Top Banner
The Physical Methods in Inorganic Chemistry (Fall Term, 2004) (Fall Term, 2005) Department of Chemistry National Sun Yat-sen University 無無無無無無 無無無無無無無 () Chapter 4
54

無機物理方法(核磁共振部分)

Mar 21, 2016

Download

Documents

_mika_

無機物理方法(核磁共振部分). The Physical Methods in Inorganic Chemistry (Fall Term, 2004) (Fall Term, 2005) Department of Chemistry National Sun Yat-sen University. Chapter 4. Chapter 4. 90 o pulse width T 1 measurement T 2 measurement Chemical exchange. π. π /2. Fine Tuning until t π. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 無機物理方法(核磁共振部分)

The Physical Methods in Inorganic Chemistry

(Fall Term, 2004)(Fall Term, 2005)

Department of ChemistryNational Sun Yat-sen University

無機物理方法(核磁共振部分)

Chapter 4

Page 2: 無機物理方法(核磁共振部分)

Chapter 4

• 90o pulse width• T1 measurement

• T2 measurement• Chemical exchange

Page 3: 無機物理方法(核磁共振部分)
Page 4: 無機物理方法(核磁共振部分)

π/2 π

Page 5: 無機物理方法(核磁共振部分)
Page 6: 無機物理方法(核磁共振部分)

Any degree (n)-pulse = tπ*n/180.

90o pulse width= tπ/2

Fine Tuning until tπ

Page 7: 無機物理方法(核磁共振部分)

Spin Relaxation

• Any system that is prepared to off-equilibrium “state” tends to restore to its equilibrium state. Random forces are the origin of relaxation.

• Nuclear spin relaxation is driven by random magnetic fields. The transverse component of the random magnetic field causes longitudinal relaxation (T1) and the longitudinal component of the random magnetic field causes transverse relaxation (T2).

• Random magnetic field being generated by the molecular motions, relaxation measurement offers information on dynamics.

Page 8: 無機物理方法(核磁共振部分)
Page 9: 無機物理方法(核磁共振部分)
Page 10: 無機物理方法(核磁共振部分)
Page 11: 無機物理方法(核磁共振部分)
Page 12: 無機物理方法(核磁共振部分)
Page 13: 無機物理方法(核磁共振部分)
Page 14: 無機物理方法(核磁共振部分)
Page 15: 無機物理方法(核磁共振部分)

Inversion-Recovery

ππ_2

τ

τ

FT

My

Page 16: 無機物理方法(核磁共振部分)

τ

Page 17: 無機物理方法(核磁共振部分)
Page 18: 無機物理方法(核磁共振部分)

When magnetic field inhomogeneity Δν is not negligible, itIntroduces observable contributions to signal decay:

Page 19: 無機物理方法(核磁共振部分)

T2 Effect

Page 20: 無機物理方法(核磁共振部分)

τ1 τ2π/2 π

τ1 = τ2

τ1 = T2

τ1

Page 21: 無機物理方法(核磁共振部分)

τ1 = τ2 τ2

Page 22: 無機物理方法(核磁共振部分)

τ τ

2τ=T2

Page 23: 無機物理方法(核磁共振部分)

CPMG Sequence for T2 Measurement

δδ

πxyπ/2xy

n

Page 24: 無機物理方法(核磁共振部分)

22 /(2 ) (0) n Tx xM n M e

δδ

πxyπ/2xy

n

2nδ

Mx

2nδ

2nδ=T2

Page 25: 無機物理方法(核磁共振部分)

T1, T2 and Dynamics…Just A Little Example

SIrIS

How far between two nuclei

How fast the molecule tumbles.

Page 26: 無機物理方法(核磁共振部分)

Example of relaxation: dipolar relaxation

Page 27: 無機物理方法(核磁共振部分)

How does the magnetization relax back to equilibrium after applying a radiofrequency pulse?

Page 28: 無機物理方法(核磁共振部分)

Thus, to bring the bulk magnetization back to the z axis, an oscillating field (oscillating at the Larmor frequency of the transition) that is orthogonal to the Zeeman field is required. The source of these additional fields is easy to see, the other nuclei which have magnetic moments nearby.  Thus, the dipole-dipole interaction can actually provide a mechanism for relaxation.

Page 29: 無機物理方法(核磁共振部分)
Page 30: 無機物理方法(核磁共振部分)
Page 31: 無機物理方法(核磁共振部分)

How does the spectra density J depend on the correlation time?

Page 32: 無機物理方法(核磁共振部分)
Page 33: 無機物理方法(核磁共振部分)

• The following gives the relaxation rate when it is dominated by dipolar interaction.  It should be noted that relaxation can be afforded by other mechanisms such as chemical shift anisotropy, scalar relaxation, spin-rotation and quadrupolar interaction.  For protons, in solution free of molecular oxygen, the dipolar mechanism usually dominates.

In the extreme narrowing limit (very fast motion and very short correlation time), the following holds.

Page 34: 無機物理方法(核磁共振部分)

• Can one use one correlation time for all the sites in a molecule?  That depends.  This is true only if the motion is isotropic and NOT segmental.  Below are examples where the motion is segmental (first example).  Listed are the T1 values for each of the carbons in this long-chain alcohol.  Clearly, motion is restricted near the -OH end of the molecule (presumably due to hydrogen bonding).  As a result, these protons have relatively shorter relaxation times (or faster relaxation rates) as the motions get slower and approach the Larmor frequency.  The second example illustrates anisotropy.  Listed are the T1 values for some of the carbons in phenol.  The relaxation time of the C directly attached to the -OH group illustrates the importance of nearby protons in the relaxation of C spins.  Since this C is not directly attached to any proton, its relaxation time is appreciable long.  The anisotropic motion of the ring (it prefers rotation about the axis that contains -OH) leads to appreciably longer relaxation times for the C's that do not lie on this rotational axis.

Page 35: 無機物理方法(核磁共振部分)

Listed are the T1 values for each of the carbons in this long-chain alcohol.  Clearly, motion is restricted near the -OH end of the molecule (presumably due to hydrogen bonding).  As a result, these protons have relatively shorter relaxation times (or faster relaxation rates) as the motions get slower and approach the Larmor frequency. 

Page 36: 無機物理方法(核磁共振部分)

This example illustrates anisotropy.  Listed are the T1 values forsome of the carbons in phenol.  The relaxation time of the C directly attached to the -OH group illustrates the importance of nearby protons in the relaxation of C spins.  Since this C is not directly attached to any proton, its relaxation time is appreciable long.  The anisotropic motion of the ring (it prefers rotation about the axis that contains -OH) leads to appreciably longer relaxation times for the C's that do not lie on this rotational axis.

Page 37: 無機物理方法(核磁共振部分)
Page 38: 無機物理方法(核磁共振部分)

The effect of T1 on the setting of recycle delay (d1)

Pulsesequenced1

M0

M0’

M0 (If d1 is long enough)

(If d1 is not long enough)

d1

Page 39: 無機物理方法(核磁共振部分)

Saturation:Bad!

Pulsesequence

d1Pulse

sequenced1

Pulsesequence

d1 ……

M0 M

0’

M0’’

’ ’

No more signal added to the total signal after a few scans.

Page 40: 無機物理方法(核磁共振部分)
Page 41: 無機物理方法(核磁共振部分)

Steady State:Not Bad, Maybe.

Signal for each scan is lower than single 90 degree pulse but the transientscan be added up.

Pulsesequence

d1Pulse

sequenced1

Pulsesequence

d1 ……

M0

M0’M

0’’

M0

M0

M0

M0

M0’’

M0’’

M0’’

Page 42: 無機物理方法(核磁共振部分)
Page 43: 無機物理方法(核磁共振部分)

Ernst Angle

0

1

1 1

/ 2 /1 1 1

1

1

1

1 1

1/0 0

/0 01 0

/0 0

1 84

/0

( )sin

( ) cos

[ (1 cos ) ]sin

0 cos ( )

[1 cos ]si

( ) ( (0) )

(0 )

n

zz

d T d Tx

M MdMdt T

x z

z

d Tx

dM e eE

t Tz z

d

rnstd

d Tx Ernst Ernst

T

M t M M M e

M M e

M M T

M d M

M M M e

M M e

d1/T1

Page 44: 無機物理方法(核磁共振部分)

Many More Relaxation Rates…

T1, T2 and K are just a small tip of the iceberg of relaxation/exchange rates.

Page 45: 無機物理方法(核磁共振部分)

Chemical Exchange

dimethylamino-7-methyl-1,2,4-benzotriazine.

Page 46: 無機物理方法(核磁共振部分)

Chemical Exchange

General Cases:

Page 47: 無機物理方法(核磁共振部分)

Modified Bloch Equations

Page 48: 無機物理方法(核磁共振部分)

Example of Chemical Exchangedimethylamino-7-methyl-1,2,4-benzotriazine.

When exchange rate is larger than chemical shift difference, coalescence between two signals occurs.

116 Hz

Page 49: 無機物理方法(核磁共振部分)

Another Example

35

26

53

62

Page 50: 無機物理方法(核磁共振部分)

Simulation†

/

log( / )

Bk T G Th

HB T

k e

kh Tk

Page 51: 無機物理方法(核磁共振部分)
Page 52: 無機物理方法(核磁共振部分)

Lab: Phase Cycling

Page 53: 無機物理方法(核磁共振部分)
Page 54: 無機物理方法(核磁共振部分)