Top Banner
1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University Elaine Isely, West Michigan Environmental Action Council Paul Isely, Grand Valley State University Rod Denning, Grand Valley State University Abstract Grand Rapids, Michigan, USA is a medium-sized city located within the Lake Michigan watershed, one the five North American Great Lakes. Like many cities, Grand Rapids spends considerable money managing stormwater. Impervious surfaces collect and concentrate volumes of water and associated sediments and pollutants. This creates flooding, erosion, and pollution problems especially for downstream communities. However, stormwater quantity can be reduced and quality can be improved by, for example, mimicking natural hydrology, enhancing biodiversity, linking ecological and economic sustainability, taking an integrated approach at manageable scales, and viewing stormwater as a resource. Evidence is mounting that onsite stormwater management systems can be cost-effective, but the detailed benefit-cost analyses are still lacking. Therefore the West Michigan Environmental Action Council, together with researchers from Grand Valley State University, estimated the economic benefits and costs of various “green infrastructure” (GI) practices. Each GI practice was standardized to treat 3,000 ft 3 of stormwater per 1.0-inch event plus the first inch of stormwater from larger events. This equates to about 113,000 ft 3 of stormwater per year. The economic analysis used a benefit transfer approach to estimate the net present value (NPV) of capital, operations, and maintenance costs as well as the direct and indirect benefits. The suite of benefits varied for each GI practice and included flood risk reduction ; reductions in stormwater volume, phosphorus, total suspended solids (TSS), and air pollution; scenic amenity value; and CO 2 storage. A 3.5 percent discount rate was applied to all costs and benefits, and each practice was analyzed over 50 years. Conserved natural areas had the largest net present value at $3.10/ft 3 , followed by street tree planters at $1.48/ft 3 , rain gardens at $1.12/ft 3 , porous asphalt at $0.68/ft 3 , and infiltration bioretention basins at $0.03/ft 3 . Green roofs had a negative net present values of $-1.12/ft 3 suggesting their lifetime costs exceed their benefits, at least in Grand Rapids where ground-level open space is plentiful. If the green roof is used to attain certification such as Leadership in Energy and Environmental Design (LEED), which has a high amenity value, then the net benefits turn positive ($0.16/ft 3 ). Rain barrels are another small-scale green infrastructure practice that can be useful and cost-effective at the household scale ($1.06/ft 3 ). However, there is a lot of variability in the costs and benefits associated with each of these GI practices, which will affect the net present value; we utilized likely values for the region. No one GI practice is appropriate for all situations. Rather the choice of GI practice will be driven by the site and budget. This benefit-cost analysis of GI practices has policy implications for Grand Rapids and other small to mid-size Midwestern cities. With the array of options available to manage stormwater on site, municipalities like Grand Rapids are well-positioned to adopt the GI practices that are most appropriate.
27

Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

Jul 16, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

1

Benefit-costanalysisofstormwatergreeninfrastructureforGrandRapids,MichiganErikE.Nordman,GrandValleyStateUniversity

ElaineIsely,WestMichiganEnvironmentalActionCouncil

PaulIsely,GrandValleyStateUniversity

RodDenning,GrandValleyStateUniversity

AbstractGrandRapids,Michigan,USAisamedium-sizedcitylocatedwithintheLakeMichiganwatershed,onethefiveNorthAmericanGreatLakes.Likemanycities,GrandRapidsspendsconsiderablemoneymanagingstormwater.Impervioussurfacescollectandconcentratevolumesofwaterandassociatedsedimentsandpollutants.Thiscreatesflooding,erosion,andpollutionproblemsespeciallyfordownstreamcommunities.However,stormwaterquantitycanbereducedandqualitycanbeimprovedby,forexample,mimickingnaturalhydrology,enhancingbiodiversity,linkingecologicalandeconomicsustainability,takinganintegratedapproachatmanageablescales,andviewingstormwaterasaresource.Evidenceismountingthatonsitestormwatermanagementsystemscanbecost-effective,butthedetailedbenefit-costanalysesarestilllacking.ThereforetheWestMichiganEnvironmentalActionCouncil,togetherwithresearchersfromGrandValleyStateUniversity,estimatedtheeconomicbenefitsandcostsofvarious“greeninfrastructure”(GI)practices.EachGIpracticewasstandardizedtotreat3,000ft3ofstormwaterper1.0-incheventplusthefirstinchofstormwaterfromlargerevents.Thisequatestoabout113,000ft3ofstormwaterperyear.Theeconomicanalysisusedabenefittransferapproachtoestimatethenetpresentvalue(NPV)ofcapital,operations,andmaintenancecostsaswellasthedirectandindirectbenefits.ThesuiteofbenefitsvariedforeachGIpracticeandincludedfloodriskreduction;reductionsinstormwatervolume,phosphorus,totalsuspendedsolids(TSS),andairpollution;scenicamenityvalue;andCO2storage.A3.5percentdiscountratewasappliedtoallcostsandbenefits,andeachpracticewasanalyzedover50years.Conservednaturalareashadthelargestnetpresentvalueat$3.10/ft3,followedbystreettreeplantersat$1.48/ft3,raingardensat$1.12/ft3,porousasphaltat$0.68/ft3,andinfiltrationbioretentionbasinsat$0.03/ft3.Greenroofshadanegativenetpresentvaluesof$-1.12/ft3suggestingtheirlifetimecostsexceedtheirbenefits,atleastinGrandRapidswhereground-levelopenspaceisplentiful.IfthegreenroofisusedtoattaincertificationsuchasLeadershipinEnergyandEnvironmentalDesign(LEED),whichhasahighamenityvalue,thenthenetbenefitsturnpositive($0.16/ft3).Rainbarrelsareanothersmall-scalegreeninfrastructurepracticethatcanbeusefulandcost-effectiveatthehouseholdscale($1.06/ft3).However,thereisalotofvariabilityinthecostsandbenefitsassociatedwitheachoftheseGIpractices,whichwillaffectthenetpresentvalue;weutilizedlikelyvaluesfortheregion.NooneGIpracticeisappropriateforallsituations.RatherthechoiceofGIpracticewillbedrivenbythesiteandbudget.Thisbenefit-costanalysisofGIpracticeshaspolicyimplicationsforGrandRapidsandothersmalltomid-sizeMidwesterncities.Withthearrayofoptionsavailabletomanagestormwateronsite,municipalitieslikeGrandRapidsarewell-positionedtoadopttheGIpracticesthataremostappropriate.

Page 2: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

2

IntroductionLocalgovernmentunits,includingvillages,cities,andcounties,expendsignificantresourcestomanagestormwater.TheCityofGrandRapids,Michigan,USA,forexample,operatesstormwaterinfrastructurevaluedat$533million(CityofGrandRapids,2014).Thesegovernmententitieshaveastrongincentivetoreduceexpendituresbyreducingthevolumeofstormwatertheymanage.Reducingrunoffvolumesalsoreducesboththeriskoffloodsandtheamountofpollutionenteringthewatercourses.

Thedominantparadigminstormwatermanagementformostofthe20thcenturywastomovethewateroffsiteasquicklyaspossiblethroughditchesandpipes,so-called“grayinfrastructure”,andintotheneareststreamorriver.Whileeffectiveatpreventingponding,movinglargequantitiesofwater,withitssedimentsandpollution,intowaterbodiesresultedinflooding,erosion,andpollutionproblemsfordownstreamcommunities.Sincethe1990sanecologicalparadigmhasemergedthatplacesstormwaterquantityandqualitywithinthecontextofintegratedwatershedmanagementandlowimpactdevelopment.Stormwaterquantitycanbereducedandqualitycanbeimprovedby,forexample,mimickingnaturalhydrology,enhancingbiodiversity,linkingecologicalandeconomicsustainability,takinganintegratedapproachatmanageablescales,andviewingstormwaterasaresource(DeboandReese,2002).

Thegrayinfrastructureparadigmemphasizespublicinfrastructurebuilt,maintained,andoperatedbythemunicipality.Stormwaterinfrastructureisapurepublicgood;thatis,itisnon-rivalandnon-exclusive,whichmeanthatundernormalcircumstances,everyonecanbenefitfromitwithout“usingitup”andonceitisbuilt,themunicipalitycannotexcludeanyonefromenjoyingitsbenefits,respectively(WeimerandVining,2010).Thereislittleincentiveforprivatelandownerstoinvestinstormwatermanagementpracticesbecausethebenefitsoftheiractionswouldlargelyaccruetotheirneighbors.Theecologicalparadigmbasedononsitemanagementandlowimpactdevelopment,however,requiressignificantinvestmentsonprivatepropertysuchasraingardens,green(vegetated)roofs,andpermeablepavement.Themisalignmentofincentivesresultsinamarketfailure.Intheabsenceofpolicy,actorsinthemarketplacewillunderprovideonsitestormwatermanagementsystemsandpractices.Thiswillbethecaseevenifonsitemanagementislessexpensivethanthetraditionalsewerinfrastructure.It’snotjustaboutthecosts;it’saboutwhopaysthem.

Evidenceismountingthatonsitestormwatermanagementsystemscanbecost-effective.TheCenterforNeighborhoodTechnologyfoundthatamunicipallevelgreeninfrastructureplancouldhavesignificantnetbenefitsforthecommunitybyreducinggrayinfrastructurecapitalcostsby$120millionandprovidingmorethan$4millioninenergy,airquality,andclimatebenefitsannually(CenterforNeighborhoodTechnology,2014).Ifthenetbenefitsofgreeninfrastructurearepositive,thereisacompellingcasethatmunicipalitiescouldsavemoneyandprovidebetterenvironmentaloutcomesbyprovidingincentivesforprivateinvestmentinonsitestormwatermanagementthroughgreeninfrastructure.

ThispaperanalyzesthebenefitsandcostsofstormwatermanagementusinggreenandgrayinfrastructureintheCityofGrandRapids,Michigan,USA.Specifically,itaddressessevengreeninfrastructurepractices:porousasphalt;greenroofs;raingardens;bioretentioninfiltrationponds;conservationofnaturalareas;streettrees,whichincludetreeplantersandtreepits;andrainbarrels.Thisbenefit-costanalysisispartoftheRainwaterRewardsprojectwhichincludesaweb-basedstormwatervaluecalculatorthatestimatesthebaselinestormwaterrunoffquantity,thereducedrunoff

Page 3: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

3

quantityaftertheadoptionofgreeninfrastructuresystems,andtheneteconomicbenefitofthosesystems(http://www.RainwaterRewards.com).TheRainwaterRewardscalculatorisanaccessibletoolforcitizens,landowners,andpolicymakerstocalculatethepublicbenefitsofgreeninfrastructureandcraftpolicyinstruments,suchasrefundsortaxcredits,toencourageprivateinvestmentingreeninfrastructure.

Theresearchteambeganworkingonvaluationofecosystemservicesassociatedwithdifferenttypesofgreeninfrastructuresince2005.TheINtegratedValuationofEcosystemServicesTool(INVEST)wasdevelopedtoeducatecommunityplannersandlandownersaboutthevalueofecosystemservicesassociatedwithnon-urbanlandusesinWestMichigan.However,itwasdifficulttotranslateregionalvaluesforuseinparcel-baseddecisionmaking(Iselyetal.,2010a)In2010,INVESTwasexpandedandappliedtoasingleparceltohelpresolvealandusedisputebetweenthepropertyownerandBlueLakeTownship.Acalculatortemplatewasputtogethertodemonstratetheecosystemservicesassociatedwiththatparcel(Iselyetal.,2012).

Theteam’sworkonquantifyingthecostsandbenefitsofstormwatermanagementpractices,specifically,beganwithanintegratedassessmentprojectintheSpringLakeWatershedin2007.Theteamcalculateddirect,indirect,andopportunitycostsandbenefits,andperformedcosteffectivenessandcost-benefitanalysesofbioretention/raingardens,vegetatedbio-swales,perviouspavement,constructedwetlands,andstormwaterretrofits(Iselyetal.,2010b).In2013,teammemberscompletedareviewofbestpracticesinincentivizingtheimplementationofstormwatergreeninfrastructure(Isely,2014).ThenewRainwaterRewardscalculatorhasupdatedcostandbenefitinformationforstormwatergreeninfrastructurepracticesmostlikelytobefoundinsmall-tomediumurbancentersintheGreatLakesbasin–GrandRapidsandMuskegon,Michigan.TheRainwaterRewardscalculatorwillbethecenterpieceofacommunityengagementcurriculumonstormwatermanagementthroughgreeninfrastructure.

Whatwecallgreeninfrastructureintheremainderofthispapergoesbymanynames:lowimpactdevelopment(LID),stormwaterbestmanagementpractices(BMPs),stormwatermanagementpractices(SMPs),andothers.Whiletheirdefinitionsmaydifferslightly,theyallrefertodecentralizedpracticesthatreducethequantityofstormwaterenteringwatercourses.Forthesakeofconsistency,wewillsimplyrefertoallofthesepracticesasgreeninfrastructure(GI).

LiteraturereviewThemostcomprehensiveandaccessibleresourcetodateistheGreenValuesStormwaterToolboxCalculatorfromtheCenterforNeighborhoodTechnology(CNT)(CenterforNeighborhoodTechnology,2007).TheCNTcalculatorusedarelativelysimplewebinterfacethatallowsuserstoenterlot-specificinformation.Itcalculatedthestormwaterrunoffvolumeundertypicalcircumstancesandestimatesthereductionthroughtheuseofgreeninfrastructure.Costsestimatesconsideredbothconstructionandoperationandmaintenancecosts.Thecalculatorestimatedthefollowingbenefits:reducedairpollutants,carbondioxide,compensatoryvalueoftrees,groundwaterreplenishment,reducedenergyuse,andreducedtreatmentbenefits.NoteveryGIpractice,however,deliverseachofthesebenefits.CNTcurrentlyoffersthreeversionsofthecalculator:theoriginal,oneforChicago,andanationalcalculator.

Page 4: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

4

BeauchampandAdamowski(2012)usedtheCNTcalculatorandothervaluationtoolstoestimatethevalueofGIcomparedtoconventionalinfrastructure.GIdevelopmentincludedreducedpavementdesigns,separatepotableandnon-potablewatersystems,greywaterandblackwatersewagesystems,andstormwatermanagementusingbioswales,wetlands,greenroofs,andraingardens.TheplanneddevelopmentintheMontrealsuburbofVaudreuil-DorionbasedonGIwouldcost11-29percentmorethanaconventionaldesign.Housingvalues,however,areexpectedtoincreaseby15-27percentwhichwouldoffsettheinitialcostgap.

TheWaterEnvironmentResearchFoundation(WERF)developedasuiteofspreadsheet-basedbestmanagementpracticeandlowimpactdevelopmentwholelifecostmodels(MoellerandPomeroy,2009).Thecosttoolincludesninedifferentpractices,includingpermeablepavements,greenroofs,raingardens,andin-curbtreeplantervaults.Thecostmodelsallowpractitionerstoestimatethecapital,operations,andmaintenancecostsforeachpracticeandcomparethecost-effectivenessofeach.Thedefaultspreadsheetispopulatedwithstandardvaluesbutallowstheusertoinputlocally-appropriateinformationaboutprojectcosts,timelines,wages,anddiscountrates.

AlocallyimportantcostanalysiswasthatofClarketal.(2008)whoassessedthenetpresentvalueofgreenroofscomparedtothoseofconventionalroofs.ThestudysitewastheUniversityofMichigancampusinAnnArbor.Themeancostofaconventionalflatroofwas$167/m2in2008($17.14/ft2in2015).Themeancapitalcostofagreenroof(includingtheconventionalroofunderneath)was39percenthigherthantheconventionalroofalone.Theresearcherstalliedthebenefitsofgreenroofs,includingstormwaterfeereductionswherethecityimplementsastormwaterchargebasedonimpervioussurfaces),energysavings,airpollutionreduction,andalongerlifespanfortheconventionalroof.Theamenityvalueofgreenroofswasnotincluded,norweretheoperationandmaintenancecostsforgreenorconventionalroofs.Ratherthanusingastandardrealdiscountrateintheireconomicanalysis,Clarketal.multipliedtheannualbenefitsandcostsbyathreepercentinflationrateandthendividedbyanominalfivepercentinterestrate.Thisresultsinaneffectivediscountrateoflessthantwopercent.Thenetpresentvalueanalysisshowedthat,overthelifeoftheroof,greenroofscost25-40percentlessthanconventionalroofs.Energysavingsandpollutionreductionbenefitsweregreaterthantheavoidedstormwaterfees.Despitethehighercapitalcosts,thelifetimebenefitsoutweighedthegreenroof’shighercapitalcosts.Howeverthisfindingisverylikelyduetotheuseofaloweffectivediscountrateoflessthantwopercent.

BianchiniandHewage's(2012)alsoreportedapositivenetbenefitforgreenroofs.Theirprobabilisticassessmentofgreenroofcostsandbenefitsfoundthemostlikelyscenarioproducedanetbenefitof$37/ft2.LikeClarketal.(2008)theireconomicanalysisincludedbotha1-4percentinflationrateanda2-8percentdiscountrate.Theresultswerehighlysensitivetothechoiceofinflationanddiscountrates.Otherresearchershavefoundnegativenetbenefitsforgreenroofs.Forexample,CarterandKeeler(2008)foundthatthepresentvaluecostsofagreenroofinGeorgiawas10-14percenthigherthanthatofaconventionalroof.Theyusedafourpercentrealdiscountrateintheirbenefit-costanalysis.Likewise,Sprouletal.(2014)foundthatgreenroofshaveahighernetcostovertheirlifetime.Sprouletal.usedathreepercentrealdiscountrate.Neitherofthesestudies,however,includedamenityvaluesforgreenroofsintheiranalyses.Allofthesestudiessuggestthatagreenroof’seconomicefficiencyishighlysensitivetothechoiceofdiscountrate.LowdiscountratestendtoresultinpositiveNPVswhilehigherdiscountratesofthreepercentorhighertendtoresultinnegativeNPVs.

Page 5: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

5

ResearchersattheUniversityofNewHampshire’sStormwaterCenterassessedthecostandperformanceofseverallowimpactdevelopmentpracticesincludingporousasphalt.Theyfoundthat,contrarytoconventionalwisdom,porousasphalthadthelowestmaintenanceburdenintermsofstaffhoursandthesecondlowestinannualcosts.Porousasphaltalsoperformedwellinremovingbothtotalsuspendedsolidsandphosphorus(Houleetal.,2013).

TheForestServiceanalyzedthecostsandbenefitsofstreettreesinMidwesterncities.Theyfoundthat,forpublicstreettrees,thebenefitsoutweighthecostsoveraforty-yearperiod.Forsmalltreeslikeacrabapplethenetbenefitwas$160(in2005),whileformediumandlargetreesthebenefitswere$640and$2,320,respectively.TheForestServiceanalysisdidnot,however,usediscountingwhenassessingthesebenefits.Streettreesprovideheatingandcoolingenergysavings,increasepropertyvalues,reducestormwatervolumesbyinterceptingrainfall,andreduceairpollution(McPhersonetal.,2006).

Economistsusepropertyvaluemodels,alsoknownashedonicmodels,toestimatetheeffectofhousingattributesonsalesprices.ThehousingattributescanincludeenvironmentalvariablesandseveralstudieshavefocusedonGI.Hellman(2011)usedahedonicmodeltostudytheeffectofstormwatervolumesonhousingpricesintheRochester,NewYorksuburbofBrighton.Hellmanfoundadditionalstormwaterquantitiesnegativelyaffectpropertyvaluesandthatthemarginalabatementcostsarelessthanthemarginaldamage.Holdingallotherattributesconstant,aonepercentincreaseinstormwatervolumeleadstoapproximatelyaonepercentdecreaseinahome’sassessedvalue.

AnotherhedonicmodelinvestigatedtheeffectofgreenroofsonapartmentrentsinNewYorkCity(IchiharaandCohen,2010).Thepresenceofagreenroofadded16percenttotherentalprice.Thoughthegreenroofvariablewasstatisticallysignificant,thenumberofobservations(44)wasrelativelysmallandthefindingsshouldbeviewedwithcaution.Thestudysitewasaheavilyurbanizedareawheregreenspaceisscarce.Inthecontextofhighwealthandscarceopenspace,residentsmaybewillingtopayahighpremiumforagreenroof.AhedonicanalysisfromTaiwan,however,foundtheopposite–thatgreenroofs(aswellasotherGIpracticeslikeporouspavementandabalconygarden)haveanegativeeffectonresidentialpropertyprices.Theauthorsassumedthiswasduetoperceptionsofhighermaintenancecosts(Chenetal.,2014).Asgreenroofsbecomemorecommonandstarttofeatureinthepropertymarketthereshouldbemoredefinitivestudiesontheirpropertyvalueeffects.

GreeninfrastructurepracticescanhelpabuildingearnacertificationsuchasEnergyStarorLeadershipinEnergyandEnvironmentalDesign(LEED).Oneanalysisofcertifiedcommercialbuildingsfoundthatsuchcertificationscommandrentpremiumsof3.1percentforEnergyStarand7.0percentforLEED.LEEDbuildingswerealsofoundtoreduceoperatingcostsbyabout5.4percentperyear.Nodecreaseinoperatingcosts,however,wereobservedforEnergyStarcertifiedbuildings(Reichardt,2013).

BarnhillandSmardon(2012)facilitatedafocusgrouparoundGIinSyracuse,NewYork,USA.Theyfoundthreemajorbarrierscurrentlylimitgreeninfrastructureimplementation.Firstisthehomeownerfinancialcost.Thecostsof,forexample,aresidentialraingardenarebornebythehomeownerwhilethestormwaterabatementbenefitsaccruetothecommunityatlarge,especiallydownstreampropertyowners–aclassicmarketfailure.ThesecondbarrierisalackofknowledgeaboutGIbenefits,maintenanceissuesincludingcosts,andtheuselocally-appropriatepractices.Thethirdbarrierisafailuretoproperlyframetheissue.FramingGIintermsofneighborhoodregenerationandsustainabilitycanleadtomoreeffectiveengagement.EngaginglocalstakeholdersindevelopingGIcanimprovesocialequity.

Page 6: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

6

BenefittransferThedemandforenvironmentalvaluationinformationhasoutpacedresearchandfundingforvaluationprojects.Consequently,manyprojectsmakeupforthelackofdatabyusingbenefittransfer.Freeman(2003,p.453)definesbenefittransferas“thepracticeofapplyingnonmarketvaluesobtainedfromprimarystudiesofresourceorenvironmentalchangesundertakenelsewheretotheevaluationofaproposedorobservedchangethatisofinteresttotheanalyst.”Thelocationpresentlyunderinvestigationiscommonlycalledthe“policysite”andthelocationfromwhichthevaluesaredrawnisthe“studysite.”

Thepolicyandstudysitesmaydifferforavarietyofreasons,suchasdifferencesinincomeorpreferencesamongthepopulationsatthesides(demandsidefactors)orvariationintheenvironmentalattributesbeingvalued(supplysidefactors).Thebenefittransferprocessadjuststhestudysitevaluestoreflectthesedifferences.Benefittransferissimplerandmoreaccurateifthepolicyandstudysitesarerelativelysimilar(Freeman,2003).

Johnstonetal.(2015)reviewedthegenerallyacceptedmethodsofbenefittransfer.Theydescribedseveraltypesofbenefittransfertechniques:unitvaluetransferandbenefitfunctiontransfer,thelatterofwhichincludesstructuralbenefittransferandmeta-analysis.Unitvaluetransfer,thoughthesimplest,hasseveraldrawbackswhichmakeitlessdesirableforpolicyapplications.Unitvaluetransferappliesasingle,unadjustedwillingness-to-pay(WTP)valuefromthestudysitetothepolicysite.Thismaybeappropriateifthestudyandpolicysitesarenearlyidentical.Inmostcases,however,unitvaluetransfersresultinunacceptablyhigherrorsandareusuallynotrecommended.

RatherthansimplytransferringtheWTPnumberfromstudytopolicysites,benefitfunctiontransferappliesthemathematicalfunction,includingallorasubsetofvariables,tothepolicysite.Applyingthefunctionallowstheresearcherstoadjustfordifferencesbetweenthesitesandreduceerrors.Theadjustmentalsoallowsawiderrangeofcontextstoserveasstudysites.Thisisimportantwherefew,orno,studysitesaresufficientlysimilartothepolicysite.

Instructuralbenefittransfer,alsoknownaspreferencecalibration,theresearcherdefinestheutilityorpreferencefunctionthatdescribesanindividual’schoicesoverarangeofmarketandnon-marketgoods.Onestudysiteistypicallyusedasthesourceofthepreferencefunction.Thevariablesusedinthepreferencefunctionthatweredevelopedatthestudysitearemeasuredatthepolicysiteandanempiricalrelationshipisestablished.Thisapproachisconsistentwiththebudget-constrainedutility-maximizationfoundationsofstandardeconomictheory.Thedrawback,however,isitscomplexityandtheexpertiseinmathematicaleconomicsrequiredtoemploythetechnique(Johnstonetal.,2015).

Meta-analysisisanalternativeformofbenefitfunctiontransfer.Meta-analysisis“thequantitativesynthesisofevidenceonaparticularoutcome,withevidencegatheredfrompriorprimarystudies”(Johnstonetal.,2015,p.26).Thequantitativesynthesisismostoftenaccomplishedusingameta-regressionmodelinwhichthedependentvariableisthatoftheprimarystudies,e.g.housingprice,fecalcoliformcount.Theindependentvariablesareobservablefactorsthatinfluencethedependentvariableatthevariousstudysites.Thesecaninclude,forexample,economic,demographic,andresourcecharacteristicsofthestudyandpolicysites.Thoughmeta-analysis,andespeciallymeta-regressionmodels,canimprovetheaccuracyofbenefittransferscomparedtounitvaluetransfers,meta-analysisisnotasrigorousoraccurateasstructuralbenefittransfer/preferencecalibration.Meta-analysesaremost

Page 7: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

7

appropriatewhenasubstantialamountofstudiesonthattopichavebeenpublished,thereisnosinglestudythatcloselymatchesthepolicysite,andthereisadesiretoestimatebenefitsunderdifferentpolicycontexts(Johnstonetal.,2015).

Johnstonetal.(2015)presentedaten-stepprocedureforconductingabenefittransfer.Firstistodefinethebenefittransfercontextsuchasthecircumstances,theenvironmentalresources,thecurrentandproposedpolicies,andtheusesforthevalueestimates.Secondistoestablishtheneedforbenefittransfer.Ifsufficientresourcesareavailable,primaryvaluationstudiesarepreferableoverbenefittransfers.Thirdistodefinethepolicy,environmentalgoods,andpopulationofthepolicysite.Fourthistodefineandquantifythepolicyoptionsandchangesintheenvironmentalgoods.Thisincludesdeterminingthebaselinelevelsandmarginalchangesintheprovisionofenvironmentalgoodsandservices.Fifthistogatherandevaluatevaluationdataandevidencethroughacomprehensivereviewofliterature,bothpeer-reviewedandso-called“grayliterature.”Theresearchersmustscreenthedocumentsforqualityandrelevancetothepolicysite.Thesixthstepistodeterminethemethodofbenefittransfer.Asdiscussedabove,benefitfunctiontransfers,suchasmeta-analysisandpreferencecalibration,aregenerallypreferredoverunitvaluetransfers.Seventhistodesignandimplementthebenefittransfer.Eightistoaggregatethevaluesoverpopulations,areasandtime.Thebenefittransferresultsinaper-unitvalue.Theper-unitvaluemustbeaggregatedacrossthepolicysite.Theninthstepistoconductasensitivityanalysisandtotestreliability.Thismayincludeconductingthetransferusingarangeofdiscountratesorchangingthefunctionalform.Cross-validationmethodscanbeusedtotesttheperformanceofmeta-regressionmodels.Thetenthandfinalstepistoreporttheresults.Thisten-stepprocesswasusedtoestimatethebenefitsandcostsofGIinGrandRapids,Michigan.

MethodsRunoffestimationTheNewYorkStateDepartmentofEnvironmentalQualitycreatedtheConstructionStormwaterToolboxtoassistownersandoperatorswithcompliancewithplanningrequirementsundertheNewYorkStatePollutantDischargeEliminationSystem(SPDES).TheToolboxincludesadesignmanualandasetofExcel-basedrunoffreductionworksheets(NYSDept.ofEnvironmentalConservation,2014).TheworksheetsarerigorousenoughforSPDEScompliance,yetflexibleenoughtobeadoptedinmanycircumstances.MuchofupstateNewYorklieswithintheGreatLakesbasinandhasaclimatesimilartothatofMichigan’sLowerPeninsula.Aftercarefulreview,theprojectteamdeemedtheNewYorkStaterunoffreductionworksheetssuitableforuseinMichigan.TherunoffreductionworksheetswereusedtoestablishbaselinerunoffvolumesandtocalculatetherunoffreducedbyimplementingparticularGIsystems.

Theproject’sunitofanalysiswasthe2010censusblock.Censusblockswerechosenbecausetheyarewell-established,publiclyavailable,andaresmallenoughforfinescaleanalysis.Individualparcelswerenotusedbecausetheprojectteamdidnotwanttogiveindividuallandownerstheideathattheywouldbecompensatedfortheestimatedmarketandnon-marketbenefitsofgreeninfrastructureontheirproperties.Thecensusblockprovidestheminimumlevelofaggregationnecessarywhileenablingfine-scaleanalysis.

TheToolbox,aswellasotherstudies(e.g.Houleetal.,2013),usethe90thpercentile24-hourraineventasthedesigncriterionforstormwatermanagement.InMichigan,the90thpercentilerangesfrom0.8

Page 8: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

8

inchesto1.0inches(KuhnsandUlasir,2015).Wechosetousetheupperbound(1.0inches)asthedesigncriterion.WeassumedthattheGIpracticeswouldpreventallstormwaterrunoffforraineventsuptoandincluding1.0inches.Tenyears(2006-2015)ofrainfalldatafromtheGeraldR.FordAirportinGrandRapidswereanalyzed(WeatherUnderground2016).Theten-yearaverageannualrainfallinGrandRapidswas40.0inchesandrangedfrom32.4(2007)to48.8(2008).Thesumofrainfalleventsuptoandincluding1.0inchesaswellasthefirstinchofeventsgreaterthan1.0inchesaveraged37.75inchesperyear.

EconomicvaluationTheinstallation,maintenance,andopportunitycostsoftheGIpracticeswillbecomparedtothebenefitsofavoidedstormwaterrunoffcosts,pollutionreduction,andaestheticenhancement.Thesecostsandbenefitswillbeapportionedovertheexpectedlifeofthesystemandanalyzedusingnetpresentvalue:

𝐵"(1 + 𝑟)"

−𝐶"

(1 + 𝑟)"

*

"+,

Wheregreeninfrastructureiscomparedto“grayinfrastructure,”thenetcostofgreeninfrastructurewascalculatedby:

𝐶"(1 + 𝑟)"

=𝐶"./00*

(1 + 𝑟)"−

𝐶"./12

(1 + 𝑟)"

Thedirectbenefitsincludereducedmaintenancefromavoidedstormwaterandreducedenvironmentalandhealthcostsrelatedtowaterpollution.Greeninfrastructurealsohasindirectbenefits.Streettrees,raingardens,andgreenroofsenhanceaneighborhood’saestheticqualityandmaybemeasuredthroughhomeprices.Streettreesalsoremoveairpollutionandreduceenergycostsbyshadingbuildings.Agreenroofmayalsoextendthelifeoftheconventionalroofunderneathandprovidesenergy-savinginsulation.

Wherepossible,thevalueestimatesweretakenfromprojectsinGrandRapidsandadjustedforinflation.Inothercases,thevaluesreportedinpeer-reviewedandgrayliteraturefromotherlocationswereused.ThesevalueswereadjustedtothepresentGrandRapidscontextusingbenefittransfermethods.

ValueofavoidedrunoffTheprojectassessedthecostsandbenefitsofstormwatermanagementthroughgrayandgreeninfrastructure.Thebenefitstransferapproachwasusedtomodifycostandbenefitvaluesfromdifferenttimesandlocations.Costsforbothtypesofsystemswerecatalogedthroughliteraturereviewandconversationswithlocalgovernmentsandserviceproviders.

Thedirectcostofstormwatermanagementwasestimatedfromgovernmentdocuments.TheCityofGrandRapidscompletedasustainabilityplanwhichincludedaStormwaterAssetManagementandCapitalImprovementPlan(CityofGrandRapids,2014).Theprojectedannualcosttoprovidetheexisting“levelofservice”forstormwatermanagement,includingbothfixedandvariablecosts,was$3.60millionin2014.Stormwaterreductionpractices,however,onlyreducevariablecosts.Fixedcosts,suchassystemrenewalorend-of-lifereplacement,inspections,andregulatorycosts,werenotincluded.Thereforeonlytheannualvariablecostsofcorrectiveandpreventativemaintenancewereusedto

Page 9: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

9

estimatethevalueofavoidedrunoff.Thecityrecognizedthattheexistinglevelofserviceisinadequate.Aftercarefulreviewofthreeadditional“levelofservice”scenarioswhichprovideincreasinglevelsofannualspendingrequirementsforbasicstormwatermanagementservices,thecityrecommendedpursuingLevelofServiceCwhichwouldincreasetheannualbudgetforstormwatermanagementto$10.38million.Thislevelofservicefocusesonmaintainingcriticalinfrastructureandhighpriorityareas.ThebudgetforinspectionsofcatchbasinsanddetentionbasinsinLevelofServiceCincludes$639,000and$6,500,respectively.Unliketheinspectiondefinitionforotherassets,inspectionofcatchanddetentionbasinsincludescleaning.Cleaningactivitieswerelistedundermaintenancefortheexistinglevelofservice.Thereforecatchbasinanddetentionbasininspectionswereincludedinthevariablecosts(Table1).Thecity’sreportused2014dollars.Afteradjustingforinflationto2015dollarsusingtheConsumerPriceIndex(CPI),thetotalannualmaintenancecostis$2,898,804.

Table1:AnnualmaintenancecostsforstormwatermanagementunderLevelofServiceC(lowerestimate).

Asset/Activity Annualmaintenancecost(2014dollars)

Gravitymains $946,000Manholes $40,000Laterals $73,000Catchbasins $677,000Culverts $43,000Openchannels $3,000Dischargepoints $67,200Detentionbasins $6,500Streetsweeping $1,020,000Total $2,875,700Totalin2015dollars $2,898,804

Thestormwatermanagementsystemprocessesrunofffromthecity’simpervioussurfaces.AfeatureextractionprocessusingLandsatimagerywithagroundsampledistanceof30mx30mfound12,671acresofimpervioussurfaceinthecity(Xianetal.,2011).Thatis44%oftheentirecityarea.Attheaverage40inchesofannualrainfall,eachacregenerates137,940ft3/yearofrunoff,or1,747,837,740ft3/yearforthewholecity.UnderLevelofServiceC,theannualmaintenancecostperunitofstormwatertreatedis$0.0017/ft3/year.

Table2showsthepresentvalueof50yearsofavoidedstormwateratadiscountrateof3.5%.

Table2:Valueofavoidedstormwater(2015$/ft3)

LevelofService Unitcostofavoidedstormwater

Presentvaluecostofavoidedstormwater(50years)

Current $0.00090/ft3/year $0.023/ft3C $0.00017/ft3/year $0.040/ft3A $0.00444/ft3/year $0.108/ft3

Page 10: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

10

StandardizingthegreeninfrastructurepracticeEachGIpracticewasstandardizedbasedonawater-qualityvolume(WQv)reductionof3,000ft3fora1.0inchraineventusingtheNYSStormwaterConstructionToolbox.ThetoolcalculatesthesizeoftheGIpracticeneededbasedonthearea’srainfallregime,totalarea,andimperviousarea.Asphaltandbuildingroofsaretypically100%impervioussurface.Raingardensareassumedtobeplacedinresidentialareas.AnalysisofLandsatimageryshowedthatresidentialareasinGrandRapidshaveanaverageof41percentimpervioussurface.Thecorrespondingareasthatproduce3,000ft3WQv(actually3,002ft3)isatotalareaof2.0acresandanimperviousareaof0.8acres.Residentialareas,onaverage,have5.8residencesperacreorjustover11for2.0acres(0.2acresperresidence).Ifeachofthe11houseshadaraingarden,eachgardenwouldneedtohaveanareaof195ft2.Thebioretention-infiltrationbasinwassizedfora0.9acreparkinglot,whichisroughlyequivalenttotheporousasphaltparkinglot,plusanadditionalareaforthebasin.Conservingnaturalareaswouldreducethetotalareathatwouldgeneraterunoff.Weassumedthattheconservedareawouldbereplacedbyanimpervioussurface.Thestreettree(treeplanter/pit)calculatorrequiresamaximumof33%impervioussurface.Thecorrespondingacreageproducing3,000ft3WQvis2.4totalacresand0.8imperviousacres.Thebasecasestreettreewasassumedtobeamedium-sizeddeciduoustree,suchasaredoak(McPhersonetal.,2006)(Table3).

Rainbarrelswerecalculatedseparatelyandwerenotstandardizedto3,000ft3.Rainbarrelsareahouseholdscalepracticeandweassumedahousewouldinstalltwo55-gallonbarrels.Asnotedabove,residentiallotshaveanaverageimperviouscoverof41percent.TheaverageresidentiallotsizeinGrandRapidsis0.17ac.Theimpervioussurfaceinaresidentiallot,mostofwhichisassumedthebetheroof,is0.07ac.Tworainbarrelswithacombinedstorageof110gallons(14.67ft3)cancapturetherunofffromatypicalresidentiallotuptoa0.055inevent.Weassumethateventslargerthanthatwillbestoreduptothemaximumcapacityandtheremainderwilloverflow.Tworainbarrelscanavoid1,625ft3ofrunoffperyear.TheresultsforrainbarrelsshouldnotbedirectlycomparedtotheotherGIpracticesbecauseofthedifferentmethodology.

Table3:Amountofgreeninfrastructurerequiredtoreduce3000ft3ofrunoffper1”rainevent.

SMP Totalarea(acres)

Imperviousarea(acres)

Amountrequiredtoreduce3,000ft3WQvper1”event

Annualrunoffavoided(allevents<1.0”plus1.0”fromlargerevents)

Porousasphalt 0.87 0.87 0.87ac 113,257Raingarden 1.96 0.81 0.04ac 113,326Greenroof 0.87 0.87 0.85ac 113,257Infiltrationbioretention 1.00 0.86 0.07ac 113,248Conservationofnaturalareas*

0.87 0.00 0.87 113,257

Streettree(treepit)** 2.40 0.79 342trees 113,257Rainbarrel*** 0.17 0.07 N/A 1,625*reducedtotalareaby0.87ac,notactualstormwatervolume**reducedimpervioussurfaceareaby0.79ac,notactualstormwatervolume***Storesraineventsupto0.05”,notcomparableinscaletoothergreeninfrastructurepractices

Page 11: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

11

Oncethesizeofthegreeninfrastructurepracticewasdetermined,thecostforeachwasestimatedusingtheLowImpactDevelopment(LID)CostToolsfromtheWaterEnvironmentResearchFoundation(WERF).TheLIDCostToolsareExcel-basedspreadsheetsthathavedefaultparametersbutcanbemodifiedforparticularsituations.ThedefaultcasewasmodifiedtofittheGrandRapidsstudyarea,includinglocalandcurrentwagesand,wherepossible,costestimatesfromlocalserviceproviders.EachGIpractices’sizewasadjustedbasedonthedesired3,000ft3WQvreductionper1.0inchevent.Thedefaultcostswereadjustedforinflationto2015from2005usingtheConsumerPriceIndexfromtheUSBureauofLaborStatistics.Maintenancecostswerescaledtotheprojectsizewhereappropriate.TheCityofGrandRapidsexpectsthatitsdetentionbasinsandraingardenstohavea50yearlifespan.Thecityplanstoreplaceporouspavementafter25years(CityofGrandRapids,2014).Weusedtheselifespanestimatesinourmodel.

Thecapital(installation)andperiodicoperationsandmaintenance(O&M)costswerecombinedintoapresentvaluecalculation.A3.5percentdiscountratewasusedforallpresentvaluecalculations.Thisrateisappropriateforenvironmentalprojectswithalifespanof30-75years(AlmansaandMartínez-Paz,2011).TheCityofGrandRapidsusesa50-yearinfrastructureplanninghorizonwhichisreplicatedinthisanalysis.

PollutionandfloodriskreductionInadditiontoreducingstormwatervolumes,GIpracticesreducepollutionenteringwaterways.Theannualpollutionloadfromaparticularsitecanbeestimatedusingthefollowingformula(Landphairetal.,2000):

𝐿𝑜𝑎𝑑 𝑙𝑏𝑠 = 0.2266 ∗ 𝐴𝑟𝑒𝑎 𝑎𝑐 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑖𝑛 ∗ 𝑅G ∗ 𝐶(𝑚𝑔

𝐿)

WhereRvistherunofftorainfallratioandCisthepollutioncoefficient.Therainfallamountwastheannualtotalforevents<1.0incheswhichtotaled27.95inches.RvwascalculatedforeachGIpracticeusingtheNYSStormwaterToolbox.Weissetal.(2007)reviewedseveralsourcesandfoundthatcontaminantloadswerefairlyconsistent.ReportedvaluesforCaveraged131+/-77mg/L(ppm)witha67%confidenceintervalfortotalsuspendedsolids(TSS)and0.55+/-0.41mg/L(ppm)witha67%confidenceintervalfortotalphosphorus.Theseaveragevalueswereusedinthecalculations.AlloftheGIpractices,exceptrainbarrels,weresizedtotreat3,000ft3WQvfora1.0inchevent.TheMinnesotaStormwaterManualreportedthepollutionreductionefficiencyforvariousGIpractices(Table4).Notethatgreenroofsdonotremovephosphorusfromstormwater(MinnesotaPollutionControlAgency,2015).

Table4:PollutionreductionfromgreeninfrastructureSMPs.

PollutionreductionefficiencySMP Totalsuspendedsolids PhosphorusPorousasphalt 74% 45%Greenroof 85% 0%Raingarden 85% 100%Bioretentioninfiltration 85% 100%

Page 12: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

12

Treepit 85% 80%

TheeconomicvalueofremovingTSSandphosphoruswasestimatedfromthetreatmentcostfromawastewatertreatmentplant.A2007reportestimatedthatTSSremovalcosts$5.70/lbandphosphorusremovalcosts$220/lb(WSB&Associates,2008).Adjustedforinflationto2015usingtheCPI,thesecostsare$5.93/lband$251.25/lb,respectively.Thesevalueswerebasedonthetreatmentplant’s30-yearlifecyclecostincludingcapitalandO&Mcosts.Multiplyingthepollutantreductionamount(lb)bytheunitcost($/lb)resultedinthevalueofstormwaterremovalforeachft3ofWQvavoidedperyear(Table5).Weassumedthatrainbarrelswouldhavethesamepollutionreductioneffectasraingardens.

Table5:Unitpriceofpollutionreduction.

GIpractice Annualpollutionreduction(lbs/ft3WQv/year)

Economicvalueofavoidedpollution($/ft3WQv/year)

Porouspavement TSS0.00818P0.00003

TSS$0.036P$0.004

Greenroof TSS0.00818P0.00000

TSS$0.041P$0.000

Raingarden TSS0.00692P0.00003

TSS$0.041P$0.009

Bioretentioninfiltration TSS0.00692P0.00003

TSS$0.041P$0.009

Treeplanter/treepit TSS0.00686P0.00003

TSS$0.041P$0.007

Rainbarrel TSS0.00692P0.00003

TSS$0.041P$0.009

Reducingthevolumeofstormwaterenteringarealakesandriversalsoreducestheriskoffloodingindownstreamlocations.In2013,theGrandRiver,whichflowsthroughdowntownGrandRapids,flooded,causinganestimated$450millionindamages.Thetotalwatervolumeoverthe18-footfloodstagefortheGrandRiverfortheentiretwo-weekfloodperiodinApril2013was3.9billionft3(USGS2016).Thiscomesoutto$0.11/ft3offloodwater.Thoughthiswasalargeflood,itwasnotrecordsetting.Afloodofthismagnitudehasa10to25-yearrecurrencetime.Thatis,agivenyearhasa4-10percentchanceofafloodofthissize.Assuminga25-yearrecurrencetimetheannualexpecteddamagewouldbe$0.11/ft3*0.04=$0.005/ft3.Reducingonecubicfootofstormwatervolumeisexpectedtoavoid$0.005indamageseachyear.Thisistheconservativeestimate.Usingtheten-yearrecurrencetime(tenpercentannualchance)wouldresultinhigherdamageestimates.

OtherbenefitsfromspecificGIpracticesGreenroofsResearchersattheUniversityofMichigandocumentedthebenefitsofgreenroofsoncampusbuildings(Clarketal.,2008).UsingtheUSEnvironmentalProtectionAgency’s(EPA)EnergyPlus2.0simulator,theyfoundthattheinsulatingpropertiesofgreenroofssaved$0.36/m2(2006dollars)or$0.04/ft2in2015dollars.Thisequatesto$0.013/ft3WQv/year.Theanalystsalsofoundthatthegreenroof’sgrowing

Page 13: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

13

plantstookuptheairpollutantNO2atarateof0.27kg/m2/year(0.06lb/ft2/year).Theeconomicbenefitsfromthepollutionreductionwereestimatedat$1,680-6,380/Mg($0.76-2.89/lb)in2006($1,982-$7,526/Mg($0.90-3.41/lb)in2015).Applyingtheseratestothe37,200ft2ofgreenroofundertheGIpracticescenarioyieldsabenefitof$0.016-0.062/ft3WQv/year.Themoreconservative,lower-boundestimateof$0.016/ft3/yearwasusedinouranalysis.

Greenroofsalsoprovideascenicamenityvaluewhentheyarevisiblefromupperfloorsoradjacentbuildings.IchiharaandCohen(2010)usedahedonicmodeltoestimatetheamenityvalueofgreenroofsinNewYorkCity.Theyfoundthat,allelsebeingequal,thepresenceofagreenroofaddedabout16percenttoaresidence’ssalesprice.Thecoefficientforthegreenroofindicatorvariablewas0.1496+/-0.0729whichyieldsalowerboundofeightpercent.Thestudy’sNewYorkCitylocationisnotacloseanalogforGrandRapidswherehousingvaluesaremuchlowerandaccesstoground-levelgreenspaceisplentiful.TheIchiharaandCohenpaperis,todate,theonlyhedonicmodelthatconsiderstheamenityvalueofgreenroofs.Sanderetal.(2010),forcomparison,foundthatatenpercentincreaseinstreettreecanopyraisedpropertyvaluesinMinnesotaby0.29-0.48percent.Thiseffectheldupto40percenttreecover.Agreenroofsubstitutesvegetatedcoverforanentirelyimpervioussurface.Assumingthattheeffectofagreenroofissimilartostreettrees,thenagreenroofsamenityvaluecouldbeintherangefora40percentincreaseintreecanopy(1.16-1.92percent).Giventhelackofsolidregionaldatafortheamenityvalueofgreenroofs,ourbestjudgmentisitliesbetweenzeroforroofslackingvisibilityandaccessto2.0percentforhighlyvisibleroofswitheasyaccess.

MostgreenroofsinGrandRapidsareonofficebuildings,arehighlyvisible,andareaccessible(Greenroofs.com,2015).Thereforeweusedthehigh-endestimateofa1.9percentpropertyvalueamenity.TheaverageaskingpriceofofficepropertyinGrandRapidsis$71.26/ft2(LoopNet,Inc.,2015)whichyieldsacapitalizedamenityvalueforgreenroofsinGrandRapidsof$1.35/ft2.Theannualizedamenityvalueofgreenroofsata3.5percentdiscountrateis$0.06/ft2/yearor$0.019/ft3WQv/yearofWQvreduced.

Greenroofsprotecttheconventionalroofsunderneaththem.Analystsreportthatgreenroofscandoublethelifetheconventionalroofandeliminatetheneedforafullroofreplacementaftertwenty-fiveyears.Sinceanewroofcostsabout$10/ft2(K.Menard,personalcommunication),thisisasubstantialbenefit.

RaingardensandinfiltrationbioretentionbasinsRaingardensalsoprovideascenicamenity.Polyakovetal.(2015)studiedtheamenityvalueofraingardensplacedatstreetintersectionsinSydney,Australia.Raingardenswerefoundtoincreasethemedianpropertyvaluebysixpercentforthosewithin50m(164ft)andfourpercentbetween50mand100m(164-328ft)fromtheraingarden.ApplyingthesixpercentratetoGrandRapidsmediansalespriceof$129,900resultsinaneffectof$7,794.Ata3.5percentdiscountrate,theannualizedvalueofaraingardenis$332or$0.032/ft3WQv/yearofrunoffreduced.Stormwaterinfiltrationbioretentionbasinsalsocan,ifcarefullydesigned,haveanamenityvalue.LeeandLi(2009)foundthatinTexas,ordinary(singleuse)detentionbasinshadnoinfluenceonresidentialhousingprices.Multi-usedetentionbasins,ontheotherhand,includerecreationamenitiesintheirdesign.Homesclosertothemulti-usebasinssoldforhigherpricesthanthosefurtheraway,allelsebeingequal.Forouranalysis,weconservativelyassumedthattheinfiltration-bioretentionpracticewassimilartotheordinary,single-usedetentionbasinandprovidesnoamenityvalue.

Page 14: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

14

StreettreesandconservedopenspaceUrbantreesprovidemanyecosystemservicesbeyondstormwatermitigation.TheMidwestCommunityTreeGuidedocumentedandquantifiedthebenefitsprovidedbyurbantrees(McPhersonetal.,2006).Theguideliststhebenefitsofstreettreesbyunit(kWhofelectricitysaved,poundsofairpollutantsavoided,etc.)aswellastheprice($/unit)ofeach.Themagnitudeofthebenefitschangesasthetreegrowsinsizeandmaturity.Forthisanalysis,weusedtheguide’sunitsandupdatedthemwithcurrentandlocallyappropriateprices.InadditiontothebenefitsdescribedbyMcPhersonetal.,wealsoincludethereducedfloodingrisk,reductionintotalsuspendedsolids,andreductioninphosphorus.Table6belowshowstheunits,prices,andsourcesforeachbenefit.TheavoidedrunoffvolumeestimatesreportedbyMcPhersonetal.werehigherthanthoseresultingfromtheNYSStormwatertoolbox.ThevolumereductionestimatedbyMcPhersonetal.wasbasedmostlyonrainfallinterception.ThevolumereductionestimatedbytheNYSStormwatertoolboxfocusedmostlyoncapturingrunoffintheperviousareaunderthetree.Aftersomedeliberation,theteamdecidedtousetheMcPhersonrunoffreductionestimatesinthebenefitcalculation.TheNYSStormwatertoolboxwasused,however,todeterminethesizeoftheGIpractice(numberoftrees)tobeconsistentwiththeotherGIpractices.

Table6:Benefitsofstreettrees(basedonMcPhersonetal.2006).

Benefit Price($/unit) SourceAvoidedrunoff $0.0002/gallon CityofGrandRapidsdata($0.0017/ft3/yearWQv)Electricitysavings $0.126/kWh 2014EIAEastNorthCentralresidential,adjusted

forinflationHeatingsavings $0.009/kBtu 2014EIAMichiganaverageresidentialnaturalgas

priceCO2sequestered $0.018/lbCO2 EPAsocialcostofcarbonfor2015,$40/tonCO2Airpollutionavoided

Various McPhersonetal.valuesadjustedforinflationusingCPI

Aestheticvalue 0.81%ofresidentialhousingprice

McPhersonetal.percentageappliedtoGrandRapidsaveragehousingsalesprice,$129,900

Floodriskreduction

$0.005/ft3WQv/year Currentanalysis

Totalsuspendedsolids

$0.041/ft3/year Currentanalysis

Phosphorus $0.007/ft3/year Currentanalysis

Conservednaturalareashavebeenshowntoincreasethepropertyvaluesoftheadjacentlots.Thorsnes(2002)usedahedonicmodeloftheGrandRapids,Michiganareaandfoundthatforestpreservesadd19-35%tothesellingpriceoflotsadjacenttothepreserve.WithaverageGrandRapidshomessellingfor$129,900in2015,the19%premiumis$24,681.Annualizedover50yearsata3.5percentdiscountrate,thevalueis$1,052perhomeperyear.Wealsoassumethatthepreservednaturalareawouldbeadjacentto12lots.Thetotalamenityvalueistherefore$12,627.Ouranalysisassumesthattheconservednaturalareawouldotherwisebeconvertedto0.9acresof100percentimpervioussurface,whichwouldgenerate3,000ft3WQvforaone-inchrainevent.Theresultingamenityvalueis$0.111/ft3WQv/year.Manyoftheservicesprovidedbymature(25+yearold)streettreeswereadaptedfortheconservednaturalareagreeninfrastructurepractice,includingthefollowing:carbondioxidestorageat$0.029/ft3/year;reducedairpollutionat$0.004*342trees=$0.013/ft3/year;avoidedstormwaterat

Page 15: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

15

$0.0017/ft3/year;floodriskreductionat$0.005/ft3/year;reducedtotalsuspendedsolidsat$0.041/ft3/year;andreducedphosphorusat$0.007/ft3/year.Thetotalannualbenefitfromconservednaturalareaswas$0.208/ft3/year.

ThebenefitsfromallGIpracticesaresummarizedinTable7andFigure1.

Table7:SummaryofbenefitsfromGIpractices.

Unitpriceofstormwatermitigationbenefits($/ft3WQv/year)

GIpractice Porousasphalt

Greenroof

Raingarden

Streettree(medium)*

Infiltrationbioretention

Conservenaturalarea

Rainbarrel

Avoidedvolume 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017

Floodriskreduction 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051

TSSpollution 0.0359 0.0412 0.0410 0.0407 0.0410 0.0407 0.0410Phosphoruspollution 0.0039 0.000 0.0086 0.0068 0.0086 0.0068 0.0086

Amenityvalue 0 0.0190 0.0323 0.0116 0 0.1115 0Energysavings 0 0.0132 0 0.0243 0 0 0Airpollutionreduction 0 0.0163 0 0.0034 0 0.0126 0

CO2storage 0 0 0 0.0066

0 0.0292 0

Totalannualbenefits 0.0466 0.0965 0.0887 0.10-0.25 0.0564 0.2077 0.0564

*Benefitsduringfirstfiveyearsandincreasesthereafter.

Figure1:BenefitsofvariousGIpractices.*Streettreebenefitsforthefirstfiveyears,benefitsincreasewithtreesize.

$- $0.0500 $0.1000 $0.1500 $0.2000 $0.2500

Porousasphalt

Raingarden

Infiltrationbioretention

Rainbarrels

$/ft3/year

Benefitsofgreeninfrastructurepractices($/ft3/year)

Avoidedvolume Floodriskreduction TSSpollution

Phosphoruspollution Amenityvalue Energysavings

Airpollutionreduction CO2storage

Page 16: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

16

GIcostsGreeninfrastructurecostswereestimatedusingtheWERFLIDspreadsheettoolsasastartingpointandadjustedforinflation,technologicaladvancements,andlocation-specificdata.

PorousasphaltCenturyWestEngineeringcompared,side-by-side,thecapitalcostsofconventionalandporousasphaltfora3,200ft2parkinglot.Theconventionalasphaltlotcost$23,680toconstruct($7.40/ft2)whiletheporousasphaltcost$25,960($8.11/ft2).ThecomparisonwasconductedinPortland,Oregonin2013.AccordingtotheBureauofLaborStatistics,Portland’smeanconstructionwageis$25.64/hourandGrandRapids’is$21.04.Thisratio(0.8)wasusedtoadjustthePortlandasphaltconstructioncoststoGrandRapidsandthecostswereadjustedforinflationto2015usingtheCPI.Theadjustedcapitalcostswere$6.20/ft2forconventionalasphaltand$6.79/ft2forporousasphalt.

ThefigureswereenteredintotheWERFLIDcostmodelwhichincludes10%forengineeringandplanningand20%forcontingency.Thetotalcapitalcosts,includingconstructionanddevelopmentcosts,were$8.19/ft2($2.74/ft3/yearWQv)forconventionalasphaltand$8.96/ft2($3.00/ft3/yearWQv)forporousasphalt.

Bothconventionalandporousasphalthavemaintenancecosts.Itwasassumedthatporousasphaltwouldhaveallthemaintenanceofconventionalasphaltplusitsownspecializedmaintenance.TheWhitestoneFacilitiesMaintenanceandRepairReferenceandtheOperationsReferencelistrecommendedmaintenancehoursforspecifictasksrelatedtofacilitiesmanagementincludingparkinglots(Abateetal.,2009).Thescheduleforeachtaskislistedinthetablebelow.TheBureauofLaborStatisticsreportsthattheaverageconstructionwageinGrandRapidswas$19.86in2015.Thiswagewasusedtocalculatethecostforeachtask(Table7).

Table8:Operationsandmaintenancecostsforconventionalasphalt.

O&Mtask Frequency Hours/ft2 Materialscost$/ft2

Totalcost$/ft2

Totalcost$/ft3/yearWQv

Patchandseal 5years 0.0006 0.07 0.09 0.03Resurface 15years 0.0127 0.46 0.76 0.26Repair 25years 0.0073 0.80 1.04 0.35Snowplowandsweep(weekly)

Annual - 0.03 0.03 0.01

Houleetal.(2013)estimatedthemaintenancecostsforporousasphaltinNewHampshire.NewHampshire’scoldclimateissimilartothatofGrandRapidsandthusisanappropriatecomparison.Houleetal.estimatedthatthepersonnelcostswouldbe$939/ha/year($380/acre/year)andsubcontractorcostswouldbe$1730/ha/year($700/acre/year).ThesevalueswereadjustedtofittheGrandRapidsareabyscalingthembytheaverageconstructionandextractionoccupationwagesfromthetwocitiesasreportedintheUSBureauofLaborStatistics’OccupationalEmploymentStatistics.Thefigureswerealsoadjustedforinflationto2015usingtheCPI.Theadditionalmaintenancecostsforporouspavementwereestimatedat$0.02/ft2($0.008/ft3WQv).Thepresentvaluecostoverfiftyyearscomesoutto$3.54/ft3WQvforconventionalasphaltand$3.99/ft3WQvforporousasphalt(Table9).

Page 17: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

17

GreenandconventionalroofsAMichigan-basedroofingcontractorestimatedthecostofaconventionalcommercialroof(2,000-10,000ft2)witha25yearlifespanatroughly$10/ft2(K.Menard,BloomRoofing,personalcommunication).Mr.Menardalsoestimatedmaintenancecostsatabout$0.05/ft2/year.TheWhitestoneFacilitiesMaintenanceandRepairReferencelistedaspecificscheduleforroofmaintenanceoveritslifetime.Annualmaintenancetaskswere$0.06/ft2($0.07in2015dollars)withmoresubstantialperiodictasksatacostof$0.11/ft2everyfiveyearsand$3.15/ft2inyear15(Abateetal.,2009).Theentireroofwouldbereplacedattheinitialcostinyear25.Forouranalysis,wesubstitutedMenard’slocalestimateforroutinemaintenance($0.05/ft2)intheWhitestonereferencemanual,keepingtheperiodicmaintenancethesame.StandardizedbyWQv,aconventionalroofcosts$3.31/ft3WQvinthefirstyearwithmaintenancecosts$0.02/ft3WQv/year.

Agreenroofrequirestheinstallationofaconventionalroofunderneathit.Thereforethecostofagreenroofisadditionaltotheconventionalroof.Localrefinementsinthegreenroofestimateswereprovidedbyalocalgreenroofcompany(J.Aleck,LiveRoof,personalcommunication).IntheGrandRapidsarea,adeliveredgreenroofsystemscosts$9-20/ft2plusinstallationcostsofabout$3/ft2.Forthisproject,weusedanestimatedinstalledcostof$15/ft2.Greenroofsrequiresomemaintenancewhichvariesbythelocalenvironment,soilsystem,andtypeofplantsused.Astandardgreenroofwithroutinemaintenanceperformedbyin-housestaffcostsabout$0.13/ft2/yearandaboutdoublethatifthemaintenanceisoutsourcedtothegreenroofinstaller.Ouranalysisassumedthatthemaintenancewouldbedonein-house.Agreenroofmayextendthelifeoftheconventionalroofunderneathit(Clarkeetal.2008).Weassumedthatthepresenceofthegreenroofwouldeliminatetheneedtoreplacetheconventionalroofinyear25.StandardizedbyWQv,agreenroofhasaninstallationcost,includingthecostofaconventionalroofof$8.24/ft3andamaintenancecostof$0.04/ft3/year.Thepresentvaluecostfortheconventionalroofwasestimatedat$5.77/ft3WQvand$9.23/ft3WQvforthegreenroof(Table9).

RaingardenThe2,145ft2ofraingardensneededtomitigate3,000ft3ofstormwaterwasassumedtobespreadover11residentialhomes(195ft2perraingarden).TheWashingtonStateDepartmentofEcologyestimatedtheinstallationandmaintenancecostsofraingardensunderthecategoryofbioretentionbasin(HerreraEnvironmentalConsultants,2012).Themeanofthereportedlowandaveragecostswere$17.95/ft2and$0.73/ft2/yearforcapitalandmaintenancecosts,respectively.TheconstructionwagedifferentialbetweenWashingtonandMichiganwasusedtoadjustforlocationandthecostswereadjustedforinflationusingtheCPI.TheGrandRapidscostsfor2015were$14.00/ft2forcapitaland$0.57/ft2/yearformaintenance.TheWERFLIDcosttoolincludesothercosts,suchaslandscapedesign,first-yearestablishment,andperiodicmaintenancecosts.Forthe2,145ft2ofraingardenGIpractice,thetotalcapitalcostis$32,788plusregularmaintenancecostsof$1,223/year.Periodicmaintenancetasksincludereplacingmulcheverythreeyears($4,605)andtillingthesoileveryfiveyears($3,105).Itwasassumedthattheraingardenswouldbeinstalledprofessionally.Opportunitycostsoflandwereincludedasdescribedabove.Capitalandmaintenancecostscouldbesubstantiallylowerifhomeownersorvolunteersdidtheworkthemselves.Standardizedonaperft3WQvbasis,thetotalfirst-yearcostis$0.30/ft3WQv/yearwithatotalpresentvaluecostof$1.03/ft3WQv(Table9).

Page 18: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

18

InfiltrationbioretentionThecostofbioretentioninfiltrationbasinswasbasedonthecostestimatesfromthePugetSoundgreeninfrastructurecostdatabase(HerreraEnvironmentalConsultants,2012).Theaveragepublishedestimate,from2014,was$31.61/ft2and$1.27/ft2inconstructionandmaintenancecosts,respectively.TheaverageconstructionwageasreportedbytheBLSEmploymentSurveywasusedtoadjustthecostsfromtheSeattleareatoGrandRapids.ConstructionwagesinGrandRapidsareabout75.4percentofthoseinSeattle.TheCPIwasusedtoadjustthecoststo2015.Thecostforbioretentionconstruction,adjustedforlocationandtime,was$24.02/ft2andtheadjustedmaintenancecostwas$0.97/ft2.Thebioretentioninfiltrationbasinwassizedat3,049ft2.Thetotalpresentvaluecostforabioretention-infiltrationbasinwas$1.34/ft3WQvoverfiftyyears(Table9).

ConservationofnaturalareasConservingnaturalareascomeswithahighopportunitycost–thelandwillnevercontainincome-producingstructures.ThisopportunitycostofopenspacewasestimatedusingThorsnes'(2002)hedonicanalysisofopenspacepreservationintheGrandRapids,Michiganarea.Themodelincludedavariableforlotsize.ThorsnesanalyzedthreedevelopmentsaroundGrandRapids.WechosetobaseourcalculationsonthemodelforthedevelopmentclosesttothecityinadjacentPlainfieldTownship.Thehedonicmodelyieldedanelasticityof0.0031forlotsize;thatis,aonepercentchangeinlotsize(ft2)resultsina0.3percentchangeinhousingsalesprice.Theaverageresidentialsalespricein2015was$129,900andtheaveragelotsizeforthenortheasternportionofGrandRapidswas9,148ft2.Thevalueofanadditionalsquarefootoflotsize,therefore,was$4.40/ft2.Theannualizedvalueata3.5percentdiscountratewas$0.24/ft2.Thereforeconserving0.9acresofnaturalareawouldhaveanopportunitycostof$0.08/ft3WQv/yearandapresentvaluecostoverfiftyyearsof$1.94/ft3WQv(Table9).

StreettreesThecostsofstreettrees,plantedinstormwater-retainingtreepits,wastakendirectlyfromtheMidwestCommunityTreeGuidewhichliststhecostsforplantingandmaintainingatreefor40yearsinfiveyearincrements(McPhersonetal.,2006).Thecostswereadjustedforinflationto2015dollars.Theguidepresentssmall,medium,andlargetreesizeoptions;wechosemedium,suchasredoak,whichiscommoninthearea.Thecostofplantingatreewas$200($244in2015)or$0.74/ft3WQv.Totalmaintenancecosts,whichincludepruning,removalanddisposal,treatingpestsanddisease,infrastructurerepair,irrigation,cleanup,liabilityandlegalcosts,andadministrativecosts,were$55.21-33.00peryear($18.57-40.26peryearin2015dollars).StandardizedtoWQv,themaintenancecostsrangefrom$0.06/ft3to$0.12/ft3.ThoughtheWERFLIDcosttoolincludesaconcretetreevaultinthedefaultsettingforstreettrees,theForestServiceanalysisdidnotincludeatreevault.Treevaults,whichmaycostmorethan$1,000,werenotincludedinouranalysis.Thetotalpresentvaluecostofthestreettreesoverfiftyyearswas$2.92/ft3WQv(Table9).

RainbarrelsRainbarrelsarecommerciallyavailableathardwarestores.Anationalchainwassellingbasic-style55-gallonrainbarrelsfor$90perbarrel(TheHomeDepot,2015).Therainbarrelswereassumedtobereplacedatthesamecosteverytenyears.Thereisnooperationandmaintenancecostforrainbarrels.Thetotalpresentvaluecostfortworainbarrelswas$0.11/ft3WQv(Table9).

Page 19: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

19

OpportunitycostoflandGreenroofsandporousasphaltparkinglotsareco-locatedwithexistinginfrastructure.Raingardensandstreettrees,however,replaceothervaluableresourcessuchaslawnspaceorsidewalks.Theopportunitycostneedstobeaccountedfor.TheopportunitycostwascalculatedusingthevalueofasquarefootofresidentiallotsizeintheGrandRapidsmetropolitanarea.Theopportunitycostoflandforraingardens,bioretentionponds,andstreettreeswascalculatedusingthesamemethodasthatforconservationofnaturalareas.Forthe2,145ft2ofraingardentheopportunitycostequatesto$0.0036/ft3/yearofWQv.Thissameopportunitycostwasappliedtothe342streettreesandthebioretention-infiltrationsystems.Rainbarrelshavenoopportunitycostforland.

Table9:Costforgreeninfrastructurepractices.

Infrastructure/GItype GIpracticesize(for3,000ft3WQvreductionperone-inchevent)

PVcost PVcost/ft3WQv

PVcost/unitofGIpractice

Conventionalasphalt 37,897ft2 $400,395 $3.54 $10.57/ft2Porousasphalt 37,897ft2 $451,397 $3.99 $11.91/ft2Conventionalroof 37,500ft2 $653,062 $5.77 $17.41/ft2Greenroof 37,200ft2 $1,045,565 $9.23 $28.11/ft2Raingarden 2,145ft2 $116,816 $1.03 $54.46/ft2Infiltrationbioretention 3,049ft2 $151,447 $1.34 $49.67/ft2Conservenaturalareas 37,897ft2 $220,017 $1.94 $5.81/ft2Streettree(medium) 342trees $359,665 $3.18 $1,051.65/treeRainbarrels 2-notstandardizedto3000ft3 $507.66 $0.31 $253.85/barrel

ResultsTheNPVanalysisshowsthatfiveofthesevengreeninfrastructurepracticeshavepositivenetpresentvaluesunderthebasecaseassumptions(Table10,Figure2).Conservingnaturalareashadthehighestnetbenefits($3.10/ft3)followedbystreettrees($1.48/ft3)andraingardens($1.12/ft3)and.Porousasphaltalsohadapositivenetpresentvalue($0.68/ft3)asdidinfiltrationbioretention($0.03/ft3).RainbarrelshadapositiveNPV($1.06/ft3)butthesewerenotanalyzedonthesamescaleastheotherpracticesandshouldnotbedirectlycompared.Greenroofs,however,hadanegativenetpresentvalueof$-1.12underthebasecaseassumptions.Greenroofsprovidedthehighestbenefitsbutalsohadthehighestcosts.

Porouspavementreplacestheconventionalpavement“grayinfrastructure.”Thegreenroofiscomparedtotheconventionalroofitwouldreplace.Inallothercases,thegreeninfrastructureisadditionalto,anddoesnotreplace,grayinfrastructure.ThebenefitsofgreeninfrastructureinthisstudycomeprimarilyfromavoidedstormwatervolumeswhichareassociatedwithreducedO&Mcosts,flooding,andpollutionaswellas,insomecases,enhancedscenicamenities.Newdevelopmentsinwhichgreeninfrastructurepracticesareimplementedexplicitlytomanagestormwateron-sitemayreducethecapitalcostsofgrayinfrastructure.HoweverintheCityofGrandRapids,asinmosturbanareas,theexistinggrayinfrastructurewillnotberemovedorsignificantlyreduced.

Page 20: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

20

Table10:NetpresentvalueforGIpractices.

Infrastructure/GItype

GIsize(for3,000ft3WQvper1”event)

PVbenefits($/ft3WQv)

PVcostGI($/ft3WQv)

PVcostofgray($/ft3WQv)

NetPresentValue($/ft3WQv)

Porousasphalt 37,897ft2 $1.13 $3.99 $3.54 $0.68Greenroof 37,200ft2 $2.34 $9.23 $5.77 $-1.12Raingarden 2,145ft2 $2.15 $1.03 - $1.12Bioretentioninfiltration

3,049ft2 $1.37 $1.34 - $0.03

Conservenaturalarea

37,897ft2 $5.04 $1.94 $3.10

Streettree(treepit)

342trees $4.66 $3.18 - $1.48

Rainbarrel 2barrels* $1.37 $0.31 $1.06*Notstandardizedto3,000ft3

Figure2:Benefits,costs,andNPVsofGIpractices.

DiscussionTheGIpracticesshowedahighdegreeofvariabilityamongtheirnetpresentvalues.ConservationofnaturalareasowesitshighNPVprimarilytotheamenityvalueitbringstoaneighborhood.Thescenicamenityvalueaccountsformorethanhalfofthetotalannualbenefit($0.11/ft3outof$0.21/ft3).Thecostofconservingnaturalareascomesfromtheopportunitycostofdevelopment.Weassumedthese

$(2.00)$- $2.00

$4.00

$6.00

$8.00

$10.00

NPV

$/ft3WQv

Benefitsandcostsofgreeninfrastructurepractices

TotalPVbenefits(includingavoidedgrayinfrastructure)

PVcostofgreeninfrastructure

NetPresentValue

Page 21: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

21

areaswouldbekeptinarelativelynaturalstatewithoutmaintenancecosts.Whiletherecouldbesomeadditionalcostsassociatedwiththis,suchasdeerandotherwildlifeeatingresidentialgardenplants,theseweredifficulttoquantifyandwerenotincludedintheanalysis.Thepremiumpaidonlotsadjacenttotheconservednaturalarea,especiallywhencombinedwiththesuiteofotherecosystemservices,outweighstheopportunitycost.Thissuggeststhatlow-impactdevelopmentpatternsthatconcentratedevelopmentinoneareawhileleavingnaturalareasintactcanbeahighlycost-effectivepractice.Itischeapertoavoidgeneratingstormwaterrunoffratherthantreatingitlateron.Thisrequires,however,considerableplanningandlong-termcommitment.NaturalareasareoftenscarceincitieslikeGrandRapidssothispracticemayhavelimitedpotentialoutsideofgreenfielddevelopmentsites.

Streettreesweresecondintermsofnetpresentvalueat$1.48/ft3WQv.Streettrees,whenplantedinstormwaterretainingtreepits,providesubstantialbenefitsovertheirlifetimes.Trees,however,taketimetomatureandthefullbenefitofstreettreestakesdecadestoberealized.Since2006,costsforelectricityandheatinghaveincreasedfasterthanthegeneralrateofinflation.UpdatingtheMcPhersonstudywithcurrentcosts,aswellaswithadditionalwaterpollutionbenefits,showsthatstreettreesareevenmorevaluablethanoncethought.Thepresentvaluecostsarerelativelylowcomparedtoporousasphaltandgreenroofs.Maturetreesprovideahighlevelofbenefitbutittakesdecadesforthetreestogrow.Evenwithareasonablediscountrate,thebenefitsofstreettreesstillexceedthecosts.Thisallsuggeststhatstreettreeplantersarecosteffectiveunderawiderangeofassumptions.

BecauseofthelowcapitalandO&Mcosts(PVcost=$2.15/ft3WQv),raingardensareanattractiveGIpracticesforhomeownersandsmallcommercialpropertyowners.Thesehadthethird-highestNPVofthegreeninfrastructurepracticesevaluated.Ouranalysisassumedthattheraingardenswouldbeprofessionallyinstalled.Thenetbenefitscouldbeevenhigherifthepropertyownersinstalltheraingardenthemselvesorwithvolunteerhelp.Raingardensarealsohighlyscalableandcanbeusedonlargeorsmallcitylots.

Inouranalysis,thepresentvaluecostofporousasphaltisabouttenpercenthigherthanthatofconventionalasphalt.Porousasphalthaspositivenetbenefitof$0.68/ft3WQv.StudiesfromtheUniversityofNewHampshire’sstormwatercentershowedthatporousasphaltcanbeacost-effectivesolutionevenincoldclimatessimilartothatofGrandRapids(Houleetal.,2013).Thoughporousasphaltiseffectiveatreducingstormwatervolumesandtreatingwaterpollution,itdoesnotprovideanyamenitybenefitsliketheothergreeninfrastructurepracticesconsideredhere.Parkinglotsareubiquitousand,accordingtoourresults,managingstormwaterfromparkinglotsusingporousasphaltresultsingreateroverallnetbenefitsthanusingbioretentioninfiltrationsystems.

Weassumedthattheentireimperviousareawouldbepavedwithporousasphalt.Thatmaynotbenecessary,however,asstrategicallyplacedareasofporousasphaltcaneffectivelytreatimperviousareasthatdraintoit.Thiswouldreducetheneededareaofporousasphaltandthusreducetheprojectcost.TheCityofGrandRapidsisalreadyexperimentingwithstripsofporousasphaltintheparkinglanesofsomecitystreets.

Thebioretention-infiltrationbasinpracticehadabarelypositivenetpresentvalue($0.03/ft3WQv).Bioretention-infiltrationbasinsactaslargeraingardens.Unlikeraingardens,thebasinsareusuallynotplantedwithwildflowersandarenotviewedasscenicamenities(LeeandLi,2009).Incaseswheredetentionpondsweredesignedasmulti-usecommunityresources,includingrecreationfacilities,LeeandLididfindanamenityvalue.Buildingsuchmulti-usestructuresrequiresadditionalcoststoachieve

Page 22: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

22

thosebenefitsandthosearenotdirectlytiedtothefunctioningofthebasinitself.Thenetbenefitsoftheinfiltrationbioretentionpracticecouldbeimprovedifcost-effectivescenicandrecreationalamenitiesareincludedinthedesign.LeeandLifoundthat,allelsebeingequal,decreasingthedistancetothemulti-usedetentionbasinincreasedhomesalepricesatarateofabout$16/foot.Thecostofbuildingandmaintainingabioretention-infiltrationbasinwasalsohigherthanthatofaraingardenbecauseofthecommunity-levelscaleofmostprojects.

Agreenroofhasthehighestpresentvaluecost($9.23/ft3WQv)ofallthepracticessurveyedandapremiumof$4.83/ft3WQvoverastandardroof.Howeveragreenroofalsohassubstantialpresentvaluebenefits($2.34/ft3WQv)whichclimbevenhigherwhentheavoidedcostofroofreplacementisaccountedfor($8.11).Thenetbenefits,however,arenegative($-1.12/ft3WQv)usingthemid-rangeinstallationcostof$15/ft2.Thegreenroof’sPVcost(includingtheconventionalroofbelow)is60percenthigherthanaconventionalroofalone.Thisisconsiderablyhigherthanthegreenroofcapitalcostpremium(39percent)foundbyClarketal.(2008)butconsistentwithotherestimates(CarterandKeeler,2008,Sprouletal.,2014).Thegreenroofinstallerprovidedarangeofcapitalcostsfrom$9/ft2to$20/ft2.Acapitalcostof$11.50/ft2isthebreak-evenpoint.Belowthiscost,thegreenroof’snetpresentvalue,allelsebeingequal,wouldbecomepositive.Notethat$11.50/ft2isstillwithinthequotedcapitalcostrange.Undercertaincircumstancesthatenablealowcostinstallation,thegreenroofcouldbecost-effective.Alternatively,apositiveNPV($0.25/ft3WQv)canbeachievediftheamenityvalueisequaltoorgreaterthansevenpercentofthepropertyprice.ThislevelwouldbesimilartothelowerboundofIchiharaandCohen’sanalysisofgreenroofsinNewYorkCity.Manysmalltomid-sizeMidwesterncitieshaveadequateaccesstoground-levelpublicgreenspacecomparedtohighlyurbanNewYorkCity.TheCityofGrandRapidshaseighteenbuildingswithgreenroofs(Greenroofs.com,2015).Buildingownersevidentlyarewillingtopayforgreenroofs,sotheiramenityvaluesmaybegreaterthanthe1.9percentofsalespricehigherthanweestimatedhere.

ManyofthegreenroofsinGrandRapidsareinstalledtoachieveLEEDcertification(J.Aleck,LiveRoof,personalcommunication).StudieshaveshownthatofficespaceinLEEDcertifiedbuildingsrentsatapremiumof4-7percentascomparedtosimilarbuildingswithoutsuchcertification(FuerstandMcAllister,2011;Reichardt,2013).OfficespaceinGrandRapidsrentsforonaverage$13.25/ft2/year.TherentpremiumforaLEEDcertifiedbuilding,therefore,wouldbeabout$0.53-0.93/ft2/year.Ifweassumethatthecommercialbuildingis37,200ft2(LoopNet,Inc.,2015),whichistheareaofthegreenroofinourscenario,andonestory,theLEEDcertificationpremiumwouldbe$19,716-34,596/year.Thispremiumcouldoffsetthecostofsomeofthemoreexpensivegreeninfrastructurepractices,suchasgreenroofs.Agreenroofcancontributeupto5to23pointstowardthe40pointsneededforbasicLEEDcertification.AssumingallLEEDpointsarevaluedequally,agreenroofthatcontributed8.5-15pointstowardcertification(21-38percent)wouldhaveaLEEDamenityvalueofabout$0.11-$0.20/ft2or$0.04-$0.07/ft3WQv.AmodestLEEDamenityvalueof$0.15/ft2($0.05/ft3WQv)wouldbeenoughtoflipthegreenrooftoapositiveNPV($0.16/ft3WQv).ThisLEEDamenityvalueofgreeninfrastructurewasnotincludedintheanalysisbecausenotallgreeninfrastructurepracticesareimplementedtoachieveLEED,EnergyStar,orothersustainabilityratings.

Thisbenefit-costanalysiscomprehensivelydocumentedthevaluesassociatedwithGIpractices.Somevalues,however,aremorecertainthanothers.Theamenityvaluesforraingardensandgreenroofsinparticularareunderstudied.Ourliteraturereviewfoundonestudyofraingardenamenityvalues(Polyakovetal.,2015)andoneforgreenroofs(IchiharaandCohen,2010).Raingardenshavegrownin

Page 23: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

23

popularitysoitshouldbepossibletoseewhethertheirpresenceaffectshousingvalues.Greenroofsarestillrelativelyrarebutbecomingmorecommon.GrandRapidsitselfishometoaboutonepercentofallknowngreenroofs(Greenroofs.com,2015).Greenroofsareamajorinvestmentforacommercialbuildingsowemaynotexpectbuildingownerstosellthemsoon.Intime,however,commercialbuildingswithgreenroofsshouldcomeonthemarketandtheiramenityvaluecouldbeassessed.

Rainbarrelsdonotfunctionatthesamescaleastheothergreeninfrastructurepracticesassessedhere.Forindividualhouseholds,however,raingardensareacosteffectivechoiceformanagingstormwater.Rainbarrelsarealow-costoptionwithapositivenetpresentvalue($1.06/ft3WQv).Thewaterfromrainbarrelsisusuallyusedtoirrigateflowerbeds.Thisanalysisdidnotincludetheeconomicvalueofthewaterusedforthispurposewhichwouldraisethenetpresentvaluefurther.Tworainbarrelscaptureasmallfractionofproperty’stotalrunoff.Rainbarrelscanbeusedtocomplementother,morecomprehensivegreeninfrastructurepractices.

ValidationTheestimatesusedinthisbenefit-costanalysiswerevalidatedagainstanactualgreeninfrastructureprojectimplementedintheCityofGrandRapids.GrandRapidsbuiltthePlainfieldIslandsbioretentionstructuresin2015.Itisasystemofsevenbioretention“islands”alongalargeurbanroad.Thoughitisreferredtoasabioretentionstructure,theislandsareplantedwithtreesandflowersthataddasubstantialscenicamenity.Inthisuniquecase,itseemsappropriatetousethecostsfortheinfiltrationbioretentionpractice,reflectingthehighly-engineeredstructure,andthebenefitsfortheraingarden,whichincludethescenicamenity.Thetotaldrainageareais2.2acresandthebioretentionareais0.1acres.BasedontheNYSStormwaterToolbox,a2.2acareawouldgenerate286,398ft3WQvperyearinrainfalleventsuptooneinchplusthefirstinchoflargerevents.Weestimatedthetotalpresentvaluecostofbioretention-infiltrationpracticesat$1.34/ft3WQv.Thereforeweestimatedthecapitalcostat$185,013($31/ft2)andthetotalpresentvaluecostofthePlainfieldIslandsbioretentionsystemat$518,380($87/ft2).Theactualconstructioncost,notincludingO&Mcosts,was$328,000or$55.12./ft2.Ourcapitalcostestimateislowerthantheactualcost.ThePlainfieldIslandsstructurewassignificantlylargerandmorecomplicatedthanourbasecasescenarioofasimpleinfiltrationbioretentionbasin.Whileimperfect,thisvalidationexercisesuggeststhatourcostestimatesarereasonable.

PolicyThisbenefit-costanalysisofgreeninfrastructurepracticeshaspolicyimplicationsforGrandRapidsandothersmalltomid-sizeMidwesterncities.First,greeninfrastructurepracticesprovideasuiteofbenefitsincludingstormwatervolumereduction,airandwaterpollutionreduction,andscenicamenities.Thetraditionalgrayinfrastructureprovidesafarmorelimitedsuiteofbenefits,oftenmanagingjustforstormwatervolumes.Thereforeinvestmentsingreeninfrastructurepracticesprovidefarmorevalueforeachdollarinvested.Second,thenetbenefitsfromgreeninfrastructurepractices,thoughvariable,aremostlypositive.Third,thebenefitsarelargelyexternaltothepropertyowners.Thatis,thecostsofgreeninfrastructurepracticesarebornebythelandownerbutthebenefitsaccruetothepublic.Thisresultsinamarketfailure–fewergreeninfrastructurepracticeswillbeimplementedthanaresociallyoptimal.Thereisastrongargumentforpublicpolicytoprovideincentives–financial,knowledge,orotherwise–formoreprivateinvestmentingreeninfrastructurepractices.

Astormwaterutilityfeemaybethemosteconomicallyefficientpolicytoincentivegreeninfrastructurepractices.ForexampletheCityofAnnArbor,Michigan,USA,implementsastormwaterutilityfee(City

Page 24: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

24

ofAnnArbor,2015).Theadvantageofastormwaterutilityisthatitputsapriceonrunofffromimpervioussurfaces,thusinternalizingtheexternality.Landownershavetheflexibilitytoeitherpaythefee,orreducetheirrunoffbyinvestinginthemostcost-effectivegreeninfrastructurepractices.Pricingstormwaterrunoffalsofostersinnovationbyrewardingentrepreneurswhocaninventnext-generationgreeninfrastructurepractices.

Policiescanalsoovercomeknowledgeandinstitutionalbarriers.BarnhillandSmardon(2012)identifiedthreemajorbarriersthatlimitinvestmentingreeninfrastructure:the“publicgood”marketfailure;alackofknowledgeaboutthetruecostsandbenefits;andchallengesinframingtheissue.Themarketfailurecouldbeaddressedbyastormwaterutility.Acomprehensiveoutreachandeducationprogramcouldprovidemoreaccurate,relevant,andtimelyinformationtoresidentsandlandownersaboutgreeninfrastructure.BarnhillandSmardon’sworksuggesttheoutreachwillbemoreeffectiveifitisframedintermsofneighborhoodregeneration,sustainability,andsocialequity.Thisbenefit-costanalysiswasusedtocreateapubliclyavailable,webandmobile-basedGIcalculator,andtoinformoutreachandeducationcampaignsintheCitiesofGrandRapidsandMuskegon,Michigan.Theresearchteamiscollaboratingwithregionalpartnersandlocalgovernmentunitstoencouragelandownerstoadoptgreeninfrastructurepractices.

ConclusionsThebenefit-costanalysisforthevariousgreeninfrastructureGIpracticeshowsthatporouspavement,raingardens,infiltrationbioretention,conservingnaturalareas,andstreettreesarecost-effectiveoptions.Thelife-cyclecostsofgreenroofsontheirownexceedtheirbenefitsbuttheycanbecost-effectiveaspartofaLEEDcertifiedbuilding.NooneGIpracticeisappropriateforallsituations.RatherthechoiceofGIpracticewillbedrivenbythesiteandbudget.PorousasphaltisanattractiveGIpracticegiventhatparkinglotsarenecessaryandtheadditionalcapitalandO&Mcostsoverconventionalasphaltaremodest.Raingardensarelow-costandattractiveoptionsforsmallsiteslikehomesandstreetcorners.Infiltrationbioretentionbasinscanbeeffectivefortreatinglargerareasofimpervioussurface.Ifscenicandrecreationalamenitiesareincorporatedintothedesigntheymaybeevenmorecost-effective.Conservingnaturalareasrequiressubstantialup-frontplanningandawillingnesstoforgoimmediateincome.Overthefifty-yearprojectlifecycle,thebenefitsoftheconservedareasmorethanmakeupfortheopportunitycostofdevelopment.Streettreestaketimetofullyprovidethesuiteofstormwatermitigationandotherecosystemservices,buttheirbenefitsarestillgreaterthanthelifetimecosts.Rainbarrelsareacost-effective,small-scaleoptionforresidences.

Withthearrayofoptionsavailabletomanagestormwateronsite,municipalitieslikeGrandRapidsarewell-positionedtoadopttheGIpracticesthataremostappropriate.

AcknowledgementsTheRainwaterRewardsprojectwasfundedbytheUnitedStateForestServicewithfundsfromtheGreatLakesRestorationInitiative.Theauthorswouldliketothankthemembersoftheprojectteamwhoparticipatedinthisprojectfortheirexpertise,time,andresources.TheyalsothankthecommunitypartnersfromtheCityofGrandRapidsandtheWestMichiganShorelineRegionalDevelopmentCommissionwhoprovideddataandreal-worldapplicationstobuildandtestthecalculator.

Page 25: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

25

LiteratureCitedAbate,D.,Towers,M.,Dotz,R.,Romani,L.,2009.WhitestoneFacilityMaintenanceandRepairCost

Reference.

Almansa,C.,Martínez-Paz,J.M.,2011.Whatweightshouldbeassignedtofutureenvironmentalimpacts?Aprobabilisticcostbenefitanalysisusingrecentadvancesondiscounting.Sci.TotalEnviron.409,1305–1314.doi:10.1016/j.scitotenv.2010.12.004

Barnhill,K.,Smardon,R.,2012.GainingGround:GreenInfrastructureAttitudesandPerceptionsfromStakeholdersinSyracuse,NewYork.Environ.Pract.14,6–16.doi:http://dx.doi.org.ezproxy.gvsu.edu/10.1017/S1466U611000470

Beauchamp,P.,Adamowski,J.,2012.DifferentMethodstoAssessGreenInfrastructureCostsandBenefitsinHousingDevelopmentProjects.J.Sustain.Dev.5,p2.doi:10.5539/jsd.v5n4p2

Bianchini,F.,Hewage,K.,2012.Probabilisticsocialcost-benefitanalysisforgreenroofs:Alifecycleapproach.Build.Environ.58,152–162.doi:10.1016/j.buildenv.2012.07.005

Carter,T.,Keeler,A.,2008.Life-cyclecost–benefitanalysisofextensivevegetatedroofsystems.J.Environ.Manage.87,350–363.doi:10.1016/j.jenvman.2007.01.024

CenterforNeighborhoodTechnology,2014.TheEconomicBenefitsofGreenInfrastructure:ACaseStudyofLancaster,PA.

CenterforNeighborhoodTechnology,2007.GreenValuesStormwaterToolbox[WWWDocument].Cent.NeighborhoodTechnol.URLhttp://www.cnt.org/tools/green-values-stormwater-toolbox(accessed7.31.15).

Chen,F.-Y.,Peng,I.-W.,Liang,J.-H.,Liang,Y.-Y.,2014.Greenpremiumingreencondobuildings?EvidenceinTaiwan,in:GreenBuilding,MaterialsandCivilEngineering.CRCPress,Leiden,TheNetherlands.

CityofAnnArbor,2015.StormwaterRatesandCredits[WWWDocument].URLhttp://www.a2gov.org/departments/systems-planning/water-resources/Stormwater/Pages/StormWaterRates.aspx(accessed7.1.15).

CityofGrandRapids,2014.StormwaterAssetManagementPlan[WWWDocument].URLhttp://grcity.us/enterprise-services/Environment-Services/Pages/Stormwater-Asset-Management-Plan.aspx(accessed6.12.15).

Clark,C.,Adriaens,P.,Talbot,F.B.,2008.GreenRoofValuation:AProbabilisticEconomicAnalysisofEnvironmentalBenefits.Environ.Sci.Technol.42,2155–2161.doi:10.1021/es0706652

Debo,T.N.,Reese,A.,2002.MunicipalStormwaterManagement,SecondEdition,2nded.CRCPress,Hoboken.

Freeman,A.M.,2003.TheMeasurementofEnvironmentalandResourceValues:TheoryandMethods.ResourcesfortheFuture.

Fuerst,F.,McAllister,P.,2011.Eco-labelingincommercialofficemarkets:DoLEEDandEnergyStarofficesobtainmultiplepremiums?Ecol.Econ.70,1220–1230.doi:10.1016/j.ecolecon.2011.01.026

Page 26: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

26

Greenroofs.com,2015.TheGreenroof&GreenwallProjectsDatabase[WWWDocument].URLhttp://www.greenroofs.com/projects/(accessed7.7.15).

Hellman,K.,2011.AnEconomicapproachtotheecologicalissuesofurbanstormwaterrunoff:ACasestudyoftheAllenCreekWatershedinMonroeCounty,NewYork(Thesis).

HerreraEnvironmentalConsultants,2012.PugetSoundStormwaterBMPCostDatabase.WashingtonStateDepartmentofEcology,EnvironmentalAssessmentProgram,Olympia,Washington.

Houle,J.,Roseen,R.,Ballestero,T.,Puls,T.,Sherrard,J.,Jr.,2013.ComparisonofMaintenanceCost,LaborDemands,andSystemPerformanceforLIDandConventionalStormwaterManagement.J.Environ.Eng.139,932–938.doi:10.1061/(ASCE)EE.1943-7870.0000698

Ichihara,K.,Cohen,J.P.,2010.NewYorkCitypropertyvalues:whatistheimpactofgreenroofsonrentalpricing?Lett.Spat.Resour.Sci.4,21–30.doi:10.1007/s12076-010-0046-4

Isely,E.S.,2014.SustainingstormwaterinvestmentsinGrandRapids.WMEAC.

Isely,E.S.,Denning,R.,Isely,P.,2012.ApplyingtheINtegratedValuationofEcosystemServicesTool(INVEST)attheparcellevel:theOwasippeScoutReservationdemonstrationproject.FinalProjectReportfortheWestMichiganStrategicAllianceandTheNatureConservancy.WestMichiganStrategicAlliance,GrandRapids,Michigan.

Isely,E.S.,Isely,P.,Seedang,S.,Mulder,K.,Thompson,K.,Steinman,A.D.,2010a.AddressingtheinformationgapsassociatedwithvaluinggreeninfrastructureinWestMichigan:INtegratedValuationofEcosystemServicesTool(INVEST).J.Gt.LakesRes.36,448–457.doi:10.1016/j.jglr.2010.04.003

Isely,E.S.,Steinman,A.D.,Thompson,K.,VanderMolen,J.,Koches,J.,Sinha,S.,Huntington,L.,Isely,P.,Penning,T.,2010b.ReinintheRunoff:StormwaterIntegratedAssessmentinSpringLake[WWWDocument].URLhttp://www.gvsu.edu/wri/director/rein-in-the-runoff-stormwater-integrated-assessment-in-22.htm(accessed4.29.16).

Johnston,R.J.,Rolfe,J.,Rosenberger,R.S.,Brouwer,R.,2015.IntroductiontoBenefitTransferMethods,in:Johnston,R.J.,Rolfe,J.,Rosenberger,R.S.,Brouwer,R.(Eds.),BenefitTransferofEnvironmentalandResourceValues,TheEconomicsofNon-MarketGoodsandResources.SpringerNetherlands,pp.19–59.

Kuhns,T.,Ulasir,M.,2015.FirstFlushDesignforStormwater.

Landphair,H.C.,McFalls,J.A.,Thompson,D.,2000.Designmethods,selection,andcosteffectivenessofstormwaterqualitystructures(No.FHWA/TX-01/1837-1).TexasTransportationInstitute.

Lee,J.S.,Li,M.-H.,2009.Theimpactofdetentionbasindesignonresidentialpropertyvalue:CasestudiesusingGISinthehedonicpricemodeling.Landsc.UrbanPlan.89,7–16.doi:10.1016/j.landurbplan.2008.09.002

LoopNet,Inc.,2015.GrandRapids,MIMarketTrends[WWWDocument].URLhttp://www.loopnet.com/Grand-Rapids_Michigan_Market-Trends(accessed7.2.15).

McPherson,E.G.,Simpson,J.R.,Peper,P.J.,Maco,S.E.,Gardner,S.L.,Cozad,S.K.,Xiao,Q.,2006.Midwestcommunitytreeguide:benefits,costs,andstrategicplanting.

Page 27: Benefit-cost analysis of stormwater green …...1 Benefit-cost analysis of stormwater green infrastructure for Grand Rapids, Michigan Erik E. Nordman, Grand Valley State University

27

MinnesotaPollutionControlAgency,2015.MinnesotaStormwaterManual[WWWDocument].URLhttp://stormwater.pca.state.mn.us/index.php/Main_Page(accessed6.29.15).

Moeller,J.,Pomeroy,C.A.,2009.BMPandLIDWholeLifeCostModels:Version2.0[WWWDocument].URLhttp://www.werf.org/i/a/Ka/Search/ResearchProfile.aspx?ReportId=SW2R08(accessed6.22.15).

NYSDept.ofEnvironmentalConservation,2014.ConstructionStormwaterToolbox[WWWDocument].URLhttp://www.dec.ny.gov/chemical/8694.html(accessed6.3.15).

Polyakov,M.,Iftekhar,S.,Zhang,F.,Fogarty,J.,2015.Theamenityvalueofwatersensitiveurbaninfrastructures:Acasestudyonraingardens.

Reichardt,A.,2013.OperatingExpensesandtheRentPremiumofEnergyStarandLEEDCertifiedBuildingsintheCentralandEasternU.S.J.RealEstateFinanceEcon.49,413–433.doi:10.1007/s11146-013-9442-z

Sander,H.,Polasky,S.,Haight,R.G.,2010.Thevalueofurbantreecover:AhedonicpropertypricemodelinRamseyandDakotaCounties,Minnesota,USA.Ecol.Econ.69,1646–1656.doi:10.1016/j.ecolecon.2010.03.011

Sproul,J.,Wan,M.P.,Mandel,B.H.,Rosenfeld,A.H.,2014.Economiccomparisonofwhite,green,andblackflatroofsintheUnitedStates.EnergyBuild.71,20–27.doi:10.1016/j.enbuild.2013.11.058

TheHomeDepot,2015.RainBarrels-Watering&Irrigation[WWWDocument].URLhttp://www.homedepot.com/b/Outdoors-Garden-Center-Watering-Irrigation-Rain-Barrels/N-5yc1vZc7pb(accessed11.9.15).

Thorsnes,P.,2002.TheValueofaSuburbanForestPreserve:EstimatesfromSalesofVacantResidentialBuildingLots.LandEcon.78,426–441.doi:10.3368/le.78.3.426

WeatherHistory&DataArchive|WeatherUnderground[WWWDocument],n.d.URLhttp://www.wunderground.com/history/airport//2016/01/23/DailyHistory.html?req_city=Grand%20Rapids&req_state=MI&reqdb.zip=49512&reqdb.magic=5&reqdb.wmo=99999(accessed1.23.16).

Weimer,D.L.,Vining,A.,2010.PolicyAnalysis:ConceptsandPractice,5edition.ed.Routledge,Boston.

WSB&Associates,2008.APublicWorksPerspectiveontheCostvs.BenefitofVariousStormwaterManagementPractices.

Xian,G.,Homer,C.,Dewitz,J.,Fry,J.,Hossain,N.,Wickham,J.,2011.Thechangeofimpervioussurfaceareabetween2001and2006intheconterminousUnitedStates.Photogramm.Eng.RemoteSens.77,758–762.