Top Banner
7. Lossy image compression Block Truncation Coding (BTC) Transform Coding (DCT JPEG) Transform Coding (DCT , JPEG) Wavelet Coding (JPEG2000) Transformation Quantization Encoding Data Bitstream Model Slides are compiled from Alexander Kolesnikov’s image compression lecture notes
55

7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Jul 13, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

7. Lossy image compression

• Block Truncation Coding (BTC)• Transform Coding (DCT JPEG)• Transform Coding (DCT, JPEG)• Wavelet Coding (JPEG2000)

Transformation Quantization EncodingData Bitstream

Model

Slides are compiled from Alexander Kolesnikov’s image compression lecture notes

Page 2: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Block Truncation Coding

• Divide the image into 4×4 blocks;• Quantize the block into two representative values a and b;Quantize the block into two representative values a and b;• Encode (1) the representative values a and b

and (2) the significance map in the block.

Original Bit-plane Reconstructed

2 11 11 9

2 9 12 15

0 1 1 1

0 1 1 1

2 12 12 12

2 12 12 12

3 3 4 14

2 3 12 15

0 0 0 1

0 0 1 1

2 2 2 12

2 2 12 12

x = 7.94 q = 9 a = 2.3a=[2.3] = 2 = 4.91

q

b = 12.3σa [2.3] 2b=[12.3]=12

Page 3: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

How to construct quantizer?

• The first two moments preserving quantization:

∑=

>=<m

iim xx

1

1 ∑=

>=<m

iim xx

1

212

222 ><−>=< xxσ

• Threshold for quantization: T=<x>; n +n =m• Threshold for quantization: T=<x>; na+nb=mbnanxm ba +>=<

222 bnanxm +>=<

bnxa ⋅−>=< σ anxb ⋅+= σ

bnanxm ba +>=<

anxa >=< σ

bnxb ⋅+= σ

Page 4: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Example of BTC

Original Bit-plane Reconstructed

2 11 11 9

2 9 12 15

0 1 1 1

0 1 1 1

2 12 12 12

2 12 12 12

3 3 4 14

2 3 12 15

0 0 0 1

0 0 1 1

2 2 2 12

2 2 12 12

T 9x = 7.94

= 4.91

q = 9 a = 2.3

b = 12.3σT= 9na=7nb=9

5043722D

a=[2.3] = 2b=[12.3]=12

5043722 =+=+= baD σσ

2 3 4 5 6 7 8 9 10 11 12 13 14 15a bT

Page 5: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Representative levels compression

• Main idea of BTC:

Image → ”smooth part” + ”detailed part” (a and b) (bit-planes)

• We can treat set of a’s and b’s as an image:1. Predictive encoding of a and b2. Lossy compression: DCT (JPEG)

Page 6: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Bitrate and Block size

The number of pixels in block: k2 pels

• BTC: 1. Values ’a’ and ’b’: (8+8) bits

2. Significance bits: k2 bits

Bitrate: R=(16+k2)/k2 =(1+16/k2) bit/pel2Example: k=4: R=(1+16/42) = 2 bit/pel

• Bigger block → smaller bitrate R, bigger distortion D

• Smaller block → bigger bitrate R, smaller distortion D

Trade-off between Rate and DistortionTrade off between Rate and Distortion

Page 7: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

8. JPEG

• JPEG = Joint Photographic Experts Group

• Lossy coding of continuous tone still images (color andgrayscale)

• Based on Discrete Cosine Transform (DCT):

0) Image is divided into block N×N

) h bl k f d h 2 C1) The blocks are transformed with 2-D DCT

2) DCT coefficients are quantized

3) Th ti d ffi i t d d3) The quantized coefficients are encoded

Page 8: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

JPEG: Encoding and Decoding

Source FDCT Quantizer Entropy CompresseImage Data

8x8 blocks

FDCT Quantizer pyEncoder

pImage Dat

8x8 blocks TableSpecifications

TableSpecifications

IDCTDequantizerEntropyDecoder

Reconstructed Image Data

CompressedImage Data

TableS ifi ti

TableS ifi tiSpecifications Specifications

Page 9: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Divide image into N×N blocks

8x8 blockInput image

Page 10: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

2-D DCT basis functions: N=8

Low Higho

LowHigh

Low

High High

8x8 block

High High

HighLow

Page 11: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

2-D Transform Coding

+y00y01 y10

y12y23y01 y10

y12

...

Page 12: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

1-D DCT basis functions: N=8

1.0u=0

1.0u=1

1.0u=2

1.0u=3

0.5

0

-0.5

0.5

0

-0.5

0.5

0

-0.5

0.5

0

-0.5

-1.0 -1.0 -1.0 -1.0

1.0

0 5

u=41.0

0 5

u=51.0

0 5

u=61.0

0 5

u=7

0.5

0

-0.5

-1.0

0.5

0

-0.5

-1.0

0.5

0

-0.5

-1.0

0.5

0

-0.5

-1.0

( ) ( ) ( )∑−

⎥⎦⎤

⎢⎣⎡ +

⋅=1

212cos

N

j NkjkCkx πα ( )

⎪⎨

⎧ ==

121f2

0for 1

Nk

kNkα∑=

⎥⎦⎢⎣0 2kj N ⎪

⎩−= 1,...,2,1for 2 NkN

Page 13: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

2-D DCT basis functions: N=M = 8where

Page 14: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Zig-zag ordering of DCT coefficients

Converting a 2-D matrix into a 1-D array, so that the g y,frequency (horizontal and vertical) increases in this orderand the coefficents variance are decreasing in this order.

Page 15: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Example of DCT for image block

Matlab: y=dct(x)Matlab: y=dct(x)

Page 16: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Default quantization matrix Q

yq(k,l)=round[y(k,l)/Q(k,l)]

Examples: 236/16 → 15-22/11 → -2

Matlab: Qy=quant (y)-22/11 → -2

Page 17: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Quantization of DCT coefficients: Example

Ordered DCT coefficients: 15,0,-2,-1,-1,-1,0,0,-1,-1, 54{’0’}.

Page 18: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Dequantization

z (k,l)=yq(k,l)·Q(k,l)

Examples: 236/16 → 15-22/11 → -2

Original DCT blockMatlab: z=dequant (Qy)

Page 19: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Inverse DCT

See: x=idct(y)See: x=idct(y)

Original block

Page 20: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Encoding of quantized DCT coefficients

• Ordered data: 15,0,-2,-1,-1,-1,0,0,-1,-1, 54{’0’}.

• Encoding: g

Page 21: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Encoding of quantized DCT coefficients

• DC coefficient for the current block is predicted of that of the previous block, and error is coded usingHuffman coding

• AC coefficients:

(a) Huffman code, arithmetic code for non-zeroes( ) ,(b) run-length encoding: (number of ’0’s, non-’0’-symbol)

Page 22: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Performance of JPEG algorithm

8 bpp 0.6 bpp

0.37 bpp 0.22 bpp

Page 23: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Compression of color images

Page 24: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Performance of JPEG algorithm

• Grayscale 8 bits images: 0 5 bpp: excellent quality- 0.5 bpp: excellent quality

• Color 24 bits images: - 0.25-0.50 bpp: moderate to good - 0.50-0.75 bpp: good to very good- 0 75-1 00 bpp: excellent sufficient for most applications0.75 1.00 bpp: excellent, sufficient for most applications - 1.00-2.00 bpp: indistiniguishable from original

Page 25: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

JPEG ⇒JPEG2000

For illuminanceFor illuminance

JPEG: 0.25 bpp JPEG2000: 0.25 bpp

Page 26: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

9. JPEG 2000

• JPEG 2000 is a new still image compression standard• ”One for all” image codec:• One-for-all image codec:

* Different image types: binary, grey-scale, color, multi-componentmulti-component

* Different applications: natural images, scientific, medical remote sensing text rendered graphicsmedical remote sensing text, rendered graphics

* Different imaging models: client/server, consumer electronics, image library archival, limited bufferelectronics, image library archival, limited buffer and resources.

Page 27: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

History

• Call for Contributions in 1996Call for Contributions in 1996• The 1st Committee Draft (CD) Dec. 1999• Final Committee Draft (FCD) in March 2000( )• Accepted as Draft International Standard in Aug. 2000• Published as ISO Standard in Jan. 2002

Page 28: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Key components

• Transform– Wavelet – Wavelet packet

Wavelet in tiles– Wavelet in tiles• Quantization

– Scalar • Entropy coding

– (EBCOT) code once, truncate anywhere Rate distortion optimization– Rate-distortion optimization

– Context modeling– Optimized coding orderp g

Page 29: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Key components

VisualVisualWeightingMaskingMasking

Region of interest (ROI)Lossless color transformError resilience

Page 30: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

2-D wavelet transform

Original128, 129, 125, 64, 65, …

Transform Coeff.4123, -12.4, -96.7, 4.5, …

Page 31: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Quantization of wavelet coefficients

Transform Coeff.4123, -12.4, -96.7, 4.5, …

Quantized Coeff.(Q=64)64, 0, -1, 0, …

Page 32: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Entropy coding

0 1 1 0 1 1 0 1 0 1 . . .

Coded BitstreamCoded Bitstream

Quantized Coeff.(Q=64)64, 0, -1, 0, …

Page 33: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Progressive encoding

Page 34: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

ROI: Region of interest

Scale-down the coefficients outside the ROI so those are in lowerer bit-planes.Decoded or refined ROI bits before the rest of the image.

Page 35: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

ROI: Region of interest

• Sequence based codeq– ROI coefficients are coded as independent sequences– Allows random access to ROI without fully decoding– Can specify exact quality/bitrate for ROI and the BG

• Scaling based mode:S l ROI k ffi i t (d d l d )– Scale ROI mask coefficients up (decoder scales down)

– During encoding the ROI mask coefficients are found significant at early stages of the codingsignificant at early stages of the coding

– ROI always coded with better quality than BG– Can't specify rate for BG and ROI

Page 36: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Tiling

• Image ⇒ Component ⇒ Tile ⇒ Subband ⇒ Code-Block ⇒ Bit-PlanesBlock ⇒ Bit Planes

Page 37: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

JPEG 2000 vs JPEG

DCT

WTWT

Page 38: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

JPEG 2000 vs JPEG: Quantization

JPEG

JPEG 2000

Page 39: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

JPEG 2000 vs JPEG: 0.3 bpp

JPEG

JPEG 2000

Page 40: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

JPEG 2000 vs JPEG: Bitrate=0.3 bpp

MSE=150 MSE=73PSNR=26.2 db PSNR=29.5 db

Page 41: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

JPEG 2000 vs JPEG: Bitrate=0.2 bpp

MSE=320 MSE=113MSE=320 MSE=113

Page 42: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

10. Video images: compression ratios

NTSC TV HDTV Film qualityChannel Bit rate 168 Mb/s 933 Mb/s 2300 Mb/s

PC LAN 30 kb/s 5,600:1 31,000:1 76,000:1Modems 56 kb/s 3 000:1 17 000:1 41 000:1Modems 56 kb/s 3,000:1 17,000:1 41,000:1ISDN 64 - 144 kb/s 1,166:1 6,400:1 16,000:1T-1, DSL 1.5 Mb/s 112:1 622:1 1,500:1Ethernet 10 Mb/s 17:1 93:1 230:1T 3 42 Mb/ 4 1 22 1 54 1T-3 42 Mb/s 4:1 22:1 54:1Fiber optic 200 Mb/s 1:1 5:1 11:1

Page 43: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Video Images and Still Images

• Video images are three-dimensional generalizationVideo images are three dimensional generalization of still images, where the third dimension is time

E h f f id b d b• Each frame of a video sequence can be compressed by any image compression algorithm

• Motion JPEG (M-JPEG): the images are separately coded by JPEG

Page 44: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Correlation

• Let’s take an advantage of the temporal correlations;Let s take an advantage of the temporal correlations; i.e. the fact that subsequent images resemble each other very much:

• Still Images : spatial correlation • Video Images: spatial and temporal correlation

Page 45: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

MPEG-1

The MPEG algorithm relies on two basic techniquesg q• Block based motion compensation• DCT based compression

Page 46: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

MPEGs

• MPEG-1 (1992): VideoCD • MPEG-2 (1994): DVD, digital TV, SVCDMPEG 2 (1994): DVD, digital TV, SVCD

* about 50:1 compression, typically 3-10 Mbps • MPEG-3: was abandoned

G ( ) ( f )• MPEG-4 (1999+): DivX (starting from Version 5) * designed specially for low-bandwidthMPEG 7 (>1998):• MPEG-7 (>1998): * searching and indexing of a/v data, using DescriptionToolsTools

Page 47: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

MPEG-1: Blocks

• The pictures are divided into 16x16 macroblocks, each consisting of four 8x8 elementary blockseach consisting of four 8x8 elementary blocks.

• The choice of the prediction method is chosen for eachmacroblock separately.

• The intra-coded blocks are quantized differently from the predicted blocks:the predicted blocks: * Intra-coded blocks contain information in all frequencies

and are quantized differently from the predicted blocks * Th di t d bl k t i tl hi h f i* The predicted blocks, contain mostly high frequencies

and can be quantized with more coarse quantization tables.

Page 48: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

MPEG-1: Inter-block Prediction

Forwardprediction

Forwardprediction

I B B B P B B B P B B B II IP PI B B B P B B B

Bidirectional

P B B B II IP P

prediction

• Bidirectional predictionForward prediction• Forward prediction

• Backward prediction• Intra coding.

Page 49: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

MPEG-1: Predictions schemes

I: Intra pictures are coded as still images by DCT. p g yP: Predicted pictures are coded with reference to a past

picture. The difference between the prediction and the original picture is then compressed by DCT.

B: Bidirectional pictures, the prediction can be made both t t d f t f Bidi ti l i tto a past and a future frame. Bidirectional pictures are never used as reference.

Forward Forward

I B B B P B B B

Forwardprediction

P B B B I

Forwardprediction

Bidirectional prediction

Page 50: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Motion estimation and compensation

• The prediction block in the reference frame is not necessarily in the same coordinates than the block innecessarily in the same coordinates than the block inthe current frame.

• Because of motion in the image sequence, the most suitable predictor for the current block may exist anywhere in the reference frame.

• The motion estimation specifies where the best prediction (best match) is found. M ti ti i t f l l ti th diff• Motion compensation consists of calculating the difference between the reference and the current block.

Page 51: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Motion estimation: 1

• Exhaustive search block matchingg

Slow!

Page 52: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Motion estimation: 2

• Hierarchical block matchingg

Page 53: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Compression ratios

NTSC TV HDTV Film qualityChannel Bit rate 168 Mb/s 933 Mb/s 2300 Mb/s

PC LAN 30 kb/s 5,600:1 31,000:1 76,000:1Modems 56 kb/s 3,000:1 17,000:1 41,000:1ISDN 64 - 144 kb/s 1,166:1 6,400:1 16,000:1, , ,T-1, DSL 1.5 Mb/s 112:1 622:1 1,500:1Ethernet 10 Mb/s 17:1 93:1 230:1T-3 42 Mb/s 4:1 22:1 54:1Fiber optic 200 Mb/s 1:1 5:1 11:1Fiber optic 200 Mb/s 1:1 5:1 11:1

Page 54: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Object-based coding

VOP- Video object planeVOL- Video object layer

Page 55: 7. Lossy image compression - Wilfrid Laurier Universitybohr.wlu.ca/hfan/cp467/12/notes/cp467_12_lecture15_compression2.pdf7. Lossy image compression • Block Truncation Coding (BTC)

Video content analysis

• Bring video sequence into chunks, each with consistent content: shotsconsistent content: shots

• Group similar shots into scenes• Describe connections between scenes• Associate shots/scenes with semantics for future query