhasthought.

AlbertSzent-Gyorgyi1) Ifyouhaven’talreadydoneso,gobackanddoallthethingsinitalicsintheReadandStudy

section.

2) ThefirstCommonCoreStandardforMathematicalPracticeisaboutmakingsenseofproblemsandperseveringinsolvingthem.Readthatstandardagain.Towhatextentdoyoumonitoryourownthinkingasyousolveaproblem?DidyoudoanyofthethingsdescribedasyouworkedontheClassActivity?Explain.

3) Explain,asyouwouldtoyourmiddlegradesstudents,whyastatementoftheform‘not(A

orB)’isequivalentto‘(notA)and(notB).’Anexamplemayhelp.

4) HereisatheoremaboutthetownofHilbert:IfaclubinHilberthasexactlynmembers,thenalloftheclubshaveexactlynmembers.

a) Statetheconverseofthistheorem.Isittrue?

b) Statethecontrapositiveofthistheorem.Isittrue?

8. Lookforandexpressregularityinrepeatedreasoning.

Mathematicallyproficientstudentsnoticeifcalculationsarerepeated,andlookbothforgeneralmethodsandforshortcuts.Upperelementarystudentsmightnoticewhendividing25by11thattheyarerepeatingthesamecalculationsoverandoveragain,andconcludetheyhavearepeatingdecimal.Bypayingattentiontothecalculationofslopeastheyrepeatedlycheckwhetherpointsareonthelinethrough(1,2)withslope3,middleschoolstudentsmightabstracttheequation(y–2)/(x–1)=3.Noticingtheregularityinthewaytermscancelwhenexpanding(x–1)(x+1),(x–1)(x2+x+1),and(x–1)(x3+x2+x+1)mightleadthemtothegeneralformulaforthesumofageometricseries.Astheyworktosolveaproblem,mathematicallyproficientstudentsmaintainoversightoftheprocess,whileattendingtothedetails.Theycontinuallyevaluatethereasonablenessoftheirintermediateresults.

Page 30: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

30

5) Eric’sGeometryhasthefollowingundefinedterms:book,library,on;andthissetofaxioms:

AxiomI:Thereisatleastonebook.AxiomII:Eachlibraryhasexactlyfourbooksonit.AxiomIII:Eachbookhasexactlytwolibrariesonit.

a) Makeamodelthatsatisfiestheaxioms.b) UseyourmodeltomakesomeconjecturesaboutEric’sGeometry.c) Seeifyoucanprovethatoneofyourconjecturesistrue.d) IsEric’sGeometryafinitegeometry?Explain.e) WritethenegationofAxiomIII.

6) ThethirdCommonCoreStandardforMathematicalPracticesisaboutmakingarguments.

Readthatparagraphagain.DescribesomespecificthingsthatyoudidwhenyouworkedontheTownRulesClassActivitythatwouldfitthatstandard.

7) Spend15minutesonthisquestion:Isitpossibletohaveafinitegeometrywhereifyouaregivenalineandapointnotontheline,youcanhavemorethanonelinethroughthepointthatisparalleltothegivenline?Recallthatparallellinesinfinitegeometryneednot‘lookparallel.’Relyonthedefinitionof“parallel”tohelpyouthinkaboutthis.

8) Itturnsoutthatyoucanalwaysturnaffineplanemodelsintoprojectiveplanemodelsbydoingthemodificationyoudidintheclassactivity:Collectthelinesparalleltoeachotherinaclass.Foreachofthen+1classesofparallellines,addanewpointthatwillbeoneachofthoselines.Thendefineallofthesen+1newpointstoallbeonthesameline.Seeifyoucancreateamodelforaprojectiveplaneoforder3bymodifyingtheaffineplaneoforder3belowasdescribed.Thenchecktobesureyourmodelfulfillsalltheprojectiveplaneaxioms.

Affineplaneoforder3

Page 31: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

31

9) Herearetwotheoremsaboutaffineplanes:AffineTheorem1:Ifsomelineofanaffineplanehasnpointsonit,theneachlinehasnpointsonitandeachpointhasn+1linesonit.AffineTheorem2:Inanaffineplaneifsomelinehasnpointsonit,thentherearen2pointsandn(n+1)lines,andeachlinehasnlinesparalleltoit(includingitself).Herearetwotheoremsaboutprojectiveplanes:ProjectiveTheorem1:Ifonelineofaprojectiveplanehasn+1pointsonit,thenalllineshaven+1pointsonthemandallpointshaven+1linesonthem.ProjectiveTheorem2:Inaprojectiveplaneifsomelinehasn+1pointsonit,thentherearen2+n+1pointsandn2+n+1lines.

a) Checktoseethatourmodelforanaffineplaneoforder3satisfiesTheorems1and2above.

b) Checkyourprojectiveplaneoforder2fromtheclassactivityandseeifitsatisfiesboththeorems.

c) StatethecontrapositiveofAffineTheorem1.d) StatetheconverseofProjectiveTheorem1.e) Comparethetheoremsaboutaffineplanestotheprojectiveplanestheorems.f) Usetheaffineplaneaxiomstoprovethattheminimumnumberofpointsinany

affineplaneisfourandtheminimumnumberoflinesissix.

Page 32: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

32

ClassActivity2B:PointsofPappus

Geometryenlightenstheintellectandsetsone’smindright. IbnKhaldun(MQS)

InthefirsthalfofthefourthcenturyPappusofAlexandriawroteaguidetoGreekgeometrytitledTheMathematicalCollection.InthatguidehediscussedtheworkofEuclid,ArchimedesandPtolemy,presentingtheirtheorems,constructionsandarguments.CarefullyreadthefollowingtheoremofPappus:

IfA,BandCarethreedistinctpointsononelineandA’,B’andC’arethreedifferentdistinctpointsonasecondline,thentheintersectionoflineAC’andlineCA’,lineAB’andBA’,andlineBC’andCB’arecollinear(thethreeintersectionpointsalllieonthesameline).

Undertherequirementthatthespecifiedlinesintersect,thisbecomesaEuclideanTheorem,meaningthatitistrueinthefamiliarflatinfiniteplaneofyourhighschooldays.

1) Drawsomecarefulsketches,usingdifferentconfigurationsofA,BandCandA’,B’andC’andseeifthistheoremseemstobetrue.DoesitstillholdifB’isn’tbetweenA’andC’?Justtomakeitsowecanalltalkaboutthisasaclass,labeltheintersectionpointofAB’andBA’asD,theintersectionofAC’andCA’asE,andtheintersectionofBC’andCB’asF.Whatsituationsmustbeavoidedtoensurethatallninepointsexist?

2) Now,let’sleavetheEuclideanworldandconsiderjusttheninepointsofPappusalong

withtheir“lines”asafinitegeometry.(Inotherwords,now,nootherpointsexistexceptthenineandlinesarejustsetsofpoints.)

a) Howmanylinesappearonyoursketches?Howmanypointsoneachline?How

manylinesoneachpoint?

b) Givenalineandapointnotontheline,howmanyotherlinescontainthegivenpointandintersectthegivenline?Stateaconjecturebasedonyourobservations.Whatsortofcounterexamplewouldberequiredinordertoproveyourconjecturefalse?

c) Givenalineandapointnotontheline,howmanylinesonthegivenpointare

notonthegivenline?Stateaconjecturebasedonyourobservations.Whatsortofcounterexamplewouldberequiredinordertoproveyourconjecturefalse?

d) Seeifyoucancreatetheaxiomsforwhichthissystemisamodel.

Page 33: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

33

ClassActivity3:ReadingEuclid

Euclidtaughtmethatwithoutassumptionsthereisnoproof.Therefore,inanyargumentexaminetheassumptions.

EricTempleBellinH.EvesReturntoMathematicalCirclesInyourgroup,carefullystudythepostulates(anotherwordforaxioms)ofEuclid’sGeometry.ThesearebasicallytheoriginalformulationsfromEuclid’stext–butEuclidwroteinGreekandnotinEnglish,sotheyhavebeentranslatedforyou.Takeoutyourcompass(circlemaker)andstraightedge(linemaker)andseehowthepostulatescorrespondwiththesetools.

Euclid’sPostulates(Axioms)(quotedfromThomasL.Heath’stranslationofEuclid’sElements,2002)

Letthefollowingbepostulated:1. Todrawastraightlinefromanypointtoanypoint.

2. Toproduceafinitestraightlinecontinuouslyinastraightline.

3. Todescribeacirclewithanycenteranddistance.

4. Thatallrightanglesareequaltooneanother.

5. That,ifastraightlinefallingontwostraightlinesmakestheinterioranglesonthesame

sidelessthantworightangles,thetwostraightlines,ifproducedindefinitely,meetonthatsideonwhicharetheangleslessthanthetworightangles.

Onthenextpage,youwillfindthefirstproofthatappearsinEuclid’stext.Studyit.

Page 34: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

34

UsedwithpermissionfromHeath,T.L.(2002)translationofEuclid’sElements.

D.Densmore(Ed.)GreenLionPress,SantaFe,NewMexico.pp.3.WhatexactlyisEuclidprovinghere?Whatthingsdoyounoticeabouttheformofhisargument?EuclidcitesDef.15:Acircleisaplanefigurecontainedononelinesuchthatallthestraightlinesfallinguponitfromonepointamongthoselyingwithinthefigureareequaltooneanother(Heath,2002,p.1).Doesthiscorrespondwithdefinitionofacircleweprovidedintheglossary?Explain.

Page 35: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

35

ReadandStudy:

Apointisthatwhichhasnopart.Alineisabreadthlesslength. Euclid,Elements

InthischapterwewillexploretheworldofgeometrycreatedbyEuclid’spostulates(axioms).EuclidlivedafterPlatoinGreecearound300BC.HeisknownprimarilyforhisworkonElements,atextthatlaidaxiomaticfoundationsforgeometryintheplane.Thistexthashadatremendousinfluenceonmathematicsbecauseofthesystematicwayitpresentsgeometrypropositions(theorems)logicallyderivedfromoneanother.Euclid’sgeometryisaworldofflatplanescoveredwithinfinitelymanypointsandnoholes,endlessstraightlines,andcirclesthatlookjustlikethecircleofyourelementaryschooldays.Hisistheworldwhereifyouseealineandapointnotonthatline,youwillfindexactlyonelineparalleltothegivenline.Hisistheworldinwhichyoudidyourhighschoolgeometry.Infact,inhighschoolhisgeometrywasyouronlygeometry;whatwewantyoutoknownowisthatEuclideangeometryisbutoneofmanygeometries.Wehavealreadyseensomeothergeometriesthatarefinite.Laterwewillstudysomenon-Euclideangeometriesthatcontaininfinitelymanypoints.HerearetheEuclideanPostulates(Axioms)perhapswritteninamoreuser-friendlyformthanthatwhichyousawintheClassActivity:

1) Auniquestraightlinesegmentcanbedrawnfromanypointtoanyotherpoint.

2) Astraightlinesegmentcanbeextendedtoproduceauniquestraightline.3) Acirclemaybedescribedwithanycenteranddistance.4) Allrightanglesareequaltoeachother.5) VersionA:Iftwolinesarecutbyatransversalandtheinterioranglesonthesameside

arelessthantworightangles,thenthelineswillmeetonthatside.

VersionB:Throughagivenpointnotonaline,therecanbedrawnonlyonelineparalleltothegivenline.(ThesetwoversionsoftheFifthPostulateareequivalent–andforthepurposesofthiscourse,youcanusewhicheveroneismostconvenientforyouinanygivenargument.VersionBisalsoknownasPlayfair’sAxiom.)

AsyousawintheClassActivity,withtheexceptionofnumberfour,theseaxiomsareallconstructive.Bythiswemeanthattheyareaboutwhatcanbeconstructedusingonlya

Page 36: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

36

straightedge(a‘linemaker’)andacompass(a‘circlemaker’).Axiomfourisalittlebitdifferent.Ittellsusthatnomatterwhereweareontheplane,allrightanglesarecongruent.SoitprovidesuswiththeideathatEuclid’splaneisuniforminsomeway–thatis,nomatterwhereyouraiseaperpendicularordropaperpendicular,theanglesyouconstructwillallbethesame.EuclidalsolistedintheElementssomeadditionalaxioms(likethebelow)thathecalledCommonNotions.

1) Thingsequaltothesamethingarealsoequaltooneanother.

2) Ifequalsareaddedtoequals,thewholesareequal.3) Ifequalsaresubtractedfromequals,theremaindersareequal.4) Thingswhichcoincidewithoneanotherareequal.

Fromthisleansetoftools,Euclidthencarefullybegantobuildthetheorems(hecalledthempropositions)ofhisgeometry.Itisworthnotingherethattoday’smathematicianshavefoundEuclid’ssetofaxiomsabittoolean,andtheyhaveaddedmanymoreaxiomstoEuclideangeometry.Forexample,inProposition1,whenEuclidgaveaproofthathecouldconstructanequilateraltriangle,hemadetwocircleseachhavingtheradiusofthegivensegmentandusedapointwherethosecirclesintersectedtoidentifyavertexofthetriangle.Modernmathematicianswouldnotethathewasimplicitlyassumingthatthosetwocircleswouldintersectinapoint(thatpointwouldn’tbemissingfromthegeometryoranything),andhavedecidedthatthereshouldbeanaxiomtothataffect.However,Eucliddidaprettygoodjoboverall–and2300yearslaterhisbookElementsisstillthe“bible”ofgeometry.WealsowanttonotethatEuclidoftenusedtheword“equal”whenwewouldusetheword“congruent.”Today’smathematiciansuse“equal”whentheywanttocomparetwonumbers.Sowemightsaythat½isequalto0.5.Weusetheword“congruent”whenwewanttosaythattwoobjects(liketwotrianglesortwosegments)arethesamesizeandshape.Thebasicideahereisthattwoobjectsarecongruentinthecasewhereifoneobjectwasmovedtolieontopoftheotherobject,theywouldcorrespondexactly.Wewilldoamorecarefuljobofdefining“congruent”later.Justlikewedidinourfinitegeometryworlds,wewillnowtrytoseewhattheoremswecanproveusingEuclid’sassumptions.Infactthegamewewillplayfortherestofthechapterandthenextisthis:wheneveryouareaskedtoproveaEuclideantheorem,youshouldturntotheAppendixwhereEuclid’spostulatesandpropositionsarelistedandfindit.Thenyouarefreetouse(assume)anypostulateandanypropositionlistedbeforetheoneyouaretryingtoprove.Forexample,sayyouwanttoprovethatinanisoscelestriangle,thebaseanglesarecongruent.GototheAppendix(reallydoit)andseeifyoucanfindthattheorem.Thencomerightbackhere.

Page 37: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

37

SincethatparticulartheoremispartofProposition5,thatmeansyoumayuseanyofthePropositions1–4aswellasanyofthepostulatesinyourargument,andasyouusethem,youshouldcitethem.Beforewedoanexampletoshowyouwhatanargumentmightlooklike,youwillneedtoreviewsomerelevantEuclideanGeometrydefinitionsaboutparallellinesandangles.(Inthisgeometry,point,line,planeandangleareundefinedterms.)Spendsometimereviewingthefollowingterms.

• Twoanglesaresupplementsiftogethertheymaketworightangles.• Twoanglesarecomplementsiftogethertheymakearightangle.

• Verticalanglesareanglesoppositeeachotherwhentwolinesintersectinapoint.

• Twolinesareparalleliftheylieinthesameplaneandsharenocommonpoint.

• Twolinesareperpendiculariftheyformrightverticalanglesatapointofintersection.

• Twoobjectsarecongruentiftheycanbemadetocoincidewithoneanother.(Ifyoumovedoneontopoftheother,itwouldfitexactly.)

• Atransversalcouldbeanylinethatintersectstwoormorelines.Checkoutthisdiagramshowingtwolines(landm)cutbyatransversal(n).AlsonotethatwhileLineslandmlookparallelinourpicturetheydon’talwayshavetobeso.

• Angles1and5arecorrespondingangles.Angles2and6arealsocorrespondingangles.

Whichotherpairsofanglesarecorrespondingangles?

l

m

n

8 765

3421

Page 38: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

38

• Angles4and6arealternateinteriorangles.SoareAngles3and5.

• Angles1and7arealternateexteriorangles.SoareAngles2and8.

Whichpairsofanglesontheabovepictureareverticalangles?

Euclidprovedmanytheoremsaboutlinesandangles.Let’shavealookattheformofsuchanargumentnow.Theideafortheproofisslick–andithadtobe:Eucliddidn’thavemuchmachinerybuiltuptouse.Theorem(Postulate5):Inanisoscelestriangle,thebaseanglesarecongruent.Supposethat∆ABCisanisoscelestriangle.

[Noticethatwebeganbystatingwhatisassumedandwedrewapicturewithlabelstohelpothersfollowalong.Thisisagoodpracticethatyoushoulddoalso.]

Now,weknowsegmentACiscongruenttoBC. [Becausethetriangleisisosceles.]

WealsoknowthatsegmentCBiscongruenttoCA. [Strange.Weknow.Justbearwithus.]

Also,ÐACBiscongruenttoÐBCA(becausetheyarethesameangle,)andABiscongruenttoBA.So,∆ABCiscongruentto∆BACbyProposition4.Therefore,ÐCABiscongruenttoÐCBA,andwearedone.

[Noticehowwesetituptocomparethetriangletoitself-butbackwards–sowecoulduseProposition4.ThiswasEuclid’sslickidea.]

Don’tworry.Wearen’toftenthiscleverandwedon’texpectyoutobeeither.Butwewillaskthatyoutrytomakesomeofthemorestraightforwardarguments.

Page 39: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

39

Homework: Youalwayspassfailureonthewaytosuccess. MickeyRooney

1) GobackanddoallthethingsinitalicsintheReadandStudyandtheConnectionssections.

2) ThesixthStandardforMathematicalPracticefromtheCommonCoreStateStandardsarguesinpartthat“mathematicallyproficientstudentstrytocommunicatepreciselytoothers.Theytrytousecleardefinitionsindiscussionwithothersandintheirownreasoning…Bythetimetheyreachhighschooltheyhavelearnedtoexamineclaimsandmakeexplicituseofdefinitions.”Inotherwords,knowingandunderstandingprecisedefinitionsisaveryimportantmathematicalpractice.Makeyourselfadefinitionsquizandlearntheboldedandunderlinedtermsinthissection.

3) ReadthefollowingselectionofEuclid’sPropositionsfromtheappendixanddrawanotated

sketchforeachtohelpyouunderstandwhatitissaying.Identifywhatisgiven(assumed)inthestatementandwhatisconcludedbythestatement.

a. Proposition13b. Proposition14c. Proposition15d. Proposition27e. Proposition28f. Proposition29g. Proposition30

4) ProveProposition15:Iftwostraightlinescutoneanother,thentheymakeverticalangles

equaltooneanother.

5) ProveProposition30,thatstraightlinesparalleltothesamestraightlineareparalleltoeachother.

Page 40: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

40

ClassActivity4:ConstructionZone

Thehumanmindhasfirsttoconstructforms,independently,beforewecanfindtheminthings.

AlbertEinstein

1) ShowthatitispossibletoconstructaraywhichbisectsangleABC.Whatpropositionisthis?CheckAppendixAtosee.Thenprovethatyourconstructionworks.

2) Showthatitispossibletoconstructalinewhichbothbisectsandisperpendiculartolinesegment AB .(Wecallsuchalinetheperpendicularbisectorof AB .)Whichpropositionisthis?Checktosee.Thenprovethatyourconstructionworks.

B

A

C

A B

Page 41: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

41

ReadandStudy:

Themathematicianisentirelyfree,withinthelimitsofhisimagination,toconstructwhatworldshepleases.

JohnWilliamNavinSullivan MathematicalQuotationsServerToconstructageometricobjectistocreateitusingonlystraightlinesegmentsandcircles(Euclid’sfirst,second,andthirdaxioms).Thetoolsweusearethestraightedge,tomakelinesegments,andthecompass,tomakecircles(orarcsofcircles).Infact,aswementionedearlier,youcanthinkofyourstraightedgeasyourline-makerandyourcompassasyourcircle-maker.Youcannotmeasureanythingwitharuleroraprotractoraspartofyourconstruction.Togiveyouanexampleofhowmathematiciansdescribeandjustifyconstructions,wewillshowitispossibletodropaperpendiculartoagivenlinethroughagivenpointnotontheline.Supposewehaveline(n)andapointnotontheline(P).ItispossibletoconstructalinethroughPthatisperpendiculartolinen(Proposition12).Takeoutyourstraightedgeandcompassandfollowalong.FirstweusethecompasstoconstructacirclecenteredatPthatintersectslinenintwopointswecancallAandB(wejustneedtodrawthearccontainingAandB).

NoticethatAPandBParebothradiiofthiscircle(andthus𝐴𝑃 ≅ 𝐵𝑃).Nowwewillusethissameradiusandconstructtwocircles,onecenteredatAandonecenteredatB.(Again,weonlyneedtodrawthearcsofthesecirclesthatintersectbelowlinen.)LabelthepointofintersectionofthesetwocirclesC.

nBA

P

Page 42: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

42

ThefinalstepinourconstructionistodrawthelineconnectingpointsPandCwithastraightedge.Thislinewillbeperpendiculartolinen.Wejustdescribedthe“howto”oftheconstructionofaperpendicularline.It’simportanttobeabletocarryoutthisprocedureastherewillbemanyoccasionsonwhichyouwillneedtoconstructperpendicularlinesinthisclass.Itisevenmoreimportanttounderstandwhyweclaimthatthisprocedureproducesperpendicularlines.Wecall“explainingwhyitworks”justifying(orproving)theconstruction.RecallthatanypostulateaswellasanypropositionnumberedbelowProposition12isfairgameforouruse.

Lookagainatourconstructiondiagram.WeclaimthatthelineCPisperpendiculartolinen.Howcanwejustifythisclaim?Well,weknowthatperpendicularlinesarelinesthatintersectatright

n

C

BA

P

nD

C

BA

P

Page 43: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

43

angles.So,ifwecanshowthatÐADP,ÐPDB,ÐBDC,andÐCDAareeachright,thenwecanconcludethatlinesPCandnareperpendicular.Furthermore,weclaimthatitissufficienttoshowthatjustoneoftheseanglesisright.(Makeanargumentforthisclaimrightnow.Whyareallfouranglesrightanglesifjustoneangleisknowntobearightangle?)WewillshowthatÐADPisarightangle.Noticethedashedlinesegmentsinthediagram.Theywillbeveryusefulinmakingourargument.“Adding”extralinesorlinesegments(whichwerenotpartoftheconstructionprocess)toadiagramisoftenahelpfulstrategyindesigningageometricproof.WeobservedbeforethatAPandBParebothradiiofthesamecircle(andso𝐴𝑃 ≅ 𝐵𝑃bythewaywedidtheconstruction).Now,wecanalsorealizethatACandCBareradiiofcirclescongruenttothefirstcircle.Thus,allfourdashedlinesegmentsarecongruentbyconstructionandwemadeeachofthemusingPostulate3.Makecertainyoucanexplainthispartoftheproofinyourownwords.Thesefourcongruentlinesegmentsformtwotriangles,∆CAPand∆CBP,thatshareacommonsideCP.SonowwecansaythatthesetrianglesarecongruentbyProposition8(SomeofyoumayknowthisastheSide-Side-Sidetrianglecongruencetheorem).Youmightbeaskingwhywewanttotalkabout∆CAPand∆CBP.WesaidwewantedtoproveÐADPisarightangleandÐADPisn’tevenapartof∆CAPor∆CBP.Well,let’stakealookat∆DAPand∆DBPwhichdocontainÐADP(andÐBDP).Ifwecouldshowthesetwotriangleswerecongruent,wewouldbemakingprogresstowardourgoal.Why?Wehavealreadynotedthat𝐴𝑃 ≅ 𝐵𝑃.DPisacommonside.WecouldusetheProposition4ifweknewthattheincludedangles,ÐAPDandÐBPD,werecongruent.Aha,nowitmakessensetowanttoknow∆CAP@∆CBP.ÐAPDandÐBPDarecorrespondingpartsofcongruenttriangles∆CAPand∆CBP,andsotheyarecongruent.Makesureyouunderstandwhywesaythis.Okay,nowwecansay∆DAP@∆DBPand,therefore,allcorrespondingpartsofthesetwotrianglesarecongruent.ThusÐADPiscongruenttoÐBDP,andsincethesetwoanglesaresupplementarytheyarebothrightangles(Why?).Wearedone!ConnectionstotheMiddleGrades:

Ingrades6-8allstudentsshouldpreciselydescribe,classify,andunderstandrelationshipsamongtypesoftwo-andthree-dimensionalobjectsusingtheirdefiningproperties.

NationalCouncilofTeachersofMathematics PrinciplesandStandardsforSchoolMathematicsp.232ThegeometryyouwillteachinelementaryandmiddleschoolisthegeometryofEuclid.Thefocushoweverisnotanaxiomaticdevelopmentofthesubjectbutratherahands-onintuitiveapproach.

Page 44: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

44

Youwillfocusonclassificationandpropertiesof2-and3-dimensionalobjects;transformationsandsymmetry,describingspatialrelationshipsusingmapsandcoordinategeometry,andgeometricproblemsolving.Homework:

Onedayofpracticeislikeonedayofcleanliving.Itwon’tdoyouanygood.

AbeLemons

1) DoalltheitalicizedthingsintheReadandStudysection.

2) CarefullyreadthroughEuclid’sPropositionsfromtheappendix.Whichonesareaboutconstructingobjects?Whatdoeseachmake?

3) Writeaclearandcompletedescriptionofthestepsyouusedforeachoftheconstructions

intheClassActivity.

4) Justifyyourconstruction#1inClassActivity,thatis,provethattherayyouconstructedcreatestwocongruentangles,eachhalfthemeasureofÐABC.

5) Justifyyourconstruction#2intheClassActivity,thatis,provethatthelineyouconstructedisperpendicularto AB atthemidpointof AB .

6) Isitpossibletobisectaline?Whyorwhynot?

7) YoumayhavenoticedthatEucliddidnottalkaboutmeasuringanglesin“degrees”aswe

oftendo.Wethinkofafullturnasbeingsplitinto360littleangles–eachcalledadegree.Wedon’tknowwhenthinkingindegreesbeganorwhichcivilizationbeganit–butwedohavesomeideasaboutwhy360waschosen.Whyis360suchagoodchoice?

8) ConstructalinesegmentBCsothatitiscongruenttoABandthemeasureofÐABCishalf

ofarightangle.(Youdon’tgettouseaprotractorhere.)

9) Provethateverypointontheperpendicularbisectorofalinesegmentisequidistantfromtheendpointsofthatsegment.

A B

Page 45: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

45

10) Provethateverypointontheanglebisectorofanangleisequidistantfromtheraysthatformthatangle.Inotherwords,provethatFDiscongruenttoED.

E

F

A

B

C

D

Page 46: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

46

ClassActivity5:IfYouBuildIt

Theshortestdistancebetweentwopointsisunderconstruction. NoelieAlitoInthisactivityyouwillperformandthenjustifytwomoreconstructionsofEuclideangeometry.Theseconstructions,alongwiththeothersinthissection,willgiveyousometoolswithwhichtoconstructotherobjectslateroninthecourse.Asusual,inyourjustification,youcanuseanypostulateorpropositionthatcomesbeforetheoneyouaretryingtoprove.

1) Showitispossibletocopyagivenanglesothattheraybelowisoneoftheraysoftheangle.Thenjustifythatyouhavedoneso.ThisisEuclid’sProposition23.

(Thisactivityiscontinuedonthenextpage.)

Page 47: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

47

2) Givenalineandapointontheline,showthatitispossibletoconstruct,throughthepoint,alinethatisperpendiculartothegivenline,andthenjustifythatyouhavedoneso.ThisisEuclid’sProposition11.

Page 48: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

48

ReadandStudy:

Thereisstilladifferencebetweensomethingandnothing,butitispurelygeometricalandthereisnothingbehindthegeometry. MartinGardner

Wehavebeentalkingabouttriangleswithoutofficiallydefiningthem,oranyotherpolygon,forthatmatter.Let’sfixthatnow.Apolygonisasimple,closedcurveintheplanemadeupentirelyoflinesegments.Thelinesegmentsarecalledsidesandthepointswheresegmentsmeetarethevertices.Let’shaveacloserlookatthepiecesofthisdefinition.Firstofallamathematicianusestheword“curve”totalkaboutprettymuchanypencillineyoucoulddrawwithoutliftingyourpencilfromapaper.Acurveneednotbecurvy;itcouldevenbeperfectlystraight.Acurveintheplaneissimpleifithasnoloopsandnobranches.Acurveisclosedifithasaboundarythatseparatesoutsidefrominside.Decidewhethereachofthefollowingisapolygonbasedonthedefinition(thisishowwealwaysmakesuchdecisionsinmathematics).

Doyouseethatonlyc)isapolygon?a)isnotclosed.b)isnotmadeonlyoflinesegments.d)isnotsimple.Noticetoothatasolidobjectlikethistrianglebelowisnotapolygon.Itistheboundaryoftheobjectthatisapolygon. Atriangleisapolygonwithexactlythreesides.Atriangleisequilateralifallitssidesarecongruent.Ifonlytwosidesarecongruent,thenwesayitisisosceles.Ifnosidesarecongruent,

(d)(c)(b)(a)

Page 49: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

49

thenitisscalene.Atrianglewithananglebiggerthanarightangleiscalledobtuse.Ifallitsanglesarelessthanarightangle,wesaythetriangleisacute.YoulearnedlotsoftheoremsaboutEuclideantrianglesbackinhighschool.Somewerefactsabouteverytriangle(likethesumoftheinterioranglesofanytriangleisequaltotworightangles).Someofthemwerefortellingwhentwotriangleswerecongruent.Let’stakemomenttolookatthecongruencetheorems.Proposition4:Iftwotriangleshavetwosidesequaltotwosidesrespectively,andtheyhavetheanglescontainedbythestraightlinesequal,thenthetriangleequals(iscongruentto)thetriangle.(ThisistheSide-Angle-Sidecongruencetheorem.)Proposition8:Iftwotriangleshavetheirtwosidesequaltotwosidesrespectivelyandalsohavethebaseequaltothebase,thentheyalsohaveanglesequalwhicharecontainedbythestraightlines(andsoarecongruentbyProposition4).(ThisistheSide-Side-Sidecongruencetheorem.)Proposition26:Iftwotriangleshavetwoanglesequaltotwoanglesrespectively,andonesideequaltooneside,namely,eitherthesideadjoiningtheequalangles,orthatoppositeoneoftheequalangles,thenthetrianglesarecongruent.(ThisistheAngle-Angle-SideandalsotheAngle-Side-Anglecongruencetheorem.)Readthemagainandmakesketchestobesurethatyouunderstandwhateachoftheseissaying.YoumayhavenoticedthatthereisnoAngle-Side-Sidecongruencetheorem.Thisisbecausehavingacongruentangleandtwocongruentsides(unlesstheangleisbetweenthetwosides)isnotenoughtoguaranteecongruence.Here’stheproblem.Considertwotrianglesthateachhasasidethatmeasures4cm,anothersidethatmeasures1.5cm,andananglethatmeasures15degrees.Herearetwodifferenttrianglesthatmeetthoseconditions:Inotherwords,therearesometimestwochoicesforthethirdsidelength.NoticetoothatthereisnoAngle-Angle-Anglecongruencetheorem.Explainwhynot.

Page 50: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

50

ConnectionstotheElementaryGrades: Whosoneglectslearninginhisyouth, losesthepastandisdeadforthefuture. EuripidesTheCommonCoreStateStandardsasksthatstudentsingradesevenexplorewhengiveninformationisenoughtospecifyatriangle.Inotherwords,theyadvocatethatthosestudentsshouldhaveanintuitiveintroductiontothetrianglecongruencetheoremswehavediscussedabove.

Hereisaproblemthatmightfitthatstandard.Takethetimetodoitsothatyouseewhatwemeanhere.Youwillneedarulerandaprotractortomeasurelengthsandangles.

SupposeyouaregivensomeinformationaboutatriangleABC.Inwhichofthefollowingcaseswilltheinformationbeenoughtoallowyoutodeterminetheexactsizeandshapeofthetriangle?Thatis,ifyouandapartnerindependentlymakethetriangleandthencutitout,willthetrianglescoincideifyoulaythemontopofeachother?Ifyouhaveenoughinformation,drawatriangleguaranteedtobecongruenttoDABC.Ifyoudonothaveenoughinformation,describetheproblemyouencounterinattemptingtodrawDABC.

a) AB =4cmandBC =5cmb) AB =8cmand AC =6cmandÐBAC=45°c) AB =8cmand AC =7cmandÐABC=45°d) ÐABC=75°,ÐBCA=80°,andÐCAB=25°e) BC =7cm, AC =8cm,and AB =9cmf) AB =9cm, BC =3cm,and AC =4cmg) AB =7cm,ÐABC=25°,andÐBAC=105°h) BC =11cm,ÐABC=75°,andÐBAC=40°

• Draw(freehand,withrulerandprotractor,andwithtechnology)geometricshapeswithgivenconditions.Focusonconstructingtrianglesfromthreemeasuresofanglesorsides,noticingwhentheconditionsdetermineauniquetriangle,morethanonetriangle,ornotriangle.

Page 51: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

51

Homework:

Thedifferencebetweenasuccessfulpersonandothersisnotalackofstrength,notalackofknowledge,butratheralackofwill.

VinceLombardi

1) DoallthethingsintheReadandStudysection.

2) DoalltheproblemsintheConnectionssection.WhichNCTMStandards(seep.4)dotheymeet?

3) Learnalltheboldedandunderlinedtermsinthesection.

4) AccordingtotheCommonCoreStateStandards,studentsingradeeightshouldbeabletodothefollowing.Readthisstandard–thendotheactivitydescribedintheirexample.

5) ProveProposition32,namely,thatthesumofthethreeinterioranglesinatriangleistworightangles.Recallthatyoucanuseanyofthepropositionsthatcomebefore32.Wesuggestthatyoufirstdrawanytriangleandthenconstructalineparalleltooneofthesidesofthetriangle,throughtheoppositevertex.

6) Apolygonisconvexifallofitsdiagonalslieintheinteriorofthepolygon.Adiagonalofa

polygonisalinesegmentthatjoinstwonon-adjacentvertices.Apolygonisconcaveifitisnotconvex.Usethesedefinitionstodecidewhethereachpolygonbelowisconvexorconcave.Ineachcase,explainyourthinking.

• Useinformalargumentstoestablishfactsabouttheanglesumandexteriorangleoftriangles,abouttheanglescreatedwhenparallellinesarecutbyatransversal,andtheangle-anglecriterionforsimilarityoftriangles.Forexample,arrangethreecopiesofthesametrianglesothatthesumofthethreeanglesappearstoformaline,andgiveanargumentintermsoftransversalswhythisisso.

Page 52: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

52

SummaryofBigIdeasfromChapterOne Hey!What’sthebigidea? Sylvester

• Onedefinitionofgeometryisthatitisthestudyofidealshapesandtherelationshipsthatexistamongthem.

• Aseconddefinitionisthatgeometryisanaxiomaticsystemaboutobjectscalled“points,”

collectionsofpointscalled“lines,”andtherelationshipsbetweenpointsandlines.

• Axiomaticsystemsdefinetherulesgoverningtheparticulargeometry.

• Provenconsequencesofaparticularsetofaxiomsaretheorems.

• Afinitegeometryconsistsofafinitenumberofobjectsandtheirrelationships.

• Mathematiciansareverycarefulaboutdistinctionswithinmathematicallanguage.

• Weconstructanobjectbycreatingitusingonlystraightlinesegmentsandcircles.

Page 53: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

53

CHAPTERTWO

LEARNINGANDTEACHINGEUCLIDEANGEOMETRY

Page 54: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

54

ClassActivity6:CircularReasoning

Natureisaninfinitesphereofwhichthecenteriseverywhereandthecircumferencenowhere.

BlaisePascal MathematicalQuotationsServerForthisactivity,eachpersoninyourgroupwillneedtodrawthreepointsofablanksheetofpaperasfollows:Onepersonshouldarrangethepointssothatthetriangleformedwiththepointsasitsverticesisanacutescalenetriangle.Anothershouldarrangeanobtusetriangle.Anothershouldarrangearighttriangle,andifthereisafourthperson,thatpersonshouldarrangehisorherpointstomakeanequilateraltriangle.Makeyourtrianglesfairlylarge,youaregoingtobedoinglotsofconstructing.First,afewdefinitions:Thecircumcenter(C)ofatriangleisintersectionpointoftheperpendicularbisectorsofthesides.Theincenter(I)ofatriangleistheintersectionpointoftheanglebisectors.Theorthocenter(O)istheintersectionofthealtitudes(heights)ofthetriangle.Thecentroid(M)isthepointofintersectionofthemedians(linesjoiningavertexwiththemidpointoftheoppositeside)ofthetriangle.Carefullyconstructeachofthesecentersforyourtriangle.(Youmaywanttousedifferentcoloredpencilsfordifferentconstructions.)Thenlabeleachspecialpoint.Whenyouaredone,compareyourresultsandanswerthefollowingquestions:

1) Oneofthesepointsisspecialbecauseitisthecenterofmassofthetriangle(thebalancingpoint).Whichoneandwhy?

2) Oneofthesepointsisspecialbecauseitisthecenterofthecirclecontainingallthevertices

ofthetriangle.Whichoneandwhy?

3) Oneofthesepointsisspecialbecauseitisthecenterofthebiggestcirclethatcanbeplacedinsidethetriangle.(Thecirclethatistangenttoallthreesides.)Whichoneandwhy?

4) Whichthreeofthefourspecialpointsalwayslieonthesameline?

5) Whichofthepointscouldlieoutsideofthetriangle?Forwhattypeoftrianglesdoesthat

happen?Whydoesthismakesense?

Page 55: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

55

ReadandStudy: Itiseasiertosquarethecirclethantogetroundamathematician. AugustusDeMorgan MathematicalQuotationsServer

WenowhavesomebasictoolswithwhichtostudyEuclideanGeometry,andinthischapterwewilldevelopevenmore.

Amathematicalcircleisthesetofpointsthatareequidistantfromagivenpoint,calledthecenter(Ointhediagrambelow).Thediagramshowssomeoftheotherimportanttermsassociatedwithacircle.Becertainyouunderstandeachtermandcanexplainitsmathematicaldefinition.

Itisanamazingfactthatforanysizecircle,theratioofthecircumferencetothediameterisconstant.Wenowcallthisconstantpi(p).Overtheyearsmanymathematicianshavetriedtofind

Central Angle Ð AOC

Tangent

Secant

Chord DE Diameter AB

Arc DE

Radius CO

Sector O

C

A

B

D

E

Page 56: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

56

approximationsforpi.Archimedes,ageniusoftheGreekmathematicians,foundapproximateboundsforitsvalueusingcircumscribedandinscribedpolygonswith96sides(heprovedthat''()*< 𝜋 < ''

).(Theaverageofthesetwovaluesisroughly3.1419,aprettydarngoodestimate.)It

isworthnotingthatevenwhenweusethepkeyonacalculatororaskacomputertocomputeit,weareusinganapproximatevaluebecausepisnotrationalandthereforedoesnothavea

decimalnamethatterminatesorrepeats.Studentscommonlyuseeither3.14or722 asan

approximatevalueforpwhencarryingoutcalculationsinvolvingcircles.Euclid’sworkcontainsmanytheoremsaboutcircles.WewilldiscusstwoofthemnowandaskyoutoexploresomemoreintheHomeworksection.Thefirsttheoremwe’lllookatsaysthattwochordsofacirclearecongruentifandonlyiftheircorrespondingarcshavethesamemeasure.

First,that“ifandonlyif”phrasemeansthatwearegettingtwotheoremsforthepriceofone.Boththestatementanditsconversearetrue.Thus,thistheoremgivesustwoif-thenstatements:iftwochordsofacirclearecongruentthentheircorrespondingarcshavethesamemeasure,andiftwoarcsofacirclehavethesamemeasure,thentheircorrespondingchordsarecongruent.Let’sillustratethesetheoremsinadiagram:ifchords AB andCD arecongruent,thenthearcsABandCD(shownindarkred)arealsocongruent,andviceversa.

Oursecondtheoremisoneaboutinscribedangleswhichstatesthatthemeasureofanangleinscribedinanarcisone-halfthemeasureofitsinterceptedarc.Tomakesureweunderstandwhatthistheoremissaying,weneeddistinguishbetweenaninscribedangle,aninterceptedarc,andacentralangle.Inthefollowingdiagram,ÐADBisinscribedinarcACBwhichiscalleditsinterceptedarc.ArcACBismeasuredbythecentralangleÐAOB.RestatethetheoremintermsofÐADBandÐAOB.

C

A

B

D

Page 57: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

57

Notethatwehavenotprovedeithertheoreminthissection,buttakeafewminutesnowtodosomemeasurementssothatyoucanseethattheymightbetrue.Nowtakeoutyourcompassandstraightedgeandfollowalong.WritedowntwodistinctpointsandnamethemAandB.ConstructCircleABwithcenteratAandpointonthecircleB.Constructanychord(andnameitPQ)oncircleAB.

ConstructalinethroughAthatisperpendiculartochordPQandlabelthepointofintersectionofPQandthisperpendicularlineM.Thinkaboutwhatwouldhappenifyoucould“move”PandQaroundonthecircle?InotherwordswhathappensasyouchangethepositionsofPorQandkeeppointMastheintersectionpointofthatnewPQandthelinethatisperpendiculartoPQthroughA?WhatdoyounoticeaboutM?Whydoyouthinkthishappens?Canyoumakeageneralargumenttosupportyourconjecture?

FindtheintersectionpointsoftheperpendicularlineandcircleABandcallthemRandS.ConstructlinesegmentRSanderasetheperpendicularlineandpointM.Thiskindofasegmentwithendpointsonthecirclethatgoesthroughthecenterofthecircleiscalledadiameter.ForanychordPQthatisnotadiameter,whatcanwesayaboutthechord’slengthincomparisontothelengthofanydiameterforagivencircle?

ConstructtheperpendicularbisectorofchordPQ.ImaginemovingpointsPandQaroundonthecircle.Whathappenstotheresultingperpendicularbisector?Now,constructanewCircleAB(againwithcenterAandpointoncircleB).ConstructadiameterofthecircleABwithendpointsBandC.PickandlabelapointEonthecircle.MakesegmentsEBandEC.“Move”Earoundthecircle.WhatcanyouconjectureabouttriangleBEC?YouaregoingtoneedafinalnewCircleAB.PickapointonthecircleandlabelitP.ConstructradiusAP.ConstructalinethroughPperpendiculartosegmentAP.ImaginemovingParoundthecircle.Isthisperpendicularlineasecantoratangent?InbookfourofElements,Euclidprovedseveraltheoremsaboutcircles,oneofwhichisthatthreedistinct,non-collinearpointsdetermineauniquecircle(onethatpassesthroughallthreepoints).

O

C

A

B

D

Page 58: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

58

Youconstructedthatcirclewhenyoufoundthecircumcenterofyourtriangle.IntheHomeworksection,youwilljustifythatconstruction.ConnectionstotheMiddleGrades: Geometryisanaturalplaceforthedevelopmentofstudents’reasoningand justificationskills. NCTM,PrinciplesandStandards,2000Perhapsthebestregardedmodelregardingchildren’sgeometricreasoningisthevanHieleLevels.PierrevanHieleandDinavanHiele-Geldofwerebrotherandsister,educators,andresearchersofchildren’sthinking.Theyassertedtherearefivedevelopmentallevelsofgeometricreasoning.Beforewediscussthelevels,we’llgiveyousomegeneralinformationaboutthemaccordingtotheresearch.First,thelevelsappeartobesequential;thatis,childrenmustpassthroughtheminorder.Second,theyarenotsomuchage-dependentasexperience-dependent.Itisgeometricactivityattheircurrentlevelthatprepareschildrenformoresophisticatedreasoning.Finally,itappearsthatinstructionandlanguageatlevelshigherthanthatofthechildwillactuallyinhibitlearning.That’salittleworrisomeforteachers–becauseitmeansthatyoucandoharmifyoudonottailorinstructiontothespecificlevelsofyourstudents.HereisthemodelasitisdescribedbyBattista(2007).

ThevanHieleLevelsofGeometricReasoning

Level0:Visual.Childrenrecognizegeometricobjectsbytheiroverallappearancebasedonafewprototypicalexamplesoftheobjects.Forexample,achildatthislevelmightrejectatrianglethatisorienteddifferentlythanthosesheisusedtoseeingoronethatisextremelylongandthin.Ifyouaskkindergartenerwhyashapeisatriangle,shewilllikelytellyou,“becauseitlookslikeone.”

Level1:DescriptiveorAnalytic.Childrenbegintoidentifypropertiesofgeometricobjectsanduseappropriatetermstodescribethoseproperties.Forexample,achildatthislevelcouldclassifytrianglesbasedonthepropertythattriangleshaveexactlythreesides.Level2:AbstractorRelational:Childrenrecognizerelationshipsbetweenandamongpropertiesofgeometricobjects,andwillmakeandfollowargumentsandclassifyshapesbasedontheseproperties.Level3:Deduction:Studentsconstructargumentsaboutgeometricobjectsusingdefinitions,axioms,anddeductivereasoning.Yourhighschoolgeometrycoursewasprobablytaughtatthislevel.

Page 59: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

59

Level4:Rigor:Studentsatthislevelwillunderstandthattherearemanygeometries,eachwithitsownaxiomaticsystemandmodels.Inthiscoursewewillgiveyouasenseofthis.

UpperelementaryandmiddlegradesstudentstypicallytestatvanHieleLevel1orLevel2.Asateacherofthesegradesyourjobistogiveyourstudentslotsexperienceslikethefollowing:

• Classifyingobjectsbasedondefinitions.Forexample,youmightdefinearhombusasaparallelogramwithfourcongruentsides,andaskyourclasstodecidewhetherseveralshapesarerhombibasedonthatdefinition.

• Makingandtestingconjecturesaboutgeometricobjects.

• Usinginformaldeductivelanguage,wordslike“all,”“some,”“thereexists,”and“if-then”

statements.Forexample,youmightaskyourstudentstodecideifthefollowingstatementistrue:ifashapeisarectangle,thenitisarhombus.(Isittrue?)Oryoumightaskaquestionlike,doesthereexistarectanglethatisarhombus?(Doesthere?)

• Exploringthetruthofastatement,itsconverse,anditscontrapositive.Forexample,decide

whethereachofthefollowingistrueorfalse.Makeanargumentineachcase.

Ifaquadrilateralisasquare,thenithasfourcongruentsides.Ifaquadrilateralhasfourcongruentsides,thenitisasquare.Ifaquadrilateraldoesnothavefourcongruentsides,thenitisnotasquare.

• Problemsolvinginvolvinggeometricobjectsandrelationships.• Makinginformaldeductiveargumentsaboutobjectsandrelationshipsamongobjects.

• Makingmodelsandpicturesofgeometricobjects.

Hereisamiddlegradesactivityfocusedoncirclesthatallowsstudentstostudymodels,makeandtestconjectures,andmakeinformalarguments.Theideaistoestimatethevalueofπbymeasuringavarietyofcirclestofindthenumberoftimesthediameterofeachcirclefitsintoitscircumference.Takeamomenttodothatnowwiththetwocirclesbelowthenanswerthefollowingquestions:

Page 60: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

60

1) Whyaren’tyouranswersexactlythesame?2) Doesthevalueofπdependontheunitsofmeasurementthatyouuse?

Explain.WhatvanHieleleveldochildrenneedtoreachinordertodovariouspartsoftheabovecircleactivity?Manymiddleschoolstudentshaveheardthatπisanirrationalnumber,buttheyarenotclearaboutwhatthatmeans.Itdoesnotmeanthatthenumberoftimesthediameterofacirclefitsintoitscircumferenceischanginginsomeway.Itdoesnotmeanthatthenumberoftimesthediameterofacirclefitsintoitscircumferenceisn’tanexactvalue.Itisanexactvalue,andwecallitπ.Itsimplymeansthatπhasadecimalnamethatneverendsnorrepeatsandsoanywaywewriteπwithadecimalorafractionnameismerelyanapproximationofthenumberoftimesthediameterofacirclefitsintoitscircumference.Homework: Theknowledgeofwhichgeometryaimsistheknowledgeoftheeternal. Plato,Republic,VII,52.

1) GobackanddoallthethingsinitalicsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.3) Makeyourselfadefinitionsquizandlearnalltheboldedandunderlinedtermsinthe

section(includingthosethatappearintheClassActivity).

4) Hereisalistofactivities.ClassifyeachaccordingtothevanHieleLevelthatitbestfits:a) Sortingshapesbasedonthenumberofsides.b) Arguingthatallrectanglesareparallelograms.c) Identifyingcircleshapesintheclassroom.d) DoingtheactivityonestimatingπfromtheConnectionssection.e) DoingtheTwoFiniteGeometriesClassActivity.

5) SupposetheEarthisanidealsphereandyouhavewrappedaropetightlyaroundthe

equator.Nowsupposeyouaddedenoughslacktoraisetheropeuniformlyonefootoffthegroundallthewayaroundtheequator.Howmuchlongerropewouldyouneed?Explainwhythismakessense.

6) Provethatthecircumcenterofatriangleisequidistantfromthethreeverticesofthe

triangle.Youwillhavetorelyonthewayyouconstructedthecircumcenter.YoumayuseanyofthepropositionsinBookIforthisargument.

Page 61: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

61

7) Provethattheincenterofatriangleisequidistantfromthethreesidesofthetriangle.

Againyouwillneedtorelyonhowyouconstructedtheincenter,andyoumayuseanyofthepropositionsinBookIforthisargument.

8) Calculatethenumberoftimesthediameterofthebelowcirclefitsintotheperimeteroftheinscribedsquareandthenintotheperimeteroftheinscribedhexagon.Whatisityouaredoinghere?Ifyoudidthesamethingusinga72-sidedpolygon,whatapproximatelywouldyouranswerbe?

Page 62: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

62

ClassActivity7:FindingFormulas

Everythingshouldbemadeassimpleaspossible,butnotonebitsimpler. AlbertEinstein

1) Usingthedefinitionofareaasthenumberofsquareunitsittakestofillatwo-dimensional

space,explainitmakessensethatareaofarectangleis(base)×(height).2) Justifythatthefollowingformulasmakesense.Ifyourearrangeanyofthefigures,you

shouldarguethatthepiecesfittogetherasyouclaim.Forexample,ifyoucutarighttriangleoffoftheparallelogramandmoveittoformarectangle,youneedtoarguethatthenewfigureisactuallyarectangle.(YoumayassumetherectangleareaformulaandanyofthepostulatesandpropositionsinBookIofElements.)

a)Areaofatriangle=½(base)×(height)

(Thisactivityiscontinuedonthenextpage.)

Page 63: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

63

b)Areaofaparallelogram=(base)×(height)

c) Areaofatrapezoid=½(baseI+baseII)×(height)

Page 64: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

64

ReadandStudy:

Thedescriptionofrightlinesandcircles,uponwhichgeometryisfounded,belongstomechanics.Geometrydoesnotteachustodrawtheselines,butrequiresthemtobedrawn.

IssacNewton,PrincipiaMathematicaInElementsEucliddidnotexplicitlydefinelength,areaorvolume–butitseemsasthoughhethoughtoftheseconstructsmuchaswedotoday–forexample,helikelythoughtof“area”astheamountoftwo-dimensionalspaceoccupiedbyanobject.Allthedefinitionswewilluseinthissectiondependoncomparinganobjecttoaunitofmeasurement.Infact,theyareallabouthowmanyunits“fit”insideanobject.Thelengthofanobjectisthenumberof1-dimensionalunits(likealinesegment)thatfitina1-dimensionalobject.Alengthunitmightlooklikethis: ____Theareaofanobjectisameasureofthenumberof2-dimensionalunits(likesolid(filled-in)squares)thatfitina2-dimensionalobject.Anareaunitmightlooklikethis:Thevolumeofanobjectisameasureofthenumberof3-dimensionalunits(solidcubesperhaps)fitina3-dimensionalspace.Avolumeunitmightlooklikethissolidblock:Thismaysoundsimple,butwecan’tbegintotellyouhowoftenstudentsareconfusedaboutthis.Askpeoplewhatareais,forexample,andmostwillrespondthatareais“basetimesheight.”Butthisisn’ttheideaofarea,itissimplyaformulaforfindinganareaofsomeveryspecificobjects(namelyparallelograms:theformuladoesn’tevenworkforotherthings).Whenyouareaskedtocomputeanarea,pleasedon’tresorttoacoupleofmemorizedformulaswithoutthinkingaboutwhatareameansandwhetherthoseformulasapply,andpleasehelpyourstudentstounderstandtheideaofmeasurement.

Page 65: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

65

ConnectionstotheMiddleGrades:

Ingrades6-8allstudentsshoulddevelopanduseformulastodeterminethecircumferenceofcircles,andtheareasoftriangles,parallelograms,trapezoids,andcircles,anddevelopstrategiestofindtheareaofmorecomplexshapes. NationalCouncilofTeachersofMathematics PrinciplesandStandardsforSchoolMathematics,p.240

Tohelpyourstudentstothinkofareaasthenumberofsolidsquaresthatfillorcovera2-dimensionalobject,youmightstartbyhavingthemtracetheobjectonsquare-grid-paperandthenaskthemtoestimateandthencountthenumberofsquaresittakestofill(cover)theobject.Similarly,theycanlearntothinkofvolumeasthenumberofsolidcubesthatittakestofillathree-dimensionalobject.HerearetwooftherelevantCommonCoreStateStandardsforchildreningradesix.Readthesecarefully.

Infact,agreatwaytohelpchildrenunderstandareaformulasistohavethemseetheformulas(bycuttingandpasting)basedonformulastheyalreadyknowlikeyoudidintheClassActivity.

Solvereal-worldandmathematicalproblemsinvolvingarea,surfacearea,andvolume.

1. Findtheareaofrighttriangles,othertriangles,specialquadrilaterals,andpolygonsbycomposingintorectanglesordecomposingintotrianglesandothershapes;applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

2. Findthevolumeofarightrectangularprismwithfractionaledgelengthsbypackingitwithunitcubesoftheappropriateunitfractionedgelengths,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengthsoftheprism.ApplytheformulasV=lwhandV=bhtofindvolumesofrightrectangularprismswithfractionaledgelengthsinthecontextofsolvingreal-worldandmathematicalproblems.

Page 66: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

66

Homework:

Learningwithoutthoughtislaborlost;thoughtwithoutlearningisperilous. Confucius

1) MakesurethatyoucanjustifyalloftheformulasfromtheClassActivity.

2) Findtheareaofthepentagoninatleast3differentways.Eachsquareisonecentimeterlong.

3) Middleschoolstudentsshouldhaveavarietyofopportunitiestoseewhyitmakessensethattheareaofacircleshouldbeπ×r2(whereristheradius).Belowisapicturethatgivestheideaofanargumentforthatfact.Whatistheideahere?Whyisthisjustanideaoftheargument?

Page 67: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

67

ClassActivity8:PlayingPythagoras

Everythingyoucanimagineisreal. PabloPicasso(TQP)

1) StatethePythagoreanTheorem.(It’snotjusta2+b2=c2.Whataretheconditionsona,bandc?Youneedanif-thenstatement.)Now,stateitsconverse.

2) YouwillconsiderwhatislikelyEuclid’sownproofofthistheoremnow.Wearegoingtoexplainthebigideasandyourgroupshouldtofollowalongandsupplythedetails.

First,Euclidclaimedthat∆FBChadthesameareaastriangle∆FBA(halfthepinksquare)becausebothtriangleshavethesamebaseandthesameheight.Makesureeveryoneinyourgroupseesandunderstandsthat.NowEuclidarguedthat∆FBCwasequalto(congruentto)∆DBA.Makethatargument.

Next,Euclidarguedthat∆DBAhadthesameareaas∆BDK(halfofthepinkrectangle)

becausebothhavethesamebaseandthesameheight.Checkitout.

ImageusedwithpermissionfromWikapedia.com

Sothatmeansthatthepinksquarehasthesameareaasthepinkrectangle.Asimilarargumentshowsthatthebluesquarehasthesameareaasthebluerectangle.Gothroughthedetailsofthatnowtobesureeveryoneunderstandsit.Sotheareasofthesquaresontherighttriangle’ssidessumtotheareaofthesquareonthehypotenuse.Now,whereintheproofdidyouneedthefactthatthetrianglewasarighttriangle?Explain.

Page 68: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

68

ReadandStudy:

Thecowboyshaveawayoftrussingupasteerorapugnaciousbroncowhichfixesthebrutesothatitcanneithermovenorthink.Thisisthehog-tie,anditiswhatEucliddidtogeometry.

EricTempleBell InR.Crayshaw-Williams,TheSearchforTruth ThePythagoreanswereagroupofmysticsandscholarswholivedinGreeceabout400BC.Whilethereisnowrittenrecordoftheirbeliefsorwork,theyarethoughttohaveascribedtoabeliefinthemathematicalorderoftheuniverse.Theyarealsothoughttohaveprovedthetheoremthatbearstheirname–althoughtherelationshipamongthesidesofarighttrianglewasknownearlierinBabyloniaandperhapsinChina.ThePythagoreanTheoremisakeymilestoneinEuclid’sElements.EuclidarrivesatthistheoremanditsconverseasthefinalpropositionsofBook1.(Thereare13booksthatmakeuptheElements).Sowethinkthathemusthaveconsidereditofgreatsignificance,ifnotthewholepurposefordevelopingthepropositionsthatprecedeit.It’sabigdealbecauseitisthekeytodefiningEuclideandistance.We’lltalkmoreaboutthatlaterinthistext.ConnectionstotheMiddleGrades:

Iconstantlymeetpeoplewhoaredoubtful,generallywithoutduereason,abouttheirpotentialcapacity[asmathematicians].Thefirsttestiswhetheryougotanythingoutofgeometry.Tohavedislikedorfailedtogetonwithother[mathematical]subjectsneedmeannothing.

J.E.Littlewood,AMathematician’sMiscellanyThePythagoreanTheoremisoneofthoseusefultoolsforsolvingproblems;unfortunately,studentsusuallyrememberonlythea2+b2=c2part,asthoughit’sjustaformulaandnotarelationshipamongtheareasofthesquaresonthesidesofarighttriangle.Yourjobistohelpyourstudentstoseethistheorem.Theinitialstatementofthistheoremwasalwaysgivenintermsofareas.Itwentsomethinglikethis:

PythagoreanTheorem:Thesquareonthehypotenuseofarighttriangleisequaltothesumofthesquaresontheothertwosides.

Onthenextpageyouwillfindapuzzlethathelpstomakethepointsthattheareasofthesquaresonthelegsofarighttriangleexactlyfittofillupthesquareonthehypotenuse.

Page 69: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

69

Tracethediagram,thencutoutthepartsofthesquaresonthelegsoftherighttriangleandseeifyoucanrearrangethepiecestofitthesquareonthehypotenuse(Hint:thetinysquaregoesinthemiddle).

PythagoreanPuzzle

Page 70: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

70

HerearethreeoftheCommonCoreStateStandardsforchildreningradeeight.Readthesecarefully.

Noticehowstandard6expectsstudentstonotonlyunderstandaproofofthePythagoreanTheorem,butalsoproveitsconverse.WhatistheconverseofthePythagoreanTheorem?Stateitcarefully,thentrytoproveit!

Homework:

Theabilitytofocusattentiononimportantthingsisadefiningcharacteristicofintelligence.

RobertJ.Shiller

1) DoalltheproblemsintheConnectionssectionincludingprovingtheconverseofthePythagoreanTheorem.

2) ThepuzzlefromtheConnectionssectiononlyworkswitharighttriangle.Ifthetriangleisacute,isthesumofthetwosmallersquaresbiggerorsmallerthanthesquareonthehypotenuse?Whatifthetriangleisobtuse?

UnderstandandapplythePythagoreanTheorem.

6. ExplainaproofofthePythagoreanTheoremanditsconverse.

7. ApplythePythagoreanTheoremtodetermineunknownsidelengthsinrighttrianglesinreal-worldandmathematicalproblemsintwoandthreedimensions.

8. ApplythePythagoreanTheoremtofindthedistancebetweentwopointsina

coordinatesystem.

Page 71: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

71

3) TheCommonCoreStandardsforGeometryadvocatethatstudentsineighthgradelearntodothefollowingregardingthePythagoreanTheorem.Wehaveaddressedthefirststandardinthissectionandwewilldothethirdinalatersectionwhenwestudyanalyticgeometry.Herearesomeproblemstogiveyoumorepracticewiththesecond:solvingreal-worldandmathematicalproblems.

a) Theschoolis4milesdueeastofyourhouseandthemallis8milestothenorthofyourhouse.Howfarapart(asthecrowflies)aretheschoolandthemall?

b) Asquarehasadiagonaloflength10inches.Whatisitsarea?c) Forarectangularshoeboxwithsidesoflengtha,bandc,explainwhythe

diagonaldsatisfiesthe“three-dimensionalPythagoreantheorem”givenbytheequation: 2222 dcba =++ .

4) StudythediagrambelowandthenuseittoprovideanotherproofofthePythagoreanTheorem.Youmayassumethatallfourtrianglesarecongruentrighttriangles.

Page 72: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

72

ClassActivity9:NothingbutNet

I’vefailedoverandoveragaininmylifeandthatiswhyIsucceed. MichaelJordanIfyouhaveaprismwithasquarebasewithsidelengthbandaheighth,thenitssurfaceareaandvolumearegivenbytheformulasbelow:

Volume=b2h

SurfaceArea=2b2+4bh

1) Buildarightprismwithasquarebaseoutofpaperandverifytheaboveformulas.

2) Anon-rightprismiscalledanobliqueprism.Hereisapictureofone:

Supposethatyouhaveanobliqueprismwithheighthandasquarebasewithsidelengthb.Doestheaboveformulaforvolumestillhold?Buildsomeobliqueprismsandexplainwhatyousee.

Doestheformulaforsurfaceareastillhold?Explain.

3) Seeifyoucanmakeanetforanoblique(non-rightcylinder)liketheoneshownbelow.Whatareyourconjecturesaboutthevolumeandsurfaceareaofanobliquecylindercomparedtoarightcylinderwiththesameheightandradius?

Page 73: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

73

ReadandStudy:

Yougottoknowwhentohold‘em,knowwhentofold‘em… TheGamblerbyDonSchlitz

Anetforathree-dimensionalobjectisatwo-dimensionalpatternthatcanbefoldedtomaketheobject.So,forexample,hereisapictureofanetthatcanbefoldedtomakeacube.Mentallyfolditup.

Thereareseveralnetsthatfoldtomakeacube.IntheHomework,yougettofindthemall.Netsareusefulforstudyingobjectslikepolyhedra.Apolyhedronisasurfaceofathreedimensionalobject.Inordertobeapolyhedron,thatsurfacemustbeclosed,simple(haveonlyonechamber),andcomposedentirelyofpolygons.Theprismsandpyramidsthatyouworkedwithintheclassactivitywerebothexamplesofpolyhedra.Thepolygons(andtheirinteriors)thatcomposethesurfaceofthepolyhedraarecalledfaces.Thefacesmeetpairwisealongedgesandtheedgesmeetotheredgesatvertices.Howmanyofeach:faces,edgesandvertices,doesthecubehave?Aregularpolyhedronisapolyhedronmadeupofentirelyofcongruentregularpolygonfacesinsuchawaythatallthevertexarrangementsarethesame.Sothecubeaboveisanexampleofaregularpolyhedronbecauseitiscomposedentirelyofcongruentsquarefaceswithexactlythreefacesmeetingateachvertex.Itturnsoutthereareonlyfiveregularpolyhedra.Inordertounderstandthisargumentyouwillneedtocutoutallofthetriangle,square,pentagonandhexagonfacesinAppendixCandfindsometape.Takeafewminutestodothosethingsnow.Startwiththeequilateraltriangles.Noticethatyouneedtoarrangeatleastthreeatavertexinordertofoldathree-dimensionalobject.Maketheregularpolyhedronthathasexactlythreetrianglefacesmeetingateachvertex.Itiscalledatetrahedron.

Page 74: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

74

Nowseeifyoucanfitfourtrianglesateachvertex.Buildthatregularpolyhedron.Itiscalledanoctahedron.Finallynoticethatyouhaveroomtofitfivetrianglesatavertexandstillbeabletofolditup–butwithsixtrianglesatavertexthethingliesflatontheplaneandcannotbefolded.Sothatmeansthatthereareonlythreeregularpolyhedrathatcanbebuiltofequilateraltriangles.Hereiswiremodeloftheregularpolyhedronwithfivetrianglesatavertex.Itiscalledanicosahedron.

Okay.Let’smoveontosquares.Weknowwecanfitthreeatavertexandthatgetsusthecube.Canyoubuildsomethingwithfouratavertex?Morethanfour?Ineachcase,eitherdoit,orexplainwhynot.Thereisonemoreregularguythatiscomposedentirelyofpentagons.

Wecannotbuildaregularpolyhedronwithonlyhexagonsbecausethreeatavertexlieflatandcannotbefolded.(Tryit.)Polygonswithevenmoresidesthanahexagondonotworkeitherbecausetheycannotbefoldedintothreedimensions.Sothatmeanstherecanbeonlyfiveregularpolyhedra.Makesurethatyouunderstandthisargument.

Page 75: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

75

ConnectionstotheMiddleGrades:

Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsinconstructingarguments.Theymakeconjecturesandbuildalogicalprogressionofstatementstoexplorethetruthoftheirconjectures.

CommonCoreStateStandardsforMathematics,p.6.TheCommonCoreStandardsforgradeeightrequirethatstudentssolvereal-worldproblemsinvolvingvolumeofcylinders,conesandspheres.

Acylinderissimilartoaprisminform.Ithasacircularbaseofradiusrandaheighth.YouprobablyarguedaspartoftheClassActivitythatthevolumeofacylinderisπ×r2×h.Nowimagineacompatiblecone(onewiththesameradiusandheight)livinginsidethecylinder.Itsvolumeisonethirdofthecylinder’svolumeor1/3×π×r2×h.Thisformulaisdifficulttoderive–butyoucanhelpyourstudentstoseetherelationshipbetweenthevolumesoftheseobjectsbypurchasingcompatibleplasticmodelsandhavingthestudentsseethatittakesthewaterfromthreeconestofillthecylinder.Asphereisthesurfaceofaball.Thevolumeofasolid(filled)sphereisgivenbytheformula4/3×π×r3whereristheradiusofthesphere.Imagineaspherelivinginsidetherightcylinder.Youcanshowyourstudentsthatinordertofillthecylinder,youneedthewaterfromonecompatibleconeandonecompatiblesphere.Sincethevolumeoftheconeis1/3×π×r2×h,thevolumeofthespheremustbetherest.Dothecalculationtoshowthatthe(volumeoftheshowncylinder)–(volumeofaconeofthesameheight)doesyougiveyouthevolumeoftheshownsphere.

• Knowtheformulasforthevolumesofcones,cylinders,andspheresandusethemtosolvereal-worldandmathematicalproblems.

Page 76: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

76

UsedwithpermissionfromWikipedia.com

YouwillsolvesomemoreproblemsinvolvingthevolumesoftheseobjectsaspartoftheHomeworksection.

Homework:

Doingisaquantumleapfromimagining. BarbaraSher

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) TheCommonCoreStateStandardsforstudentsingradesixincludethefollowing:

Herearesomeproblemsthatmightmeetthisstandard:

a) Arectangularroomis15feetlongby10feetwideandhasan8footceiling.Builda(scaleddown)modelfortheroomusinganet.

b) Youwanttopaintthewallsandceilingandsoneedtoestimatetheamountofpaintyouwillneed.Ifagallonofpaintcovers200squarefeet,howmanygallonsshouldyoupurchase?Explainyourwork.

3) Carefullymakeanetforarightcircularcylinder.Whatisaformulaforsurfaceareaofa

rightcircularcylinder?Whatistheformulaforitsvolume?Explainyouranswerineachcaseasyouwouldtomiddlegradesstudents.

4) Ifyoudoubledeachlineardimensionofyourcylinder(radiusandheight),whatwouldhappentothesurfacearea?Thevolume?Explain.

• Representthree-dimensionalfiguresusingnetsmadeupofrectanglesandtriangles,andusethenetstofindthesurfaceareaofthesefigures.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

Page 77: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

77

5) Howmanydifferentnetsarepossibleforacubethatmeasures1inchonaside?Sketch

themandarguethatyouhavethemall.

6) Ifyoudoubledeachlineardimensionofyourcube(i.e.,gofrom1×1×1to2×2×2)whatwouldhappentothesurfacearea?Thevolume?Explain.

7) Arecones,spheres,orcylindersexamplesofpolyhedra?Whyorwhynot?

8) Anicecreamsnackiscomposedofaconewithhalfasphereontop.Whatisthevolumeofthesnackiftheconehasradius3cmandaheightof8cm?

9) Goonlineandsearchfor“netsfortheregularpolyhedra.”Printoutandbuildeachofthefive.YouwillneedtheseforClassActivity13.

Page 78: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

78

ClassActivity10:Slides,TurnsandFlips ThelawsofnaturearebutthemathematicalthoughtsofGod. EuclidTherearethreebasicrigidmotionsoftheplane–waystomovetheplanewithoutdistortingit.Youmayhavelearnedabouttheminformallyinmiddleorhighschoolorperhapsinanearliercourse.Hereyouwillstudytheprecisedefinitionsforthoserigidmotionsandyouwillusethosedefinitionstofigureouthowtoconstructeachrigidmotion.AtranslationbyavectorRSisamotionoftheplanesothatifAisanypointintheplaneandwecallA’theimageofA,thenvectorAA’andvectorRShavethesamelengthanddirection.WewilldenotethistranslationTRS.

1) Construct∆A’B’C’(theimageof∆ABCunderthetranslationTRS)andthenprove,usingthedefinitionofatranslation,thatyouhavedoneso.

R

B S A C

(Thisactivityiscontinuedonthenextpage.)

Page 79: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

79

Arotation(aboutcenterpointPofangleφ)isamotionoftheplaneinwhichtheimageofPisitself,andiftheimageofAisA’thenPA’iscongruenttoPAandthemeasureofangleAPA’=φ.WewilldenotethisrotationR(P,φ).

2) Construct∆A’B’C’(theimageof∆ABCundertheclockwiserotationR(P,φ))andthenprove,usingthedefinitionofarotation,thatyouhavedoneso.

B φ A C

(Thisactivityiscontinuedonthenextpage.)

P

Page 80: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

80

Areflection(inlinem)isamotionoftheplaneinwhichtheimageofapointonmisitself,andifAisnotonmandA’istheimageofA,thenmistheperpendicularbisectorofAA’.WewilldenotethisreflectionMm.(Mformirror.)

3) Construct∆A’B’C’(theimageof∆ABCunderthereflectionMm)andthenprove,usingthedefinitionofareflection,thatyouhavedoneso.

m

B C A

Page 81: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

81

ReadandStudy:

Saywhatyouknow,dowhatyoumust,comewhatmay.SonjaKovalevsky(Mottoonherpaper"OntheProblemoftheRotationofaSolidBodyaboutaFixedPoint.")

Informally,arigidmotionoftheplaneisonethatdoesnotcausedistortion.Youcanthinkofrigidmotionslikethis:supposethatyousetaninfinitepieceofpaperonthetableinfrontofyouandpicturethatpaperasrepresentingthesetofpointsontheplane.Now,whatcanyoudotomovethispapersothatintheenditisbackflatonthetable?Well,youcouldspinitaround(i.e.,performarotation);youcouldflipitover(i.e.,performareflection);youcouldslideitinsomedirection(i.e.,performatranslation);oryoucoulddosomecombinationofthesemoves.Ifyoustretchthepaper,crumpleit,ortearit,thatyouhavenotperformedarigidmotion.Hereisamoretechnicaldefinition.ArigidmotiononasetSisatypeoffunction(transformation)fromSbacktoSthatpreservesthedistancebetweenpoints.So,iftwopointsPandQwere3unitsapartbeforetherigidmotion,thentheirimagesP’andQ’are3unitsapartafterwards.Thisensuresthe‘nodistortion’rule.Itisimportanttonotethatwhenweperformarigidmotion,theentireplanemoves–notjusttheobjectsontheplane.Forexample,whenyouconstructedtheimageofthetriangleunderthereflection,thenewtrianglethatresultedfromtherigidmotion(oftencalledtheimageoftherigidmotion)justshowedwhereintheplanetheoriginaltrianglemoved.Itdidnotresultinasecondtrianglebeingplacedontheplane.Thisisaveryimportantideamakesureyouunderstandit.ApointPisafixedpointoftherigidmotioniftheimageofPisPitself.Makessenseright?Fixedpointsarethosethatdonot“move”undertherigidmotion,or,saidanotherway,fixedpointsarethepointsthatgetpairedwiththemselvesunderthefunction.Adilationisanexampleofamotionoftheplanethatisnotrigid–informally,adilationisastretchingorashrinkingoftheplane(andalloftheobjectsontheplane)inauniformmanner.Youcanperformrigidmotionsoneaftertheother.Inthatcasewesayyouhaveperformedacompositionofrigidmotions.Forexample,youcoulddoarotationfollowedbyareflection.Oratranslationfollowedbyanothertranslation.Youcanalsocomposerigidmotionswithdilations.Thisbringsustotwoimportantdefinitions:Twogeometricobjectsarecongruentifoneistheimageoftheotherunderarigidmotion(orcompositionofrigidmotions)oftheplane.Twogeometricobjectsaresimilarifoneistheimageoftheotherunderacompositionofrigidmotionsanddilations.(Inotherwords,objectsaresimilarifonecanmovedandshrunk(ormade

Page 82: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

82

larger(dilated))sotocoincidewiththeother.)Similarobjectsaretheshapebutnotnecessarilythesamesize.Forexample,thesesnowflakesaresimilarbutnotcongruent.Wewilldiscussthisideafurtherinanupcomingsection.

ConnectionstotheMiddleGrades:

Ingrades6-8allstudentsshoulddescribesizes,positions,andorientationsofshapesunderinformaltransformationssuchasflips,turns,slides,andscaling.

NationalCouncilofTeachersofMathematics

PrinciplesandStandardsforSchoolMathematics,p.232TheCommonCoreStateStandardsrecommendthatstudentsinGrade8learntodoandunderstandthefollowing.Readthesecarefully.

Page 83: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

83

Middlegradesstudentswilllikelynotconstructrigidmotions;rathertheywillusegraphpaperortracingpapertostudytheminformally.Toseewhatwemean,getafewpiecesoftracingpaperandre-dotheclassactivitybytracingthefiguresandmovingyourpaper.

Homework:

Withregardtoexcellence,itisnotenoughtoknow,butwemusttrytohaveanduseit.

Aristotle1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.2) First,translatequadrilateralABCDbythetranslationvectorRS,thenapplythetranslation

vectorSTtoA’B’C’D’.Ineachcaseconstructthetranslation.

S

GeometryGradeEight:Understandcongruenceandsimilarityusingphysicalmodels,transparencies,orgeometrysoftware.

1. Verifyexperimentallythepropertiesofrotations,reflections,andtranslations:a. Linesaretakentolines,andlinesegmentstolinesegmentsofthesamelength.b. Anglesaretakentoanglesofthesamemeasure.c. Parallellinesaretakentoparallellines.

2. Understandthatatwo-dimensionalfigureiscongruenttoanotherifthesecondcanbeobtainedfromthefirstbyasequenceofrotations,reflections,andtranslations;giventwocongruentfigures,describeasequencethatexhibitsthecongruencebetweenthem.

3. Describetheeffectofdilations,translations,rotations,andreflectionsontwo-dimensionalfiguresusingcoordinates.

4. Understandthatatwo-dimensionalfigureissimilartoanotherifthesecondcanbe

obtainedfromthefirstbyasequenceofrotations,reflections,translations,anddilations;giventwosimilartwo-dimensionalfigures,describeasequencethatexhibitsthesimilaritybetweenthem.

Page 84: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

84

T R IdentifythesingletransformationthattakesABCDtoA’B’C’D’

3) First,rotateABCDclockwisearoundPby90°,thenrotateA’B’C’D’clockwisearoundPby60°.Ineachcase,constructtherotation.

IdentifythesingletransformationthattakesABCDtoA’B’C’D’

PC

A

B

D

Page 85: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

85

4) First,reflectABCDoverlinem,thenreflectA’B’C’D’overlinek.Assumethatlinemisparalleltolinek.Ineachcase,constructyourreflection.

IdentifythesingletransformationthattakesABCDtoA’B’C’D’.

5) First,translateABCDbythetranslationvectorRS,thenreflectA’B’C’D’overlineRS.Youdonotneedtoconstructtheserigidmotions.Usethegridtoperformthem.

Wecalltheresultaglidereflection,alsoknownasa“slideflip.”Inaglidereflectionthetranslationvectorisalwaysparalleltothelineofreflection.Acommonexampleofaglidereflectionisasetoffootprintsinsand.

km

C

AD

B

R

C

A

B

D

S

Page 86: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

86

6) Howmanyfixedpointsdoeseachofthefollowingrigidmotionhave?Ineachcase,explain.

a) Translationb) Rotationc) Reflectiond) GlideReflection

ClassActivity11:TransformativeThinking

Themathematicalsciencesparticularlyexhibitorder,symmetry,andlimitation;andthesearethegreatestformsofthebeautiful.

AristotleInthisactivityyouwillcontinuetoinvestigatetheresultofperformingtworigidmotionsoftheplane,onefollowingtheother.Thefirstrigidmotionwillbeappliedtotheoriginalobject.Thesecondwillbeappliedtoimageofthefirst.Recallthatthisprocessofapplyingtwomotionsconsecutivelyiscalledcomposition.Yourjobistoclassifyallpossiblecompositionsoftherigidmotionsoftheplane.

°

TranslationTRS

RotationR(P,φ)

ReflectionMl

GlideReflectionG(RS,l)

Tran

slatio

nT P

Q

PQandRSparallel

PQandRSnotparallel

Page 87: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

87

Itturnsoutthateveryrigidmotionoftheplaneendsupbeingarotation,areflection,atranslationoraglidereflection.Discusswhatwemightmeanbythis,andexplainitinyourownwords.

ClassActivity12:ExpandingandContracting

GivemeextensionandmotionandIwillconstructtheuniverse. ReneDescartesAnothermotionoftheplaneisadilation.Youhaveexperienceddilationswheneveryoushrinkorenlargeaphotographwithoutdistortingtheimage.Formally,adilation(aboutpointPwithscalefactorq)oftheplaneisamotionoftheplaneinwhichtheimageofPisitselfandiftheimageofAisA’thenPA’=q(PA)andP,A,andA’arecollinear.Inadilation,Pisthecenterofthedilationandqisthescalefactor.

1) Unliketherigidmotions,dilationsarenotalwaysconstructible.(i.e.Youcannotalwaysmakethemwithacompassandstraightedgealone.)Whyisthisthecase?

RotationR (

Q,θ

)

P=Q

P≠Q

ReflectionM

n

nandlparallel nandlintersect nandlparallel nandlintersect

GlideRe

flectionG (

PQ,n)

nandlparallel nandlintersect

Page 88: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

88

2) Onaseparatesheetofpaper,drawseveraldilationsofrABC.Experimentwiththe

locationofthecentralpointandthevalueofthescalefactor.Then,answerthequestionsbelow.

a. Howdoestheplacementofthecenterpointaffecttheresultingshape?

b. Howdoestheshapechangeifthescalefactorisgreaterthanone?Between0and1?Equalto1?

c. Whathappensifq=0?q<0?

ReadandStudyInthephysicalworld,onecannotincreasethesizeorquantityofanythingwithoutchangingitsquality.Similarfiguresexistonlyinpuregeometry.

PaulValéry

Dilationsareanexampleofamovementoftheplanethatisnotarigidmotion.Whenyoucreatedyourdilationsintheclassactivity,youwerecreatingshapesthatweresimilartotheoriginalfigure.Recallthattwofiguresaresimilarifoneistheimageoftheotherunderacompositionofrigidmotionsanddilations.Forexample,thefollowingfiguresaresimilar.Seeifyoucandetermineasequenceofrigidmotionsanddilationswhichmaponeofthefiguresbelowontotheother.

Page 89: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

89

Asaconsequenceofthedefinitionofsimilar,weknowthattwopolygonsaresimilariftheircorrespondingvertexanglesarecongruentandcorrespondingsidesareproportional.Takeamomentandthinkaboutwhythisisthecase.Trianglesarereallyspecialpolygonsinthefactthatwedonothavetocheckallthesidesandalltheanglestodetermineiftwotrianglesaresimilar.Weonlyhavetocheckoneofthefollowing:

• Angle-Angle-AngleSimilarityTheorem:Iftwotriangleshavecorrespondinganglescongruent,thenthetrianglesaresimilar.(ThistheoremissometimescalledtheAAtheorembecausecheckingtwoanglesissufficientforprovingthattwotrianglesaresimilar.Whyisthisthecase?)

• Side-Angle-SideSimilarityTheorem:Iftwotriangleshavetwopairsofcorrespondingsidesproportionalandtheincludedanglescongruent,thenthetrianglesaresimilar.

• Side-Side-SideSimilarityTheorem:Iftwotriangleshaveallthreepairsofcorrespondingsidesproportional(withthesameconstantofproportionality),thenthetrianglesaresimilar.

Thesetheoremsonlyworkfortriangles.Why?Whathappenswhenyoutrytoapplythemtootherpolygons?

Homework

Apupilfromwhomnothingiseverdemandedwhichhecannotdo,neverdoesallhecan.JohnStuartMill

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Determineifthefollowingstatementsaretrueorfalse.Makesureyoucanexplainwhyineachcase.

a. Therearenofixedpointsinadilation.b. Anglesarepreservedunderadilation.c. Iftwolinesegmentsareparallelbeforeadilation,theywillbeparallelafterthe

dilation.d. Linesegmentlengthsarepreservedunderadilation.

3) Areallrectanglessimilar?Eitherprovethattheyareorprovideacounterexample

explainingwhytheyarenot.

4) Determineifeachpairoftrianglesbelowaresimilar.Iftheyaresimilar,findthemissingparts,ifnot,explainwhynot.

Page 90: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

90

5) Ifthescalefactorinadilationisk,whatistheratiooftheareaoftheresultingshapeascomparedtotheoriginalshape?

6) InthefollowingfigureassumethatÐACBisarightangleandlinesegmentCDisperpendiculartolinesegmentAB.Whyare∆ABC,∆ACD,and∆CBDallsimilar?Showthatcy=a2andcx=b2andthenusethesefactstodevelopacarefulproofofthePythagoreanTheorem.

Page 91: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

91

ClassActivity13:StrictlyPlatonic(Solids)

Themostgenerallawinnatureisequity–theprincipleofbalanceandsymmetrywhichguidesthegrowthofformsalongthelinesofthegreateststructuralefficiency.

HerbertRead Youwillneedtobuildmodelsoftheregularpolyhedrainordertocompletethisactivity–netsareavailableonline.

Page 92: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

92

Three-dimensionalobjects,includingtheregularpolyhedra,canhaverotationalandreflectionalsymmetries.Forrotationalsymmetry,thecenterofrotationisreallyalineofrotation(calledtheaxisofsymmetry).Therecanbemorethanoneaxisofsymmetryforathree-dimensionalobject.Forexample,thecubehasthreeaxesofsymmetryoforder4connectingthecentersofoppositefaces,fouraxesofsymmetryoforder3connectingdiagonallyoppositevertices,andsixaxesoforder2connectingmidpointsofoppositeedges.Theorderofalineofsymmetryisthenumberofturnsthatputtheobjectbackonitself.Herearethethreeorder-4axesofsymmetryforacube.Takeaminuteinyourgroupstobesurethateveryoneseeswhyeachofthesehasorder4.Thensketchtherestoftheaxesofsymmetryforacube.

Thecubealsohasreflectionalsymmetry.Thelineofreflectionbecomesaplaneofreflectionthatdividesthecubeintotwomirrorimages.Therearenineplanesofreflectionalsymmetry,twovertical,onehorizontalandtwothroughthediagonalsofeachpairofoppositefaces.Findeachplaneofsymmetryonyourmodelofthecube.Imagineslicingyourcubealongeachplane.Youshouldbeabletovisualizethetwocongruent“half-cubes”thatwouldresult.YourjobforthisClassActivityistofindanddescribealltheplanesofreflectionalsymmetryandalltheaxesofrotationalsymmetryfortheotherfourregularpolyhedra.Completethetableandthendescribeanypatternsyousee.

Polyhedron #anddescriptionofplanesofreflectionsymmetry

#anddescriptionoflinesofrotationsymmetry

RegularTetrahedron

Page 93: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

93

Cube

RegularOctahedron

RegularDodecahedron

RegularIcosahedron

ReadandStudy:

Theessenceofmathematicsisnottomakesimplethingscomplicated,buttomakecomplicatedthingssimple. S.Gudder

Thegeometricideaofsymmetryisdefinedintermsofrigidmotions.Hereistheofficialdefinition.Asymmetryofageometricobjectisarigidmotionoftheplaneinwhichtheimageoftheobjectcoincideswiththeoriginalobject.

Page 94: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

94

Stopandthinkaboutthisdefinitiontobesureitmakessensetoyou.Let’scharacterizeanobjectintheplanebasedonitssymmetries.Havealookatthetwo-sidedarrowbelow.Thisobjecthastworeflectionsymmetriesbecausereflectionsovereitherlineshownbelowwillresultintheimagecoincidingexactlywiththeoriginalobject.Thetwo-sidedarrowalsohas180-degreerotationalsymmetryaroundthecenter(wherethetwolinesaboveintersect).Italsohas360-degreerotationalsymmetry(wecallthatthetrivialsymmetrybecauseeveryobjecthasit).Drawanobjectthathas90,180,270and360rotationalsymmetriesandnoothersymmetries.Whattypesofobjectswillhavetranslationalsymmetries?Havealookbackatthetableofsymmetriesyoumadefortheregularpolyhedra.Whatdoyounotice?Onethingthatwenoticedwasthatthecubeandtheoctahedronhaveexactlythesamesetofsymmetries,andthatthedodecahedronandtheicosahedronalsosharethesamesymmetries.Sowhatisitaboutthesepairsofobjectsthatwouldhavethatbethecase?Let’sstartwiththecubeandtheoctahedron.Imaginetakingthemidpointofeachfaceofthecubeandthinkingofthoseastheverticesofanewpolyhedron.Thenthatnewpolyhedronwouldhave6vertices.Seeifyoucansketchthatnewpolyhedroninsideofthecube.

Page 95: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

95

Now,seeifyoucansketchthepolyhedronthatcouldbeformedbyusingthemidpointsofthefacesoftheoctahedronasvertices.Howmanyverticeswouldthatnewpolyhedronhave?

Wecallobjectsthatarerelatedinthiswayduals.Thecubeandtheoctahedronaredualsofeachother,andthedodecahedronandtheicosahedrtonarealsodualsofeachother.Takeacloselookatyourmodelsofthedodecahedronandtheicosahedrontoseeifyoucantellthattheyareduals.Wemightevenimaginehowtheobjectswouldfitinsideoneanother.

Page 96: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

96

Dualshavethesamesymmetriesbecausetheywouldmovetogetherunderrotationsandreflections.Youmayhavenoticedthatwehaveleftoutthetetrahedron.Whatisitsdual?Seeifyoucansketchit.

Page 97: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

97

Homework:

Youteachbestwhatyoumostneedtolearn. RichardBach

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Sketchanobjectintheplanethatmeetseachsetofcriteriaorexplainwhyitisimpossibletodoso:

a) Theobjecthasonly360-rotationalsymmetry.b) Theobjecthas120,240and360-degreerotationalsymmetriesandnoother

symmetries.c) Theobjecthas120and360-degreerotationalsymmetryandnoothersymmetries.d) Theobjecthasverticalreflectionsymmetry,360-degreerotationalsymmetryand

noothersymmetries.e) Theobjecthasverticaltranslationsymmetry,360-degreerotationalsymmetryand

noothersymmetries.

3) Anobjectintheplanehastwolinesofsymmetry.Iftheselinesareparallel,whatothersymmetriesmustthisobjecthave?Why?

4) Findallofthesymmetriesofthethree-dimensionalsquare-basedpyramidshownbelow.

5) Provethatifanobjectintheplanehastwointersectinglinesofsymmetry,thenitmustalsohaverotationalsymmetry.

6) Describeconditionswhichwouldguaranteethatarightprismhasexactlyoneplaneofreflectionalsymmetry.Whereistheplanelocated?

7) Describeconditionswhichwouldguaranteethatanobliqueprismhasexactlyoneplaneofreflectionalsymmetry.Whereistheplanelocated?

Page 98: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

98

8) Buildthefollowingmodels.Thenfindtheirsurfaceareas,volumes,anddescribealltheirsymmetries.

a) Arightcircularcylinderwithradius2cmandheight7cm.b) Asquare-basedpyramidwitha4cmby4cmbaseandaheightof5cm.c) Arightprismwiththebelowregularhexagonasthebase,andaheightof8cm.

Page 99: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

99

ClassActivity14:BuriedTreasure

I'mverywellacquaintedtoowithmattersmathematical,Iunderstandequations,boththesimpleandquadratical,AboutbinomialtheoremI'mteemingwithalotofnews--Withmanycheerfulfactsaboutthesquareofthehypotenuse.

Gilbert&Sullivan,"ThePiratesofPenzance"

Thesneakypirateandthefirstmateburiedtreasureonanislandwithtwolargerocksandpalmtreeneartheshore.You’vefoundthetop-secretmapthatexplainsthelocationofthebountyasfollows:Me captain started at the palm tree and paced off the distance to the first rock, turned 90º in a counterclockwise direction and paced off an equal distance. Argh. I, the matey, started at the palm tree and paced off the distance to the second rock, then turned 90º in a clockwise direction and paced off an equal distance. We then buried the treasure halfway between us two. Youarestandingontheislandandtherocksarestillthere,but,sadly,thepalmtreehaslongsincediedandyouhavenoideawhereitwas.Findthetreasure.

Page 100: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

100

ReadandStudy:

Equationsarejusttheboringpartofmathematics.Iattempttoseethingsintermsofgeometry. StephenHawking

Inthe1700’sRenéDescartes(pronouncedDay-cart)hadtheideathatwecouldsolvesomegeometricproblemsmoreeasilybytranslatingthemintoalgebraicproblems.Hisideawastoplaceastructure(agrid)ontopoftheEuclideanplaneandtogivenames(like(-3,-1))tothepoints.Oneversionofthestorygoeslikethis:Descarteswasnotanearlyriser,butheenjoyedlyingaroundinbedandthinkingdeeply.(Descartesiscreditedwiththequote,“Ithink,thereforeIam.”)Onemorning,whileponderingtheceilingofhisbedroom,henoticedaflywalkingacross.Ashementallytracedthepathofthefly’swalkheconsideredhowhecoulddescribethepathmathematically.Hereasonedthathecouldlabelanyonepointonthepathbyhowfartheflywasfromthesouthwallandhowfaritwasfromthewestwallofhisroom.Thuswasborntheideaofthecoordinateplaneuponwhichwecan“see”the“path”ofafunction’sgraph.Thecoordinateplane(alsocalledtheCartesianplaneinDescartes’honor)isafamiliarfeatureofmiddleschoolandhighschoolalgebracoursesasstudentslearntographlinear,quadratic,exponential,andotherfunctions.Youmayrecallthatitfeaturestwoperpendicularaxes,thehorizontalx-axisandtheverticaly-axis,whichintersectatapointcalledtheorigin.Wethenlabeleachpointontheplanewithanorderedpairofcoordinates(x,y),wherethex-coordinatetellsushowfarthepointisfromtheorigin(0,0)inthehorizontaldirectionandthey-coordinategivesthedistancefromtheoriginintheverticaldirection.Forexample,thepoint(-3,-1)islocated3unitstotheleftand1unitdownfromtheorigin.

8

6

4

2

-2

-4

-6

-8

-10 -5 5 10

D: (2, - 3)

C: (4, 0)

B (-2, 5)

A (- 3, -1)

origin

y-axis

x-axis

Page 101: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

101

UsingthePythagoreanTheoremwecanfindthedistancebetweenanytwopointsontheCartesianplane.Forexample,let’sfindthedistancebetweenpointsAandDinthepictureabove.ThelinesegmentADisthehypotenuseofarighttrianglewithahorizontallegoflength5(2–(-3))andaverticallegoflength2((-1)–(-3)).SothesquareofthedistancebetweenAandDis52+22=25+4=29andthedistancebetweenAandDis 29 .Findthedistancebetween(2,-3)and(4,0).

ThereareseveralfactsaboutlinesontheCartesianplanethatareusefultorecall.Oneisthateverylinehasaslope,whichisameasureofitsinclinationwiththex-axis.Theideaofslopeisthatitistheamountyouneedtomoveinthey-directiontostayonthelineforaoneunitchangeinthex-direction.Sothinkaboutthis.Whatdoesaslopeof7mean?Sketchalinewiththatslope.Whatdoesaslopeof-¼mean?Sketchalinewiththatslope.Wecancalculatetheslope(m)ofalinebyusingthecoordinatesoftwopointsthatlieonthelinewiththeformula

𝑚 = /01/230132

where ),( 11 yx and ),( 22 yx arethecoordinatesofthetwopoints.Justtojogyourmemory,computetheslopeofthelinecontainingthepoints(4,0)and(-2,5).Iftwolinesareparallel,thentheywillmakethesameanglewiththex-axis(atransversal)andsowillhavethesameslope–andviceversa,iftwolineshavethesameslope,thentheyareparallel.Thinkabouthowyoucouldmakeanargumentforthisfact.Thisturnsouttobeaveryusefulobservation.Ifweneedtoshowthattwolinesareparallel,wecansimplycalculatetheirslopesandshowthattheyareequal.(Rememberthiswhenyougettothehomeworkproblems.)Whatiftwolinesareperpendicular?Howaretheirslopesrelated?Itturnsoutthattheslopesofperpendicularlinesalsohaveanumericalrelationship.Theproductoftheslopesofperpendicularlinesisalways-1.Thinkabouthowyoucouldmakeanargumentforthisfact.Whatwouldbetheslopeoftheperpendiculartothelinecontainingthepoints(4,0)and(-2,5)?Andhereisthelastuseful“fact”aboutusingcoordinatesontheCartesianplanethatweneedforourwork.Thecoordinatesofthemidpointofthelinesegmentconnecting ),( 11 yx and ),( 22 yx are

++2

,2

2121 yyxx .

Makeanargumentforthisfact.Whatarethecoordinatesofthemidpointofthelinesegmentconnectingthepoints(4,0)and(-2,5)?

Page 102: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

102

Sowhatdoesallofthishavetodowithusingalgebratosolvegeometricproblems?ThatwasthegeniusofDescartes’invention.We’llshowyouanexample.Considerthefollowinggeometricproblem:Showthatthesegmentsjoiningthemidpointsoftheoppositesidesofaquadrilateralbisecteachother.Sowehaveanyquadrilateral,nothingspecialaboutit,butifweconnectthemidpointsofitsoppositesides,thosesegmentswillcuteachotherintotwoequallengthpieces.Drawasketchtoseethatthisseemstrue.Now,let’sseeifwecanprovethisusingthestructureoftheCartesianplanetohelpusout.Ourfirststepistochoosefourrandompointsandletthembetheverticesofourquadrilateral–remembernothingspecialallowed–noparallelsides,nocongruentsides,etc.Butwecanchoosesomeeasy-to-usepoints(suchastheorigin)fortwoofourpoints.(Theproblem-solvercanlaydownthestructurewhereverwelike.)Wewilllabelourpointswithcoordinates(0,0),(a,0),(b,c),and(d,e).Eventhoughwehavetoplacethesepointsinparticularspotsonourdiagram,wearemakingnoassumptionabouttheactualvaluesofa,b,c,d,ande.Nextwe’llconnectourfourpointstomakethequadrilateralandthencalculatethecoordinatesofthemidpointsofeachofthesidesusingthemidpointcoordinateformulawetalkedaboutearlier.Carryoutthesecalculationsforyourself.Doyougetthesameresults?Ourdiagramnowlookslikethis:

M3: ((b+d)/2, (c+e)/2)

M4: (d/2, e/2)M1: (a/2,0)

M2: ((a+b)/2, c/2)

O: (0, 0) A: (a, 0)

B (b, c)

A (d, e)

y-axis

x-axis

Page 103: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

103

Lastly,weareinterestedinthetwosegmentswhichjoinmidpointsofoppositesides,thatissegmentM1M3andsegmentM2M4.Weneedtoshowthattheybisecteachotherattheirpointofintersection.Thinkcarefullyforafewminutes–howcanweshowthis?Thereareseveralapproachesthatwilldothejob,butsomeareeasierthanothers.Decideonamethodthatmakessensetoyouandfinishtheproofbeforereadinganyfurther.(Hey,reallydoit.)OnewaytoshowthatM1M3andM2M4bisecteachotheristofindtheequationofeachlineandsolvethissystemoftwoequationsforthecoordinatesoftheircommonpoint(let’scallitM).ThenwewouldfindthedistancefromthatpointtoeachofthepointsM1,M2,M3,andM4.IfthedistancefromMtoM1andthedistancefromMtoM3wereequalandifthedistancefromMtoM2

andthedistancefromMtoM4wereequal,wearedone.ExplainwhyshowingthatthesepairsofdistancesareequaldoshowthatM1M3andM2M4bisecteachother.Anothereasierwaymightbetoarguelikethis:IfM1M3andM2M4bisecteachother,thenthemidpointofeachsegmentmusthavethesamecoordinates.Explainthelogicofthisstatementbeforecontinuing.Sowecansimplyfindthecoordinatesofthemidpointofeachsegmentanddemonstratethatthesetwomidpointsareindeedthesamepoint.Welikethisapproachbecauseitissimplertocarryout.Sohereareourcalculations.Makecertainyoucangetthesameresults.

CoordinatesofthemidpointofM1M3= +++=

++

++

4,

422

0,

222 ecdba

ecdba.

CoordinatesofthemidpointofM2M4= +++=

+++

4,

4222,

222 ecdba

ecdba.

Sohereisthepoint:wejusttookapurelygeometricproblem,translatedittoanalgebraicproblem(or,saidanotherway,weimposedanalgebraicstructure)andthenweusedalgebratosolveit.Wecallthisapproachanalyticgeometry.

Page 104: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

104

ConnectionstotheMiddleGrades:

Ingrades6-8allstudentsshouldusecoordinategeometrytorepresentandexaminethepropertiesofgeometricshapes.

NationalCouncilofTeachersofMathematics PrinciplesandStandardsforSchoolMathematics,p.232

Representationalsystemsarestructuresthathelpustomakesenseofgeometricobjects.Examplesincludegrids,thecoordinateplane,linesoflongitudeandlatitudeonaglobe,mapsandcontourmaps.Ofcourse,themostimportantoftheseinmiddlegradesmathematicsisthecoordinateplanebecauseitlaysthegroundworkforgraphingalgebraicrelationships.HereistherelevantCommonCoreStateStandardforGeometryforstudentsingradesix:

Makeupanexampleofareal-worldproblemthatwouldhaveyourstudentsapplythetechniquesdescribedabove.Youwillteachsomeanalyticgeometry.Youwillteachyourmiddlegradesstudentsthatthegeometricobjectcalledalinecanbedescribedbyanequation.Ithastheformy=mx+bwheremtellshowsteepthelineisandbgiveitspositiononthecoordinateaxes(biscalledthey-intercept).Youwillalsoteachyourstudentsthataparabola(alsoageometricobject-justwaituntilthenextClassActivity)hasanequationoftheformy=a(x–k)2+h,where(k,h)givesthevertexoftheparabolaandatellshow“fat”theparabolais.Fillinthevaluesofa,kandh(justmakethemup)andthengraphtheequationonyourcalculator.Nowchangeavalueanddoitagain.

• Drawpolygonsinthecoordinateplanegivencoordinatesforthevertices;usecoordinatestofindthelengthofasidejoiningpointswiththesamefirstcoordinateorthesamesecondcoordinate.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

Page 105: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

105

Homework:

EachproblemthatIsolvedbecamearulewhichservedafterwardstosolveotherproblems.

ReneDescartes

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DotheConnectionsproblems.

3) Ifyouhaven’talreadydoneso,provethattwolinesareparallelifandonlyiftheyhavethesameslope.

4) ApplythePythagoreanTheoremtothepoints ),( 11 yx and ),( 22 yx toderivetheformulaforfindingthedistancebetweentwopointsonacoordinategrid:

𝒅 = 𝒙𝟐 − 𝒙𝟏 𝟐 + 𝒚𝟐 − 𝒚𝟏 𝟐

5) Usethemethodsofanalyticgeometrytoshowthatthefourmidpointsofanyquadrilateral

alwaysformaparallelogram.

6) Useanalyticgeometrytodeterminethecurvethatthemidpointofaladdermakesasthetopoftheladderslipsdownawallandthebottomoftheladdermovesawayfromthewall.(Hint:Drawadiagram.Wouldthisbethesameasfindingthesetofallmidpointsofsegmentsofladderlengthwhoseendpointsareonthex-andy-axes?Youcanhavetheladderbeoflength1tosimplifyyourcalculations.)

7) Usethemethodsofanalyticgeometrytoshowthatthediagonalsofarectangleare

congruent.

8) Usethemethodsofanalyticgeometrytoshowthatthediagonalsofarhombusareperpendicular.

9) Ifyouhaven’talreadydoneso,usethemethodsofanalyticgeometrytofindthesolution

totheBuriedTreasureproblemfromtheClassActivity.

Page 106: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

106

ClassActivity15:PlagueofLocus

Therearenosectsingeometry. Voltaire

1) Imaginetwoinfinite(hollow)coneswiththeirtipstouchingatonepoint.Nowthinkofallthe

waysyoucouldslicethroughthoseconeswithaplane.Whatarethepossiblecurves(orotherobjects)thatcouldresult(don’tlookonthebackofthissheetuntilyou’vedonethis).Sketchapictureofeach.

2) Eachoftheseobjectshasageometricdefinition(thatwecallthelocusdefinition),andifyou

applyanalyticgeometrytothatdefinitionyougetthefamiliaralgebraicformulafortheobject.Here’sanexample:Youprobablydecidedthatacirclewouldresultifyouslicedthroughjustoneoftheconeswithyourplaneparalleltothe“base”.Thelocusdefinitionofacircleisthis:Acircleisthesetofpointsintheplanethatareequidistantfromagivenpointintheplane(calledthelocus).Now,ifweputdownaCartesiancoordinatesystemonthatplaneandcallthecenterofourcircle(h,k)andtheradiusr,wecanfindanequationthatmustbesatisfiedbyallthepoints(x,y)thatlieonthatcircle.Drawasketchandthenderivethatequation.

(Thisactivityiscontinuedonthenextpage.)

Page 107: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

107

3) Thelocusdefinitionforaparabolaisthis:Aparabolaisthesetofallpointsintheplanethatareequidistantfromagivenpoint(thefocus)andagivenline(calledthedirectrix).

Usethedefinitionabovetosketchaparabolawithfocus(3,6)anddirectrix,y=2onthegraphpaperbelow.Nowfindtheequationforthatparabola.

4) Thelocusdefinitionforanellipseisthesetofallpointsintheplanesuchthatthesumofthe

distancesfromtwogivenpoints(thefoci–that’spluralforfocus)isconstant.

Usethedefinitiontosketchapictureofanellipsewithfoci(-2,0)and(2,0)andaconstantsumof7onyourgraphpaper.Youdonotneedtofinditsequation.

(Thisactivityiscontinuedonthenextpage.)

Page 108: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

108

5) Thelocusdefinitionofahyperbolaisthesetofallpointsintheplanesuchthatthedifferenceofthedistancesfromapointonthehyperbolaandtwogivenfociisconstant.

Usethedefinitiontosketchapictureofanhyperbolawithfoci(0,0)and(6,0)andaconstantdifferenceof4onyourgraphpaper.Youdonotneedtofinditsequation.

6) Youmayhavedecidedthatapointandalinecouldalsobeformedbyslicingyourinfinite

conesinproblem#1.Wecanthinkofthoseobjectsas“degenerateforms”ofthesefourobjectswe’vealreadylisted.Forexample,apointisadegeneratecircle(thecirclewithzeroradius).Whatisaline?Explain.

Page 109: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

109

ReadandStudy:

Inspirationisneededingeometry,justasmuchasinpoetry. AleksandrSergeyevichPushkinTheconicsectionswerenamedandstudiedaslongagoas200BC,whenApolloniusofPergaundertookasystematicstudyoftheirproperties.Theyarethefourcurves(thecircle,ellipse,hyperbola,andparabola)thatareformedwhenaplaneintersectsadoublecone.Byvaryingtheangleatwhichtheplaneintersectstheconewecanproduceeachofthem,asshownbelow.

Circle

Ellipse

Parabola

Hyperbola

(Illustrationstakenfromhttp://math2.org/math/algebra/conics.htm.)

IntheClassActivityyoufoundthatofthesecurvescanbedefinedusingalocusdefinition(adefinitionthatdescribesthecurveasasetofpointsintheplane).Forexample,youwereaskedtousetheEuclideandistanceformulaandthisdefinitionofacircletodeterminethegeneralequationofthecircleofradiusrandcenter(h,k).Nowwewillfurtherdiscuss(withillustrations)theellipse,thehyperbola,andtheparabola:GiventwopointsF1andF2,anellipseisthesetofpointsPintheplanesuchthatthesumofthedistancesfromPtoF1andF2isconstant.ThismeansthatifwetakeanypointPontheellipseandmeasurethedistancebetweenPandF1andthedistancebetweenPandF2,thenwhenweaddthesetwodistancestogetherwewillalwaysgetthesamesum.WhatwouldhappentotheshapeofthisellipseifwemovedF1andF2closertogetherbutkeptthegivendistanceconstant?

P

F1 F2

Page 110: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

110

AhyperbolaisthesetofpointsPintheplanesuchthatthedifferenceofthedistancesfromPtoF1andF2isconstant.WhatwouldhappentotheshapeofthehyperbolaifwemovedF1andF2closertogetherbutkeptthegivendifferenceconstant?

AparabolaisthesetofpointsPintheplanesuchthatthedistancefromPtoagivenpointFisequaltothedistancefromPtoagivenlinem.(RecallthatPointFiscalledthefocusoftheparabolaandlinemisthedirectrix.)Whatwouldhappentotheshapeoftheparabolaifwemovedthedirectrixfurtherfromthefocus?Whatwouldhappentotheparabolaifwechangedthedirectrixtoaverticalline?

F1 F2

P

P

F

Directrix

Page 111: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

111

Homework:

Alltruthsareeasytounderstandoncetheyarediscovered;thepointistodiscoverthem. GalileoGalilei

1) DoalloftheitalicizedthingsintheReadandStudysection.

2) TheCommonCoreStateStandardsliststhefollowingstandardforstudentsingradeseven.Howdoesthisstandardfitwiththeideasdescribedinthissection?

3) Explainhowtoformalinebyintersectingaplanewithapairofinfinitecones.

4) Inanalyticgeometryalineisthesetofallpoints(x,y)thatsatisfytheequationax+by+c=0,wherebothaandbarenotzero.Findtheslopeandy-interceptofthelineintermsoftherealnumberparametersa,bandc.Whathappenswhena=0?Whenb=0?Whenc=0?

5) Findtheequationofacirclewithcenter(2,-4)andradius5.6) Supposetheequationofthedirectrixofaparabolaisy=–3andthepointF=(0,5)isits

focus.Finditsequation.

7) Anellipsecanbemodeledusingtwostickpins(oneateachfocus)andalengthofstring(equaltothesumofdistancesfromtheellipsetothefoci).Experimentwiththismethodtocreatevariousellipses.Whathappenswhenthelengthofstringstaysthesamebutyouvarythepositionofthefoci?Whathappenswhenyoukeepthefocifixedbutvarythelengthofthestring?Isthereaminimumlengthofstringnecessary?

• Describethetwo-dimensionalfiguresthatresultfromslicingthree-dimensionalfigures,asinplanesectionsofrightrectangularprismsandrightrectangularpyramids.

Page 112: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

112

ClassActivity16:ComparingStandards

TheseStandardsdefinewhatstudentsshouldunderstandandbeabletodointheirstudyofmathematics. CommonCoreStateStandards

YouwillfindtheStandardsforGeometryinGrades6–8fromtheNationalCouncilofTeachersofMathematics(2000)onpage4ofthistextandtheCommonCoreStateStandardsinGeometryforthatsamegradebandonpages6-7.Rereadallofthose.

1) InwhatwaysdotheNCTMStandardsandtheCommonCoreStateStandardsoverlap?Whatthingsmentionedbyonegrouparemissingfromtheother?

2) Asteachers,whichwouldyoufindbemoreeasytoimplement?Explain.

3) Considerthefollowinglistofgeometrictasks.Wheredoeseachfit(ifatall)withineachframework?

a) CollectingdataonseveralcirclestoseethattheratioofCircumferencetoDiameter

isalwaysaconstant.b) Understandingthedefinitionofacircle.c) Cuttingandrearrangingaparallelogramtofindaformulaforitsarea.d) Classifyingquadrilaterals.e) Usinggridpapertoperformatranslation.f) Findingtheequationofaline.g) Findingthecostofpaintingaroom.h) Makingascalemodelofaship.

Page 113: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

113

SummaryofBigIdeasfromChapterTwo Ifanidea’sworthhavingonce,it’sworthhavingtwice. TomStoppard

• ThevanHielelevelsdescribeaprogressionofgeometricunderstanding.

• Itisimportantforyourstudentstomakesenseoftheformulasforareaandvolume.

• Therearethreerigidmotionsoftheplane:rotation,reflection,andtranslation.

• Ifglidereflectionisconsidereditsownmotion,thenthecompositionofanytworigidmotionsisanotherrigidmotion.

• Twofiguresaresimilarifthereisasequenceofrigidmotionsandadilationoftheplane

whichmapsonefigureontotheother.

• Analyticgeometryinvolvestakingageometricproblemandtranslatingitintoanalgebraicproblem.Itisaveryusefulprooftechnique.

• Wecanuseanalyticgeometrytohelpusdescribefigureslikeparabolasandhyperbolas.

Page 114: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

114

CHAPTER3

EXPLORINGSTRANGENEWWORLDS:NON-EUCLIDEANGEOMETRIES

Page 115: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

115

ClassActivity17:LifeonaOne-SidedWorldOnlythosewhoattempttheabsurdwillachievetheimpossible.Ithinkit'sinmybasement...letmegoupstairsandcheck.

M.C.Escher

Cutseveral1-inchwidestrips(thelongway)fromablanksheetof8½by11inchpaper.Withonestrip,tapetheone-inchendstogethertoformacylinder.Withanother,makeahalf-twistandthentapetheone-inchendstogethertoformatwo-dimensionalsurfacecalledaMöbiusstrip.Savetheremainingstripsforadditionalexamples,asneeded.

1) Howmany“sides”doesthecylinderhave?TheMöbiusstrip?Whatmakesthedifference?Howmanysidesdoesastripmadewith2half-twistshave?Onewith3half-twists?Howmanysidesdoesastripwith46halftwistshave?Onewith511?

2) Howmanyedgesdoesthecylinderhave?TheMöbiusstrip?Howmanyedgesdothestrips

with2,3,46,or511halftwistshave?Explainthedifference.

3) Isthereaconnectionbetweenthenumberofsidesandthenumberofedges?Whataboutbetweenthenumberofhalf-twistsandthenumberofsides?Betweenthenumberofhalf-twistsandthenumberofedges?Explainallofthis.

4) Whathappenswhenyoucutacylinderdownthemiddle?Whathappenswhenyoucuta

Möbiusstripdownthemiddle?Thinkaboutitbeforeyoudoit!Thenexplainprecisely.(e.g.,Whatpiecesresult?Howaretheylinked?Howarethesizesrelated?)Whatifyoucutthesepiecesdownthemiddle(i.e.,cuttheoriginalstripintofourths)?

Page 116: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

116

ReadandStudy:

…bynaturalselectionourmindhasadapteditselftotheconditionsoftheexternalworld.Ithasadoptedthegeometrymostadvantageoustothespeciesor,inotherwords,themostconvenient.Geometryisnottrue,itisadvantageous.

HenriJulesPoincareTheMöbiusstripisnamedafterAugustFerdinandMöbius,anineteenthcenturyGermanmathematicianandastronomer,whowasapioneerinthefieldoftopology.(Bytheway,topologyisthestudyofspaceswherethequestionsofinterestarethingslike:Doesthespacehaveholesinit?Isitconnected?Sometimestopologyiscalledrubber-sheet-geometrybecauseintopologyonespaceisconsideredthesameasanotherspaceifitcanbebentorstretchedintotheotherspace.Forexample,intopology,acubeandaspherearethesamespacebutadonutandaspherearenot.Whynot?)Möbius,alongwithhiscontemporariesBolyai,Lobachevsky,andRiemann,turnedtheworldofEuclideangeometryupsidedown,insideout,andeverywhichwaybutflat.TheMöbiusstripisasimplesurfacewithsurprisingproperties.AtrueMöbiusstripisatwo-dimensionalsurface(asifourstripofpaperhadnothicknesswhatsoever)withonlyonesideandonlyoneboundaryedge.IfwerestrictourselvestoasmallsectionoftheMöbiusstrip,thegeometrythereisthesameasitisontheflat(Euclidean)stripofpaperfromwhichitwasformed.However,whenweconsidertheentireMöbiusstrip,thegeometryisquitedifferent.Notonlyisitasurfacewithonlyonesideandoneedge,butitisalsowhatwecallnon-orientable.IfanamoebalivingonthesurfacemadeatriparoundtheentireMöbiusstrip,itwouldreturntoitsstartingpointasamirrorimageofitself!Thinkaboutthis.Thiskindofthingdoesn’thappenonaEuclideansurfacesuchasthecylinder.ThesesurprisingpropertiesmaketheMöbiusstripquiteusefulinthe“realworld.”GiantMöbiusStripshavebeenusedasconveyorbelts(tomakethemlastlonger,since"eachside"getsthesameamountofwear)andascontinuous-looprecordingtapes(todoubletheplayingtime).Inthe1960'sSandiaLaboratoriesusedMöbiusStripsinthedesignofversatileelectronicresistors.Free-styleskiershavechristenedoneoftheiracrobaticstuntstheMöbiusFlip.TheinternationalsymbolforrecyclingisaMöbiusstrip.

Page 117: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

117

WegetevenmoresurprisingresultsifwegluethetwoedgesofacylinderoraMöbiusstriptogether.Trytoimaginebringingthetwoopenendsofthecylindertowardseachother(ithelpsifyouareimaginingalongskinnycylinder–likeapapertoweltube).Whatshapewouldresult?Mathematicianscallthisshapeatorus.Bagelsandinnertubesaretwoexamples.NowimaginegluingtwoMöbiusstripstogetheredgetoedge.Youhavetojustimagineit–itisphysicallyimpossibletoaccomplishthegluinginthree-dimensionalspacewithouttearingtheMöbiusstrips.WhatresultsiscalledtheKleinBottle–asurfacewhoseinsideisitsoutside!Theapparentself-intersectionyouseeinthefollowingpictureismisleading–theKleinbottleexistsin4-dimensionalspacewithnoselfintersections.Itwasfirstdescribedin1882bytheGermanmathematicianFelixKlein.

Illustrationfromhttp://www.geom.uiuc.edu/zoo/toptype/klein/standard/gifs/trans.gif.Cylinders,Möbiusstrips,tori(pluraloftorus),andKleinbottlescanallberepresentedbya“flat”rectanglewithappropriategluinginstructionsfortheoppositeedges.Theoppositeedgeswitharrowsaretobegluedtogetherwitharrowsmatching.Wecalltheseidentificationspacesfortheobjects.Thisisthesameideausedinvideogameswherethespacecraftorrobotorwhateverleavesthescreenontheleftsideandreturnsontherightorleavesonthetopandreturnsfromthebottomandviceversa.Studythegluingdirectionsforeachobjectandexplainhowtheymatchthephysicalmodelsyouhavemade(orimagined,inthecaseoftheKleinbottle).

Klein bottleMobius stripTorusCylinder

Page 118: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

118

ConnectionstotheMiddleGrades:

Ifyouwouldthoroughlyknowanything,teachittoothers. TyronEdwards

Youmiddlegradesstudentswillliketoexplorethegeometryofthecylinder,torus(donut),MöbiusstripandKleinbottle(amongothers)throughactivities,puzzlesandgames.Forexample,hereisawordsearchonatorus.Seeifyoucanfindallofthesewords:possum,panda,jaguar,camelandllama.

Homework:

Wheneveryouareaskedifyoucandoajob,tell‘em,‘CertainlyIcan!’Thengetbusyandfindouthowtodoit.

TheodoreRoosevelt

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DothewordsearchfromtheConnectionssection.Thenseeifyoucanmakeupawordsearch(thesamesizeastheoneabovewithatleastfivewordstofind)onaKleinBottle.

3) UseanidentificationspacetopredictwhatwouldhappenifyoucutaMöbiusstripintothirds.Then,checkitout.Ifyourpredictionswerewrong,trytofigureoutwhereyoumadeanerrorinthinking.Whydotheactualresultsmakesense?

4) Predictwhatwouldhappenifyoucutastripwiththreehalf-twistsinhalfdownthemiddle.

Checkitout.Ifyourpredictionwaswrong,trytofigureoutwhereyoumadeanerrorinthinking.Whydotheactualresultsmakesense?Theresultingobjectisknownasatrefoilknot.(Knottheoryisanotherfunareaofmathematicsrelatedtogeometricideas.)

h l m e a i

n a l n b r

j l d a e a

c a t w m t

x e g i p a

o s s u m p

Page 119: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

119

5) Usetheflatmodelsofthecylinder,theMöbiusstrip,thetorus,andtheKleinbottletocreatetic-tac-toegameboards.Playseveralgamesoneachsurface.Don’tforgettoincludethegluinginstructionsinyourstrategy.Howdoesthegamechangeoneachsurface?Whatstrategiescanyouusetowinineachcase?Isthereasurfaceonwhichyoucanguaranteeawinbygoingfirst?Bygoingsecond?Isthereasurfaceonwhichthegamealwaysresultsinatie?(Assumetwocompetentplayersandthatneithermakesamistake.)

6) Threeamoebas,Apox,Brillo,andCheesy,lineupforaraceonavirtualMöbiusstrip

swimmingpool.Allthreeswimupthemiddleoftheirlanesatexactlythesamespeed.Whichamoebawillreturntohisorherownstartingpointfirst?Why?

c

B

A

Page 120: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

120

ClassActivity18:LifeinaTaxicabWorld

TofullyappreciateEuclideangeometry,oneneedstohavesomecontactwithanon-Euclideangeometry.

EugeneF.Krause,TaxicabGeometryTerranceandSashaliveinPerfectionCitywhereallstreetsintersectatrightanglesandareevenlyspaced.AmodelofPerfectionCityistheCartesianplanewithstreetsrepresentedbyverticallinesatallintegervaluesofthex-axisandavenuesrepresentedbyhorizontallinesatallintegervaluesofthey-axis.UnliketheCartesianplane,PerfectionCityisnotinfiniteinsize;wewillfocusontheheartofthecitycontainedwithinthegrid-10£x£10and-10£y£10.Terranceworksatthepubliclibrarylocatedatthecornerof3rdStreetEastand1stAvenueSouthandSashateachesmathatPerfectionHighSchoollocatedatthecornerof5thStreetWestand9thAvenueNorth.(Noticethatonlytheevennumberedstreetsandavenuesareshownonthisgrid.)LocatethelibraryandtheHighSchoolonthegrid.

1) Howfarapartarethelibraryandthehighschool(asthecrowflies)?Stayingonthe

streets,howfarmusteitherofthemwalktomeettheotherattheirworkplace?Sashalikestowalkadifferentrouteeachday,butshealsowantstowalktheshortestdistancepossible.Forhowmanydayscanshemakethewalkwithoutrepeatingaroute?

2) TerranceandSashadecidetomeethalfwayforlunch.Whereisthishalfwaypoint?Is

theremorethanonehalfwaypoint?MarkallofthehalfwaypointsonthegridwiththeletterM.Nowsupposethatnoneoftheseintersectionscontainaneatingplacesatisfactorytobothofthem,whereelsecouldtheymeetforlunchsothateachofthemhasthesamelengthwalk?MarkallofthesepointsonthegridwiththeletterP.Whatisthemathematicaldescriptionofthe“line”whichjoinsallofthepointslabeledMorP?

Page 121: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

121

ReadandStudy:

Geometry,whichistheonlysciencethatithathpleasedGodhithertotobestowonmankind.

ThomasHobbesSupposewetaketheEuclideanplaneandchangenothingexceptourdefinitionofdistance.Pointsarestillpoints;linesarestilllines;andanglesarestillmeasuredinthefamiliarway.Butwewillnolongerusethe“asthecrowflies”definitionofdistancebasedonthePythagoreanTheorem.Insteadwewillmeasurethedistancebetweentwopointsbyfindingthesumoftheverticaldistanceandthehorizontaldistancebetweenthetwopoints.Inotherwords,wewillmeasuredistanceinthesamewaythatwemeasuredthelengthofTerranceandSasha’swalksintheclassactivity.WecanusethefollowingformulatodeterminethisnewdistancedTbetweenthetwopoints(x,y)and(u,v):

𝑑< = 𝑥 − 𝑢 + 𝑦 − 𝑣 Ageometrywiththisnewwayofmeasuringdistanceisoftencalledtaxicabgeometrybecausethisformulagivesthedistanceataxigoesifittravelsonlyalongnorth-southandeast-weststreets,asinPerfectionCity.Whywouldwesuddenlywanttochangethedefinitionofdistance?Afterall,Euclideangeometryhasserveduswellforthelast2000years.Thereareafewpossibleanswerstothisquestion.Themostobviousoneissuggestedbythenameoftaxicabgeometry.Euclideangeometrymeasuresdistance"asthecrowflies,"butthisdoesn’talwaysprovideagoodmodelforareal-lifesituation,particularlyincities,whereoneisonlyconcernedwiththedistancetheircarwillneedtotravel.Anotherreasonforstudyingtaxicabgeometryisthatitisasimplenon-Euclideangeometry.Taxicabgeometryisfairlyintuitiveandrequireslessmathematicalbackgroundthanothergeometries;inshort,itisagoodexampleofanon-Euclideangeometryformiddleschoolstudents.Let’sexaminethisnewdefinitionofdistancemoreclosely.Reallydothesethingsinitalicsbelow.First,calculatethenormalEuclideandistancebetweenpoints(2,5)and(4,1)andthenfindthetaxicabdistancebetweenthesetwopoints.Whataboutthepoints(2,5)and(2,1)?Thepoints(2,5)and(4,5)?Okay,whatdidyoufind?Aretherepairsofpointsforwhichthe“normal”distanceandthetaxicabdistancebetweenthemareequal?Ifso,generalizetherelationshipbetweenpairsofpointsforwhichthisistrue.WhenthetaxicabdistanceandtheEuclideandistancearenotequal,whichoneisgreater?Willthisalwaysbethecase?Why?

Page 122: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

122

AllofEuclid’spostulatesholdintaxicabgeometry,butdefinitionsbasedondistancecanlookdifferent.Forexample,let’sconsidercircles.Whatwouldacircleofradius5centeredattheoriginlooklikeintaxicabgeometry?Thinkaboutthedefinitionofacircleandthetaxicabdefinitionofdistanceandsketchthetaxicabcircleofradius5onthefollowingpairofaxes.

Whatisthecircumferenceofthistaxicabcircle?(Remembertomeasureittoousingtaxicabdistance.)Now,recallthatpisdefinedtobetheratioofthecircumferenceofacircletoitsdiameter.InEuclideangeometry,pisanirrationalnumber(approximatelyequalto3.1416).Whatisareasonablevaluefortheratio“p”intaxicabcircles?Why?Willitbeaconstantvalueforalltaxicabcircles?Explain.Manyotherfamiliarobjectsalso“look”differentintaxicabgeometry.Inthehomeworkyouwillbeaskedtoexploretheshapeoftaxicabsquares,equilateraltriangles,andtheconicsections.SomeofourfamiliarEuclideanresultsarenolongervalidinTaxicabgeometry.Forexample,considerthetrianglecongruencetheorem,Side-Angle-Side(SAS).UsethefollowingtwotrianglesandtheformulafordTtocreateacounterexampleshowingthatSASisnottrueintaxicabgeometry.

Page 123: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

123

WhatdoesthisexamplesayaboutthePythagoreanTheoremintaxicabgeometry?Doesithold?Whatabouttheothertrianglecongruencetheorems?Willanyofthembevalidorcanyoufindcounterexamplesforthemaswell?Checkitoutforsomeexamples. InEuclideangeometry,thesetofallpointsequidistantfromtwogivenpointsistheperpendicularbisectorofthelinesegmentjoiningthetwopoints.Whatwillthe“perpendicularbisector”ofalinesegmentlooklikeintaxicabgeometry?Inthesecondpartoftheclassactivity,allofthepointslabeledMandPwereequidistantfromthe(L)ibraryandthehighschool(HS).Sothelinesegmentsjoiningthesepointsformthe“perpendicularbisector”ofthelinesegmentjoiningLandHS.Nowconsiderthetaxicabperpendicularbisectorofthesegmentjoining(2,2)and(-1,-1).Howdoesthis“perpendicularbisector”differfromtheEuclideanone?Inwhatwaysisitsimilar?Whenwillataxicab“perpendicularbisector”looklikeaEuclideanperpendicularbisector?Whenwillitbedifferent?

ConnectionstotheMiddleGrades:

Whoeverceasestobeastudenthasneverbeenastudent. GeorgIlesTypicallystudyofnon-Euclideangeometriesisnotexplicitlypartoftheupperelementaryormiddlegradescurricula.However,therearepiecesofthesegeometriesthatwillhelpstudentstounderstandmapsandmap-making.TherearemanygoodproblemideasinTaxicabgeometryforthemiddle-gradesatthewebsitehttp://emat6000taxicab.weebly.com/teacher-resources.html.

6

4

2

-2

-4

-6

-5 5

A

B C

A'

C'

B'

Page 124: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

124

Homework:

Saynot,‘Ihavefoundthetruth,’butrather,‘Ihavefoundatruth.’ KahlilGibran

1) Ifyouhaven’talreadydoneso,gobackanddoalltheitalicizedthingsintheReadandStudyandtheConnectionssectionsabove.

2) PerfectionCityactuallyhasthreehighschools:PerfectionHighSchoollocatedat(-5,9),

IdealHighSchoollocatedat(8,-1)andIdyllicHighSchoollocatedat(0,-7).Drawtheschoolboundariessothateachstudentattendstheschoolclosesttohisorherhome,asthetaxi(orschoolbus)drives.

3) ModelBurger,thefast-foodchain,wantstoopenanewrestaurantthatiscentrallylocated

sothatitisthesametaxicabdistancefromeachofthethreehighschools.Whereshoulditbelocated?

4) TerranceandSashaneedtofindanapartmentsothatthatthesumofthedistancesthat

thetwoofthemwillwalktoworkshouldbenomorethantwenty-fourblocks.Drawtheboundaryoftheirsearcharea.Whichoftheconicsectionsaretheyusingtodefinethesearcharea?

5) WhenTerranceandSashawereunabletofindanapartment,theynextagreedthatneither

ofthemshouldhavetowalkmorethanfourblocksfartherthantheotherinordertogettowork.Nowwherecantheylook?Whichoftheconicsectionsaretheyusingtodefinethesearchareathistime?

6) Inthereading,youdiscoveredthattaxicabcircleslooklikeEuclideansquares.Whatdo

taxicabsquareslooklike?UsethedefinitionofasquareandthetaxicabdefinitionofdistanceanddrawthreetaxicabsquareswithasidelengthoffoursuchthatthefiguresarenotcongruentasEuclideanfigures.WhatEuclideanshapedothetaxicabsquareshave?Whydoesthishappen?

7) Nowexperimentwithtaxicabtriangles.Canyoudrawaregulartriangleintaxicab

geometry?Whyorwhynot?Howaboutarighttrianglewithsidesofequallength?Howaboutanisoscelestrianglewhosebaseanglesarenotcongruent?

Page 125: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

125

ClassActivity19:LifeonaSphericalWorld Youcan’tcombthehaironaball! MaryEllenRudinInthisactivityyouwillexploregeometryonthesurfaceofaEuclideanspherebyworkingwithaphysicalmodelofasphere(aball)andaphysicalmodelofaline(apieceofstring).Youmayneedmarkerstodrawlinesonthesphere(orrubberbandstomodellines)andaregularprotractortomeasureangles.Assumethattheradiusofyoursphereisoneunit.

1) Talkwithyourgroupanddecidehowyoucanuseapieceofstringtomakeastraightline–firstonaflatsheetofpaper(Euclideanmodel)andthenonthesphere.Takethisseriously–itisimportanttohaveavalidmodelofastraightlinebeforeproceeding.Relatewhatyouhavedecidedaboutstraightlinesonthespheretothe“lines”oflongitudeandlatitudemarkingsonaglobe.

2) Drawastraightlineonyoursphere(notasegmentbutaline).Howlongisit?Nowfindadifferentstraightlinethatisparalleltoit.(Recallthatlinesareparalleliftheyhavenopointsincommon.)Howmanylinesparalleltoyouroriginallinecanyoufind?IsthegeometryofthesurfaceofasphereEuclidean?Whyorwhynot?

3) Marktwopointsanywhereonthesphere.Drawthelinesegment(usingthestringmethod)betweenthesetwopoints.Whatdoyounotice?Howmanylinesegmentscanyoufind?Doesitmatterwherethetwopointsareinrelationtoeachother?Experimentwithvariouspairsofpointsandformaconjectureaboutlinesegmentsonasphere.

(Thisactivityiscontinuedonthenextpage.)

Page 126: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

126

4) Drawasmalltriangleandalargetriangle(onethatcoversatleast1/8ofthesurfaceareaonyoursphere).Makecertainthatthesidesofyourtrianglesareactuallystraightlinesegmentsbyusingthestringmethodtoconstructthetriangle.Determineamethodtomeasuretheanglesofthetrianglesusingyourprotractorandthenmeasureeachoftheanglesinbothofthetriangles.Whatistheanglesumofthesmalltriangle?Thelargetriangle?Nowdrawamedium-sizedtriangleandareallybigtriangleandmeasuretheiranglesums.Makeaconjectureabouttheanglesumofasphericaltriangle.

5) Drawarighttriangleonyoursphere.Howcanyoumakecertainthatyouhavearightangle?Howmanyrightanglescanyouhaveinonetriangle?Canyouadrawatrianglethathastworightangles?Canyoudrawatrianglethathasthreerightangles?DoyouthinkthePythagoreanTheoremholdsonasphere?Whyorwhynot?

6) Drawalineonthesphereandchooseapointthatisnotonthatline.Howmanyperpendicularlinestoyouroriginallinecanyoudrawthroughthatpoint?Aretherepointsyoucanchoosewheretherewouldbemanyperpendicularlinesthroughthatpoint?Ifso,describethesepointsandexplainwhyyouhavemorethanoneperpendiculartothelinethroughthosepoints.

Page 127: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

127

ReadandStudy:

Mathematics,rightlyviewed,possessesnotonlytruth,butsupremebeauty–abeautycoldandaustere,likethatofasculpture

BertrandRussellSofaryouhavestudiedtwoinfinitenon-Euclideangeometries,eachcreatedbyonesimplechangetothefamiliarEuclideangeometryoftheflatplane.IntheMöbiusstripweintroducedahalf-twistbeforegluingtogetheronepairofoppositesidesofaflatrectangle.Intaxicabgeometrywechangedthedefinitionofdistanceontheflatplane.Nowwe’llconsiderwhathappenswhenweintroduceaconstantpositivecurvaturetotheflatplane.Thefactthatthecurvatureispositivecausestheplanetocloseupintoaball–thefactthatthecurvatureisconstantmeansthatourballisperfectlyround(likeabasketballandnotafootball).Infact,theCartesianplanewithconstantpositivecurvaturebecomesthesurfaceofasphere–andthissinglechangeagainaffectsthegeometryindrasticways.Forstarters,wenolongerhaveaninfiniteplane.Thesurfaceareaofasphereisfiniteanddependsontheradius.Remembertheformula,𝐴 = 4𝜋𝑟',forsurfaceareaofaspherewithradiusr?Thisareacanbequitesmall,asonabeachball,oritcanbequitelarge,asontheplanetJupiter,butitisalwaysfinite.Thiseffectivelymeansthatthesizeofeverygeometricobjectdrawnonthesurfaceofaspherehasalimitingsize–thereisalargestcircle,thereisalongestlinesegment,andthereisabiggesttriangle.Thenthereisthestoryaboutlines.Inordertomaintaintheconceptofstraightnessonthesphere,wehavetousethefactthatonaflatplaneastraightlineistheshortestdistancebetweentwopoints(representedbypullingastringtightbetweenthosetwopoints).Whenyoupulledthestringtightagainstthesurfaceofthesphereandwentallthewayaroundthespherebacktoyourstartingpoint,youcreatedamodelofastraightlineonthesphere.This“straightline”isagreatcircle,acircleformedonthesurfaceofthespherebytheintersectionofaplanethatgoesthroughthecenterofthesphere.Youwillknowthatacircleonthesphereisagreatcircleifitcutsthesphereintotwohalvesofequalarea(twohemispheres).Theequatoronaglobeisanexampleofagreatcircle.Soarethelinesoflongitude-butnotthelatitudemarkings.Onasphere,greatcirclesarelines;allothercirclesarejustcircles.Solinesarealsofiniteinlength–infact,alllineshavethesamelength.Whatistheformulaforthelengthofalineonaspherewithradiusr?Anothersurprisingfindingaboutlinesonasphereisthattherearenoparallellines.Alllinesintersect,andinfacttheyallintersectinexactlytwoantipodalpoints.(Antipodalpointsarepointsthatareatoppositeendsofadiameterofthesphere,likethenorthandsouthpoles.)Thussphericalgeometryisnon-Euclideaninamostbasicway–itdoesnotsatisfyEuclid’s5thPostulateaboutparallellines.Sincetherearenoparallellines,therecanbenoparallelograms,rhombi,

Page 128: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

128

rectangles,orsquareseither.Alittlebitlaterwewillexploreanotherargumentforthefactthatrectanglesandsquaresdonotexistinsphericalgeometry.Intheactivityyoufoundthattherearealwaystwolinesegmentsbetweenanytwopointsonthesphere–andwhenthosepointsareantipodal,thereareaninfinitenumberoflinesegmentsbetweenthem.Again,thisisnotatalllikewhathappensintheflatplane.Ifthepointsarenotantipodal,thenoneofthesegmentsisshorterthantheotherandtogetherthetwosegmentscomposetheentirelinebetweenthetwopoints.(Theshorteroneiscalledtheminorsegment.Thelongeroneisthemajorsegment.)Ifthepointsareantipodal,theneverysegmentbetweenthemisequalinlengthtohalfthecircumferenceofthesphere.Sincewecanformlinesegmentsbetweenpoints,wedohavetrianglesonthesphere.Butifwestartwiththreepoints,thereismorethanonetrianglewecanformwiththosethreepointsasvertices.Sotwotrianglesmaysharethesamevertices,buthavedifferentlengthsides,differentanglemeasures,anddifferentareas.Andinfact,evenifwespecifythatthesidesaretobetheminorsegmentsbetweenthepoints,westillhavetwotrianglesofdifferentareaformedbythosesegments.Didyouseethiswhenyouwereformingyourtrianglesintheclassactivity?Stopnowanduseaballtovisualizeexactlywhatwearesaying.Thisisagoodtimetopointoutagaintheimportanceofcarefullywordeddefinitions.Ontheflatplaneitissufficienttosaythatatriangleisthreenon-collinearpointsandthelinesegmentsjoiningthosepoints.Onthesphericalplanewemustrefineourdefinitiontosaythatatriangleisthreenon-collinearpointsandtheminorlinesegmentsjoiningthosepoints,takingtheinteriorofthetriangletobethesmallerofthetwoareasenclosedbythosesegments.Isitnecessarytoincludetherequirementthatthepointsbenon-collinearinthesphericaldefinition?Canweplacethreepointsonthesamelineandchooselinesegmentsbetweenthemtoformatriangle?Whatwouldbetheareaofsuchatriangle?Sinceanylineonthesphereisagreatcircle,wecandefinetheanglebetweentwolinesastheangleformedbytheintersectionofthetwoplanesthatcreatethegreatcirclesthatarethoselines.Sincethosetwoplanescanintersectinanyanglebetween0°and180°,wehavethesameanglemeasuresonthesphere.Inparticular,wehaveanglesof90°betweenlinesonthesphereandsowehaveperpendicularlinesandrighttriangles.Intheclassactivity,youinvestigatedrighttriangles,andinparticular,whetherornotitwaspossibletohavetwooreventhreerightangleswithinonetriangle.Whatconclusionsdidyoumake?Canyoudescribeatriangleonthespherethathastworightangles?Thathasthreerightangles?Atrianglewiththreerightangleswouldhaveananglesumof270°sothefactthattrianglesinEuclideangeometryhaveanglessumsof180°mustcomefromthe5thpostulate.Changeyouraxioms,andyouchangeyourtheorems.Whatdidyoufindtobetheanglesumsofthetrianglesyouformedintheclassactivity?Whatwasthesmallestanglesumyoufound?Thelargest?Whatwouldbethelargestanglesumpossible?Why?Ofcourse,yourmeasurementswithaprotractorwereapproximate,asareallmeasurements,butyoushouldhavefoundthatyouranglesumswerealllargerthan180°andthatastheareaofthetrianglebecamelarger,sodidtheanglesum.

Page 129: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

129

Infact,itisanamazingfeatureofsphericalgeometrythattheanglesumofanytriangleisgreaterthan180°andthattheareaofatriangleisequaltoitsanglesum(inradians)minusp.Totryandunderstandthis,consideratypeofpolygonthatdoesnotexistinEuclideangeometry,atwo-sidedpolygoncalledabiangleoralune.Sinceeverypairoflinesonthesphereintersectsintwopoints,wedohaveapolygonwithtwosidesandtwovertices(whichwillbeantipodal).Whyisitcalledalune?ThenamecomesfromtheLatinwordluna,whichmeansmoon.Thinkaboutthepartofthemoonthatisseenatanytime.Thatportionhastobebothinthehemispherewhichisilluminatedbythesunandinthehemispherethatisvisiblefromtheearth.Theintersectionoftwohemispheresispreciselyalune.Everypairoflineswillformtwopairsofcongruentlunes(similartothetwopairsofcongruentverticalanglesformedbyintersectinglinesontheflatplane).Studythediagrambelowtomakecertainyouunderstandthisdefinition.Oneofthefourlunesformedisshadedwithverticalhatching.Doyouseethelunecongruenttoit?Seetheotherpairofcongruentlunes?Whatwillbetheareaoftheshadedluneiftheanglebetweenthetwosidesis30°(p/6radians)andtheradiusofthesphereisoneunit?

[Hereyoumightneedaquickreminderaboutradiananglemeasure.Aswementionedearlier,assigning360degreestoonefullrotationisjustarbitrary.Thereisanotherstandardwaytomeasureanglesandthatisbythelengthofthearcthattheanglesweepsoutwithan“arm”ofradiusone. 1

Page 130: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

130

Havealookattheangleabove.Itmeasuresabout80degrees.Inradiansthemeasureoftheangleisthelengthofthearcshown.Nowinafullrotationthelengthofthearcis2πradians.(Whyisthat?)Sothisangleisalittlelessthan½πradians.Whatistheradianmeasureofananglethatmeasures45degrees?180degrees?]Nowwewillgetbacktofindingtheareaofasphericaltriangle.Itwillhelpalotifyouhaveapingpongballortennisballorsomeotherballthatyoucanwriteontofollowalong(andtothinkalong)withus.StudythefigurebelowuntilyouarecomfortableexplaininghowtriangleABCisformedbytheintersectionofluneAA’,luneBB’,andluneCC’.NoticethatthereisamirrorimagetriangleA’B’C’formedonthebacksideofthesphere.WewillassumethattheradiusofthesphereisoneunitandthatÐCAB=aradians,ÐABC=bradians,andÐBCA=gradians.

Theareaoftheentiresphereis4p.Theareaofeachluneisequaltotwiceitsanglemeasure.(Forexample,areaofluneAA’is(a/2p)timesthetotalareaofthesphere,or(a/2p)*4p=2a.)Ifweaddtheareaofeachpairoflunestogetherwewillcounttheareaof∆ABCthreetimesandtheareaof∆A’B’C’threetimes.(Explainwhy.)Ofcourse,∆ABCand∆A’B’C’arecongruent.Whenweuseallofthisinformationwecansaythatthesumoftheareasofthelunesisequaltotheareaofthesphereplusfourtimestheareaof∆ABC(Besureyoucanexplainwhyweaddfourtimestheareaof∆ABC.),givingtheequation:

Page 131: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

131

2 2𝛼 + 2 2𝛽 + 2 2𝛾 = 4𝜋 + 4(𝑎𝑟𝑒𝑎𝑜𝑓Δ𝐴𝐵𝐶)whichsimplifiesto:

𝛼 + 𝛽 + 𝛾 − 𝜋 = 𝑎𝑟𝑒𝑎𝑜𝑓Δ𝐴𝐵𝐶YoucanfindaninteractiveversionofthisproofatawebsitewrittenbyanauthorandDr.StephenSzydlik-http://www.uwosh.edu/faculty_staff/szydliks/elliptic/elliptic.htm.ConnectionstotheMiddleGrades:

Ihaveneverletmyschoolinginterferewithmyeducation. MarkTwain

Whyshouldstudentsstudynon-Euclideangeometries?Wethinktherearemanyreasons,thefirstofwhichisthatonewaywelearnaboutwhatsomethingisisbyseeingwhatitisnot;non-Euclideangeometrygivesusausefulcontrasttoourstandardhighschoolgeometry.Italsobringsintosharpfocustheimportanceofaxioms(onechangeinoneaxiomandyougetawholenewgeometrywithdifferenttheorems)andmathematicaldefinitions(forexamplethinkaboutwhathappenedwhenwechangedourdefinitionofdistanceinthecaseofTaxi-cabgeometry).Finally,scientistsaregainingmoreandmoreevidencethatouruniverseisnotEuclideanspace.NonEuclideangeometryisthusbecomingincreasinglyimportanttoanunderstandingofastronomy.

Thesegeometriesprovidestudentsopportunitiestomodelandexploredifferenttypesofspaces.IntheirpaperinthejournalMathematicsTeachingintheMiddleSchool,SharpandHeimer(2002)describetheirexperiencehavingasixth-gradeclassexploregeometryonasphereusingbeachballsinmuchthewayyoudidintheclassactivity.Studentsdefinedwhatwasmeantbyalineonasphere,andexploredlunes,trianglesandotherpolygons.Finally,studentsappliedwhatthey’dlearnedtomeasurementonaglobe.Forexample,sixthgraderslearnedtousegreatcircles(ratherthanlinesoflatitude)tofindtheshortestroutebetweenvariouscitiesontheplanet.Whatdoestypicallyhappenwhentheglobeismadeintoaflatmap?Whatisdistortedandinwhatway?SharpandHeimerclaimedthatanexperiencewithanon-Euclideangeometryhelpedtheirstudentstobroadentheirunderstandingsofgeometry.Forexample,childrenobservedthatparallellinesareimpossibleonasphereandtheauthorsarguedthatthissortofobservation“…laysthefoundationfortheformationofinformaldeductions,avitalskillingeometricthinking,whetherontheplaneorthesphere”(p.185).Whatdotheymeanbythis?

Page 132: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

132

Homework:

DonotworryaboutyourdifficultiesinMathematics.Icanassureyouminearestillgreater.

AlbertEinstein1) DoalloftheitalicizedthingsinReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.3) Insphericalgeometryhowmanyperpendicularlinescanbedrawntoagivenlinethrougha

pointnotonthatline?Doestheanswertothisquestiondependuponthelocationofthepointinrelationtotheline?Ifso,describethedifferentcasesandexplainwhyyouhavemorethanoneperpendiculartothelineinsomecases.

4) DoesthePythagoreanTheoremholdinsphericalgeometry?Ifyes,supportyouranswerwith

aproof.Ifno,supportyouranswerwithacounterexample.5) Giventhattheanglesumofanysphericaltriangleisgreaterthan180°,makeanargument

(differentfromtheonegiveninthereading)thatrectanglesdonotexistinsphericalgeometry.

6) DeterminewhichoftheEuclideantrianglecongruencetheoremsaretrueinspherical

geometry.Supportyouranswerswithanargumentoracounterexample.7) Usethewebsiteathttp://www.uwosh.edu/faculty_staff/szydliks/elliptic/elliptic.htmto

exploresimilartrianglesinsphericalgeometry.Cansphericaltrianglesbesimilarbutnotcongruent?Makeanargumenttosupportyouranswer.WhatdoesthissayabouttheAAATheorem?

8) DoestheIsoscelesTriangleTheoremholdforsphericaltriangles?Supportyouranswer.

9) OnthespheredrawalineyoucanconsidertheequatorandletNbethepointthatwouldbe

thenorthpole.Marktwopoints,AandB,ontheequatorsuchthatthemeasureofÐANBis90degrees.LetC,D,andEbethemidpointsofAB,AN,andBN(theminorsegments),respectively.

a)ExplainandillustratewhyCN,DB,andAEintersectinacommonpoint,F. b)FindtheanglesumofthesphericaltriangleACF.

Page 133: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

133

ClassActivity20:LifeonaHyperbolicWorld

Geometryisaskilloftheeyesandthehandsaswellasofthemind.JeanPedersen

Inthisactivityyouwillexploresomeofthepropertiesofthegeometrythatresultswhen“flatness”isreplacedby“constantnegativecurvature.”Todosoweneedaphysicalmodeltoplaywith–andfirstyouwillneedtomakethismodel.TakethetwosheetsofregularheptagonsfromAppendixD,carefullycutouteachheptagonandthentapetheheptagonstogetherattheedges,threetoavertex.Don’tbesurprisedthattheydonotlieflat-recallthatthevertexanglemeasureinaregularheptagonis»128.57°andsothreeheptagonssumtomorethan360°.Workwithapartnerandtogethermakeonesheetofhyperbolicpapertouseintheseexplorations.(Youwillalsoneedalengthofstring,aprotractor,andcoloredmarkersorpencils.)Yourfinalresultshouldlooklikethis:

1) Whatwillastraightlinelooklikeonthehyperbolicplane?Usethesameconceptofstraightnessthatweusedonthesphere(thestringmethod)anddrawseveralstraightlinesonyourhyperbolicpaper.Doyouthinktheselinesarefiniteinlengthlikethoseonthesphere–oraretheyinfinitelikelinesontheflatEuclideanplane?(Rememberthereisnothingexcepttimetokeepyoufromaddingmoreheptagonstoalltheedgesofyourhyperbolicpaper.Youareworkingwithapieceofthehyperbolicplane,justlikearegular8½x11sheetofpaperisapieceoftheCartesianplane.)

(Thisactivityiscontinuedonthenextpage.)

Page 134: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

134

2) Canyoudrawparallellinesonyourhyperbolicpaper?(Makecertainyouareusingthestringmethodtodrawlines.)Canyoumakeanargumentthatthelinesyoudrewdonotintersectsomewhereonanextensionofyourpaper?Whatdoyounoticeaboutthedistancebetweenhyperboliclinesthatdonotintersect?HowdoesthisdifferfromEuclideanparallellines?

3) Nowchooseapointononeofyourparallellines.Canyoudrawanotherlinethroughthatpointthatisalsoparalleltothefirstline?Howmanyhyperboliclinescanbedrawnparalleltothefirstlinethroughthissamepoint?(Ifyouroriginalpairofparallellinesarequiteclosetogether,itwillbeeasiertoanswerthisquestionifyouchooseapointfartherawayfromoneofthelinesandseehowmanyparallellinesyoucandrawthroughthatpoint.)

4) ThereisaEuclideantheoremstatingthattwolinesthatarebothparalleltothesameline

arealsoparalleltoeachother.Doyouthinkthistheoremholdsinhyperbolicgeometry?Whyorwhynot?

5) Drawasmalltriangleandalargetriangle(onethatcoversatleast1/4ofthepaper)onyourhyperbolicpaper.Makecertainthatthesidesofyourtrianglesareactuallystraightlinesegmentsbyusingthestringmethodtomakethetriangle.Determineamethodtomeasuretheanglesofthetrianglesusingyourprotractorandthenmeasureeachoftheanglesinbothofthetriangles.Whatistheanglesumofthesmalltriangle?Ofthelargetriangle?Makeaconjectureabouttheanglesumofahyperbolictriangle.

Page 135: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

135

ReadandStudy:

OutofnothingIhavecreatedastrangenewuniverse. JanosBolyaiThestoryofthedevelopmentofhyperbolicgeometryreallybeginswithEuclid.Recallthathechosefivepostulatesforhisaxiomaticsystem–thefirstfourweregenerallyaccepted,butthefifthpostulate(theParallelPostulate)causedproblemsfromtheverybeginning.First,itwaslotsmorecomplicatedthantheothers.Second,itdidnotseemas‘self-evident.’ManymathematicianshavetriedtoprovetheParallelPostulatefromtheotherfour,thinkingittoocomplexastatementtoacceptwithoutproof.Inthe1700’s,theItalianmathematicianSaccherimountedaconcertedefforttoshowthatiftheParallelPostulatewasreplacedbyonethatallowedmorethanoneparallel,theresultingtheoremswouldcontradictthemselves.Whilehefoundmanyinterestingresults,hedidnotfindthecontradictionhesought.However,hewassosurethattheParallelPostulateofEuclidwastheonlytruecase,heconcludedhisworkbysaying(withoutproof)thatanyotherreplacementpostulateisabsolutelyfalsebecauseitis“repugnanttothenatureofthestraightline.”AcenturylaterthefamousGermanmathematicianGausscametotheconclusionthatthe5thpostulateistrulyindependentoftheothers.Inotherwordsitcannotbeprovedusingtheotherpostulates(axioms)andnordoesitcontradictthem.Furthermore,itcanbereplacedbyalternativepostulateswhichwillyieldinterestingandconsistentgeometriesdifferentfromEuclideangeometry.Readthisparagraphagain.Itisimportant.However,Gausswasnotwillingtoriskhissignificantmathematicalreputationbypublishinghisresults.Andsoitwaslefttotwounknowns,HungarianJánosBolyaiandRussianNikolaiLobachevsky,toindependentlypublishtheirfindingsofthisstrangenewgeometrywenowcallhyperbolicgeometry.Asanaxiomsystem,hyperbolicgeometryretainsalltheaxiomsofEuclideangeometryexcepttheParallelPostulate,replacingitwiththeHyperbolicParallelPostulate:Givenalineandapointnotonthatline,thereareatleasttwolinesthroughthatpointparalleltothegivenline.(InSphericalGeometry,PostulatesIandIIIofEuclidareviolatedaswellastheParallelPostulate.Explainhow.)Ofcourse,aswehavealreadyseeninourlookattaxicabgeometry,makingjustonechangecanresultinaverydifferentgeometry.Hyperbolicgeometryisnoexception.Physically,wecanunderstandthedifferencebetweenEuclidean,hyperbolic,andsphericalgeometrybyconsideringthecurvatureofthesurfaceofaplaneineach.TheEuclideanplaneisflat;thesphericalplaneiscurvedpositivelysothatitclosesuponitself;andthehyperbolicplaneiscurvednegativelysothatstandingatanyonepointthesurfacecurvesupalongonedirectionandcurvesdownalongtheperpendiculardirection,likestandinginthemiddle

Page 136: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

136

ofasaddleoraPringlepotatochip.Herearesomeotherpicturesofobjectswithnegativecurvature.Thesecomefromhttp://xahlee.org/surface/gallery_o.html.

Sohowdoesthischangeincurvature(orequivalently,thischangeintheparallelpostulate)changethegeometry?LikeEuclideangeometry,thehyperbolicplaneisinfiniteandunboundedandsoarehyperboliclines.Ifweweretowalkalongahyperboliclineinonedirection,wewouldneverreturntoourstartingpoint,aswedoinsphericalgeometry.Wehaveanabundanceofparallellines,but,unlikeEuclideangeometry,notwoparallellinesareequidistant.Thereareactuallytwotypesofparallellines.Inonecase,twoparallellineswillbeclosesttoeachotherattheirsinglecommonperpendicularandthendivergefromeachotherasyoumoveawayfromthatcommonperpendicularineitherdirection.Intheothercase,twoparallellinesareasymptoticinonedirectionanddivergentintheother.Thinkaboutthis.Ifwehaveapairof“lines”thatareequidistant,oneofthe“lines”isnotaline,butacurve.Thisissimilartothesituationonthespherewheretheequatorandthe10°latitudemarkingareequidistant,butonlytheequatorisaline.Wehavetrianglesandotherpolygonsinhyperbolicgeometry,but,onceagain,theybehavedifferently.Thereisonlyonehyperboliclinesegmentbetweentwopointssohyperbolictrianglesarewell-definedusingtheEuclideandefinition.Buttheanglesumofahyperbolictriangleisnotconstantandisalwayslessthan180°.Furthermore,theareaofahyperbolictrianglegetslargerastheanglesumgetssmaller.Andwecanmaketheanglesumsmallerbymakingthesidelengthslonger.(CheckoutyourresultsfromtheClassActivity.Dotheysupporttheseclaims?)Asinsphericalgeometry,thereisaformulaforfindingtheareaofahyperbolictrianglethatdependsonlyonthemeasuresofitsangles:𝐴 = 𝜋 − (𝛼 + 𝛽 + 𝛾).(Noticetherelationshipwiththeareaformulaforasphericaltriangle.)Thisformulashowsusthatthelargestareathatahyperbolictrianglecanhaveisp.Astheanglesumapproacheszero,theareaapproachesp,andthesidelengthsapproachinfinitelength.Soas

Page 137: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

137

oursidesgetlongerandlonger,theanglesgetsmallerandsmallerandourareanevergetslargerthanp.Thismeansthattheanglemeasuredeterminesnotonlytheshapeofthetrianglebutalsoitssize.

Homework:

ForGod’ssake,pleasegive[hyperbolicgeometry]up.Fearitnolessthanthesensualpassion,becauseittoo,maytakeupallyourtimeanddepriveyouofyourhealth,peaceofmindandhappinessinlife.

WolfgangBolyai(Janos’Father)

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Giventhattheanglesumofanyhyperbolictriangleislessthan180°,arguethatrectanglesdonotexistinhyperbolicgeometry.

3) Dosimilarbutnotcongruenttrianglesexistinhyperbolicgeometry?WhatabouttheAAA

Theorem?Supportyouranswer.

4) DoestheIsoscelesTriangleTheoremholdforhyperbolictriangles?Supportyouranswer.

5) ThereisaEuclideantheoremstatingthattwolinesthatarebothparalleltothesamelinearealsoparalleltoeachother.Doesthistheoremholdinhyperbolicgeometry?Supportyouranswer.

6) Canwebuildasetofrailroadtracksonahyperbolicplane?Supportyouranswer?

7) Canaright-angledregularpentagonexistonthehyperbolicplane?Supportyouranswer.

Page 138: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

138

ClassActivity21:LifeinaFractalWorld

Themostexcitingphrasetohearinscience,theonethatheraldsnewdiscoveriesisnot‘Eureka!’but‘That’sfunny…’

IsaacAsimovInthisactivityyouwillcreateafamousfractal,theKochSnowflake,andtheninvestigateseveralofitsproperties.Tocreateanyfractalwemustapplyaprocesstoaninitialgeometricobjectandthenapplythesameprocesstotheresultingobjectandthenapplythesameprocesstotheresultingobjectandthenapplythesameprocesstotheresultingobjectandthen…yougettheidea.Wecallsuchaprocedureaniterativeprocessandtheobjectineachstepiscalledaniteration.Whentheiterativeprocessproducesobjectsthatareincreasinglycomplex,butsimilartothefirstiterationonasmallerandsmallerscale,the‘final’iterationisafractal.Intheory,theprocessisrepeatedindefinitely,sotherereallyisnofinaliterationbutratherlimitingobjectthatistheactualfractal.Don’tworry;we’llonlyproducethreeiterationsoftheKochSnowflake.TocreatetheKochSnowflake,takeanequilateraltriangle(theinitialgeometricobject)andapplythefollowingiterativeprocesstoeachsideofthetriangle.

Step1:Divideeachlinesegmentintothirdsandremove(erase)themiddlethird.Step2:Replacethemiddlethirdwithtwosidesofanequilateraltrianglewhosesidelengthisthesameasthelengthofthemiddlethirdyouremoved.

Thefollowingpictureshowstheprocessappliedoncetoonesideoftheoriginaltriangle.

(Thisactivityiscontinuedonthenextpage)

Page 139: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

139

1) Constructanequilateraltrianglewithsidesapproximately2incheslonganduseittocreate

thefirstthreeiterationsoftheKochSnowflake.Whenyouhavefinishedyoushouldhaveaseparatedrawingforeachiteration.Assumethesidelengthoftheoriginaltriangleisoneunitinansweringthefollowingquestions.

2) Whatistheperimeteroftheoriginaltriangle?Thefirstiteration?Theseconditeration?Thethirditeration?Lookforapatternandmakeaconjecturefortheperimeterofthenthiteration.WhatabouttheperimeteroftheKochSnowflake(the“infinite”iteration)?

3) Whatistheareaoftheoriginaltriangle?Thefirstiteration?Theseconditeration?Thethird

iteration?(Itwillbesimplertoseeapatternifyouuseanon-standardunitforarea–wesuggestusingtheareaofthesmallesttriangleinthethirditerationastheunit.)Lookforapatternandmakeaconjecturefortheareaofthenthiteration.WhatabouttheareaoftheKochSnowflake(the“infinite”iteration)?

Page 140: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

140

ReadandStudy:

Biggasketsaremadeoflittlegaskets,Thebitsintowhichweslice‘em.AndlittlegasketsaremadeoflessergasketsAndsoadinfinitum.

Fromhttp://classes.yale.edu/fractals/ Takeacloselookattheclouds,mountainridges,lakeshoresandicebergsinthetwopicturesbelow(takenbyanauthorinAlaska).Whatgeometricshapecanbeusedtoadequatelydescribetheintricaciesoftheirboundaries?Asphericaltriangle?AEuclideancircle?Ahyperbolicpolygon?No.Nothingwehavestudiedthusfarcomesclosetoapproximatingthecomplexityofthesenaturalshapes,particularlywhentheyareexaminedonasmallscale.

BenoitMandelbrotisthemathematiciancreditedwithfindingthegeometricstructureunderlyingthesecomplicatednaturalshapes.In1975hecoinedthewordfractal(fromtheLatinwordfractusmeaningbrokenorfractured)todescribetheconvolutedcurvesandsurfacesthatcanbeusedto

Page 141: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

141

modelnaturalshapes.Thekeytohisunderstandingwashisobservationthatmanyrealphenomena,suchascoastlines,mountainsandlungs,havearoughlyself-similarshape:Thesmallerfeaturesoftheseobjectshaveapproximatelythesameshapeandcomplexityasthelargerfeaturesdo.Thatis,asmallportionofamountainridgewilllookapproximatelylikeanentiremountainridgewhenmagnified.Thinkaboutthis.Belowisacomputer-generatedfractalpicture(notarealpicture)ofridgescutbyastream.Itlooksrealdoesn’tit?

Mandelbrotusedtheconceptsofself-similarityandcomplexityundermagnificationtodescribecertainmathematicalsetsthatarefractal.Afamousexample,calledtheMandelbrotset,hasaboundarythatisamathematicalfractal.

TheMandelbrotSetfromhttp://en.wikipedia.org/wiki/Fractal

Page 142: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

142

Approximatefractalsareeasilyfoundinnature.Theseobjectsdisplayself-similarstructureovermanymagnifications.Examplesincludeclouds,snowflakes,mountains,rivernetworks,andbroccoli.Treesandfernsarealsofractalinnatureandcanbemodeledonacomputerbyusingarecursive(iterative)algorithm.Thisrecursivenatureisobviousintheseexamples—abranchfromatreeorafrondfromafernisaminiaturereplicaofthewhole:notidentical,butsimilarinnature.Fractalsprovideagoodmodelformanyorgansofthebody,suchasthelungs.Thetracheasplitsintothebronchialtubes,whichinturnsplitintoshorterandnarrowertubes.Eventheembryonicdevelopmentofthelungisaniterativeprocess.Theconvolutedsurfaceofthelunggreatlyincreasesitsareawhilekeepingitsoverallvolumesmall.Thelargesurfaceareaisbiologicallyessentialbecausetheamountofcarbondioxideandoxygenthatthelungscanexchangeisroughlyproportionaltotheirsurfacearea.Usingalightmicroscope,biologistsfoundapproximately80m2ofsurfaceareainalung(roughlythefloorspaceofasmallhouse).Thehighermagnificationofanelectronmicroscopeyieldedapproximately140m2.Scientistshaveestimatedthefractaldimensionofalungtobe2.17(ThomasQ.Sibley.TheGeometricViewpoint.p.220–221).We’lltellyouwhatwemeanbythatinaminute.Alloftheseexamplespointoutthreenecessarycharacteristicsofafractal:

1) itisself-similar(atleastapproximately);2) itcanbedefinedbyaniterativeprocess;and3) ithasanon-integerdimensionthatitlargerthanitsgeometricdimension.

(Notethatnotallself-similarobjectsarefractal.Forexamplealineisself-similar,butitsdimensionisone,soitisnotafractal.)

Let’stalksomemoreaboutdimensionforaself-similarobject.Wewilldetermine“dimension”bydoublingitslengthandseeinghowmanycopiesoftheoriginalobjectweget.Thedimensionistheexponenttowhichyoumustraisethescalingfactor(2fordoubling)inordertogetthenumberofcopiesproducedbythatscaling.Alinesegmenthasdimensiononebecausewhenyoudoublethelengthofthesegmentyougettwocopiesofthesegmentand21=2.Asquarehasdimension2becausewhenyoudoublethelengthofthesideyougetfourcopiesofthesquareand22=4.Acubehasdimension3becausewhenyoudoublethelengthoftheedgeyougeteightcopiesofthecubeand23=8.Wecanwritethisrelationshipasaformulaasfollows:

sndornsd

loglog

==

Heresiscalledthescalingfactor,disthedimension,andnisthenumberofcopiesproduced.(Trytoexplainthesecondversionoftheformula.Howdowesolvethefirstequationford?)

Page 143: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

143

IfweusethisformulaontheKochSnowflake,wehaves=3,n=4,andd= 26.13log4log= .

TheKochSnowflakehasadimensionof1.26.(Weird,huh?Makesureyoucanexplainwhys=3andn=4.)Insomeway,thedimensionisameasureofthecomplexityofthefractal.TheKochSnowflakeismorecomplexthanastraightline,butnotascomplexasasquare(includingtheinterior).IntheclassactivityyouexploredtheperimeterandareaoftheKochSnowflake(namedfortheSwedishmathematicianwhofirstcreateditin1904).Didyoudiscovertheamazingfactthatthisfractalhasaninfiniteperimeterbutafinitearea?Inotherwords,youcandrawacirclearoundtheentirefractalenclosingitwithinafinitearea,buttheboundaryoftheenclosedfractalisinfiniteinlength.Inthehomeworkproblemsyouwilldeterminetheperimeter,area,anddimensionofseveralotherfractals.Beonthelookouttoseeifinfiniteperimeterandfiniteareajustmightbeapropertyofallfractals.ConnectionstotheMiddleGrades:

Learningisnotcompulsory…neitherissurvival. W.EdwardsDemingYourfuturestudentswilllikedoinggeometryonaMöbiusstrip,abeachballoratorus–buttheywilllovefractals.Notonlydofractalslookcool,buttheinfiniteaspectisfascinatingtoMiddle-Schoolers.Wewillpresentjustonefractalactivityhere;youcancertainlyfindmany,manymoreonline.Forasample,govisitthewebsiteathttp://math.rice.edu/~lanius/frac/foranonlinelessononfractalsdesignedforstudentsinGrades4to8.BecertaintoinvestigatetheKochSnowflakeandthesectiononfractalproperties.Answerthequestionsfoundatthewebsite.Visitthewebsiteathttp://classes.yale.edu/fractals/foracompleteandaccessiblediscussionoffractalswithlotsoffascinatingpictureswrittenbyMandelbrothimself.Thereareevenlessonplansformiddleschoolclassrooms.Besuretocheckoutthefractallandscapesfoundunder“MoreExamplesofSelf-Similarity.”TheSierpinskiTriangleisanotherfractalthatyourstudentscaninvestigate.

Page 144: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

144

SowhatistheSierpinskiTriangle?Here’stheidea.Beginwithanequilateraltriangle:

Locatethemidpointofeachsideandcreateanewtrianglebyconnectingthosemidpoints.Thenremovethatmiddletriangle.

Nowdothesamethingtoeachofthethreeresulting‘outside’triangles.

Keepongoingforever.(Recallthatmathematicalobjectsareidealobjects–sotheideaofimagingwhatwouldhappenifaprocessisrepeatedforeverdoesnotbothermathematicians.)TheresultingfractalistheSierpinskiTriangle.Whyisitafractal?Usethedefinitiontoexplainthis.Supposethattheoriginaltrianglehadanareaof1u2.Findaformulafortheareaatthenthstep.

Step 0

Step 1

Step 2

Page 145: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

145

Homework:…sincegeometryistherightfoundationofallpainting,Ihavedecidedtoteachitsrudimentsandprinciplestoallyoungsterseagerforart.

AlbrechtDurer,CourseintheArtofMeasurement

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DotheproblemsintheConnectionssection.

3) Carefullysketchthreeiterationsofeachfractalidea.a) Astylizedtree,whereeachbranchsplitsintothreeothershalfaslong.Beginwith

onetrunkandthreebranches.b) AmodifiedKochcurve,withasquareonthemiddlethirdofalinesegment,rather

thanatriangle.Applythisiterativeprocesstoeachsideofasquare.4) FindtheperimeterofeachfractalinProblem3.

5) FindthelimitingareaofthefractalinProblem3b.

6) FindthedimensionofeachfractalinProblem3.

7) Inthereadingwediscussedtheconceptofself-similarity.Anotherwaytodescribethis

propertyistosaythataself-similarobjectcanbecomposedofsmallersimilarcopiesofitself.Whichofthefollowinggeometricobjectsareself-similar:alinesegment,atriangle,asquare,atrapezoid,ahexagon,acircle?Whichoftheself-similarobjectsarealsofractals?Why?

8) Picturedbelowarethefirstfouriterationsoftheboxfractal.Writetheinstructionsforthe

iterativeprocessthatcreatesit.Whatistheperimeterandareaofthelastiterationshownifthesideoftheoriginalsquareisoflengthone?Whatisthedimensionoftheboxfractal?

Page 146: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

146

SummaryofBigIdeasfromChapterThree Man’smind,oncestretchedbyanewidea,neverregainsitsoriginaldimensions. OliverWendellHolmes

• Wecanchangeourgeometrybychangingthespace,liketheKleinbottle,sphere,ortorus,thewaywemeasuredistance,likeintaxi-cabgeometry,orbyadjustinganaxiom,likeinhyperbolicgeometry.

• Taxi-cabgeometryisanon-Euclideangeometrythatmiddlegradesstudentscanexplore.

• SeveraltheoremsfromEuclideangeometryfailwhenappliedtoSphericalandHyperbolicgeometries.

• AFractalisageometricfigurethatisself-similar,thatcanbedefinedbyaniterative

process,andhasanon-integerdimension.

Page 147: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

147

APPENDICES

Page 148: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

148

References:

• Adams,T.L.&Aslan-Tutak,F.(2005)ServingUpSierpinkski!MathematicsTeachingintheMiddleSchool,11(5),p.248-253.

• Battista,M.(2007).Thedevelopmentofgeometricthinking.IntheSecondHandbookofResearchonMathematicsTeachingandLearning,F.Lester(Ed.).NCTM:InformationAgePublishing.

• CommonCoreStateStandardsasfoundinJanuary2012athttp://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

• MathematicalQuotationsServer(MQS)atmath.furman.edu.

• NationalCouncilofTeachersofMathematics.(2006).CurriculumFocalPointsfor

PrekindergartenthroughGrade8Mathematics:AQuestforCoherence.Reston,VA:NCTM.

• NationalCouncilofTeachersofMathematics.(2000).PrinciplesandStandardsforSchoolMathematics.Reston,VA:NCTM.

• Poole,J.T.(2002).Elements.FoundonJanuary10,2012athttp://math.furman.edu/~jpoole/euclidselements/euclid.htmDepartmentofMathematics,FurmanUniversity,Greenville,SC.

• Sharp,J.&Heimer,C.(2002).Whathappenstogeometryonasphere?MathematicsTeachingintheMiddleSchool,8(4),p.182.

• Shulman,L.S.(1985).Onteachingproblemsolvingandsolvingtheproblemsofteaching.In

E.A.Silver(Ed.),TeachingandLearningMathematicalProblemSolving:multipleresearchperspectives(pp.439-450).Hillsdale,NJ:Erlbaum.

• Sibley,T.Q.(1997)TheGeometricViewpoint:ASurveyofGeometries.Addison-Wesley.

Page 149: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

149

Euclid’sPostulatesandPropositions:

Euclid'sElementsThispresentationofElementsistheworkofJ.T.Poole,

DepartmentofMathematics,FurmanUniversity,Greenville,SC.©2002J.T.Poole.Allrightsreserved.

BookI

POSTULATES

Letthefollowingbepostulated:1.Todrawastraightlinefromanypointtoanypoint.2.Toproduceafinitestraightlinecontinuouslyinastraightline.3.Todescribeacirclewithanycenteranddistance.4.Thatallrightanglesareequaltooneanother.5.That,ifastraightlinefallingontwostraightlinesmaketheinterioranglesonthesamesidelessthantworightangles,thetwostraightlines,ifproducedindefinitely,meetonthatsideonwhicharetheangleslessthanthetworightangles.

COMMONNOTIONS1.Thingswhichareequaltothesamethingarealsoequaltooneanother.2.Ifequalsbeaddedtoequals,thewholesareequal.3.Ifequalsbesubtractedfromequals,theremaindersareequal.4.Thingswhichcoincidewithoneanotherareequaltooneanother.5.Thewholeisgreaterthanthepart.

Page 150: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

150

BOOKIPROPOSITIONSProposition1.

Onagivenfinitestraightlinetoconstructanequilateraltriangle.

Proposition2.Toplaceatagivenpoint(asanextremity)astraightlineequaltoagivenstraightline.

Proposition3.Giventwounequalstraightlines,tocutofffromthegreaterastraightlineequaltotheless.

Proposition4.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,andhaveanglescontainedbytheequalstraightlinesequal,theywillalsohavethebaseequaltothebase,thetrianglewillbeequaltothetriangle,andtheremainingangleswillbeequaltotheremaininganglesrespectively,namelythosewhichtheequalsidessubtend.

Proposition5.Inisoscelestrianglestheanglesatthebaseareequaltooneanother,and,iftheequalstraightlinesbeproducedfurther,theanglesunderthebasewillbeequaltooneanother.

Proposition6.Ifinatriangletwoanglesbeequaltooneanother,thesideswhichsubtendtheequalangleswillalsobeequaltooneanother.

Proposition7.Giventwostraightlinesconstructedonastraightline(fromitsextremities)andmeetinginapoint,therecannotbeconstructedonthesamestraightline(fromitsextremities),andonthesamesideofit,twootherstraightlinesmeetinginanotherpointandequaltotheformertworespectively,namelyeachtothatwhichhasthesameextremitywithit.

Proposition8.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,andhavealsothebaseequaltothebase,theywillalsohavetheanglesequalwhicharecontainedbytheequalstraightlines.

Proposition9.Tobisectagivenrectilinealangle.

Proposition10.Tobisectagivenfinitestraightline.

Proposition11.Todrawastraightlineatrightanglestoagivenstraightlinefromagivenpointonit.

Page 151: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

151

Proposition12.Toagiveninfinitestraightline,fromagivenpointwhichisnotonit,todrawaperpendicularstraightline.

Proposition13.Ifastraightlinesetuponastraightlinemakeangles,itwillmakeeithertworightanglesoranglesequaltotworightangles.

Proposition14.Ifwithanystraightline,andatapointonit,twostraightlinesnotlyingonthesamesidemaketheadjacentanglesequaltotworightangles,thetwostraightlineswillbeinastraightlinewithoneanother.

Proposition15.Iftwostraightlinescutoneanother,theymaketheverticalanglesequaltooneanother.

Proposition16.Inanytriangle,ifoneofthesidesbeproduced,theexteriorangleisgreaterthaneitheroftheinteriorandoppositeangles.

Proposition17.Inatriangletwoanglestakentogetherinanymannerarelessthantworightangles.

Proposition18.Inanytrianglethegreatersidesubtendsthegreaterangle.

Proposition19.Inanytrianglethegreaterangleissubtendedbythegreaterside.

Proposition20.Inanytriangletwosidestakentogetherinanymanneraregreaterthantheremainingone.

Proposition21.Ifononeofthesidesofatriangle,fromitsextremities,therebeconstructedtwostraightlinesmeetingwithinthetriangle,thestraightlinessoconstructedwillbelessthantheremainingtwosidesofthetriangle,butwillcontainagreaterangle.

Proposition22.Outofthreestraightlines,whichareequaltothreegivenstraightlines,toconstructatriangle:thusitisnecessarythattwoofthestraightlinestakentogetherinanymannershouldbegreaterthantheremainingone.[I.20]

Proposition23.Onagivenstraightlineandatapointonittoconstructarectilinealangleequaltoagivenrectilinealangle.

Page 152: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

152

Proposition24.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,buthavetheoneoftheanglescontainedbytheequalstraightlinesgreaterthantheother,theywillalsohavethebasegreaterthanthebase.

Proposition25.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,buthavethebasegreaterthanthebase,theywillalsohavetheoneoftheanglescontainedbytheequalstraightlinesgreaterthattheother.

Proposition26.Iftwotriangleshavethetwoanglesequaltotwoanglesrespectively,andonesideequaltooneside,namely,eitherthesideadjoiningtheequalangles,ofthatsubtendingoneoftheequalangles,theywillalsohavetheremainingsidesequaltotheremainingsidesandtheremainingangletotheremainingangle.

Proposition27.Ifastraightlinefallingontwostraightlinesmakethealternateanglesequaltooneanother,thestraightlineswillbeparalleltooneanother.

Proposition28.Ifastraightlinefallingontwostraightlinesmaketheexteriorangleequaltotheinteriorandoppositeangleonthesameside,ortheinterioranglesonthesamesideequaltotworightangles,thestraightlineswillbeparalleltooneanother.

Proposition29.Astraightlinefallingonparallelstraightlinesmakesthealternateanglesequaltooneanother,theexteriorangleequaltotheinteriorandoppositeangle,andtheinterioranglesonthesamesideequaltotworightangles.

Proposition30.Straightlinesparalleltothesamestraightlinearealsoparalleltooneanother.

Proposition31.Throughagivenpointtodrawastraightlineparalleltoagivenstraightline.

Proposition32.Inanytriangle,ifoneofthesidesbeproduced,theexteriorangleisequaltothetwointeriorandoppositeangles,andthethreeinterioranglesofthetriangleareequaltotworightangles.

Proposition33.Thestraightlinesjoiningequalandparallelstraightlines(attheextremitieswhichare)inthesamedirections(respectively)arethemselvesalsoequalandparallel.

Page 153: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

153

Proposition34.Inparallelogrammicareastheoppositesidesandanglesareequaltooneanother,andthediameterbisectstheareas.

Proposition35.Parallelogramswhichareonthesamebaseandinthesameparallelsareequaltooneanother.

Proposition36.Parallelogramswhichareonequalbasesandinthesameparallelsareequaltooneanother.

Proposition37.Triangleswhichareonthesamebaseandinthesameparallelsareequaltooneanother.

Proposition38.Triangleswhichareonequalbasesandinthesameparallelsareequaltooneanother.

Proposition39.Equaltriangleswhichareonthesamebaseandonthesamesidearealsointhesameparallels.

Proposition40.Equaltriangleswhichareonequalbasesandonthesamesidearealsointhesameparallels.

Proposition41.Ifaparallelogramhavethesamebasewithatriangleandbeinthesameparallels,theparallelogramisdoubleofthetriangle.

Proposition42.Toconstruct,inagivenrectilinealangle,aparallelogramequaltoagiventriangle.

Proposition43.Inanyparallelogramthecomplementsoftheparallelogramsaboutthediameterareequaltooneanother.

Proposition44.Toagivenstraightlinetoapply,inagivenrectilinealangle,aparallelogramequaltoagiventriangle.

Proposition45.Toconstruct,inagivenrectilinealangle,aparallelogramequaltoagivenrectilinealfigure.

Proposition46.Onagivenstraightlinetodescribeasquare.

Page 154: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

154

Proposition47.Inright-angledtrianglesthesquareonthesidesubtendingtherightangleisequaltothesquaresonthesidescontainingtherightangle.

Proposition48.Ifinatrianglethesquareononeofthesidesbeequaltothesquaresontheremainingtwosidesofthetriangle,theanglecontainedbytheremainingtwosidesofthetriangleisright.

Page 155: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

155

Glossary:Acuteangle–ananglewithmeasurelessthanthemeasureofarightangle

Acutetriangle–atrianglewiththreeacuteangles

Adjacentangles–twonon-overlappinganglesthatshareavertexandacommonray

Affineplane–ageometrywithparallellinesbasedontheaffinesetofaxioms

Algorithm–asetofstepsusedtocarryoutaprocedure

Alternateexteriorangles–twoangles(formedbyatransversalofapairoflines)thatlieoutside

thelinesandonoppositesidesofthetransversal

Alternateinteriorangles–twoangles(formedbyatransversalofapairoflines)thatliebetween

thelinesandonoppositesidesofthetransversal

Altitude(ofatriangle)–thelinethroughavertexthatisperpendiculartotheoppositeside

Altitude(ofapyramid)–thelinesegmentfromtheapexperpendiculartothebaseofthe

pyramid;alsocalledtheheight

Altitude(ofaprism)–alinesegmentperpendiculartothebasesoftheprism;alsoinformally

calledthe“height”

Analyticgeometry–theuseofacoordinatesystemtotranslategeometricproblemsintoalgebraic

problems

Angle–thefigureformedbytworayswithacommonendpoint

Anglebisector–thelinethroughthevertexofananglethatdividestheangleintotwocongruent

angles

Antipodalpoints–pointsthataretheendpointsofadiameterofasphere

Apex(ofapyramid)–thecommonpointofthenon-basefacesofapyramid

Apex(ofacone)–thecommonpointofthelinesegmentsthatcreateacone

Arc–thesetofpointsonacirclebetweentwogivenpointsofthecircle(Thereareactuallytwo

arcsbetweenanytwogivenpoints;theshorteroneiscalledtheminorarcandthelonger

oneiscalledthemajorarc.)

Area–thequantityoftwo-dimensionalspaceenclosedbyaplanefigure

Attribute–apropertyofageometricobjectthatcanbemeasured(suchaslength)orcategorized

(suchascolor)

Page 156: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

156

Axiom–astatementthatistruebyassumption

Axiomaticsystem–asetofundefinedterms,definitions,axioms,andtheoremsthatcreatea

mathematicalstructure

Axis(ofacone)–thelinejoiningtheapextothecenterofthe(circle)base

Axisofsymmetry–alineinspacearoundwhichathree-dimensionalobjectisrotated

Baseangles(ofanisoscelestriangle)–theanglesthatareoppositethecongruentsidesofan

isoscelestriangle

Bilateralsymmetry–anobjecthasbilateralsymmetrywhenithasexactlyonelineofreflectional

symmetry

Bisect–todivideageometricobject(suchasalinesegmentoranangle)intotwocongruent

pieces

Boundary–thesetofpointsthatseparatetheinsideofaclosedplanarobjectfromtheoutside

Center(ofacircle)–thepointthatisequidistantfromallpointsonthecircle

Centralangle–ananglewhosevertexisacenterofageometricobject

Centroid–thepointofintersectionofthethreemediansofatriangle;alsoknowntobethecenter

ofmassofthetriangle

Chord–alinesegmentwhoseendpointsaredistinctpointsonagivencircle

Circle–thesetofpointsthatarethesamedistancefromagivenpoint,calledthecenter

Circumcenter–thepointofintersectionofthethreeperpendicularbisectorsofatriangle;alsothe

centerofthecirclethatcircumscribesthetriangle

Circumscribedcircle–thecirclethatcontainsalltheverticesofapolygon

Closedcurve–acurvethatstartsandstopsatthesamepoint

Closure(ofasetunderanoperation)–thepropertythattheresultoftheoperationonanytwo

elementsofthesetisalsoanelementoftheset

Collinearpoints–pointsthatlieonthesameline

Complementaryangles–twoangleswhosemeasuressumtothemeasureofonerightangle

Compositionofrigidmotions–thecombinedactionsoftworigidmotionswiththesecondmotion

appliedtotheimageofthefirstmotion

Concavepolygon–apolygonforwhichatleastonediagonalliesoutsidethepolygon

Page 157: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

157

Concurrentlines–threeormorelinesthatintersectinthesamepoint

Cone(circular)-athree-dimensionalgeometricobjectconsistingofalllinesegmentsjoininga

singlepoint(calledtheapex)toeverypointofacircle(calledthebase)

Congruentobjects–twogeometricobjectsarecongruentifoneobjectistheimageoftheother

underarigidmotionoftheplane.

Conicsections–thefourcurves(circleellipse,hyperbola,andparabola)formedwhenaplane

intersectsadoublecone.

Conjecture–aguessorahypothesis

Converse(of“IfA,thenB.”)–“IfB,thenA,”whereAandBarestatements

Convexpolygon–apolygonallofwhosediagonalslieinsidethepolygon

Consistent(setofaxioms)–oneinwhichitisimpossibletodeducefromtheseaxiomsatheorem

thatcontradictsanyaxiomorpreviouslyprovedtheorem

Construction–creatingageometricobjectusingonlystraightlinesegmentsandcircles(Euclid’s

first,second,andthirdaxioms)

Contrapositive(of“IfA,thenB.”)–“IfnotB,thennotA,”whereAandBarestatements

Coordinate(Cartesian)plane–amodelofEuclideangeometryinwhicheachpointisidentifiedby

twocoordinates,thefirstofwhichrepresentsthehorizontaldistanceofthepointfromthe

y-axisandthesecondofwhichrepresentsverticaldistancefromthex-axis.(Thex-andy-

axesareperpendicularandlieinthesameplane.)

Coplanarlines–linesthatlieinthesameplane

Correspondingangles-twoangles(formedbyatransversalofapairoflines)thatlieonthesame

sideofthetransversalandalsolieonthesamesideofthepairoflines

Correspondingpoints–apairofpoints,oneofwhichistheoriginalpointandtheotherofwhichis

theimageofthatpointunderarigidmotion

Counterexample–anexamplethatshowsaconjectureisfalse

Curve–asetofpointsdrawnwithasinglecontinuousmotion

Cylinder(circular)–athree-dimensionalgeometricobjectconsistingoftwoparallelandcongruent

circles(andtheirinteriors)andtheparallellinesegmentsthatjoincorrespondingpointson

thecircles

Page 158: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

158

Deductivereasoning–theprocessofcomingtoaconclusionbasedonlogic

Definition–astatementofthemeaningofaterm,word,orphrase

Degree–aunitofanglemeasureforwhichafullturnaboutapointequals360degrees

Diagonal–thelinesegmentjoiningtwonon-adjacentverticesofapolygon

Diameter–alinesegmentthroughthecenterofacirclewhoseendpointslieonthecircle

Dimension(ofarealspace)–thenumberofmutuallyperpendiculardirectionsneededtodescribe

thelocationofthesetofpointsinthatspace

Edge–thelinesegment(side)thatissharedbytwofacesofapolyhedron

Ellipse–thesetofpointsPintheplanesuchthatthesumofthedistancesfromPtotwogiven

pointsF1andF2isconstant.ThepointsF1andF2arecalledthefocioftheellipse.

Equiangular(polygon)–apolygonallofwhosevertexanglesarecongruent

Equilateral(polygon)–apolygonallofwhosesidesarecongruent

Euclideanmodel–amodelofthegeometryoftheinfiniteflatplanebasedontheaxiomsystem

firstestablishedbyEuclid

Euler’sline–thelinecontainingthecircumcenter,thecentroid,andtheorthocenterofatriangle

Exteriorangle–theangleformedbyasideofapolygonandtheextensionofanadjacentside

Face–apolygon(withinterior)thatformsaportionofthetwo-dimensionalsurfaceofa

polyhedron

Finitegeometry–ageometrythatconsistsofafinitenumberofpointsandtheirrelationships

Fixedpoint–apointPwhoseimageunderarigidmotionisP

Fractal–anobjectthatresultsfromapplyinganiterativeprocessinwhicheachiterationis

increasinglycomplex,butself-similar

Function–arulethatassignstoeachelementofasetSanelementofsetTinsuchawaythat

everyelementinSispairedwithanelementofTandnoelementofSisassignedtomore

thanoneelementofT

Glidereflection–arigidmotionthatisthecompositionofatranslationandareflectioninwhich

thelineofreflectionandthetranslationvectorareparallel

Greatcircle–theintersectionofasphereandaplanethatcontainsthecenterofthesphere

Height(ofatriangle)–lengthofthelinesegmentfromavertexperpendiculartotheoppositeside

Page 159: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

159

Hyperbola–thesetofpointsPintheplanesuchthatthedifferenceofthedistancesfromPtotwo

givenpointsF1andF2isconstant

Hypotenuse–thesideofarighttriangleoppositetherightangle

Identificationspace–atwodimensionalmodelofanobjectthatlivesinhigherdimensions.The

modelshowshowsidesareidentified(“gluedtogether”)

Image(ofarigidmotion)–thesetofpointsthatresultfromthemotionofanobjectbyarigid

motionoftheplane

Incenter–thepointofintersectionofthethreeanglebisectorsofatriangle;alsothecenterofthe

inscribedcircle

Incircle(inscribedcircle)–thecirclethatistangenttoallsidesofapolygon

Inductivereasoning–theinformalprocessofcomingtoaconclusionbasedonexamples

Inscribedcircle–thecirclethatistangenttoeachsideofapolygon

Intersection(oftwolines)–thepoint(s)thelineshaveincommon

Intersection(oftwosets)–thesetofelementsthatarecommontobothsets

Isosceles–havingatleastonepairofcongruentsides

Iterativeprocess–analgorithmappliedtoanobjectandthentotheresultandthentotheresult

andsoforth.Theobjectineachstepoftheprocessiscalledaniteration

Justification–anargumentbasedonaxioms,definitions,andpreviouslyprovenresultstoshow

thataconjectureistrue

Leg–asideofarighttriangleoppositeanacuteangle

Length–themeasureofa1-dimensionalobject

Line–anundefinedone-dimensionalsetofpointsunderstoodtofollowtheshortestpath

(betweeneverypairofpointsontheline)andtoextendinoppositedirectionsindefinitely

Lineofreflection–thelineaboutwhichanobjectisreflectedtoformitsmirrorimage

Linesegment–thesetofpointsonalinebetweentwogivenpoints,calledtheendpoints

Locus(definition)–adefinitionthatdescribesacurveasasetofpointsintheplane

Logicallyequivalent(statements)–statementsthathavethesametruthvalueineverycase

Lune–aconcaveplaneregionboundedbytwoarcsofdifferentradii

Page 160: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

160

Majorsegment(ofagreatcircle)–thelargerofthetwoarcsdeterminedbytwodistinctpointson

agreatcircle

Measure–todeterminethequantityofanattribute(orofafundamentalconceptsuchastime)

usingagivenunit

Median–thelinesegmentjoiningavertexofatriangletothemidpointoftheoppositeside

Midpoint–thepointonalinesegmentthatdividesitintotwocongruentlinesegments

Minorsegment(ofagreatcircle)–thesmallerofthetwoarcsdeterminedbytwodistinctpoints

onagreatcircle

Model–arepresentationofanaxiomsysteminwhicheachundefinedtermisgivenaconcrete

interpretationwhichallowtheaxiomstomakesense

Net–atwo-dimensionalmodelthatcanbefoldedintoathree-dimensionalobject

Obtuseangle–ananglewithmeasuregreaterthanthemeasureofarightangle

Obtusetriangle–atrianglewithoneobtuseangle

One-to-one(function)–afunctionfromasetStoasetTinwhichnoelementofTisassignedto

morethanoneelementofS

Onto(function)–afunctionfromasetStoasetTinwhicheveryelementofTisassignedtosome

elementfromS

Order(ofanaffineplane)–thenumberofpointsoneachlineoftheplane

Order(ofaprojectiveplane)–thenumberofpointsoneachlineoftheplanelessone

Order(ofarotationalsymmetry)–thenumberofdifferentrotationsthatareasymmetryofan

object

Orientation–thedirection,clockwiseorcounterclockwise,ofthereadingoftheverticesofa

polygoninalphabeticalorder

Orthocenter–thepointofintersectionofthethreealtitudesofatriangle

Orthogonal(circles)–intersectingcircleswhoserespectiveradii(orrespectivetangents)are

perpendicularatthepointsofintersection

Parabola–thesetofpointsPintheplanesuchthatthedistancefromPtoagivenpointFisequal

tothedistancefromPtoagivenlinem.PointFiscalledthefocusoftheparabolaandline

misthedirectrix

Page 161: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

161

Parallellines–coplanarlineswithnopointsincommon

Parallelogram–aquadrilateralinwhichbothpairsofoppositesidesareparallel

Partition–adivisionofageometricobjectintoasetofnon-overlappingobjectswhoseunionis

theoriginalobject

Perimeter(ofaplaneobject)–thelengthoftheboundaryoftheobject

Perpendicularbisector–thelinethroughthemidpointofalinesegmentthatisalsoperpendicular

tothelinesegment

Perpendicularlines–twolinesthatintersecttoformfourrightangles

Pi–theratioofthecircumferenceofacircletoitsdiameter;thisratioisanirrationalnumberthat

isconstantforallsizecirclesandisapproximatelyequalto3.1415926

Planarcurve–acurvethatliesentirelywithinaplane

Plane–anundefinedtwo-dimensionalsetofpointsunderstoodtoextendinalldirections

indefinitely

Planeofsymmetry–aplaneinspaceaboutwhichathree-dimensionalobjectisreflected

Point–anundefinedzero-dimensionalobjectunderstoodtobealocationwithnosize

Polygon–asetoflinesegmentsthatformasimpleclosedplanarcurve

Polyhedron(plural:polyhedra)–afinitesetofpolygonsjoinedpair-wisealongthesidesofthe

polygonstoencloseafiniteregionofspacewithinonechamber

Postulate–anaxiom

Prism–apolyhedroninwhichtwoofthefacesareparallelandcongruent(calledthebases)and

theremainingfacesareparallelograms

Projectiveplane–ageometryinwhichtherearenoparallellinesbasedontheprojectivesetof

axioms

Proof–ajustificationwritteninformalmathematicallanguage

Pyramid–apolyhedroninwhichallbutoneofthefacesistrianglesthatshareacommonvertex

(calledtheapex);theremainingfacemaybeanypolygonandiscalledthebase

Quadrilateral–apolygonwithexactlyfoursides

Quantifier(inlogic)–awordorphrase(suchas“all”or“atleastone”)thatindicatesthesizeof

thesettowhichthestatementapplies

Page 162: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

162

Radius(plural:radii)–thelinesegmentjoiningapointonacircletothecenterofthecircle

Ray–thesetofpointsonalinebeginningatagivenpoint(calledtheendpoint)andextendingin

onedirectiononthelinefromthatpoint

Rectangle–aquadrilateralwithfourrightangles

Rectilinearangle–anangleformedbystraightlines(asopposedtocurves),nowadayssimply

referredtobyangle

Redundant(setofaxioms)–asetofaxiomsinwhichitispossibletoproveatleastoneofthe

axiomsfromtheotheraxioms

Reflection(inalinel)–arigidmotionoftheplaneinwhichtheimageofapointPonlisP,andif

A¹PandiftheimageofAis 'A ,thenlistheperpendicularbisectorof 'AA .

Reflectionalsymmetry(2-dimensional)–areflectioninwhichanobjectisdividedbythelineof

reflectionintotwopartsthataremirrorimagesofeachother

Reflectionalsymmetry(3-dimensional)–areflectioninwhichanobjectisdividedbytheplaneof

reflectionintotwopartsthataremirrorimagesofeachother

Regularpolygon–apolygonwithallsidescongruentandallvertexanglescongruent

Regularpolyhedron–apolyhedronwhosefacesareallthesameregularpolygonwiththesame

numberoffacesmeetingateachvertex

Rhombus(plural:rhombi)–aquadrilateralwithfourcongruentsides

Rightangle–ananglethatformsexactlyonefourthofacompleteturnaboutapoint

Righttriangle–atrianglewithonerightangle

RigidMotionoftheplane–amotionoftheplanethatpreservesthedistancesbetweenpoints

Rotation(aboutapointPthroughanangleq)–arigidmotionoftheplaneinwhichtheimageof

PisPand,iftheimageofAis 'A ,then PA@ 'PA and 'm APA =q.PointPiscalledthe

centeroftherotation

Rotationalsymmetry(2-dimensional)–arotationaboutapointinwhichtheimagecoincideswith

theoriginalobject

Rotationalsymmetry(3-dimensional)–arotationaboutanaxisofsymmetryinwhichtheimage

coincideswiththeoriginalobject

Scalenetriangle–atrianglenoneofwhosesidesarecongruent

Page 163: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

163

Scaling–atransformationoftheplanethatcauseseitheramagnificationorashrinkingofan

objectinwhichtheimageremainssimilartotheoriginalobject

Scalingfactor–thefactorbywhichanobjectismagnifiedorcontractedinascaling

Secant–alinethatintersectsacircleintwodistinctpoints

Sector–theportionofacircleanditsinteriorbetweentworadii

Shearing–atransformationoftheplanethatchangestheshapeofanobject

Side–oneofthelinesegmentsthatmakeupapolygon

Similar(polygons)–polygonswhosecorrespondingvertexanglesarecongruentandwhose

correspondingsidesareproportional

Simplecurve–acurvethatdoesnotintersectitself

Slope(ofalineontheCartesianplane)–thetangentoftheangleofinclinationthelinemakes

withthepositivex-axis

Space–anundefinedtermthatdenotesthesetofpointsthatextendsindefinitelyinthree

dimensions

Sphere–thesetofpointsin(three-dimensional)spacethatareequidistantfromagivenpoint,

calledthecenter

Square–aquadrilateralwithfourrightanglesandfourcongruentsides

Supplementaryangles–twoangleswhosemeasuressumtothemeasureoftworightangles

Surface–thesetofpointsthatformtheboundaryofasolidthree-dimensionalobject

Surfacearea–thesumoftheareasofthefacesofaclosed3-dimensionalobject

Symmetry(ofanobject)–arigidmotionoftheobjectinwhichtheimagecoincideswiththe

original

Tangent(toacircle)–alinethatintersectsacircleinexactlyonepoint

Taxicabgeometry–ageometryoftheinfiniteflatplaneinwhichdistancebetweenpointsis

measuredasthesumoftheverticalandhorizontaldistancesbetweenthetwopoints

Theorem–amathematicalstatementthatisproventrue

Translation(byavectorRS)–amotionoftheplanesothatifAisanypointintheplaneandwe

callA’theimageofA,thenvectorAA’andvectorRShavethesamelengthanddirection

Transversal–alinewhichintersectstwoormorelines(eachatadifferentpoint)

Page 164: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

164

Trapezoid–aquadrilateralwithexactlyonepairofparallelsides

Triangle–apolygonwithexactlythreesides

Trivialrotation–therotationof360°;itisarotationalsymmetryofeveryobject

Undefinedterm–atermwhichhasanintuitivemeaning,butnoformaldefinition

Union(ofsets)–thesetcontainingeveryelementofeachset

Vertex(plural:vertices)–thecommonendpointoftwoadjacentsidesofapolygon

Vertexangle–theangleformedbyadjacentsidesofapolygon

Vertex(ofapolyhedron)–theintersectionoftwoormoreedgesofapolyhedron

Verticalangles–anonadjacentpairofanglesformedbytwointersectinglines

Volume–ameasureofthecapacityofa3-dimensionalobjector,alternatively,thequantityof

spaceenclosedbya3-dimensionalobject

Page 165: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

165

Page 166: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

166

PolygonsforReadandStudy10:

Page 167: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

167

Page 168: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

168

Page 169: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

169

Page 170: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

170

Page 171: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

171

Page 172: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

172

HyperbolicPapertemplate:

Page 173: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

173

Page 174: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

174

Page 175: Big Ideas in Euclidean and Non-Euclidean Geometries€¦ · Geometry allows us to think spatially, to see structure in art and form, and to create and visualize new “worlds” with

175