Top Banner
Internet of Energy ICT for Energy Markets of the Future The Energy Industry on the Way to the Internet Age
52

Bdi initiative io_e_us-ide-broschuere_tcm27-45653

Sep 14, 2014

Download

Technology

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

Internet of EnergyICT for Energy Markets of the Future

The Energy Industryon the Way to the Internet Age

Page 2: Bdi initiative io_e_us-ide-broschuere_tcm27-45653
Page 3: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

1BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Contents

Executive Summary 21 Introduction 42 Radical Changes in Energy Supply

Inevitability and Historic Opportunity 62.1 Climate Change, Energy Consumption, and Natural Resources 62.2 Current Regulatory Environment 82.3 Economic and Technological Pressure to Change 102.4 Backlog of Investments 112.5 Historic Opportunity 12

3 Networked Components and Integrated ICT Building Blocks for the “Internet of Energy” 133.1 Building Automation and Smart Homes 143.2 Centralized and Decentralized Energy and Grid Management 163.3 Smart Metering 193.4 Integration Technology 203.5 Economic Applications and New Business Models 223.6 Transition Process to the Internet of Energy 24

4 Scenarios for the “Internet of Energy” Developments and Opportunities in a Networked Energy Economy 264.1 Scenario I – Electromobility 264.2 Scenario II – Decentralized Energy Generation 264.3 Scenario III – Energy Trade and New Services 27

5 Designing the Transition Process Concrete Recommendations 285.1 Standardization 285.2 Incentives, Regulatory and Legal Framework 295.3 Research Promotion 315.4 Funding Methodology and Reorganization 325.5 Continuing Education and Training 335.6 Public Relations Work 33

E-Energy: Germany Working towards an “Internet of Energy” 34The six E-Energy Model Regions at a Glance 37

Appendix 41Figures 41Abbreviations 42Literature Sources 44Catalog of Demands 47Imprint 48

Page 4: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

2 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

At present, we can identify three major factors that havean impact on the energy sector. They underpin why thisentire sector needs to be restructured and turned into anintelligent and efficient supply system. New integral systemsolutions are called for, in which information and commu-nication technology (ICT) will play a key role in providingthe necessary information networks and intelligencesystems.

The first factor is the depletion of global fossil fuel re-sources: Fossil fuel supplies are finite and are alreadyexperiencing major price increases today. In addition, theatmosphere cannot absorb any more CO2 without facingthe threat of a climate disaster, and hence, concertedefforts must be undertaken in terms of active climate pro-tection. In the face of impending strains on and shortcom-ings of the energy system coupled with the concurrentlygrowing global demand for energy, we urgently need tomake significant improvements to achieve greater efficiencyin energy usage.

The second factor is the fact that the changed regulatoryenvironment is placing greater demands on the energysystem’s data networks. Following the decoupling ofpower generation, transmission, and distribution, differentplayers along the value chain must now communicate andinteract using shared interfaces. Furthermore, new ruleson standardization, metering, and consumer transparencygenerate large amounts of data, which require intelligent,automated processes.

The third factor is that as a result of technical develop-ments and rising energy prices, more power from renew-able energy sources will have to be fed into the power gridin the future, both from an increasingly decentralized sup-ply structure and from a central supply structure that willcontinue to exist in tandem. This calls for a much greaterdegree of flexibility in the areas of voltage maintenanceand efficient load flow control than the present system isdesigned to handle.

These three driving factors are occurring at a time wheninvestments into the German and European energy supplysystem are urgently needed. Almost half of the installedpower plant capacity in Germany must be replaced ormodernized in the upcoming years, along with a massiveexpansion of the energy grids. At the same time, a signifi-cant number of residential households will require renova-tions. Due to rising energy prices, new energy-saving tech-nology and communication end devices will be increasing-ly used during the necessary overhaul.

Executive Summary

In light of this investment potential, we have a uniqueopportunity to promote a transition from the current ener-gy system to an Internet of Energy, which will generateoptimal energy efficiency from scarce energy resourcesthrough intelligent coordination from generation toconsumption. Most of the necessary technologies for theintelligent and efficient renewal of the energy system arealready available today. However, we are still a long way off from harnessing thefull potential offered by combining and integrating theavailable systems to optimize energy systems. It is thereforecrucial for the industries involved and for the governmentto work together and provide the direction and supportneeded to make this a reality. They need to agree onactions as well as on technical standards in order toactively and systematically devise the necessary transfor-mation processes.

Information and communication technologies will play akey role in the development of a future-oriented energysupply. They form the basis for realizing a future Internetof Energy, i.e., the intelligent electronic networking of allcomponents of an energy system. Thanks to this increasednetworking, generator plants, network components, usagedevices, and energy system users will be able to exchangeinformation among each other and align and optimizetheir processes on their own. Thus, the current energy gridwith its passive, uninformative components and predomi-nantly unidirectional communication will evolve into amarket-oriented, service-based, and decentralized integrat-ed system providing potential for interactive optimizationand the creation of new energy services. Increased usageof power supply systems that are optimized through homeautomation and smart metering will give residential cus-tomers, public agencies, as well as small and medium-sized enterprises the chance to reduce their energy con-sumption or avoid using energy during peak load times,thus preventing bottleneck situations from arising.Improved energy management systems on the transmissionand distribution levels will enable the optimal use ofdecentralized generation and renewable energy sources ona large scale, without affecting the stability and quality ofthe system. Yet, the biggest challenge will be to create alevel of integration between management applications andthe physical grid that will enable complex IT componentsdistributed across heterogeneous grids and companyborders to communicate with each other.

The transition from the current energy system to anInternet of Energy will present a good opportunity for amultitude of new business models to be created. In the

Page 5: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

3BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

future, power grid operators will be able to increasinglyevolve into information service providers; new services,such as energy management at the customer’s premises,will emerge. New players will enter the market, such asoperators of virtual power plants for balancing energy. Byintegrating (hybrid) electric vehicles adapted to the energysupply, it will also be possible for the transportation sectorto be actively involved in optimizing the energy networks.

As far as concrete recommendations for developing newbusiness areas and realizing a future-oriented intelligentenergy system are concerned, we suggest taking measureson several levels. On the technical level, there must be astrong focus on coordinating standardization in theinformation, communication, and energy technologies.This standardization is, in particular, designed to supportcontinuous bi-directional communication between energygeneration and end users. In addition to promoting basicresearch as well as education and training in the relevanttechnical and business management disciplines, initiativesfor applied research and piloting of the Internet of Energyare also particularly necessary in order to test conceptsand introduce lessons learned from research into theongoing transformation process of the energy business. If we want to ensure that innovative concepts of an intelli-gent and efficient energy supply will actually be used, wemust create long-term innovation incentives especially forthe network providers. In this area, appropriate regula-tions must be passed. Finally, suitable public relationswork is required in order to let all relevant players knowhow they can contribute to transforming the Internet ofEnergy concept into reality.

Acting on the recommendations we have identified canmake a major contribution to transforming the currentenergy system into a more efficient, future-oriented energysupply infrastructure. This will simultaneously have theadded advantage of consolidating and extending the globalmarket leadership of German companies and researchinstitutions in the area of intelligent and integrated energytechnologies.

Page 6: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

4 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

The long-term safeguarding of our energy supply and thereduction of greenhouse gas emissions have become keyissues in our times, as evidenced by discussions heldacross all sections of society about energy efficiency,sustainability, and climate change in the wake of the pub-lication of the latest UN World Climate Report and themeasures passed in response.

The pressure to act does not only stem from the problemsregarding the climate, but also from highly volatile resourceprices and limited resources of fossil fuels. As far asGermany is concerned, the 20/20/20 energy targets of theEU (Hope and Stevenson 2008) passed under Germanleadership in April 2007 as well as the 14-point energy andclimate program of the German government approved inDecember 2007 are particularly important.

However, the measures taken to date by government andbusiness to reduce energy consumption are inadequate.While fossil fuels continue to become increasingly scarce,demand for these resources shows no sign of let-up. Toillustrate this point: In 2005, approx. 18,235 TWh of elec-tricity were consumed worldwide. According to variousestimates, this demand is expected to double (The Econo-mist 2008) to quadruple (EU 2007) by 2050. According toa rough calculation using a power plant’s currentlystandard output of approx. 850 MW as a basis, by 2050,approx. 3,500 additional power plants of the same sizewould have to be built worldwide. In addition, thoseplants that reach the end of their technical lifetimes duringthis period will have to be replaced by new power plantoutput.

1 Introduction

These figures demonstrate that we need to develop moreefficient generation technologies and that these new, alter-native forms of electricity and heat generation systemsmust be integrated into the market rapidly. Furthermore,the energy at our disposal will have to be used much moreeconomically and intelligently in the future, since ulti-mately, conserving energy is the largest available source of energy.

In Germany, there is currently a historically unique oppor-tunity to move swiftly and decisively to meet these majorchallenges. Integral components of the current energyinfrastructure will soon have to be replaced with newgeneration, transmission, and user components. Withinthe next ten years, power plants generating almost 50percent of the output installed in Germany will reach theend of their technical lifetimes. During the same period,extensive renovations will have to be undertaken in almostone third of German households (StatBA 2006).

One of the major challenges faced by future energy trans-mission grids is the issue of how to integrate volatilerenewable energy generation. In addition, the currentinfrastructure for electricity, gas, and water meters must bealmost completely replaced by a new generation of meterswithin the next few years. In order to be able to complywith the requirements for monthly energy bills for residen-tial households – which will be legally mandated in thefuture – in an economically feasible way, the mechanicalmeters will have to be replaced by meters that can be readremotely.

The goal is to make the best possible use of this invest-ment potential and to develop and implement an inte-grated overall concept that is coordinated on the political,technical, and economic levels. On the one hand, a future-oriented energy system is a prerequisite for the economy toflourish in Germany; on the other hand, it is imperative toconsolidating and extending the global market leadershipof German companies and research institutions in the areaof intelligent energy technologies.

Page 7: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

5

One critical factor for the success of the future-orientedenergy system will be an integrated information and com-munication infrastructure modeled and based on theInternet. This will allow simple, standardized, cost-efficient, and near-real-time access to energy information,since both centralized and decentralized energy providersneed up-to-date, accurate information at all times regard-ing the expected energy demands in order to be able toensure optimal operation. Consumers will also benefitfrom such an infrastructure, since it is the pre-conditionfor the development of intelligent end device technologies,which will enable customers to observe their actual energyconsumption in real time and operate their devices in away that minimizes consumption, thereby reducing costs.Only by combining intelligent users, providers, and inter-mediaries in an Internet of Energy will we be able toachieve maximum gains in efficiency in future dealingswith energy, while simultaneously adhering to climate pro-tection goals.

The working group “BDI initiative Internet of Energy” hasmade it one of its goals to devise concepts for Germany inclose cooperation between business and science that pro-vide a roadmap for the transition from our current energylandscape to an Internet of Energy. In addition, one candeduce concrete recommendations directed at the govern-ment, policy makers, and business leaders in Germanywhich can lead to rapid changes that are socially, econom-ically, and ecologically feasible and technically realizable.

What the Internet of Energy might look like in practice has been tested in six German model regions since the endof 2008 in the context of the beacon project “E-Energy:ICT-based Energy System of the Future”. E-Energy is atechnology support program of the Federal Ministry ofEconomics and Technology (BMWi). In inter-departmentalcooperation with the Federal Ministry for the Environment,Nature Conservation and Nuclear Safety (BMU), BMWi isproviding EUR 60 million in funding for R&D activities ofthe technology partnerships. The partners will investanother EUR 80 million on their part, so that a total ofapprox. EUR 140 million will be available for the E-Energymodel projects. In addition, BMWi and BMU are jointlycreating a new R&D support focus “ICT for Electro-mobility”, which will closely tie into E-Energy.

More information about E-Energy and the six modelregions can be found in the article “E-Energy: Germanyworking towards an Internet of Energy”, page 34 ff.

Page 8: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

6 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

2 Radical Changes in Energy Supply Inevitability and Historic Opportunity

Climate change, depleting global fossil fuel resources, dependency onimports, changes to the regulatory environment, economic and technologi-cal pressures, and lack of investment are all factors that will have a signifi-cant impact on our energy landscape and lead to major changes. However,when taken together, these factors also offer a historically unique opportu-nity to rapidly implement far-reaching measures.

2.1 Climate Change, Energy Consumption, and NaturalResources Some of the most pressing and most widely discussedproblems and challenges of our times are those related tolong-term energy supply. The IEA World Energy Outlook(IEA 2008) and the current Climate Report of IPCC (IPCC2007) clearly illustrate the enormous challenges faced byfuture energy and climate policies. The world populationis forecast to grow by 30 percent to more than eight billionpeople by 2030. Assuming that the global economy willcontinue to evolve and be structured as expected, primaryenergy consumption will increase by more than 50 percentworldwide by 2030, while global electricity consumptionmight even quadruple by 2050, according to estimatespublished by the EU (EU 2007). The concentration of CO2

in the atmosphere has risen by almost 40 percent since thestart of the industrial revolution; a temperature increase of3-6° C by the year 2100 seems probable (Cox, Betts et al.2000). If we are serious about avoiding the prospect ofeven greater climate changes, we must limit man-madeCO2 emissions as rapidly and comprehensively as possible.

One way of reducing CO2 emissions is to introducesequestration processes (Carbon Capture and Storage –CCS). In fossil fuel-fired power plants and in industrialprocesses, this technology is used to separate the CO2

from the volume flow and to store it long-term in suitablestorage repositories. Currently, CCS technology along withthe required infrastructure is still in the testing phase; infact, individual pilot facilities and geological test areas forCO2 repositories already exist. With 10-12 major pilotplants, the EU technology platform for CCS is paving theway for commercialization from around 2020. Currentlyongoing research projects are mainly aimed at minimizingthe loss of efficiency caused by separation and deep injec-tion. At the same time, issues regarding large-scale ship-ment of CO2 for permanent storage as well as transporta-tion issues have yet to be fully resolved (Martinsen,Linssen et al. 2006; Schlissel, Johnston et al. 2008).Following Germany’s nuclear power phase-out, which will be concluded by 2021, the capacity of the remaining

power plants will not be sufficient to deliver all necessarybase loads. However, CCS technology will not be suffi-ciently mature at that time to close the supply gap.

In order to be able to adhere to German and European cli-mate protection goals nonetheless, the main focus shouldtherefore be on reducing energy consumption and increas-ing energy efficiency. According to the BMWi (2006), thenear-real-time display of electricity consumption alone willresult in a savings potential of approx. 9.5 TWh per yearfor residential households. In its energy efficiency actionplan, the European Commission estimates the Europe-wide energy-saving potential in industry, commerce, andtrade to be 20 percent, and even significantly higher inresidential households and in transportation. Figure 1shows a potential assessment carried out by the Global-e-Sustainability Initiative, according to which up to 3.71 billion tons of CO2 or almost 15 percent of the totalemissions can be saved worldwide by the year 2020 simplyby using ICT in the areas of Smart Grids and SmartBuildings1.

However, change is not only driven by CO2 emissionsfrom burning fossil fuels, but also by the future availabilityof natural resources and the development of naturalresource prices. There has been a strong increase in crudeoil prices in recent years. This is due not only to high con-sumption and an ever-increasing demand (especially inAsia), but also to a lack of capacity reserves, the weak USdollar, low outputs (e.g., supply interruptions in Nigeria,Venezuela, Norway, Iraq, and Texas) as well as speculativeinvestments on the natural resource markets (IEA 2008).

1 On the other hand, 830 million tons of CO2 were emitted due to theoperation of ICT in the year 2007. This corresponds to approx. 2 percent ofthe total amount of CO2 emitted in 2007.

Page 9: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

7BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Due to political constraints and a lack of investment,current and future projects aimed at exploiting further oildeposits and expanding output capacity are unlikely to besufficient to cover the expected increase in demand ofapprox. 1 percent per year (Jesse and van der Linde 2008;Stevens 2008). Thus, peak oil output will inevitably beachieved during the next few years. In addition, “thepotential for political conflict” is inherent in “the concen-tration of conventional crude oil reserves as well asnatural gas reserves within the so-called ‘StrategicEllipse’, which extends from the Middle East via theCaspian region all the way into Russia’s Far North”(BGR 2008).

Overall there ought to be enough fossil fuels available inthe next few decades to cover the world's growing demandfor energy. However, the costs associated with exploiting,transporting, and converting these reserves and resourcesare set to increase, inevitably along with energy end-useprices. This trend will increase the need to research anddevelop alternative methods for electricity and heatgeneration, and to investigate ways to efficiently integrateproducers and consumers. It will also make these areasmore economically attractive. Figure 2 illustrates thesedevelopments on a timeline.

Smart Buildings: 1.68

Source: The Climate Group (2008)

Smart Logistics: 1.52

Smart Motors &Industrial Processes: 0.97

Smart Grid: 2.03

Others: 0.66

Video Conferences: 0.14Teleworking: 0.22Transport Optimization: 0.6

Total:7.8 billion tons

Figure 1: Annual global CO2 savings potential through the use of ICT (in billion tons)

2009 2010 2011 2012 2013 2014 2015 2016

July 2008All-time high

oil priceUSD 148/barrel crude oil

September 2008World CO2 emissionsrise four times faster

than before 2000

20150.5 million plug-in

electricvehicles (PEV)

2015Wind energy:25,000 MW

installed capacity

20150.5 million plug-in

hybrid electricvehicles (PHEV) 2020

1 million PHEV/PEV

2020Biogas, biomass inside buildings:

6,000 MWel installed capacityPhotovoltaics on buildings:

17,000 MWp installed capacity

2012Power from

photovoltaicsis economically

feasible (grid parity)

22 Sep 2008Highest single-day jump

in history:USD 25/barrel

201450% household

coveragewith

smart meters

2015CHP

inside buildings2,500 MWinstalledcapacity

2030Doubling ofdemand fornatural gas

2050Doubling to

quadrupling ofglobal

power demand

2020Distributed EnergyResources (DER)

contributemore than 25%

to overall generation

2015German

lignite coalbecomes competitive

again

Legend: Anticipated date of occurrence Definite date

Figure 2: Prognoses and trends – availability of fossil energy sources and renewables

Source: BDI initiative Internet of Energy (2008)

Page 10: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

8 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

activities in the electricity and gas industries by amendingthe EnWG. When the change came into effect on 9 Sep-tember 2008, metering itself was also liberalized, in addi-tion to the operation of metering points. As of 1 January2010, all metering point operators will be obliged to installmetering devices in new buildings and fully renovated oldbuildings that display real-time energy consumption aswell as usage time (Bundestag 2008). Furthermore, existingmetering devices must also be reconfigured at the custom-er's request.

End customers will have the right to receive a monthly,quarterly, or semi-annual electricity bill from their providerupon demand (sec. 40 EnWG). Providing greater con-sumption transparency is intended to result in increasedenergy awareness and ultimately in more economical ener-gy consumption by the end customer. Concurrently, energysupply companies will be obligated to offer customersmore flexible electricity rates that provide an incentive forconserving energy or controlling energy consumption thelatest by 30 December 2010 (EU 2006; Bundesrat 2007).

The liberalization of metering enables customers to freelychoose not only their energy provider, but also their meter-ing point operator and their metering service provider.

Figure 3: Regulatory and political environment – regulatory measures in the energy sector

2001 2002 2003 2004 2005 2006 2007 2009 2010 2011

2002CHP Act

Legend: Anticipated date of occurrence Definite date

2003Greenhouse gas emissionallowance trading scheme

(2003/87/EC)

2006Unified Protocols

for standardmarket communicationprocesses implemented

(BNetzA)

April 2007EU 20/20/20

energy targets

2007Energy-using

Products Act (EuPA)

2000Decision on

nuclear powerphase-out by

2021

20041st amendment to

Renewable Energy Resources Act

(EEG)

September 2008Liberalization of

metering (MessZV, GeLi Gas,

GaBi Gas)

2008Monthly or quarterlyconsumption billing

must beoffered (EnWG sec. 40)

2002EnergySaving

Ordinance(EnEV)

2005Liberalization

in metering(EnWG, §21b)

2008Eco-Design

Directive

2008Direct marketingof wind energy2007

Decisionto phase-out

coal subsidizationby 2020

2000Renewable Energy

Resources Act(EEG)

2004Greenhouse Gas

Emissions TradingAct (TEHG)

2010Installation of smart meters

upon customer request

2021Nuclear power

phase-out30 Dec 2010Introduction of load-variable

and variable time-based rates (energy

saving incentives)

2008Amendment to

CHP Act2007Incentive RegulationOrdinance (ARegV)

2020Phase-out ofcoal miningsubsidies

1 Jan 2010Installation of smart metersmandatory

in new buildings(Directive

2002/91/EC)

Source: BDI initiative Internet of Energy (2008)

2.2 Current Regulatory EnvironmentThe future development of the European and nationalenergy supply will be determined to a large extent by theregulatory environment. The liberalization of the electricityand gas industry, for example, is based on EU guidelinesfor the European domestic electricity and gas markets.Their implementation entails major structural, organiza-tional, and contractual changes. The business divisionsalong the value chain must be unbundled. As a conse-quence, new market rules continue to be formulated in theform of laws, guidelines, and regulations to ensure theinteraction of new and established market players. Figure 3illustrates the timeline of these regulatory measures. Thediagram also shows that the liberalization process is farfrom complete, but continues to be promoted and drivenforward.

The German government already passed an amendment tothe Energy Industry Act (EnWG) as far back as July 2005to establish new meter technologies. Sec. 21b describes theliberalization of metering for the installation, operation,and maintenance of metering devices for the electricityand gas supplied via cable and pipeline. In addition, inJuly 2008 the Bundesrat (the upper house of the Germanparliament) resolved to completely liberalize metering

Page 11: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

9BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

However, this unbundling will result in a very complexmarket structure, as depicted in Figure 4. To ensure thatnew and established market players interact smoothly insuch a liberalized energy and metering market, there mustbe guarantees that the business and ICT processes to besupported are automated. This requires unambiguousdefinitions of the minimum technical standards, communi-cation processes, and data formats. This has only beenpartially realized to date.

For example, in the past, the manual processing time andexpense for customer transfer processes and the lack ofbinding specifications for the process management made itvery difficult for new competitors to enter the market. TheFederal Network Agency has attempted to solve thisproblem by laying down uniform rules and standards forhandling market communication processes (BNetzA 2006).These form the basis for communication between theproviders and the network operators involved in a cus-tomer transfer.

However, the goal of a fully automated communicationsystem between the market partners in the context of cus-tomer transfer and network usage management processesas well as in metering has not been achieved yet.Loopholes in definitions and incomplete standardizationof the process chains mean that all market players continueto incur high costs. These costs mainly result from manualrework and additional coordination communication. Theycan only be reduced if, in addition to automated marketcommunication, the processes in the core applications canalso be handled automatically in the medium term. Thisincludes, in particular, the process of electronic billing.

Figure 4: Multitude of players and contractual relationships on the liberalized electricity and metering market

Source: BDI initiative Internet of Energy (2008)

TSO (control area) Balancing group coordinator

Generation Trade (balancing group coordinator)

Sales and distributionDistribution grid operator

Party connected to grid(owner, landlord)

Electricity consumer(end user, tenant)

Metering point operator

Metering service provider

Subscriberagreement

Suppliers frameworkagreement

(network usage)

Network usage contract

Balancing group contract

Allocation authorization

Framework agreement

Power supplycontract

Rental contract

Power supply contract

b) Network connection usage contract

MPO-MSP agreement

Metering service agreement

Framework agreement for metering points

Framework agreement for metering

Met

erin

g p

oint

agr

eem

ent

a) N

etw

ork

conn

ectio

n us

age

cont

ract

Page 12: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

10 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

plan, approve, and build a new high-voltage line, it is clearthat immediate action is needed.

New requirements are also emerging on the level of lower-voltage networks. Medium- and low-voltage networks, inwhich network automation has so far been eschewed to alarge extent, can no longer cope with the requirementsposed by the increased integration of decentralized genera-tion facilities. In addition, the continual increase in thedemand for power will push the well-developed distribu-tion networks to the limit of their load capacity. Althoughthe networks can undoubtedly absorb additional loads inthe medium term, those peak loads that depend on thetime of day are creating problems not only for the powergeneration companies. Optimizing the daily load flow canhelp to avoid expensive investments that are needed onlyfor a few hours each day. Therefore, in the future weshould implement more measures that make it possible toshift demand in accordance with economical grid opera-tion criteria. In the future, efficient load management ofthe power grid will thus also have to take into account therequirements of the distribution networks and involve allmarket players, down to private customers.

The same applies to decentralized generation. Today, themedium- and low-voltage distribution networks are usuallystill capable of absorbing decentrally generated powerwithout any quality problems. The strong increase indecentralized energy feed-in we are witnessing has beenpromoted on a massive scale by the Renewable EnergyResources Act (EEG). In order to achieve further growth,the grid operators must, however, make major investmentsin order to safeguard supply reliability and power qualityin the future. Within a few years, distribution networkswill no longer be able to absorb at all times power pro-duced from the fluctuating energy sources (specifically sunand wind).

This complexity is further increased if current heatingsystems are replaced on a large scale with devices thatgenerate power in addition to heat. Small cogeneration(combined heat and power, CHP or μ-CHP) units arealready available on the market, operating with varioustechniques such as gas diesel engines, stirling engines, orfuel cells. The concurrent use of primary energy for heat-ing purposes and power generation makes such CHP unitsparticularly interesting from the perspective of energyconservation, which is the reason why their use ought tobe promoted further (BMU 2008). However, for the distri-bution network operators, this represents a paradigm shiftfrom pure power distribution to an actively controlledenergy grid. The accompanying changes to the electricity

2.3 Economic and Technological Pressure to ChangeThe “traditional” integrated planning of electricity genera-tion and transmission has become obsolete as a result ofliberalization and the unbundling of the electricity genera-tion and electricity distribution structure stipulated by it.New providers with generation capacities of their owncontinue to enter the market, resulting in increased com-petition. However, since new power plants – as far as canbe determined – are not all being built in the same loca-tions as existing power plants, the topology of the powergrid is changing. In addition, the BDEW estimates that bythe year 2020, smaller decentralized facilities and powerplants based on renewable energy (below 20 MW) with atotal capacity of 12,000 MW will commence operating.Approximately half of the large power plant projects – i.e.,generation capacities of approx. 15,000 MW – are plannedby market players who are currently not or only barelyactive in power production (e.g., Allianz 2006).

Due to the fundamental changes in constraints, it is thusessential to maintain the functionality of the power grids.This will require, for example, that the transmission gridshave a much higher degree of flexibility in the area ofvoltage maintenance and efficient load flow control thanhas been the case to date. The fact that the – partly contra-dictory – requirements are becoming increasingly and evermore complex means that we must strive for integrated,system-wide innovations to the power supply system. Since mutual effects need to be considered in the contextof the system, system research and development workmust be coordinated. Optimizing single components alonein terms of their individual economic and technical inno-vation potential is no longer beneficial. However, thecurrent market regulation (incentive regulation) in theenergy sector in Germany does not yet provide enoughincentives for investments, which is why further develop-ment is necessary in this area.

A well-developed power grid plays a key role in a liberal-ized energy economy. Through increased power tradingand the use of renewable energies, the requirements, espe-cially in relation to supergrids, have already changedconsiderably today. Whereas these were formerly operatedusing interconnections spaced far apart, mainly to increasesystem stability, they now increasingly serve to transportloads across long distances. If wind energy continues to bedeveloped further in the north of Germany and if conven-tional power plants are erected in new locations far awayfrom actual consumption, this trend will continue to gath-er force. Major restructuring measures and new operatingconcepts will thus become indispensible (dena 2005).Considering that it takes an average of twelve years to

Page 13: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

11BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

In the area of electric energy, smart energy end userdevices and appliances that are capable of reacting toprice signals automatically, for example, are becomingmore and more common. The introduction of mandatorylabeling for durable appliances according to energy effi-ciency classes alone has not yet resulted in these appli-ances being used in a cost- and consumption-optimizedmanner. A significant improvement in terms of consciousenergy conservation can only be expected to occur onceall major points of power consumption are able to com-municate their consumption profiles via standardizedinterfaces, which are then aggregated, packaged, anddisplayed in a technical center located at the consumer’spremises. New controlling options for energy producersand consumers will only be created on the basis of thisreal-time energy consumption information accurately dis-played by devices, which will ultimately lead to optimizingthe load profile and to minimizing consumption andreducing costs.

grids as well as in the gas networks can only be met byusing actively controlled so-called “Smart Grids”.

Intelligent load management on the basis of variable time-based price rates is thus becoming an important option foroptimizing generation and consumption and thus allowingmore economical energy management. In the future, cus-tomers will be alerted to price signals which will enablethem to shift their consumption of energy to low loadtimes and thus enjoy the lower rates.

2.4 Backlog of Investments The energy sector in Germany has undergone majorchanges in recent years and has experienced a slump ininvestment for a variety of reasons. Companies in this sec-tor gave top priority to consolidating their finances andproviding high yields to their shareholders. As a conse-quence, existing facilities were used as intensively and foras long as possible. This was exacerbated by the fact that,due to the partial or complete lack of framework condi-tions, the government also failed to create a climate thatwould have promoted investment in the energy sector onthe necessary scale. For these reasons, the existing facili-ties were sometimes operated until the very limit of theirlifespans. An investment boost in future supply infrastruc-tures is thus expected within the next few years.

In Germany alone it is estimated that a total of approx. 50 GW of power plant output – i.e., almost half of thetotal amount – will have to be replaced by 2020. This ismainly due to the age of the facilities, the targets ofclimate protection, and the expectations regarding thedevelopment of emissions trading along with the concur-rent nuclear power phase-out. The use of energy sourcesand generation technologies with less CO2 is a decisivecompetitive edge in this respect (Brinker 2007).

Similar developments are also expected as regards residen-tial households, where new framework conditions havebeen created ever since energy efficiency became animportant issue. This should lead to major investmentactivities in the future. Examples include the regulationson the replacement of older boilers or the introduction ofthe energy performance certificate for buildings, which willtrigger corresponding investments into new solutions forgreater energy efficiency. In addition, approx. one third ofall German households will need to undergo renovationswithin the next few years (StatBA 2006). In light of thesharp increase in energy prices, we can expect that newenergy-saving technologies will be used for this scheduledoverhaul work, by both producers and consumers alike.

Page 14: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

12 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

2.5 Historic OpportunityIn this chapter, a multitude of factors have been addressedthat highlight the need for modernizing the current energyinfrastructure. They will also accelerate modernization.Climate protection, air pollution control, and resourceconservation are major ecological drivers of this changeon the energy markets. The development of a Europeandomestic energy market, the legal separation of powergeneration and distribution, rising prices for naturalresources and energy, as well as new regulatory require-ments are placing increased economic pressure on theenergy providers. These factors, along with the fact thatthere are a growing number of co-competitors that increas-ingly come from other sectors, are the major economicdrivers of this change on the energy markets. An ever-growing number of decentralized power generation com-panies with volatile generation profiles, high-volumeenergy transmissions via transmission points, transnationalintegrated networks, and bi-directional energy flows indistribution networks are major challenges that, from thetechnological point of view, call for modernizing theenergy grids.

In Germany, these key factors are at play at a time whenalmost 50 percent of the power plant capacities will haveto be replaced or modernized within the next few years,and when almost one third of the German households arein need of renovation. This convergence of factors pro-vides a historically unique opportunity to devise a wellthought-out transformation process. Information and com-munication technology plays a key role in a well-plannedoverall concept in terms of a more intelligent and energy-efficient energy supply system. Maximum synergy effectscan only be achieved if all economic, regulatory, and (IT)technical innovations are well coordinated. We shouldstrategically exploit this unparalleled opportunity!

Page 15: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

13BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Many of the building blocks for a future Internet of Energy have alreadybeen developed and are available today. However, these components andtechnologies have hardly been networked with each other to date.Maximum gains in efficiency can only be achieved if information andcommunication technology is integrated intelligently with energy systems.

At first glance, the technical energy grid of the future willnot appear to be very different from today’s infrastructure.Figure 5 shows this schematically – just like today, therewill be large-scale power plants (1) that transport energyto the consumers (3) via transmission grids (6) and distri-bution grids (7). In order to make greater use of regenera-tive energy sources, an even larger number of decentral-ized generators (2) will be installed than currently existtoday, which – just like the large-scale power plants – willcontribute to meeting the demand for energy. Since energyfeed-in will be increasingly decentralized and consumerswill react more flexibly and intelligently (4), more situa-tions will occur in which load flows (8) in sub-grids willbe reversed. If this dynamic infrastructure is to be operatedand coordinated efficiently, all individual componentsmust be integrated (10) into a uniform communicationinfrastructure – the Internet of Energy (9) –, which willserve to map all producers and consumers of the energygrid onto one virtual level. This is the only way to enablenear-real-time communication, thereby ensuring efficientcoordination of the grid despite the continually increasing

3 Networked Components and Integrated ICT Building Blocks for the “Internet of Energy”

number of dynamic consumers and decentralized, fluctuat-ing generators.

Parts of the infrastructure for an Internet of Energy alreadyexist today, whereas other technologies are available inprinciple, but are not being extensively used yet:

Technologies for home automation and decentralizedenergy generationIntelligent grid management systems on the trans-mission and distribution levelsInstalled smart metering technologyICT as a link between the Internet of Energy and thetechnical infrastructureApplications and services implementing the coordina-tion of the energy grid on the economic level

5

4

3

2

1

Figure 5: Internet of Energy

Source: BDI initiative Internet of Energy (2008)

(1) Large-scale power plants

(3) Consumer (traditional)

(4) Consumer (intelligent)

(5) Grid control

(6) Transmission grid

(7) Distribution grid

(8) Load flows

(9) Internet of Energy

(10) Integration technology

(2) Renewable energy (fluctuating)

Page 16: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

These are described in greater detail in the sections below,and the current state-of-the-practice technology is explor-ed for each item. In addition, the issue of where furtheraction is required in the respective areas on the way to theInternet of Energy of the future is also addressed.

14 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

3.1 Building Automation and Smart HomesIn contrast to commercial buildings, the automation ofresidential buildings is still largely in its infancy today. Ingeneral, residential households are neither equipped withnetworked devices nor with control equipment. In addi-tion to energy consuming devices such as refrigerators,washers, dryers, home entertainment devices, and lighting,these buildings usually only have one heating system,which generates heat for heating both rooms and water.Most of the available appliances and devices are con-trolled manually or semi-automatically. Some do havebuilt-in automatic controls (e.g., washer, heating system),but this merely allows them to optimize their own per-formance in accordance with the requisite manufacturer-specific target parameters.

In principle, it is already possible today to equip residen-tial buildings with networked building utilities and build-ing automation. However, this mainly applies to newlyconstructed buildings where the main focus is on prestigeand convenience rather than on cost or energy optimiza-tion. Well-established applications include those forcontrolling individual components such as heating,ventilation, and air conditioning, electricity distributionfacilities, lighting, shading, or telephone and securitysystems. Yet, there is no integrated control of these areas,particularly in terms of energy optimization.

The vision of an intelligent residential building ultimatelygeared at maximizing convenience will become less impor-tant. Instead, intelligence in residential buildings willincreasingly be found in decentralized energy managementsystems (DEMS), which will be installed with the objective

Figure 6: Smart Home – use of ICT for energy optimization in residential households

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Legend: Anticipated date of occurrence Definite date

2016DSM

introducedon large scale

2016OLEDs ready for

market launchfor general

lightingtechnology

2012Pilot projectsfor integrated

home automationand DSM, capable of

cross-energymanagement

2012Roll-out of affordableintegrated

home automationand DSM

2012LEDs

have a marketshare of 10%

in general lighting(Philips)

2011Pilot projects with

a 10% proven increasein energy efficiency

due to“IT for Green”

2011White goods that

can be interconnected

2008Research pilot projects for

integrated AAL andhome automation

with preparation for DSM2007

Pilot projects onsmart metering in

private households

Source: BDI initiative Internet of Energy (2008)

Page 17: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

15BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

of reducing energy consumption. However, at the sametime, they will also be capable of providing other services,such as “Ambient Assisted Living” (AAL). Thus, the intro-duction of these technologies will not only be driven by anexpected increase in the value of comfort and conven-ience, but also by a reduction in energy consumption inlight of rising energy prices. In Germany, for example, heatconsumption in residential households accounts for al-most 22 percent of the total end-user energy consumption.A graphical illustration in Figure 6 shows the predictedavailability of the Smart Home technologies required forthe introduction of DEMS.

Operating future building automation systems optimallyand energy-efficiently while keeping costs down will bejust as challenging for residential households as it will befor the energy providers. In addition to providing a controlsystem inside a building, DEMS can also serve as an inte-gration point for the energy provider’s central grid control(cf. also Sections 3.2 and 3.3). So far, the energy sector’scommunications infrastructure has been organized mainlyin a hierarchical fashion. This hierarchy must be replacedby a system that is able to communicate with a large num-ber of decentralized generators, storage units, and loads.This calls for an integrative concept that enables bi-direc-tional exchange of data with the grid control and gridmanagement based on the basic data of the generator andthe storage units as well as the loads. To date, however, amultitude of different standards and protocols have madeit difficult to establish such a system. On the grid sidealone, more than 360 different technical standards exist. In terms of the building itself, there are even more systemsand communication protocols, such as ZigBee, LON,EIB/KNX, or BACnet – which also means greater com-plexity. However, in order to optimally manage the energyinside a building, all available sensors and actuators needto be integrated in a uniform building information chain:air conditioning and ventilation control, lighting andshading facilities, building security systems, energymeasurement devices, as well as energy generation andconsumption devices. The first pilot projects for suchkinds of integrated systems are slated to be realized byapprox. 2012. Wide-scale introduction of these technolo-gies to the market is expected within the next ten years (cf. Figure 6).

Current plug&play solutions for home automation cannotfulfill these requirements, since they are all based on pro-prietary protocols and thus cannot be used in heteroge-neous environments with devices and components fromdifferent manufacturers, or can only be integrated at con-siderable cost and effort. Section 3.4 describes a technical

integration platform intended to bridge these communica-tion gaps using an integrated approach from the individualend device all the way to the producer.

The benefits of this kind of home automation and theadvantages offered by seamless integration of decentral-ized energy generators are obvious. For the first time, endusers will be able to observe almost in real time (e.g., viahome displays or from anywhere via the Internet) howcertain appliances/devices and consumption habits influ-ence their use of energy and thus their energy costs. Asmentioned above, estimates by the BMWi put the resultingenergy savings potential at more than 9.5 TWh per year.Currently, when consumers buy energy-efficient techno-logy, they can only see how much they save when theyreceive their final bill at the end of the year. Once they canactually look at their energy consumption and the ensuingcosts in near-real time, less time will elapse between suchpurchases and the resulting savings. Since the cost-benefitrelationship will become transparent, consumers will findit easier to make an investment such as buying LED orOLED technology if these additional expenses can bedirectly linked to the resulting daily energy savings (Darby2006).

Page 18: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

16 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

3.2 Centralized and Decentralized Energy and GridManagementThe intelligence of the future power supply infrastructurewill be characterized to a large extent by the use of elec-tronics as well as communication and control componentsand systems. Figure 7 shows the fundamental shift in para-digms that is required for the development of a SmartGrid. Today’s static infrastructure design and its usage “asbuilt” will turn into a dynamically adapting, “living” infra-structure with proactive operation.

3.2.1 Energy Management Systems on the Transfer Level (High Voltage and Maximum Voltage)The increase in cross-border power trading and feed-infrom wind energy plants (WEP) – especially in low-con-sumption regions – is causing a significant increase in thenumber of bottlenecks in the German and European trans-mission grids. In addition, there is also a growing risk ofpotential oscillation and voltage problems due to concen-trated wind power feed-in in the grids’ border regions. Incombination with the high basic load of the transmissionlines, the demand for quickly adjustable elements that canbe used to control the active and reactive power flows isalso growing rapidly.

These special strains on the grid ensuing from incalculableshifts of the load flows, such as those that can be causedby WEP feed-in or power trading, for example, becomecontrollable if flexible alternating current transmission sys-tems or high-voltage direct current transmission (HVDC)are used. The combined use of intelligent inverters (IGBT

technology) with technologies such as HVDC and FACTS(Flexible Alternating Current Transmission System), whichare based on power electronic components, offers greatadvantages in terms of system technology compared toconventional three-phase technology.

In many cases it is advantageous if direct current transmis-sion and flexible alternating current transmission systems(FACTS) complement each other. Whereas HVDC con-nections serve to transport power across larger distancesor to couple asynchronous grids via HVDC close coupling,FACTS regulate the voltage and the load flow in the grid.

In the future, modern network control technology willhave to capture more information and package it for theoperators for fast processing, unlike in the systems of thepast, which were planned “top down”. The goal is to makerelevant operating data available in real time in order toavoid critical operating conditions. This information mustbe accessible system-wide, even in a supply system withseveral system operators. So-called wide area monitoringsystems (protection and control technology) for safely andefficiently operating grids and managing large integratedgrids are thus becoming increasingly important (bothnationally and Europe-wide). Wide area monitoring serves to establish an early warningsystem regarding grid instabilities through dynamic moni-toring on the basis of online information. In the event of aof system fault, such a system is able to provide faster andmore accurate information than is presently the case,thereby ensuring stable system operation even in case of

Figure 7: Large-scale generation, distribution and storage of energy – paradigm shift in grid technology

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2015Systematic useof fluctuatinggeneratorsfor dynamic

equalization ofpower demand

2013Temporary

occurrence ofload flow reversal

2013Enhanced protective

function in placein order to

preventlarge-scaleblackouts

2015Problem management

for networks largelyautomated

2008Power generation

as per demand

2020Coal phase-out

2008Manual

switching operationsand manual

problem solving

2008Mainly

centralizedgeneration and

distributed loads

2020CO2 capture

and sequestration (CCS)available commercially

2008Load flow without

effective monitoring2014

FACTS introducedon wide scale

2019UCTE coupling

points strengthened

2008Fixed protective functions

for protecting peopleand equipment

2014Load flow control

mainly viapower electronics

2021Nuclear power phase-out

Legend: Anticipated date of occurrence Anticipated end Definite date

Source: BDI initiative Internet of Energy (2008)

Page 19: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

17BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

malfunctions or bottleneck situations. Early detection ofpossible instabilities due to voltage or frequency devia-tions, or thermal overload, can help to avoid far-reachingsecondary damage caused by large-scale power failures.

Today, the regional responsibility structure for the opera-tion of the grids and the economic allocation of the fol-low-up costs of large-scale grid malfunctions still remain a barrier to investment in such innovative solutions. Thebest way to prove that the expected functionality will actu-ally work would be to implement a complex German orEuropean model project.

3.2.2 Decentralized Energy Management in Distribution Grids(Medium and Low Voltage)For the distribution grid operators, providing a reliablepower supply and adhering to the relevant voltage qualitycriteria (voltage band, flicker, harmonics) means that theyhave to fulfill stringent requirements. The changed con-straints have made it necessary to automate the distribu-tion grid processes. If automation is available, then evendefective equipment can be turned off quickly and auto-matically, and medium voltage rings can be reconfiguredremotely. Thus, it is possible, for instance, to resume thesupply within minutes after a cable or an overhead linefails, whereas the repairs will only be done at a later time.

In its “Action Plan for Energy Efficiency”, the EU Commis-sion has quantified the annual costs for not tapping thefull energy savings potentials in Europe at EUR 100 billion(EU Commission 2006). In order to tap this potential, one

Figure 8: Decentralized energy generation and storage

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2010Pilot projects on smalland micro CHP plants

(power-generatingheating)

August 2008Continental AG starts

production of lithium ion batteries

for cars

2011“White goods”as controllable

loads and storagedevices

(power shedding)

2017Pilot projects for

virtual power plantsfrom micro-grid networks

2015Small or

micro CHP plantswith cross-energy

management(roll-out)

2020Roll-out for

virtualpower plants

2013First

micro-gridpilot projects

2007Google Inc.

starts researchon renewable

energies

2007More virtualpower plantpilot projects

2006Unna virtualpower plantpilot project

2019Decentralized power

and heat storage deviceswidely available

2012First use ofelectric and

hybrid-electric vehiclesas storage devices

2015DEMS

introducedon wide scale

Legend: Anticipated date of occurrence Definite date

Source: BDI initiative Internet of Energy (2008)

of the key priorities of the EU action plan is to intensifythe expansion of decentralized capacities for trigenerationbelow the 20-MW threshold. Today, only 13 percent of thetotal power consumed is produced in a cogenerationprocess. Promoting local generation, in particular, basedon these technologies can lead to an increase in overallenergy efficiency and a reduction of transmission losseswithin the power grid.

In the context of a “virtual balancing group”, decentralizedenergy management not only includes typical decentral-ized generation plants such as cogeneration plants (on thebasis of renewable and conventional resources) in thebasic load operation, but also fluctuating generation tech-nologies (wind, photovoltaics). Power is acquired anddelivered beyond the boundaries of the balancing group. If all parameters are assessed – including those loads thatcan be influenced and those that cannot – a transfer pro-file to the surrounding grid can be developed. The “intelli-gence” of the decentralized energy management system ismanifested in mastering the complex technical require-ments due to the facts that generation plants can be influ-enced in various ways and that power consumption isoptimized.

The objective is to avoid inefficient load and generationpeaks. This means that appropriate reserve loads must bemaintained in the supply system, which can be achievedthrough internal balancing within the virtual balancinggroups. Initial field trials such as the Unna Virtual PowerPlant (Henning 2006) primarily refer to “smoothing” the

Page 20: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

18 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

demand lines through additional feed-in at peak load times.There are virtually no reports of consumers smoothing thedemand curve, for example as a result of dynamic priceincentives during the course of a day.

Individual pilot projects with this objective will be realizedin the course of a four-year field trial of the project “E-Energy: ICT-based Energy System of the Future”, which isset to run until the end of 2012. The project is supportedand funded by the Federal Ministry of Economics andTechnology (BMWi) in an inter-departmental partnershipwith the Federal Ministry for the Environment, NatureConservation and Nuclear Safety (BMU). Six modelregions are testing the everyday usability of a wide varietyof elements of an Internet of Energy. E-Energy, which aimsat harnessing the potential for optimization of communi-cation technologies to complement power grids, has hugeeconomic potential for the producers of electricity, for thenetwork operators, and for both residential and commer-cial consumers. All E-Energy consortia are pursuing anintegral system approach at all levels of the value chain.This approach includes energy-relevant activities on thetechnical operation level as well as on the level of innova-tive markets. E-Energy is a basis for future-oriented, new,cross-sector areas of activity and growth impulses, andunderscores the need for greater liberalization and decen-tralization of the energy supply system, and, last but notleast, for the development of electromobility.E-Energy is a complex innovation program and encom-passes far more than mere technical progress. Importantgoals of this program include the build-up of transferable

Figure 9: ICT infrastructure with smart metering

2007 2008 2009 2010 2011 2012 2013 2014 2015

2010Smart metering

roll-out

2014First service

mashups

2008Multi-utility &

smart meteringfield tests

2014Real-time

meter readingand monthly billing

established

December 2012Completion of the

six BMWi E-Energyprojects

2010First

household devicesequipped with DSM

2009Standardizedsmart metercommercially

available

2007Hot topics

“Green IT” and“IT for Green”

Legend: Anticipated date of occurrence Definite date

2009Evaluation

of home automationwith integrated DSM

2009European

standard forsmart metering

protocol(CEN TC 294,

WG2)

2007Google Inc. startsenergy initiatives

RE<C andRecharge IT

2008Six E-Energypilot projects

launched

2009Six “ICT forE-Mobility”

pilot projectslaunched

Source: BDI initiative Internet of Energy (2008)

knowledge, the formation of networks enabling rapidexchange of the new E-Energy know-how, and the estab-lishment of effective, integrated cooperation structures forresolving important cross-sectional issues. For this pur-pose, BMWi has commissioned “ancillary research”. A consortium that is continually evaluating the progressmade in the model regions ensures that the solutions areinteroperable, and organizes the exchange of knowledge.

However, it will be necessary to quickly realize additionallarge pilot projects that provide evidence of the potentialand reliability of virtual balancing groups in order to rollout this technology on a wide scale by 2021 – that is, bythe time the planned nuclear power phase-out is sched-uled to be concluded. As alluded to in the recommenda-tions for action in Section 5, this requires systematic fund-ing and support. Research in this area must be ongoingand must include ancillary research activities beyond suchresearch conduction in the initiated projects.

Page 21: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

19

3.3 Smart MeteringThe metering technology in use in Germany today can bedivided into two categories. For residential customers,mechanical or electromechanical metering technology ismainly used for measurement. For commercial and indus-trial customers over the load profile threshold2, electronicmeters with a communication component are in use. Thetwo recording systems are described in greater detailbelow.

3.3.1 Consumption Measurement: Residential CustomersTo record how much electricity and water is supplied tothe approx. 36 million German residential households,approx. 44 million electricity meters, 13 million gas meters,18 million water meters, and 0.3 million heat meters areused. What is being measured is not the individual demandover time, but rather just the total consumption during thebilling period. Since the existing meters are not equippedfor communication, they are read once a year by theoperator of the metering point or by the metering serviceprovider (electricity and gas), as well as by the utility com-pany (water and heat), or even by the customer.

3.3.2 Consumption Measurement: Commercial and IndustrialCustomersLarge commercial and industrial customers whose annualenergy consumption is above the load profile limit areentitled to time-based measurement of their energy con-sumption. In accordance with the German Electricity Net-work Access Ordinance (Strom NZV) and Gas NetworkAccess Ordinance (GasNZV), the energy consumption ofthis customer group must be recorded by means of “regis-tering load profile measurement”. This means that theamount of electricity consumed is recorded every quarterof an hour, while gas consumption is recorded hourly. Themeter data are read via remote meter reading systems andmust be made available to the supplier on a daily basis. Inthe categories water and heat, measurement devices notequipped with communication technology are normallyused. Here, the consumption data are read on a monthlybasis without any correlation to time.

3.3.3 Necessary Changes in MeteringIn contrast to the commercial and industrial customerssegment, where all requirements for individual, time-basedmetering have already been fulfilled to date, further actionis still needed as regards the household customer segment.The mechanical meters used there have become outdated

and have no future in a digital age. The replacement of theentire meter infrastructure will thus have to be initiatedwithin the next two years. Due to the high investmentcosts, it is not possible to directly transfer industrial meter-ing technology to the residential customer segment; rather,special tailor-made residential customer meters will haveto be designed and developed for this purpose. First large-scale trials with such devices are currently underway inseveral European countries. In addition to remote meterreading, other functions such as remote connection anddisconnection of consumers, power limitation, rate regis-ters, and failure detection are also being tested.

Bi-directional communication between metering pointoperators and connected electronic residential meters, inparticular, will gain special importance in the future. Byusing smart metering, valuable information about the con-dition of the distribution grid can be obtained and adher-ence to the permissible voltage levels can be monitored. In addition, smart metering can also be used as a gatewayto gain direct influence on decentralized power generatorsor loads. This communication thus constitutes the basisfor actively managing generation and consumption indistribution grids.

Different communication channels can be used for datatransmission. The E-Energy scenario envisages the use ofradio modules, the use of cell phone networks, or infor-mation transmission via the power line itself. Criticalissues that have yet to be resolved in this context includethe question of how to design smart metering in such away that it meets privacy requirements. In addition, clearrules have yet to be formulated regarding read and controlrights to smart meters by grid operators, metering pointoperators, power companies, and other potential serviceproviders.

Currently available reading systems are either category-specific or manufacturer-specific, and only have a shortlifespan on the market. Smart metering, however, is onlyfeasible economically– especially for multi-utility compa-nies – if a standardized device technology is used thatspans all categories and manufacturers. In other words,the technology for remote reading and control of bothcommercial and industrial customers and residential cus-tomers is available in principle. However, the basic uni-form standards for ensuring mutual interoperability of thedevices do not exist yet.

2 The load profile limit is 100,000 kWh/a (StromNVZ), respectively 1,500,000 kWh/a (GasNVZ).

Page 22: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

20 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

The development of a German smart metering standard iscurrently being pursued jointly by the two working groupsFigawa3 and ZVEI4, comprising the German meter anddevice manufacturers. Completion of this standard isexpected at the beginning of 2009. However, additionalfollow-up activities will be needed to achieve a Europeanstandard for smart metering systems. Therefore, concurrent efforts regarding the development of a Europe-wide metering standard are also underway onthe European level: by KEMA5 on behalf of the Dutchregulators and by ESMIG6 as the association of Europeanmeter manufacturers. These parallel and uncoordinatedactivities are proving to be ineffective. Therefore, theseactivities should be pooled as rapidly as possible – as alsodescribed in greater detail in Section 5.1 – in order toachieve a uniform European standard. The EU Commissionis planning to award a respective mandate to a task forceconsisting of Cenelec7, WELMEC8, and ETSI9. Under theleadership of Cenelec, a European standard for smartmetering is to be defined. This standardization approachought to be supported by the German Federal Government.

3.4 Integration TechnologyIn addition to the energy technology layer for the genera-tion, transmission, distribution, and usage of energy, thefuture Internet of Energy will also contain a communica-tion layer, which will enable the flow of information alongthe value chain and will map the corresponding businessprocesses. In order to achieve greater overall energy effi-ciency, improving this flow of information from the pro-ducer to the end user will be of vital importance.

As far as implementing this in ICT solutions with IT com-ponents is concerned, an integration level must be createdbetween economic applications and the physical grid. Suchan ICT platform must enable “end-to-end” integration ofall components, beyond heterogeneous grids and companyboundaries: from data-supplying end devices and smart me-ters via different communication channels right up to dataprovision for a multitude of different users, and from theend customer via the grid operator to the energy supplier.

Integration infrastructure and communication lines posethe biggest challenge in realizing such an integration plat-form. Conceptually, a precise, albeit application-neutraltechnical definition of the core functionality of such aplatform is necessary. It will form the basis on which bothnew and existing components can be integrated accordingto a uniform scheme, independent of the respective imple-mentation.

In terms of technology, concepts from the area of service-oriented architectures (SOA) are particularly suitable forachieving flexible coupling and decoupling of individualcomponents. Figure 10 shows an overview of sectors thatmust be integrated into an Internet of Energy platform. Itmust be possible to make the core functionalities of eachof these sectors available via open standard interfaces,independent of the concrete implementation, and to inte-grate them into a joint, cross-domain Enterprise ServiceBus (ESB). In this context, stringent message exchangeprotocols, standardized data formats, and secure datastorage, usage, and transfer are very important.

One important benefit of a uniform SOA architecture isthat point-to-point interfaces between single applicationsare avoided. Instead, each application only needs toimplement one single interface to the integration platform,which can subsequently be used to address and dynami-cally use all other applications.

The unique feature of the approach described here is theextension of the service-oriented integration of individualcomponents to intelligent end devices (Intelligent Grid

3 http://www.figawa.de/4 http://www.zvei.de/5 http://www.kema.com/6 http://www.esmig.ei/7 http://www.cenelec.eu/8 http://www.welmec.org/9 http://www.etsi.org/

Page 23: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

21BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Devices – IGD), which makes the overall system highlyflexible and scalable. This approach is often referred to as“Extended SOA” (Keen, Chin et al. 2006).

Two areas of the interface architecture of such a platformare particularly critical: (i) the integration point for localgrids in the IGD bridge or in smart meters and (ii) theintelligent gateways in the apartment, in the building, or in transformer stations. Only real-time integration at thesepoints makes the information provided by the IGD, theindependent remote reading systems, and the intelligentgateways directly available on the overall platform.Although realizing such fast data availability requires a lotof effort, it is necessary, especially if a large number ofheterogeneous systems must be integrated while keepingthe overall platform controllable at the same time.

One important element of such an integration platform issetting up central directory and search services listing therespective available functions (applications and devices)and making them accessible. This is the prerequisite forflexible usage. The necessary technical basis for setting upsuch services already exists today. In addition, many pro-viders of economic software have integrated SOA inter-faces into their own applications, so that, in principle,numerous applications would already be available todayon such a platform.

The situation is similar with regard to the integration ofelectronic meters, which have undergone intensive devel-opment over the last few years (cf. Section 3.3), makingthe SOA-based integration of these devices technicallypossible even on a large scale in the context of so-calledAdvanced Metering Infrastructures (AMI) (Heimann 2008).New business models and services such as those describedin Section 3.5 not only require fast availability of con-sumption information from smart metering devices, butincreasingly also demand possibilities for active interven-tion and control. Thus, the integration of complex energymanagement solutions will constitute a major part of theintegration work, beyond mere smart metering. Not onlyconsumption information from the intelligent end devices(generally aggregated by smart meters) will be transmittedto the components in the network (such as residentialmeters, decentralized generation facilities, consumptiondevices, cooling units), but so will price signals, rate infor-mation, and similar things. This data will also be providedto the service suppliers for dynamic usage.

One unresolved problem relates to the semantics of thedata exchange. The SOA interfaces of meter infrastructuresand information systems normally only provide a syntacticstructure, and the content of the messages exchanged viathese interfaces must still be specified in more detail. AnInternet of Energy can only be realized if, in addition to

Figure 10: Requirements domains for the Internet of Energy

Source: BDI initiative Internet of Energy (2008)

Real-time-capableintegration of IGDs,

bridges, and gateways

Businessapplicationsand portals

Intelligentgateways

Central unitin household

or concentratorin network

Mobiledevices

Intelligentgrid devices

(IGD) Application andprocess integration

System management

Value-added services for intelligent grid devicesInstallation

IGDbridges

Protocol converters

Examples:smart meters,decentralized

generation units,white goods, etc.

Localnetworks

Data security and privacy

Wide areanetworks

Development tools

Page 24: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

22 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

open interface definitions, the semantic structures of themessages to be exchanged have also been standardized.Here, legislation must be enacted to support the efforts ofthe German industry regarding the introduction of suchstandards and especially to support and promote theseefforts on the European level as well.

The regulatory measures already mentioned in Section 2.2have resulted in profound changes to the ICT landscape of the German energy sector during the past 12 months.The processes, for example, were fundamentally changedwhen ownership unbundling of grid operation and distri-bution became a requirement. For instance, originally, thetransmission of a provider’s meter data to its grid units wasmapped as an internal process. The same was true for newlines or customer cancellations. In the future, however,these processes will have to be mapped across companies,which will lead to a more complex market structure (cf.Figure 4).

With the increasing liberalization of the energy markets,the requirements will continue to increase as regardsensuring greater flexibility of ICT infrastructures. Overall,the existing (individual) applications must therefore be fur-ther developed in order to merge them together into onelarge common platform – analogous to the Internet. Onthis aggregation level and with defined open interfaces anddata exchange formats, it will become interesting to createnew combinations of the functionalities offered by produc-ers, transmission operators, and consumers, to developinnovative business models, and to thus realize furtherpotentials for efficiency in a liberalized energy market.

3.5 Economic Applications and New Business ModelsIn addition to the energy technology infrastructures for theproduction, distribution, and usage of energy flows, thereis another level, namely that of economic programs andapplications. A multitude of applications is used to managemaster data (e.g., data about business partners and theirfacilities), organize customer relationships (e.g., contracts,bills, and complaints), operate plants and equipment,organize manpower planning for employees, or processeconomically relevant energy data. In addition to theseindustry-specific functions, standard applications such asfinancial accounting, personnel management, or supplyprocurement naturally also play an important role.

The ICT solutions commonly used today are primarilyintended to support “traditional” business models of theenergy industry. A business model describes the respectivevalue added, the performance architecture needed to

achieve it, and the revenue model (Stähler 2001). In thetraditional model, a vertically integrated utility companysupplies energy to a large number of customers and billsthis energy periodically – for private end consumers, this is typically done on an annual basis. Its sales revenues aremainly generated from selling energy to customers. Ascomprehensively illustrated in Chapter 2, this traditionalbusiness model will be increasingly rendered moot in thefuture. The implementation of energy conservation meas-ures as well as increased competition are leading to adecrease in the revenues obtained from electricity sales.Thus, in order to meet future challenges, it will be of deci-sive importance for a company’s competitiveness to findnew business models that take into account the changingframework conditions. New technologies such as smartmetering and bi-directionally communicating end deviceswill create a totally new kind of market transparency aswell as new opportunities. These will make a significantcontribution to the development of such innovative busi-ness models, which can then be realized both by compa-nies established in the sector and by new players alike.

With regard to the components of the Internet of Energy,appropriate business applications that are capable of map-ping new business models quickly and flexibly also needto be made available and further developed. Defined openinterfaces will be needed in this respect that make theseapplications interoperable in the Internet of Energy, there-by ensuring that the new possibilities can be implementedin an economically viable and efficient manner. Figure 11shows an approximate timeframe for the different businessmodels briefly described in the following sections.

3.5.1 New Business Models for Energy ProducersLewiner (2002) describes a scenario in which energyproducers, driven by massive political efforts to dissolvevertically integrated utility companies, will increasinglyreclaim their original core business, namely, the generationof energy. However, in parallel to this, new technologiesand thus new business areas such as biogas feed-in orelectromobility are also on the verge of their large-scalelaunch into the market and offer enormous potential. Theincreasing decentralization of energy generation also leadsto new business areas. Contracting, for instance, mightbecome even more attractive for energy producers in thefuture. In this business model, an energy utility companyinstalls and operates, among other things, cogenerationplants, micro gas turbines, or fuel cell heating systems at acustomer’s premises. Such models are attractive from anenergy supplier's perspective, since (i) operating numeroussmaller plants entails lower investment risks than operat-ing one large plant, (ii) controlled decentralized generation

Page 25: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

23BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

enables better control of the grid load in transmission anddistribution grids, (iii) a new form of providing balancingenergy might become possible under certain conditions ifthese technologies are used on a large scale, and (iv) byoperating the facilities on site, it is possible to achievelong-term contractual customer retention. From the per-spective of the customer and the economy in general, thebenefits of such a business model include (i) the elimina-tion of initial investments, (ii) better energy recovery of theresources used, and (iii) a resultant reduction in energycosts. There are already suppliers that offer large-scaleheat and CHP contracting for small and medium-sizeenterprises. As a result of increased funding for small CHP plants that has been approved in the meantime, thisbusiness model will also become attractive for residentialcustomers in the future.

3.5.2 New Business Models for Grid Owners and Grid OperatorsThe impact of liberalization is currently most evident inthe area of grid infrastructure. Transmission and distribu-tion grids will, by and large, continue to be operated bynatural monopolists in the future, who will continue togenerate their revenues primarily from billing the actualenergy consumption. The issue of ownership of thesenatural monopolists is currently being intensively debated.A Europe-wide consensus seems to be in the offing,according to which energy utility companies will have tospin off their grid-operating companies and run these aseconomically independent enterprises, which will provideboth their parent company and other energy providers

with non-discriminatory access to their sub-grid, albeitsubject to a fee. In the future, this separation as well as thenew communication requirements in the Internet of Energywill increasingly turn grid operators into informationservice providers that can supply the market not only withenergy transmission services, but also with generation andsales data. It is conceivable that a grid operator will offerindividually customized information packages and willcharge for these according to expenditure and complexity.

3.5.3 Business Models resulting from Energy Trade andMarketplaces Existing marketplace operators such as the EuropeanEnergy Exchange (EEX) in Leipzig, the Amsterdam PowerExchange (APX), or Powernext in Paris, will certainlycontinue to be a force on the market in the future withtheir current business models. The trend of the last fewyears is expected to continue and the trade volumes andrevenues of such marketplaces are set to continue toincrease. In the future, institutionalized energy trading,which is currently still limited to a small number of marketplayers, is likely to be gradually made accessible all theway to the end users. Operators of the trading platformsrequired for this purpose might be companies from outsidethe sector (e.g., stock exchanges). However, the estab-lished energy providers have experience with energy trad-ing in its current form and are most familiar with sector-specific characteristics that have to be taken into account.Thus, based on these fundamentals, they would also besuitable as marketplace operators.

Figure 11: Trade and services – developments on the liberalized energy market

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2020Global

EmissionAllowance

Trading Scheme

2020Dynamicallyconfigurable

service mashups(e.g., DSM + AAL)

establishedon market

2015Export of GermanE-Energy servicesand technologies(> EUR 10 billion)

Legend: Anticipated date of occurrence Definite date

2008Monthly billing

is offered

2010Prototype

application:grid maturity model

2018Real-time

energy tradingplatforms available to

end customers

2014Grid maturity

model becomesstandard

2017Intermediaries

manageaggregate demand

of end users

2006Allianz AG

enterswind power

business

2015Approaches for

establishingdecentralized

energy markets

2000EEX

Leipzig

2012Monthly billing

established

2005EuropeanEmission

Trading Schemeestablished

2006Unified Protocols

for standardcustomer transfer

processesimplemented (BNetzA)

2013Energy business

becomes part of theEuropeanEmission

Trading Scheme

2011Fines in the event

of blackouts

2015First

energy brokers

Source: BDI initiative Internet of Energy (2008)

Page 26: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

24 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

On the demand side, it might become attractive in thefuture for wholesale traders to use the newly emergingmarkets as (multi-utility) distributors in order to buy differ-ent energy resources and then resell customized productsto retailers or large end customers (e.g., municipal utilitycompanies). It would thus become very easy for customersto obtain the precise mix of energy that they require, with-out having to deal with the complexity of market-basedprocurement needed for this purpose. Furthermore, thedevelopment of a market for secondary products, such asinsurance against failure/outage risks, price fluctuations,uncertain prognoses, or weather influences, is to beexpected. Here, appropriate specialized providers fromother sectors could also become active.

3.5.4 New Business Models for Service Providers and RetailersThis is the segment that is expected to undergo the biggestchanges in the future. Pioneers in this area are spin-offs ofexisting companies (e.g., the electricity and gas providerYello Strom GmbH as a subsidiary of EnBW AG, E wieEinfach of E.ON AG), which will soon be joined byservice providers from outside the energy sector (e.g.,TelDaFax AG, Allianz AG, Google Inc.) and by start-ups.In addition to the classical supply of energy, products indi-vidually customized to specific customer groups will alsoappear on the market (e.g., electricity, gas, and water froma single source), and a portfolio of third-party products(e.g., credit cards, cross-sector bonus programs) mightround off the service offer.

Additionally, this might provide an opportunity to tap intocompletely new market segments with new services, suchas optimization of a customer’s energy consumption. Itwould also be conceivable for customers to enter intomaster agreements with specialized service providers,which would enable the latter to access and controldecentralized generation capacities (e.g., cogenerationplants, parked electric vehicles) at short notice. Thiswould thus enable a service provider to set up a virtualpower plant for balancing energy, whose output couldonce again be offered in wholesale energy trading. Such a business model could also be combined with the con-tracting model.

Another important area is the dynamization of trade itself.Whereas static rate contracts are still standard for residen-tial customers, this may fundamentally change followingprojects such as “Price Signal at the Power Outlet” (Frey2007) as well as the introduction of price-variable rates,which were enacted into law by the Bundesrat (upperhouse of the Germany parliament) in July 2008. In theaforementioned project, customers receive real-time infor-

mation about the development of energy prices over thenext few hours and can then – initially manually, but laterwith the aid of home automation technology – optimizetheir energy consumption profile in terms of price. Severalstudies have shown that this makes it possible to reducepeak loads by approx. 6-20 percent (Lieberman andTholin 2004; Valocchi, Schurr et al. 2007).

All new business models described here can only be real-ized with the use of modern ICT and consistent standardi-zation of the communication protocols. In addition to theapplications available today, it will become necessary todevelop novel applications that complement existing soft-ware solutions or possibly replace them, and that can beintegrated into an overall platform – as described inSection 3.4.

3.6 Transition Process to the Internet of EnergyA schematic drawing in Figure 12 shows the transitionfrom the conventional energy grid to the Internet ofEnergy. Basically, more customers will also assume the role ofenergy producers. The distribution grids and the centralproducers must be adapted to the resulting requirementsin order to continue to ensure the stability of the grid andthe quality of power. This will only succeed if an ICT net-work that can be used in real time is established in parallelto supply all stakeholders with data on offers and con-sumption and to transmit control and price signals.

It is obvious that the majority of the participants in thisnetwork (from residential households to commercialproducers) can only interact effectively and efficiently ifstandardized interfaces and data exchange formats as wellas highly automated business processes are available. Interms of the resulting transparency, and in light of thesusceptibility of this infrastructure to new security attacks,security and user privacy must head the list of prioritiesthat have to be realized. Access authorization and privacyregulations are thus core elements of the Internet ofEnergy, which are just as important as interfaces and dataformats.

Page 27: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

25BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Figure 12: Transition process to the Internet of Energy

Source: BDI initiative Internet of Energy (2008)

1) Large-scale power plants

Today: A few large-scale producers serve many consumers

2015: Consumers become producers

2020: Coordination of all players through the Internet of Energy

3) Consumer (traditional)

4) Consumer (intelligent)

5) Grid control

6) Transmission grid

7) Distribution grid

8) Load flows

9) Internet of Energy

10) Integration technology

2) Renewable energy (fluctuating)

Page 28: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

26 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

The drive towards realizing an Internet of Energy contains complex inter-relationships and mutually dependent milestones. Based on the three sce-narios “Electromobility”, “Decentralized Generation”, and “Energy Tradeand New Services”, the interrelationships between possible developmentstogether with their mutual dependencies, possible timeframes, and poten-tials can be understood.

4 Scenarios for the “Internet of Energy” Developments and Opportunities in a Networked Energy Economy

4.1 Scenario I ElectromobilityThe climate debate is one of the reasons why the issue ofelectromobility, i.e., the use of hybrid or purely electricallyoperated vehicles, has achieved widespread publicity. TheGerman government is currently in the process of develop-ing a “National Electromobility Development Plan”, whichis intended to make Germany the market leader in thisarea within the next decade. According to this plan, by theyear 2020, at least 1 million vehicles that can be chargedfrom the electric grid (so-called plug-in electric and hybridvehicles) are expected to be in use throughout Germany.As soon as the proportion of plug-in (hybrid) electric vehi-cles (PHEVs) available in the future fleet of vehicles reach-es a significant level, their storage devices will be able tobe used systematically as buffers for capturing surplus sup-plies and for optimizing the load profiles. A significantlyhigher performance density of batteries and super-capaci-tors than today would give this development a significantboost. From a technical perspective, the pilot operation isnot expected to start until 2013 at the earliest, the com-mencement date being subject to further development ofthe energy management systems inside the vehicle linkedto a communication infrastructure between vehicle andprovider. A further prerequisite is the making of concreteoffers by utility companies that provide sufficient incen-tives for owners of plug-in electric vehicles to make thebuffer service available to the providers and to guaranteepurchase. Making electricity produced by photovoltaicscheaper until grid parity is achieved would provide furtherimpetus to this trend, since this would lead to decentral-ized private producers investing more in photovoltaics. As a result, these private producers could either feed theirsurplus supply of energy into the grid or store it in theirown vehicles.

For this scenario, see: Figure 2: Prognoses and trends – availability of fossilenergy sources and renewables; Figure 8: Decentralized energy generation and storage.

4.2 Scenario II Decentralized Energy GenerationDecentralized energy generation is one of the keys toreducing CO2 emissions. The generation of heat and elec-tricity in close proximity to where the load occurs reducesthe primary energy demand by 60 percent compared to thecentralized generation structure currently in use. In addi-tion, decentralized energy generators in a network couldhelp to make balancing energy available and to reduce thefurther extension of centralized supply. Overall, the intro-duction of small-scale cogeneration is still largely in itsinfancy today, despite the German CHP Act (KWKG, 2002,amended in 2008). On the distribution grid level and onthe medium voltage level, several pilot projects are alreadyunder way, operated mainly by smaller energy providers(Stadtwerke Unna, Stadtwerke Karlsruhe), as are the firstindividual commercial projects that attempt to providebalancing energy by combining different decentralizedcogeneration plants (e.g., Evonik 400 MW). All ongoingprojects and applications are individual solutions thatcannot be extended without substantial investment intechnology and manpower. The first scalable solutionspermitting the establishment and extension of a micro-gridare not expected until 2013 or later, because integratedICT solutions are needed that can be used to combine and control different generation plants in one area, andbecause the local heat networks that transport the heatoutput of these plants to the end customers still need to bere-structured.

Furthermore, it will be necessary to also install microgeneration facilities in residential buildings. Power-gener-ating heating systems will be the main focus here initiallyand will establish themselves independent of the develop-ments on the distribution grid level. Major pilot projectsare slated to commence in 2010. In the long term, thedemand for heat in the residential sector will becomesecondary due to improved heat insulation, while thedemand for electricity is set to increase. Concurrent to thisdevelopment, the focus will shift to power-operated micro

Page 29: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

27BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

cogeneration plants, fuel cells, and small combined heatand power plants.

As of 2010, the networking of power generation insidebuildings with the loads and the energy supplied by thegrid will be driven to a large extent by variable rates forenergy procurement and feed-in. The introduction of smartmeters is a basic prerequisite for this, since this is the onlyway in which consumption- and rate-dependent billing ispossible. Complex energy management calls for intercon-necting all major producers and consumers by means ofload and generation control. The introduction of whitegoods that can be connected (as of 2011) as well as that ofa consumer-side load management system (Demand SideManagement – DSM, as of 2012) are major steps in thisdirection. Coupling the loads with the decentralized gener-ators – if possible, one’s own generators – will onlybecome possible as of 2015 with the introduction ofDecentralized Energy Management Systems (DEMS).These will permit automatic optimization of the energyconsumption on the basis of set parameters such as CO2

emission or price. Stationary and mobile storage devices(electromobility as of 2015 and, on a larger scale, as of2020) can make a significant contribution to achievingthese goals.

For this scenario, see: Figure 3: Regulatory and political environment – regulatorymeasures in the energy sector; Figure 8: Decentralized energy generation and storage; Figure 6: Smart Home – use of ICT for energy optimizationin residential households.

4.3 Scenario III Energy Trade and New ServicesAs already partially laid down by sec. 40 of the GermanEnergy Industry Act (EnWG), load-based and variabletime-based rates for end customers will gradually replacethe fixed electricity and gas consumption rates and pricescharged today. Instead of fixed prices, an increasinglydynamic, market-based energy trade will be established,whose pricing mechanisms will promote more efficient useof energy. On the consumer side, this will become possiblethrough the introduction of home automation technologiesenabling transparent, intelligent, and (semi-)automatedconsumption control and thus dynamic response to vari-able energy prices. On the producer side, the installationof remotely controllable decentralized generator and stor-age technologies (incl. electric vehicles) as well as theirdynamic combination into virtual power plants will enablerapid reaction to price changes on the market. These tech-nologies will allow ever smaller generation and consump-tion units to directly participate in the on-exchange energytrading if they wish.

Customers who shy away from the resulting complexity ofthis trade can use specialized energy brokers to assumethis task. For such intermediaries, it will become evenmore interesting to take on trading activities if customersgrant them the right (against payment) to remotely controlcertain parts of their consumption or generation devices.The resulting balancing energy potential can then also beoffered on the market. In the Internet of Energy, eachproducer and each consumer will be able to decide forhim-/herself whether, for whom, and to what extenthe/she will provide access to his/her devices. On thistechnological basis, new services will become possible,such as real-time consumption analyses or, for example,mergers into virtual consumption and generation commu-nities.

For this scenario, see: Figure 3: Regulatory and political environment – regulatorymeasures in the energy sector; Figure 6: Smart Home – use of ICT for energy optimizationin residential households; Figure 8: Decentralized energy generation and storage; Figure 11: Trade and services – developments on the liber-alized energy market.

Page 30: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

28 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

The major upcoming changes to the energy sector pose significant challen-ges. They will affect not only the traditional energy industry, but also manyother sectors and players. If we want to realize the vision of a futureInternet of Energy soon, and make sure that the developments will actuallyresult in more efficient processes, we need to take targeted measures in theareas of standardization, research funding, and regulation.

5 Designing the Transition Process Concrete Recommendations

5.1 Standardization

5.1.1 Harmonization and Integration of Existing Standards and ProtocolsIn the areas of generation, transport, and distribution ofenergy, up-to-date measurement and status values are animportant issue when it comes to operating power plantsand ensuring the secure and reliable supply of energy.Optimization of energy consumption is based on inte-grated and near-real-time electronic communicationbetween producers and loads on all levels of the grid. Forthe individual sections of this integrated communication,communication protocols already exist worldwide andEU-wide (see Figure 13). These protocols are mainly

limited to one section, meaning that an integrated commu-nication system is still a long way off. As regards the intro-duction of Smart Grids, a key task in the near future inrelation to the drive towards realizing the Internet ofEnergy will be the need to establish an integrated, bi-direc-tional communication system from generation to the endconsumer. Furthermore, the importance of virtual powerplants will continue to grow, and these will be dependenton up-to-date energy data in the same way as the Internetof Energy. Thus, a comprehensive communication chain isa basic prerequisite.

Figure 13: Various standards in building automation, smart metering and energy technology

Source: BDI initiative Internet of Energy (2008)

Decentralized energy generation Transport grid Energy quantity measurement End consumption

Application level

Transport andcommunicationmedia level

LAN W-LAN

ISO 16484-5(BacNet)

ISO/IEC 14543-3(KNX)Application and

transport level

IEC 62055(electric meter [prepaid])

IEC 62056(DLMS/COSEM)

EN 13757(M-BUS)

IEC 61334 (PLC)

WiMax

GPRS/GSM

CDMA

3GPP

DSLEthernet

IEC 61400-25(wind power plants)

IEC 61850-7-420

(decentralized energy generation)

IEC 61968 (integration of applications into electricity supply facilities)

IEC 60255(protection installations)

IEC TS 62351 (data and communication security)

IEC TR 62325(ebXML)

IEC 61850(station automation)

TCP/IP

IEC 61970(API energy management systems)

ISO/IEC 14543-3-1(KNX)

ISO/IEC 14543-3-5 to 8(KNX)

BacNet/IP

EN 14908-x(LON)

IEC 62443 (safety)

ZigBee + IEEE (2.4 GHz)802.15.4

EN 13757-2(M-BUS & KNX)

Page 31: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

29BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

5.1.2 Extending the Standardization Efforts to Gas, Heat, and WaterTo achieve improved energy usage, all energy sectors willneed to be integrated into the Internet of Energy; in otherwords, not only electricity, but also gas, heat, and water.The standardization framework presented above musttherefore be expanded to all energy sectors – where thishas not yet taken place. Only the intelligent and combinedusage of different energy sources will make it possible torealize maximum gains in efficiency.

5.1.3 Coordinated Promotion of InteroperabilityCurrently, different groups and organizations acrossEurope are working on defining communication stand-ards. However, it makes no sense if several institutionsmake parallel attempts to define standards. If we reallywant to achieve a global or at least a uniform Europeansolution, then this must be done under the leadership ofan independent institution, for example the IEC, CEN,Cenelec, ESMIG, or ERGEG. At the moment, the EUCommission is examining the possibility of giving a man-date to a task force consisting of Cenelec, WELMEC, andETSI, see Section 3.3.3. This task force will be entrustedwith bundling, orchestrating, and continuing to pushahead with all standardization efforts made so far. The result of these standardization efforts must be astandard applicable throughout the EU, such as an IEC,EN, etc. The German government must support the estab-lishment of such a task force and the speedy drafting of astandard.

5.1.4 Open Communication Standards for New TechnologiesIf an integrated communication system exists, new prod-ucts and services can be developed. The communicationsystem must also be available for these new products. The communication standards to be created must there-fore be open to enable other applications to be integrated.

5.2 Incentives, Regulatory and Legal Framework

5.2.1 Creation of an Unambiguous Legal FrameworkA new uniform and unambiguous legal framework willpromote the development of an integrated communicationsystem. Together with the development of a standard, thenew legal framework will ensure the interoperability need-ed by the market players (customers, energy producers,technology companies, etc.) and provide sufficient legalstability and investment security.

5.2.2 Data Protection Compliance from the OutsetWhen the Internet of Energy is introduced, large amountsof different energy data on different levels of aggregationwill be generated and transmitted. Thus, high priorityshould be accorded to data protection in particular duringthe design and implementation of the Internet of Energy,not least because of the high degree of awareness amongconsumers and the media regarding this issue. The legisla-ture must actively promote the development of the Internetof Energy and, if necessary, make appropriate amendmentsto the existing legal framework in order to regulate dataprotection in this new environment. Only if clear andtransparent legal regulations exist regarding access rightsand restrictions for both read-only access to measurementand consumption units and control access to producersand consumers will the new technologies be embracedand achieve the necessary acceptance.

5.2.3 Providing Incentives to Grid Operators to EnableSustainable InnovationThe operators of transmission and distribution grids arekey players when it comes to realizing an energy industrynetworked via IT. Since the operation of a grid constitutesa natural monopoly, the economic constraints for cost-effi-cient electricity and gas grid operation are mainly estab-lished by the government. Policy makers should use thisscope for action to pave the way for the drive towardsgreater efficiency and environmental friendliness. Thecurrent incentive regulations in Germany are aimed atstrengthening the market and thus increasing competitive-ness. The resultant risk is focusing too much on short-termcost reduction. Considering the upcoming fundamentalchanges in energy supply, this goal contradicts the develop-ment of a structure that is optimal in the long term. In thecase of cost-based regulation as well as in the case ofincentive regulation, the grid operator will try to avoidincurring expenses that will not be recouped by higherrevenues resulting from grid usage fees. Entry into theInternet of Energy, however, calls for financial commit-ments in the areas of research and development and thepilot operation of new systems and investments in the grid

Page 32: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

30 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

infrastructure. The German Federal Network Agency(Bundesnetzagentur) should therefore ensure that gridoperators are provided with sufficient incentives to makethese investments. For example, such expenses could beconsidered and reimbursed separately when grid usagefees are regulated. It would also be desirable to promotebetter access to funding innovative solutions that considerthe chances and risks in a suitable manner. This would bemade possible by introducing a supplementary innovationcomponent into the incentive regulation, similar to theInnovation Funding Incentive (IFI) in the United Kingdom,or through specific funding for energy-efficient solutions,as stipulated, for example, by the Californian incentiveregulation. Denmark is also leading the way in settingitself targets that go beyond those of the EU, namely,generating 50 percent of its electricity from wind power by 2025, which can be promoted effectively if suitableregulations are in place.

5.2.4 Targeted Financial Incentives for Energy-EfficientCompaniesOn the part of the commercial energy consumers, thegeneral electricity and energy tax discounts common inmany sectors today should be conditional upon a com-pany’s use of an efficient energy management system.Companies that actively participate in measures designedto reduce energy consumption and implement an intelli-gent and efficient energy system should receive preferentialfunding. Such monetary incentives accelerate the use ofsuch technologies and their networking, reward energy-efficient companies, and strengthen their competitivenessagainst less efficient companies. This would result in thequicker realization of the vision of a future-orientedenergy system.

5.2.5 Promoting the Use of Innovative Networked Devices andAppliances among End UsersIn the area of private end consumers, government pro-grams can make a major contribution to speeding up theuse of new technologies and to rewarding efficient energyconsumption behavior. Consumers should be encouragedto allow temporal load shifts when operating their electri-cal appliances and to use smart meters in order to be morealert and conscious of their personal consumption and torecognize savings potentials. If we provide informationabout the new possibilities for people to intelligently andefficiently control their own energy consumption, then itwill be easier to encourage them to start using the neces-sary technologies (also see Public Relations Work, Section5.6). Targeted subsidies can further reduce the costs forresidential households.

5.2.6 Promotion of Electromobility

In the future, the use of (hybrid) electric vehicles will alsoplay an important role in climate protection. The batteriesthat these cars use to store electric energy could constitutean important buffer in the power grid, capable of absorb-ing power from the grid during times of increased energyavailability (e.g., if during times of high winds, grids with ahigh wind-generation power capacity can store power)and feeding power back into the grid in bottleneck situa-tions. Both research and development in this area as wellas the practical usage of these concepts should be activelypromoted by the government, for example by continuingto provide tax incentives for electric vehicles even afterthese have been rolled out in mass. Electrically operatedvehicles are one of the most promising options for reduc-ing emissions in the area of traffic and transportation andthus contribute to climate protection, provided they mainlyuse regenerative energies.

Page 33: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

31BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

5.3 Research Promotion

5.3.1 Funding for “Multi-Utility” Projects Covering Several SectorsToo often, “energy research” is still equated with “researchin the area of electricity supply”. However, maximum syn-ergies for higher overall efficiency can only be achieved ifwe take an integrated approach to electricity, heat, water,and possibly refrigeration. Initial activities such as the E-Energy projects10 and the project DEUS 2111 must beintensified in the future. On the one hand, this will requirefunding for projects to develop and pilot multi-utilitysmart metering that test the communication connection aswell as the protocols and interface formats to be employed.On the other hand, appropriate standards must be furtherdeveloped and tested as regards integrating smart genera-tion, so that combined heat and power plants, controllablegenerators, and consumers with on/off switches (e.g., refrig-erators) can be integrated and used without any problems.Integrated approaches, such as those in the E-Energyprojects, which take into account the integration of gener-ation, distribution, and consumption, should be givenpriority.

5.3.2 Funded Projects for the Realization of Virtual Power PlantsIn the coming years, one task will be to combine differentdecentralized generation capacities with the possibilities of load control (process-controlled load shedding, e.g., inindustrial production or through incentive-controlledbehavior of residential consumers) in large-scale modelprojects and thus to achieve optimized energy efficiency of the supply infrastructure under consideration. In thecontext of the European technology platform Smart Grids (EC 2006), existing regional model projects should beexpanded across national borders, so that by approx. 2021– i.e., by the time of the planned nuclear power phase-outin Germany – virtual power plants will have been realizedthroughout Germany.

5.3.3 Funding of FACTS Pilot Projects in the German and European UCTE Grids For regulating the energy flows between the balancinggroups, technologies such as FACTS and HVDC must beestablished area-wide on the network side. Although theseare not being used yet in Germany, they can make a deci-sive contribution to the improved usage of transmissiongrid capacities. By realizing large-scale pilot projects in theGerman and European UCTE grids, we should create thepossibility to study and demonstrate the potentials of thesetechnologies systemically and in real operation, thus mini-mizing technology risks, removing reservations held

regarding these technologies, and demonstrating theirpractical benefit for the management of high-voltage lines.

5.3.4 Basic Research on Energy Storage and Transfer In the more technology-oriented areas of basic research,there should be a separate research focus on the storageand (long-distance) transmission of electricity, since thedemand for sustainable solutions will grow with theincreasingly decentralized and geographically distributedgeneration of power and the increased usage of electricvehicles. The funding initiative “Lithium-based EnergyStorage Devices” of the German Federal Ministry ofEducation and Research BMBF is a good starting point for this, but it is not comprehensive enough. Technologiesworth funding in this area also include, for example, largechemical energy storage devices in the form of redox flowsystems12 for stationary use and electric double layercapacitors (supercaps) as a promising successor technolo-gy for battery storage devices in electric vehicles.

5.3.5 Study of End Consumer Behavior, Incentive Schemes,and Technology AcceptanceThe largest energy optimization potential lies in each indi-vidual’s conscious change in behavior. However, individualincentives provided with the intent of changing people’sbehavioral patterns are currently insufficient. Althoughevery citizen is by now aware of how important it is tosave energy, only a small minority are adapting theirlifestyle and consumer behavior accordingly. Increasedfunding for economic and sociological projects shouldstart from here. Such projects should study incentiveschemes and group effects aimed at raising public aware-ness about energy efficiency, which will contribute to long-term changes in attitude and behavior. Another factor forthe delayed introduction of innovative energy savingstechnologies may be their lack of user acceptance. Instudies and research projects on this topic, we shouldtherefore thoroughly check which expectations, needs, andfears end consumers have in dealing with intelligent enddevices, so that the lessons learned can be taken intoaccount when designing and implementing the Internet ofEnergy.

10 http://www.e-energie.info11 http://www.isi.fhg.de/n/Projekte/deus.htm12 cf. http://www.vrbpower.com

Page 34: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

32 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

5.4 Funding Methodology and Reorganization

5.4.1 Better Coordination of Funding ActivitiesGerman research funding in the area of energy remainsvery disparate. In specific research and innovation policyinitiatives conducted between 2006 and 2009, six differentfederal ministries were named as responsible coordinators– and coordination with EU initiatives is not under dis-cussion. Thus, the first recommendation is to bundle allactivities for funding energy research across ministerialboundaries into the hands of one national coordinator.This coordination agency should possess the requisiteexpertise and be entrusted with the task of better coordi-nating individual activities in order to achieve the goal ofmore target-oriented research.

5.4.2 Stronger Focus on Systemic ResearchThe current focus on some technologies considered espe-cially worthy of funding is unidirectional and too short-sighted. Therefore, a systemic approach is advocatedincluding sub-areas of energy research from the engineer-ing sciences, computer science, as well as from the eco-nomic and social sciences. All these areas should beplaced into a comprehensive context. A good example ofthis is the newly founded “KIT Centre Energy” of theKarlsruhe Institute of Technology.13

5.4.3 Certify and Reward Pioneers in Intelligent Energy UsageIn addition to providing direct financial subsidies forprojects, funding instruments that provide companies withthe opportunity to make a name for themselves as pio-neers in a certain area such as climate protection have alsoproved to be successful. Certifications, awards for the mostenergy-efficient company, participation in innovative andhighly visible pilot projects, as well as prizes (analogous,e.g., to the X-Prize for the first private space flight) canprovide a strong incentive for a company to make a sus-tainable commitment.

5.4.4 Integration of the Public Sector into the Internet of EnergyThe emergence of the Internet of Energy can be activelypromoted by integrating the public sector at an early stage.Public buildings such as schools, universities, administra-tive agencies, and city halls can be used to demonstratebest practices in a manner that is highly visible to thepublic. At the same time, the associated contracts andinvestments will directly promote the pertinent business

areas and thus drive the development and installation ofthe necessary technologies. The public sector would thusactively contribute to saving energy, and would then be ina position to demand more forcefully that citizens alsofollow suit. In addition, the processes of the public sectorthemselves should become compatible with the standardsof the Internet of Energy.

13 http://www.forschung.kit.edu/147.php

Page 35: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

33BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

5.5 Continuing Education and Training

5.5.1 Interdisciplinary Courses of StudyWith the emergence of the Internet of Energy, the demandfor skilled personnel, especially from the areas of electricalengineering and computer science, but also from the eco-nomic sciences, will continue to grow. In particular, gradu-ates with dual qualification will be needed. In order to beready to meet this increased demand, German universitiesshould introduce appropriate courses to the course cur-riculum.

5.5.2 Extension of the Continuing Education and Training ProgramsIn addition to university education, the national continu-ing education and training program must also be adapted.Electricians, mechatronic engineers, and plumbers willhave to install and maintain very complex componentssuch as electronic meters or home automation solutions inthe Internet of Energy. These will require not only electro-technical skills, but also ICT skills. Furthermore, there willbe a large demand for IT specialists with good knowledgeof the energy sector. Although there is a high demand forintelligent components such as smart meters, DEMS, etc.,there is a dearth of appropriately qualified IT specialists.In order to meet these new demands, new apprenticedtrades must be created and the existing apprenticed traderegulations must be adapted and extended.

5.6 Public Relations Work

5.6.1 Communicating the Potentials and Benefits to the General PublicThe Internet of Energy has the potential to revolutionizemany areas of our lives. If this is to happen, though, cus-tomers must be willing to accept certain changes in exist-ing lifestyles in the future, something that cannot be takenfor granted. For example, in the future, a user will notdirectly turn on the washer when it is filled, but only giveit permission to run. The system will then optimize thetime when the washer will actually run from the perspec-tive of overall energy efficiency, but still in accordancewith user preferences. In order to accept something likethis, the general public must be comprehensively informedabout the system, its applications, and especially about theassociated benefits in terms of improved efficiency andclimate compatibility. We must therefore present therespective technical and energy industry-related back-grounds and contexts to different target groups in a clearand comprehensible way.

5.6.2. Confidence-Building MeasuresThe necessary resources must be made available to trust-worthy sources, in particular, to present and communicatethe issue of the Internet of Energy to the general public,and to answer and resolve related questions. A good wayto heighten public awareness of the impending changeswould be to disseminate brochures, hold expert confer-ences, or take out advertisements in daily newspapers.These measures must go hand in hand with the activedesign of the legal framework and the precautionary dataprotection regulations. The measures taken for implement-ing data protection must be made transparent at an earlystage of the process.

Page 36: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

34 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

E-Energy: Germany Working towards an “Internet of Energy”

Increasing demand for energy, depleting fossil-based resources, and climatechange are emerging as a huge challenge to the electric power supplyindustry. New solutions are called for, which will provide maximum eco-nomic viability and security of supply and ensure that the highly complexpower supply system remains environmentally compatible. The aim is tocreate a system that minimizes energy losses and better handles the fluctu-ating generation of renewable energy sources such as wind power andsolar energy by integrating them into an energy system that will also enablethe integration of electric vehicles into the power supply system of thefuture. Despite advances in technology, today’s electric power systems areunable to perform complex tasks such as feeding energy into a powernetwork; energy that is, for example, generated by solar collectors whichtransform houses into mini power plants.

E-energy: ICT-based energy system of the futureCurrent analyses and expert assessments have made itclear that, in order to solve the problems, not only furtherprogress in the field of energy technology is necessary but,above all, comprehensive digital networking and a fargreater use of computer intelligence. The aim is to createan intelligent electricity system that is practically self-regu-lating, in which all the elements in the commercial energysupply chain are digitally interconnected and optimallycoordinated. Information and communication technolo-gies (ICT) will play a key role in the modernization of theelectricity industry.

The German Federal Government has been quick torecognize the need to find innovative energy solutions andhas launched the “E-Energy” technology support programwith a budget of approximately EUR 140 million in orderto boost and intensify necessary research and developmentactivities (R&D). The funding program was initiated inApril 2007 by the Federal Ministry of Economics andTechnology (BMWi) and is now being conducted in con-junction with the Federal Ministry for the Environment,Nature Conservation and Nuclear Safety (BMU).

As part of the E-Energy project, six model regions wereselected to develop and test the core technical componentsof E-Energy solutions, which will intelligently monitor,control, and regulate the entire electricity supply system allalong the chain from power generation and distributionto storage and energy consumption. E-Energy has beendeclared a beacon project that aims to motivate businessesand regions to contribute to the development of a highlyefficient, ICT-based energy system. In addition to makingproject funding available, the BMWi will also encourageancillary research aimed at addressing strategic problemsand working together to develop the solutions. Thisresearch will focus on cross-cutting issues such as softwarearchitecture, the standardization of open interfaces, accept-ance, and legal conformity. In addition, the ancillaryresearch will work towards creating a national and inter-national network to ensure the rapid communication ofresults and the development of potential synergies.

E-Energy will contribute to a greener environment, presenta good opportunity for the creation of new future-orientedjobs, and open up new multi-billion markets. One of thekey functions of the E-Energy beacon project is to createhighly efficient solutions to promote the expansion ofdecentralized and renewable energy sources through sys-tem integration and to provide a launch pad for an opti-mum integration of electric vehicles into the powernetwork so that electromobility can make an importantcontribution to increasing energy efficiency, as a means of energy storage and by utilizing its potential as control

Page 37: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

35BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

energy. The aim is to create an integrated data and energynetwork with innovative structures and functions. Digitalmeasuring devices (smart meters) will replace today’s elec-tricity meters, providing the basis for innovative controland monitoring systems that will guarantee the equilibri-um between power generation and power consumption.These control and monitoring systems will ensure thatpower generation, network load, and power consumptionare synchronized at all times and that this interactionfunctions largely automatically. This will help reduce peakload times and minimize expensive control energy as wellas reduce the load on the power network and increase thesecurity of energy supply. ICT gateways can be preset tocoordinate the activation of power consumption facilities,to switch on small cogeneration plants, or to feed powerinto the network from storage units. The E-Energy initia-tive will also create a new, electronic “energy marketplace”where all types of service providers can showcase newproducts and services that go far beyond the mere sellingof power. Examples of possible services are specific ener-gy-saving programs, the monitoring and remote control ofelectrical devices, and charging the batteries of electricvehicles using low-cost “green” power as it becomes avail-able (e.g., in strong winds). End consumers can also playan active role in this marketplace; for example, they cansell small amounts of home-generated power (e.g., fromtheir solar power system or mini cogeneration unit).

E-Energy links processes within the energy industry to create an interactive system Up to now, the prevailing paradigm of power supply hasbeen “consumption-oriented power generation”. In thefuture, it will be practically impossible to maintain thisone-way system, for the new power supply systems oftomorrow will be based to a far greater extent on weather-dependent energy sources such as sun and wind. For thisreason, innovative ICT solutions are to be created withinthe six E-Energy model regions (see below), which will, for the first time, enable a “generation-oriented powerconsumption” system to be implemented alongside con-ventional “consumption-oriented power generation”.Within the framework of the E-Energy model regions, ourelectricity system, which has been unidirectional up tonow, will be developed into a highly complex, intelligent,interactive real-time system that will digitally link all theelements in the energy supply chain.

One of the functions of the Internet of Energy will be tolink central and decentralized power generation units andintegrate them to form a harmoniously-operating network.It will be able to create a dynamic equilibrium betweenvolatile renewable energy sources and fluctuating powerconsumption and guarantee precise regulation and opti-mum utilization of the power network. A self-regulatingnetwork controlled by central and decentralized comput-ers can activate power-consuming devices on demand, forexample, when low-cost surplus energy is available fromstrong winds. At the same time, the interaction betweenelectrical devices and power networks ensures that thegrid is not overloaded. Refrigerators and heat-pump units,for example, or washers and dishwashers could be regulat-ed by an ICT-based, generation-oriented load managementsystem and be supplied with volatile renewable energy.

Source: E-Energy, Federal Ministry of Economics and Technology

Figure a: The Internet of Energy integrates all the elements in the energy supply chain to create an interactive system

Smartgeneration

Smartgrids

Smartconsumption

Marketplace technologies Operating technologies

Smartstorage

Smart control through thereal-time networking of all

system components

Interdisciplinary technologies:Digital collection, processing and networking of data

Page 38: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

36 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

E-Energy as a launching pad for electromobilityA prime example for the effectiveness of the E-Energy sys-tem is the safe, cost-efficient integration of electromobilityinto the power supply chain while maintaining overall net-work stability. With electric vehicles, the precise time atwhich the battery is charged is irrelevant. The importantthing is that it has been charged by the time the vehicle isnext used. In the Internet of Energy, electric vehicles willbe able to register their current position, the energy levelof the battery, and the time at which it must be rechargedto a specific level via the “Internet of Energy”. The ownerof the vehicle can, for example, preset the system so thatthe battery will be charged at lowest-possible cost, or sothat the battery should generally only be charged with“green power”. If the owner of the battery so desires, theE-Energy systems can even ensure that any power remain-ing in the battery is fed back into the network in order tocover peak period demand. In this way, electric vehiclesare transformed into storage and control elements as part of the intelligent power network of the future. TheNational Electromobility Development Plan is paving theway for the spread of electromobility across Germany. Thedevelopment, infrastructure, and market launch of theelectric vehicles will be subsidized in a 10-year program.With the E-Energy project as a “launching pad”, theFederal Ministry of Economics and Technology is support-ing new application-oriented research focusing on “ICTfor electromobility”.

E-Energy creates new jobs and growth markets E-Energy unites the major marketplaces in the fields ofenergy and ICT. This creates cross-sector areas of employ-ment with enormous potential and marketplaces thatrequire totally new forms of technical and businesscooperation. The E-Energy project also bolsters growthprospects in the form of innovative services and newbusiness models and by providing a variety of innovativetechnical products that need to be installed and serviced.A number of small and medium-sized businesses – firstand foremost energy utility companies – stand to benefitfrom E-Energy as will engineering firms, producers ofhardware and software, and globally active companiesinvolved in energy facility construction projects.

Page 39: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

37BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Within the framework of the E-Energy beacon project, six modelregions are being supported by the Federal Ministry of Economics andTechnology (BMWi) in an interdepartmental partnership with theFederal Ministry for the Environment, Nature Conservation andNuclear Safety (BMU).

eTelligence – model region of CuxhavenThe aim of the eTelligence program in the Cuxhaven modelregion is to implement concepts for the energy supply net-work of the future. The region is perfectly suited for thisproject because a large proportion of its energy needs arecovered by renewable energy sources. The crux of theCuxhaven eTelligence project is to create a regional energymarketplace that brings all market participants togetheronline, i.e., power generators, power consumers, energyservice providers, and power network operators. In addi-tion, the project team is also incorporating consumers intothe project, such as the fishing industry with its refrigeratedwarehouses and swimming pools, thereby creating new,controllable energy storage that assists in compensating forthe variations in wind power production.

The partners in the project are linked via state-of-the-artinformation and communication technologies (ICT). Inthe long term, standardized plug and play interfaces willfacilitate the entry of new power generators and powerconsumers into the system. In addition, consumers will beable to identify “energy guzzlers” in their own homes viaan online platform and adapt their consumption behavior.In order to establish what the market participators expectfrom an E-Energy marketplace, the eTelligence project willexamine the extent to which users approve the new systemand will present the ideas and concepts of the Internet ofEnergy to locals as well as visitors to the Cuxhaven vaca-tion region.

The participants in the eTelligence project are: EWE AG, BTC AG, OFFIS e.V., energy & meteo systems GmbH, Fraunhofer-Verbund Energie, Öko-Institut e.V.

Further information: www.etelligence.de

Figure b: Model regions of the E-Energy beacon project: The six model regions in the E-Energy technology competition are developing solutions for the ICT-based energy system of the future.

Source: E-Energy, Federal Ministry of Economics and Technology

The Six E-Energy Model Regions at a Glance

Further information can be found at www.e-energy.de.

e-Telligencemodel region of Cuxhaven

E-DeMamodel region of Rhein-Ruhr

Smart Wattsmodel region of Aachen

Model city of Mannheimmodel region of Rhein-Neckar

MEREGIOmodel region of Baden-Württemberg

RegModHarzregenerative model region of Harz

Page 40: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

38 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

MEREGIO - the emergence of “minimum emission regions”The aim of the MEREGIO Baden Württemberg modelregion is to fulfill the demand for more efficient, decentral-ized energy systems. In order to accomplish this, decen-tralized power generators, smart storage systems, as wellas private and commercial power customers are to belinked via data lines. Creating an energy marketplace thatwill coordinate energy supply and demand together withthe complementary power service providers is the center-piece of the MEREGIO project.

The key objective of the MEREGIO project is to ensuremore efficient use of combined heat and power plants andfuel cells. Variable power rates will ensure genuine con-sumer choice, with the aim of reducing greenhouse gasemissions. The project will incorporate and analyze theinput provided by 1000 households and commercial busi-nesses, which have already been equipped with smartmetering systems in order to make the system more trans-parent for consumers.

The smart electricity meters provide data useful for plan-ning, load transfer, and for calculating variable rates, thuscreating an active awareness geared towards more efficientenergy use. Another important aspect of this project is thefact that the entire system is controlled by one central plat-form. Price incentives will be used to control power con-sumption so that energy is consumed when it is cheap andwhen sufficient energy is available. The success of theregion will be documented by the Minimum Emissioncertificate.

Participants: EnBW Energie Baden-Württemberg AG, ABB AG, IBM Deutschland GmbH, SAP AG, Systemplan GmbH, Universität Karlsruhe (TH)

Further information: www.e-energy.de/de/meregio.php

E-DeMa – The development and demonstration ofdecentralized linked energy systems to create the E-Energy marketplace of the futureA large private energy service provider is working togetherwith a medium-sized municipal energy service provider inthe Rhine Ruhr area model region to develop an E-Energymarketplace by the year 2020. One important feature ofthe E-DeMa project is that it includes both representativerural areas and urban areas. Smart household devices alsoplay an important role, as does communication via smartICT gateways.

The aim of the project is to develop an integrated data andenergy network that intelligently controls power consump-tion. An open electronic marketplace will connect privatepower consumers with energy distributors, grid networkoperators, and suppliers of other energy services. Theconcept of a customer does not exist. The customers areboth producers and consumers of energy, commonlyreferred to as “prosumers”. The aim of the E-DeMa projectis to pool small amounts of generated energy in order toprovide Germany with a more flexible and more decentral-ized energy supply.

One key element of this project is a system comprising“smart gateways” that allow for constant bidirectionalmonitoring of power supply and demand. The new smartelectricity meters allow customers greater flexibility in thatthey are able to enjoy lower rates by adapting power con-sumption in their homes to a variable electricity price.Customers are equipped with smart household devices,meaning that they are actively integrated in the energy sys-tem, which thus becomes more transparent. Informationand communication technology will enable the powersupply network to be optimized into decentralized distri-bution grids.

Participants: RWE Energy AG, Stadtwerke Krefeld AG, Siemens AG, ef.ruhr GmbH, Miele & Cie. KG, Prosyst Software GmbH

Further information: www.e-dema.com

Page 41: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

39BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Mannheim model city in the Rhine-Neckar metropolitan regionIn its plans for an energy supply system of the future, theconsortium concerned with the model city of Mannheimenvisages an intelligent power network connected tonumerous decentralized energy producers and power rates,which are calculated according to supply and demand.

The model city of Mannheim is working to transform thisvision into reality. The project is concentrated on an urbanagglomeration with a high supply density where bothrenewable and decentralized energy are widely used.

The E-Energy project in Mannheim – which will also becarried out in Dresden in order to demonstrate the trans-ferability of the scheme – will encompass a representativelarge-scale test using new methods for improving energyefficiency and network quality and will demonstrate theways in which renewable and decentralized energy can be integrated into the urban distribution grid. The keyobjective of the project is to develop a multi-disciplinaryapproach (electricity, heat, gas, water) that creates an openplatform equipped with a broadband powerline infrastruc-ture integrating the various components. Customers willbe offered electricity from a nearby source at the time of itsgeneration. This will prevent power losses during transportand will include the use of decentralized energy storage.The energy market of the future will empower energy con-sumers to better manage their power consumption andpersonal energy generation (as a prosumer) in accordancewith variable time-based rates. In addition, real-time infor-mation and energy management components will help thecustomer to make his personal contribution to achievinggreater energy efficiency.

Participants: MVV Energie AG, DREWAG – Stadtwerke Dresden GmbH, IBM Deutschland GmbH,Power PLUS Communications AG, Papendorf Software Engineering GmbH, Universität Duisburg-Essen,ISET – Verein an der Universität Kassel e.V., ifeu Heidelberg GmbH, IZES GmbH

Further information: www.modellstadt-mannheim.de

RegModHarz – Regenerative model region of HarzThe aim of the E-Energy project known as the “Regenera-tive model region of Harz” (RegModHarz) is the technicaland economic development of renewable energy resourcesand their integration into everyday life. A factor of majorimportance is to ensure the stability of the power networknotwithstanding the highly volatile nature of renewableenergy sources. For this reason, the pilot project will con-nect suppliers and consumers of renewable energy andintegrate them into a virtual power plant, making use ofelectrically-powered vehicles to provide temporary energystorage and thereby optimizing future coordinationbetween power generation and power consumption. Thisconcept, in connection with an electronic marketplace inthe form of an online network, guarantees to the partici-pating power suppliers, power distributors, network opera-tors, and consumers an electronic marketplace thatensures them an energy supply conforming to the highestecological and economic standards.

The Bidirectional Energy Management Interface (BEMI)controls household devices and ensures that householddevices such as freezers, refrigerators, and washers can beswitched on at times when cheap electricity is availableand then turned off again.

In the Regenerative Harz model region, a number of sup-pliers of renewable energy are cooperating in a compre-hensive energy system. One of the participants in theproject is the Wendefurth pumped storage hydro powerstation, for example, which contributes 80 megawatts ofturbine power; another is the Druiberg Energy Park inDardesheim, which comprises numerous wind powerplants and photovoltaic energy plants. Electromobility isanother integral RegModHarz project concept. Electricvehicles are equipped with a bidirectional interface, whichenables them to store power originally supplied from windenergy and subsequently feed this power back into theenergy network. In this way, they function as temporaryenergy storage for volatile wind energy.

Participants: Cube Engineering GmbH, envia Mitteldeutsche Energie AG, envia Verteilnetz GmbH,E.ON Avacon AG, Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF, Halberstadtwerke GmbH, Harz Regenerativ Druiberg e.V., HSN Magdeburg GmbH, Universität Kassel IEE Rationelle Energiewandlung,

Page 42: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

40 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

in.power GmbH, ISET – Verein an der Universität Kassel e.V., Landkreis Harz, Otto-von-Guericke-Universität Magdeburg,RegenerativKraftwerk Harz GmbH & Co KG, Siemens AG, Stadtwerke Blankenburg GmbH, Stadtwerke Wernigerode GmbH, Stadtwerke Quedlinburg GmbH, Vattenfall Europe Transmission GmbH

Further information: www.regmodharz.de

Smart W@ttsSmart W@tts has developed the smart kilowatt hour,which will become a major factor in a more decentralizedenergy market. This “smart” energy system will pave theway for public utility companies, manufacturers of electri-cal devices, service providers, and consumers towardsoptimized energy consumption and increased efficiency.

To help achieve this goal, an automated transaction plat-form is necessary through which the increasing volume ofstandardizable business transactions between participantsin the energy system can be concluded efficiently and atminimum risk. In the course of the pilot project, approxi-mately 500 households will be equipped with Smart W@ttselectricity meters and compatible intelligent householddevices by the year 2011. In addition, electric vehicles willalso be included in the field experiment. The aim of thispilot project is first and foremost to examine the practica-bility of various solutions for energy suppliers and con-sumers, and, additionally, to test and document the effects of the concept on the energy industry.

In the future, required smart meter systems will be able notonly to process the values that have been read, but also tofurnish consumers with real-time information on rates andprices in their homes. One forecasting method makes itpossible to predict the way in which changes in the rateswill affect consumer behavior so that these price changescan be measured correctly. One specific electronic compo-nent makes price information available that relates tospecific devices and consumers. This enables consumers,for example, to take advantage of differences in price tooptimize household consumption (“Customers are able toplan ahead as regards using their appliances and equip-ment when cheaper electricity is available!”). Hence, thiselectronic component functions as an intelligent balancebetween supply and demand.

Participants: utilicount GmbH, Soptim AG, Forschungsinstitut für Rationalisierung an der RWTH Aachen, PSI Büsing & Buchwald GmbH, Kellendonk Elektronik GmbH, Stadtwerke Aachen AG

Further information: www.smartwatts.de

Page 43: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

41BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

AppendixFigures

Figure 1: Annual global CO2 savings potential through the use of ICT 7Figure 2: Prognoses and trends – availability of fossil energy sources and renewables 7Figure 3: Regulatory and political environment – regulatory measures in the energy sector 8Figure 4: Multitude of players and contractual relationships on the liberalized electricity and metering market 9Figure 5: Internet of Energy 13Figure 6: Smart Home – use of ICT for energy optimization in residential households 14Figure 7: Large-scale generation, distribution and storage of energy – paradigm shift in grid technology 16Figure 8: Decentralized energy generation and storage 17Figure 9: ICT infrastructure with smart metering 18Figure 10: Requirements domains for the Internet of Energy 21Figure 11: Trade and services – developments on the liberalized energy market 23Figure 12: Transition process to the Internet of Energy 25Figure 13: Various standards in building automation, smart metering and energy technology 28Figure a: The Internet of Energy integrates all the elements in the energy supply chain to create an interactive system 35Figure b: Model regions of the E-Energy beacon project 37

Page 44: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

42 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

μ-CHP Micro combined heat and power generation (small CHP plants))AAL Ambient Assisted LivingAPX Amsterdam Power ExchangeARegV Anreizregulierungsverordnung (Incentive Regulation Ordinance)BACnet Building Automation and Control Networks (communication standard)BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. (German Association of Energy and

Water Industries)BDI Bundesverband der Deutschen Industrie e.V. (Federation of German Industries)BGR Bundesanstalt für Geowissenschaften und Rohstoffe (Federal Institute for Geosciences and

Natural Resources)BMBF Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)BMWi Bundesministerium für Wirtschaft und Technologie (Federal Ministry of Economics and Technology)BNetzA Bundesnetzagentur (Federal Network Agency)CCS Carbon Capture and StorageCenelec Comité Européen de Normalisation ElectrotechniqueCHP Combined heat and power generation CHP plant Combined heat and power plantDEMS Decentralized Energy Management SystemDSM Demand Side ManagementEEG Erneuerbare Energien Gesetz (Renewable Energy Sources Act)EEX European Energy ExchangeEIB/KNX KNX AssociationEnEV Energieeinsparverordnung (Energy Conservation Ordinance)EnWG Energiewirtschaftsgesetz (Energy Industry Act)ERGEG European Regulators’ Group for Electricity and GasESB Enterprise Service BusESMIG European Smart Metering Industry GroupETSI European Telecommunications Standards InstituteFACTS Flexible Alternating Current Transmission SystemFigawa Bundesvereinigung der Firmen im Gas- und Wasserfach e. V. (German Association of Firms in the Gas

and Water Industries)GaBi Gas Grundmodell der Ausgleichsleistungs- und Bilanzierungsregeln im Gassektor (Basic Model of

Balancing Services and Balancing Rules in the Gas Sector)GasNZV Gasnetzzugangsverordnung (Gas Network Access Ordinance)GeLi Gas Geschäftsprozesse Lieferantenwechsel Gas (Business Processes for a Change in Gas Supplier)HVDC High-Voltage Direct Current transmission ICT Information and Communication TechnologiesIFI Innovation Funding IncentiveIGBT Intelligent inverterIGD Intelligent Grid DevicesKEMA Beratungs- und Prüfgesellschaft für die Energiewirtschaft (association for energy consulting and

testing & certification)

Abbreviations

Page 45: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

43BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

KWKG Kraft-Wärme-Kopplungsgesetz (Combined Heat and Power Generation Act)LED Light-Emitting DiodeLON Local Operating NetworkMessZV Messzugangsverordnung (Metering Access Ordinance)OLED Organic LEDPEV Plug-in Electric VehiclePHEV Plug-in Hybrid Electric VehicleSOA Service-oriented ArchitecturesStromNZV Stromnetzzugangsverordnung (Electricity Network Access Ordinance)TEHG Treibhausgas-Emissionszertifikate-Handelsgesetz (Greenhouse Gas Emissions Trading Act)TWh Terawatt hourUCTE Union for the Coordination of Transmission of ElectricityVDE Verband der Elektrotechnik, Elektronik, Informationstechnik e. V. (Association for Electrical,

Electronic & Information Technologies)WEP Wind energy plantsWELMEC Western European Legal Metrology CooperationZigBee Low-power wireless standard of the ZigBee AllianceZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e. V. (German Electrical and

Electronic Manufacturers’ Association)

Page 46: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

44 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Allianz (2006). “Energie der Zukunft.” accessed 15.12.2007, http://www.allianz.com/de/allianz_gruppe/presse/news/finanznews/beteiligungen/news6.html.

BGR (2008). Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2007 – Jahresbericht 2007. Hannover, Bundesanstalt für Geowissenschaften und Rohstoffe.

BMU (2008). Klimaschutz-Impulsprogramm zur Förderung von Mini-KWK Anlagen. Berlin, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit.

BMWi (2006). Potenziale der Informations- und Kommunikations-Technologien zur Optimierung der Energieversorgung und des Energieverbrauchs (eEnergy), Bundesministerium für Wirtschaft und Technologie.

BNetzA (2006). Geschäftsprozesse für den Lieferantenwechsel im Gassektor (GeLi Gas), Bundesnetzagentur. BK7-07-067.

BNetzA (2006). Geschäftsprozesse zur Kundenbelieferung mit Strom (GPKE), Bundesnetzagentur. BK6-06-009.Brinker, W. (2007). “Stromwirtschaft fördert zukunftsweisende Energieprojekte.”

http://www.strom.de/vdew.nsf/id/DE_20070522_Rede_Brinker.Bundesrat (2007). Vorschlag für eine Richtlinie des Europäischen Parlaments und des Rates zur Änderung

der Richtlinie 2003/54/EG über gemeinsame Vorschriften für den Elektrizitätsbinnenmarkt KOM(2007),Bundesrat. Ratsdok. 13043/07.

Bundestag (2008). Gesetz zur Öffnung des Messwesens bei Strom und Gas für Wettbewerb, Bundesanzeiger. 1790.Cox, P. M., Betts, R. A. et al. (2000). “Acceleration of global warming due to carbon cycle feedbacks in a

coupled climate model.” Nature 408: 184-187.Darby, S. (2006). The effectiveness of feedback on energy consumption. Environmental Change Institute,

University of Oxford.dena (2005). Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land

und Offshore bis zum Jahr 2020. Köln, Deutsche Energie-Agentur GmbH.EC (2006). European Technology Platform Smart Grids, Vision and Strategy for Europe’s Electricity Networks

of the Future, European Communities. RTD Info – EUR 22040. Luxembourg, European Commission.EU (2006). Richtlinie 2006/32/EG über Endenergieeffizienz und Energiedienstleistungen, Europäisches Parlament

und Rat der Europäischen Union.EU (2007). World Energy Technology Outlook to 2050, MEMO 07/2.EU Kommission (2006). Aktionsplan für Energieeffizienz: Das Potenzial ausschöpfen, Kommission der

Europäischen Gemeinschaften. KOM(2006) 545.Frey, H. (2007). Preissignal an der Steckdose. dena Energie Forum. Berlin, EnBW Energie Baden Württemberg AG.Heimann, K. (2008). Energy Supply of the Future – Introduction to the AMI@SAP Project.

2008 IET Seminar on Smart Metering – Gizmo or Revolutionary Technology.Henning, E. (2006). “Positives Fazit: Betriebserfahrungen mit dem Virtuellen Kraftwerk Unna.” BWK.

Das Energie-Fachmagazin 58(7): 28-30.Hope, S. and Stevenson, M., Eds. (2008). Climate Change and Energy: 20 20 20 by 2020.

EU Focus, Delegation of the European Commission to the United States.IEA (2008). World Energy Outlook 2008. Paris, International Energy Agency.IPCC (2007). Climate Change 2007: Synthesis Report, International Panel on Climate Change.Jesse, J.-H. and van der Linde, C. (2008). Oil Turbulence in the Next Decade: An Essay of High Oil Prices in a

Supply-constrained World. Den Haag, Netherlands, Clingendael International Energy Programme.Keen, M., H. H. Chin, et al. (2006). Patterns: Extended Enterprise SOA and Web Services, IBM Redbooks.Lewiner, C. (2002). “Business and Technology Trends in the Global Utility Industries.”

Power Engineering Review, IEEE 21(12).Lieberman, B. and K. Tholin (2004). Retail Real-Time Pricing for Mass Market Customers – Experience,

Perspectives, and Implications for a Post-2006 Policy Framework, Illinois Commerce Commission.Martinsen, D., Linssen, J. et al. (2006). “CCS: A future CO2 mitigation option for Germany? A bottom-up approach.”

Energy Policy 35(4): 2110-2120.

Literature Sources

Page 47: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

45BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Schlissel, D., Johnston, L. et al. (2008). Don’t Get Burned – The risks of investing in new coal-fired generating facilities. New York, Synapse Energy Economics, Inc.

Stähler, P. (2001). Geschäftsmodelle in der digitalen Ökonomie: Merkmale, Strategien und Auswirkungen. Köln, Josef Eul Verlag.

StatBA (2006). Datenreport 2006: Zahlen und Fakten über die Bundesrepublik Deutschland. Berlin, Statistisches Bundesamt.

Stevens, P. (2008). The Coming Oil Supply Crunch. London, Royal Institute of International Affairs.The Climate Group (2008). SMART 2020: Enabling the low carbon economy in the information age,

Global e-Sustainability Initiative (GeSI).The Economist (2008). “A special report on the future of energy.” Economist 25/2008.Valocchi, M., Schurr, A. et al. (2007). Plugging in the consumer: Innovating utility business models for the future.

IBM Institute for Business Value study.

Page 48: Bdi initiative io_e_us-ide-broschuere_tcm27-45653
Page 49: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

47BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

Catalog of Demands

Standardization

1. Harmonization and integration of existing standards and protocols2. Extending the standardization efforts to gas, heat and water3. Coordinated promotion of interoperability4. Open communication standards for new technologies

Incentives, Regulations and Legal Framework

5. Creation of an unambiguous legal framework6. Data protection compliance from the outset7. Creation of sustainable innovation incentives for grid operators8. Targeted financial incentives for energy-efficient companies9. Promoting the use of innovative networked devices and appliances among end users

10. Promotion of electromobility

Research Promotion

11. Funding for “multi-utility” projects covering several sectors12. Funded projects for the realization of virtual power plants13. Funding of FACTS pilot projects in the German and European UCTE grids 14. Basic research on energy storage and transfer 15. Study of end consumer behavior, incentive schemes and technology acceptance

Funding Methodology and Reorganization

16. Better coordination of funding activities17. Stronger focus on systemic research18. Certifying and rewarding pioneers in intelligent energy usage19. Integration of the public sector into the “Internet of Energy”

Continuing Education and Training

20. Interdisciplinary courses of study21. Extension of the continuing education and training programs

Public Relations Work

22. Communicating the potentials and benefits to the general public23. Confidence-building measures

Page 50: Bdi initiative io_e_us-ide-broschuere_tcm27-45653

48 BDI initiative Internet of Energy Internet of EnergyICT for Energy Markets of the Future

BDI publication No. 439Date/number of copies printed: February 2010/5,000 copiesThis version is a 1:1 translation of the brochure “Internet der Energie – IKT für Energiemärkte der Zukunft” publishedin Germany in December 2008, to which information about the German government’s E-Energy model projects hasbeen added.ISSN 0407-8977

Publisher: Federation of German Industries (BDI e.V.), Breite Straße 29, 10178 Berlin, Germany, www.bdi.euBDI initiative Internet of Energy, www.bdi.eu/BDI_english/54.htmE-Energy: E-Energy Begleitforschung, B.A.U.M. Consult GmbH, Gotzinger Str. 48/50, 81371 München, www.e-energy.de

Publishing House: Industrie-Förderung Gesellschaft mbH, Berlin

Task Force Leader: Dr. Orestis Terzidis, SAP AG

Authors (in alphabetical order):Carsten Block Universität Karlsruhe (TH)Prof. Dr. Frank Bomarius Fraunhofer IESEDr. Peter Bretschneider Fraunhofer IITB/ASTFlorian Briegel BDI initiativeDr. Norbert Burger FigawaTorsten Drzisga Nokia Siemens Networks

GmbH & Co. KGBernhard Fey RheinEnergie AGHellmuth Frey EnBW Energie

Baden-Württemberg AGDr. Jens Hartmann VISOS GmbHClaus Kern Siemens AG, Energy SectorMarkus Muhs Clifford Chance

Partnerschaftsgesellschaft

Editors:Carsten Block, Universität Karlsruhe (TH)Florian Briegel, BDI initiative

Graphics and Layout:Design: Factor DesignRealization: Sabine Sexauer

Translation:Sonnhild Namingha, Fraunhofer IESEChristopher Sexton, Clifford Chance Partnerschaftsgesellschaft

Printed by:Müllerdruck Mannheim

This work and all parts thereof are protected by copyright. Nominal fee: EUR 3.50.The online version of this brochure is available for download at www.bdi.eu/BDI_english/103.htm.

Imprint

Dr. Bernhard Plail Siemens AG, Energy SectorGeorg Praehauser ABB AGir. Luc Schetters RheinEnergie AGFriedrich Schöpf Robert Bosch GmbHDetlef Schumann IBM Deutschland GmbHFrank Schwammberger IBM Deutschland GmbHDr. Orestis Terzidis SAP AGRalf Thiemann IBM Deutschland GmbHDr. Clemens van Dinther FZI – Forschungszentrum

InformatikDr. Klaus von Sengbusch ABB AGDr. Anke Weidlich SAP AGProf. Dr. Christof Weinhardt Universität Karlsruhe (TH)

Page 51: Bdi initiative io_e_us-ide-broschuere_tcm27-45653
Page 52: Bdi initiative io_e_us-ide-broschuere_tcm27-45653