Top Banner
Mobile and Wireless; 23-10-2014 2012-06-05 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics Research Institute Deventer, The Netherlands [email protected]
58

3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mar 09, 2018

Download

Documents

vulien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

2012-06-05

3GPP Telecommunication Systems

Long Term Evolution (LTE)

Gert-Jan van Lieshout Samsung Electronics Research Institute

Deventer, The Netherlands [email protected]

Page 2: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 2

Outline !   Introduction [4]-[9]

!   3rd Generation Partnership Project (3GPP) !   Start of LTE !   Overall LTE architecture

!   LTE RAN: “E-UTRAN” [11]-[34] !   E-UTRAN Release-8

!   E-UTRAN architecture !   User Plane protocol Stack !   Control Plane protocol Stack !   Specific Features:

!   Quality of Service !   Mobility

!   E-UTRAN after Release-8

!   LTE Core Network: “EPC” [36]-[54] !   Core Network Architecture !   Signalling Sequence Examples !   PS CN evolution !   Interworking with non-3GPP accesses

!   Summary [56]

Outline

Page 3: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

I Introduction

Page 4: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 4

3rd Generation Partnership Project (3GPP)

3GPP structure

(Japan) (Japan)

(China) (Korea)

(USA) (Europe)

www.3gpp.org

Page 5: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 5

Competition situation around 2006:

!   GSM did not have any serious competition a decade !   Even today, still the unchallenged nr. 1 in number of mobile phones

!   UMTS had competition from the beginning but won !   CDMA-2000 (3GPP2 evolution “UMB” on side-track)

!   More data centric solutions are standardised by IEEE: !   802.16

!   Mainly backhaul broadband wireless (OFDM, nomadic)

!   802.16e (“WiMax”) !   Broadband wireless access to end-users (OFDM, with mobility support) !   Large group of supporters (Samsung, Intel, ….) !   Flatter architecture (2 nodes) => Cheaper

!   802.20 !   Also based on OFDM with mobility support

!   Can HSDPA/EDCH meet the WiMax competition ? (=> Yes) !   3GPP answer: “Long Term Evolution” (LTE)

Why LTE ?

Page 6: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 6

LTE & EPC

!   Around 2006, 3GPP RAN groups start to work on LTE “Long Term Evolution”. In parallel SA2 started to work on the EPS ‘Evolved Packet System’ started.

!   Main objectives: !   Ensure competitiveness in the next 10 years and behond !   Enhanced capability of 3GPP system to cope with rapid growth of IP data traffic !   Support for (seamless) mobility between heterogeneous access networks

!   Important parts of such a long-term evolution included: !   Reduced latency, higher user data rates, improved system capacity and coverage,

and reduced overall cost for the operator !   “flat IP Architecture” !   LTE/SAE system was to be packet only system

!   Migration aspects were to be taken into account for the above, i.e. how to migrate from the existing architecture

!   Resulted in 2 new main architecture documents: !   23.401: GPRS enhancements for E-UTRAN !   23.402: Architecture enhancements for non-3GPP accesses

Why LTE ?

Page 7: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 7

Overall network architecture (non roaming)

LTE: Overall architecture

Source: TS23.401

Page 8: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 8

Uu (radio) interface: Terminal to Network

UE Network / “Infrastructure side” Uu

LTE: Basic principle

Page 9: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 9

S1 interface: Separates RAN from CN

UE CN

Uu S1 E-UTRAN

Non-Access Stratum (NAS) functionality - no radio specific functionality

Access Stratum (AS), Radio Network functionality

- all radio specific functionality - no user service specific functionality

LTE: Basic principle

Page 10: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

II E-UTRAN E-UTRAN Release-8 •  E-UTRAN architecture •  User Plane protocol Stack •  Control Plane protocol Stack •  Specific Features:

•  Quality of Service •  Mobility

E-UTRAN beyond Release-8 •  Release-10: Carrier Aggregation •  Release-11 •  Release-12…

Page 11: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

E-UTRAN Architecture !   E-UTRAN consists of eNBs

!   flat architecture (no RNC or BSC as in UTRAN and GERAN) for reduced latency and delays

!   eNBs are interconnected with each other by means of the X2 interface !   can be a logical connection via CN elements

!   eNBs are also connected to the Evolved Packet Core (EPC) !   eNBs are connected to the Mobility

Management Entity (MME) via the S1-C (control) interface

!   eNBs are connected to the to the Serving Gateway (S-GW) by means of the S1-U (user data) interface

11

eNB

MME / S-GW MME / S-GW

eNB

eNB

S1

S1

S1 S

1

X2

X2

X2

E-UTRAN

E-UTRAN architecture

Uu

Page 12: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

E-UTRAN Functions

!   Main functions hosted by eNB include !   Functions for Radio Resource Management:

!   Connection Mobility Control, !   Radio Bearer Control, !   Radio Admission Control, !   Dynamic allocation of resources

to UEs in both uplink and downlink (scheduling)

!   IP header compression and encryption of user data stream

!   Routing of User Plane data towards Serving Gateway

!   Scheduling and transmission of paging messages (originated from the MME);

!   Scheduling and transmission of broadcast information (originated from the MME or O&M)

12

internet

eNB

RB Control

Connection Mobility Cont.

eNB MeasurementConfiguration & Provision

Dynamic Resource Allocation (Scheduler)

PDCP

PHY

MME

S-GW

S1MAC

Inter Cell RRM

Radio Admission Control

RLC

E-UTRAN EPC

RRC

Mobility Anchoring

EPS Bearer Control

Idle State Mobility Handling

NAS Security

P-GW

UE IP address allocation

Packet Filtering

E-UTRAN architecture

Page 13: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

User Plane protocol stack (1)

!   PDCP (Packet Data Convergence Protocol) – 36.323 !   ciphering !   timer-based discard and header compression using the RoHC protocol !   in-sequence delivery, retransmission and duplicate detection of PDCP SDUs at handover

!   RLC (Radio Link Control) – 36.322 !   reliability increase through retransmissions !   segmentation and concatenation of SDUs for the

same radio bearer !   in-sequence delivery

!   MAC (Media Access Control) – 36.321 !   multiplexing/demultiplexing of RLC PDUs !   scheduling information reporting !   error correction through HARQ !   logical channel prioritisation

13

eNB

PHY

UE

PHY

MAC

RLC

MAC

PDCPPDCP

RLC

E-UTRAN protocol stack: User Plane

Multiplexing

...

HARQ

Scheduling / Priority Handling

Transport Channels

MAC

RLC

PDCP

Segm.ARQ etc

Segm.ARQ etc

Logical Channels

ROHC ROHC

Radio Bearers

Security Security

UL-SCH

Page 14: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 14

PDCP SDU

IP Payload Header

H

IP PDU#1 Radio Bearer 1

MAC SDU

CRC Transport Block

H

H H

RLC SDU

H

RLC PDU RLC PDU

Multiplexing

MAC SDU

PD

CP

RLC

M

AC

P

HY

SN PDCP SDU

IP Payload Header

H

IP PDU#2 Radio Bearer 1

RLC SDU

SN

RLC SDU

PDCP SDU

IP Payload Header

H

IP PDU#2 Radio Bearer 2

SN

E-UTRAN protocol stack: User Plane

User Plane protocol stack (2)

Page 15: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

Control Plane protocol stack (1)

!   RRC (Radio Resource Control) – 36.331 !   Broadcast of system information, paging, RRC connection management,

RB control, mobility functions, UE measurement reporting and control

!   PDCP (Packet Data Convergence Protocol) – 36.323 !   Ciphering and integrity protection

15

eNB

PHY

UE

PHY

MAC

RLC

MAC

MME

RLC

NAS NAS

RRC RRC

PDCP PDCP

E-UTRAN protocol stack: Control Plane

Page 16: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   Only two RRC states !   IDLE and CONNECTED

!   (Compare to IDLE, CELL_PCH, CELL_FACH, CELL_DCH in UMTS)

!   Idle mode !   UE known in EPC, not in EUTRAN !   UE has an IP address and its location known on Tracking Area level !   UE-based cell-selection and tracking area update to EPC !   MME initiates paging in the whole tracking areas indicated by the UE

!   Connected mode !   Unicast data communication possible !   UE known in E-UTRAN and its location known on Cell level !   Mobility is UE-assisted, network-controlled !   Discontinuous Data Reception (DRX) supported for power saving

16

Control Plane protocol stack (2)

E-UTRAN protocol stack: Control Plane

Page 17: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 17

Core Network

S1

Uu (the “radio interface”) C h a n n e l

4s

ak

dj

fl

ö

la

dk

sf

j

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

sa

kd

jf

l

ad

ks

fj

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

sa

kd

jf

l

ad

ks

fj

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

UE 1, Connected mode

eNB

Cells

C h a n n e l

4s

ak

dj

fl

ö

la

dk

sf

j

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

sa

kd

jf

l

ad

ks

fj

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

sa

kd

jf

l

ad

ks

fj

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

UE 2, Idle mode

TA 403 (Tracking Area)

UE1 -> S1-Conn. Y

UE1 -> Cell X

RRC-connection

S1-connection Y

= Data record

X

UE2 -> TA 403

S1

TA 403 (Tracking Area)

E-UTRAN Mobility

Control Plane protocol stack (3)

Page 18: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   E-UTRAN is responsible for Radio Bearer management and therefore ensuring QoS over the radio !   one-to-one mapping between EPS bearer, E-RAB and Radio Bearer

18

P-GWS-GW PeerEntity

UE eNB

EPS Bearer

Radio Bearer S1 Bearer

End-to-end Service

External Bearer

Radio S5/S8

Internet

S1

E-UTRAN EPC

Gi

E-RAB S5/S8 Bearer

End-to-End QOS

E-UTRAN QOS

Page 19: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   RB  establishment  based  on  QoS  parameters  from  MME  !   QoS  Class  Iden-fier  (QCI)  per  bearer:    

 scalar  value  which  iden@fies  a  par@cular    service  in  terms  of  resource  type,  priority,      packet  delay  budget  and  packet  error  rate  [23.203]  

!   Guaranteed  Bit  Rate  (GBR)  per  bearer  !   Maximum  Bit  Rate  (MBR)  per  bearer  !   Aggregate  Maximum  Bit  Rate  (AMBR)  per  group  of  bearers  

!   RB  Scheduling  based  on  QoS  parameters  from  MME  and  scheduling    informa@on  from  UE  !   Channel  Quality  Indica@on  !   Buffer  Status  Report  !   Power  Headroom  Report  

!   Scheduling  for  downlink  is  eNB  implementa@on  specific  !   Scheduling  for  uplink  is  only  par@ally  specified  

!   Logical  channel  priori@za@on  and  avoid  starva@on  [36.321]  19

Radio Bearer QOS

E-UTRAN QOS

Traffic class Maximum bitrate Delivery order Maximum SDU size SDU format information SDU error ratio Residual bit error ratio Delivery of erroneous SDUs Transfer delay Guaranteed bit rate Traffic handling priority Allocation/ Retention priority Source statistics descriptor

Compare UMTS:

NAS request to AS

Page 20: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

QOS: Reliability

!   L1  applies  24  bit  CRC  protec@on  to  transport  blocks  (MAC  PDUs)  !   erroneous  transport  blocks  are  discarded  on  L1  

!   Hybrid  ARQ  (HARQ)  protocol  in  MAC  +  ARQ  protocol  in  RLC  !   high  reliability  and  radio  efficiency  !   HARQ  feedback  sent  on  L1/L2  control  channel  

!   Single,  un-­‐coded  bit  (low  overhead)  !   Sent  for  each  scheduled  subframe  (fast)  !   Retransmissions  are  so\-­‐combined  with  previous  a]empt  (efficient)  

!   ARQ  status  report  sent  as  MAC  data  !   RLC  Status  is  sent  on  demand  (poll,  @mer,  gap  detec@on)  !   protected  by  CRC  and  HARQ  retransmissions  

!   Both  HARQ  and  ARQ  protocols  operate  between  the  eNB  and  UE  !   fast  handling  of  residual  HARQ  errors  

!   Ensures  low  latency  and  high  reliability  

20

E-UTRAN QOS

Page 21: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 21

Retransmissions: comparison to GSM/ UMTS

eNB

PHY

UE

PHY

MAC

RLC

MAC

PDCPPDCP

RLC

GPRS

GTP: GPRS Tunneling Protocol SNDCP: SubNetwork Dependent Convergence Protocol a.o.: header/payload compression

LLC: Logical Link Control RLC (GPRS): Radio Link Control

SNDCP

GSM RF

Um Gb Gn Gi MT BSS GGSN

IP

BTS

MAC

RLC

LLC

GSM RF L1

L2

L1 L1

L2

Abis

L2

MAC

RLC BSSGP

L1 L1

L2 L2

BSSGP

LLC

SNDCP

IP

UDP

GTP-U

L1 L1

L2 L2

IP

UDP

IP

GTP-U E.g. L2TP

or IP

tunnel

SGSN

Appl

PDCP: Packet Data Convergence Protocol a.o.: header compression RLC (UMTS): Radio Link Control

PDCP

Uu Iu Gn Gi UE SRNC GGSN

Node-B

MAC

RLC

IP

L1

ATM

L1 L1

ATM

Iub

ATM

FP

MAC IP

L1 L1

L2 L2

IP

UDP

IP

GTP-U E.g. L2TP

or IP

tunnel

SGSN

Appl

UMTS RF

UMTS RF

FP

RLC

PDCP GTP-U

UDP

L1 L1

L2 ATM

IP

UDP

IP

GTP-U GTP-U

UDP

UMTS

REL-99

UMTS RF

MAC-hs MAC-e

UMTS RF

MAC-hs MAC-e REL-5/6

LTE

LTE: •  MAC: performs retransmissions to obtain loss rate of around E-2 •  RLC: retransmissions up to loss rate of around E-6 or lower •  PDCP: retransmissions at intra-LTE handover

E-UTRAN QOS

Page 22: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   User Plane Latency < 10ms [36.912] !   One way latency !   Between 5ms and 10ms depending on HARQ operating point and

TDD configuration

!   Control Plane Latency : 50ms !   Transition time from Idle to Connected mode

!   Handover: 12ms interruption time !   For intra - E-UTRAN handover

22

E-UTRAN QOS

QOS: Latency

Page 23: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

Mobility

!   IDLE: Cell Reselection !   UE controlled cell reselection

!   UE decides when to change cell, influenced by network steering parameters

!   CONNECTED: Handover !   UE-assisted :

!   Measurements are made and reported by the UE to the network

!   Network-controlled : !   Target cell is selected by the network, not by the UE and Handover control in E-UTRAN (not

in packet core)

!   Lossless: !   Packets are forwarded from the source to the target

!   Late path switch: !   Only once the handover is successful, the packet core is involved

!   Two handover approaches: !   S1-handover (“normal handover“ conform GSM/UMTS; no inter-eNB connection required) !   X2-handover (see next slides)

23

E-UTRAN Mobility

Page 24: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 24

Source eNB

Target eNB

UE

X2

S-GW

MME

control plane user plane user data

S1-U S1-MME

control plane signalling

measurements

!   Source  eNB  configures  UE  measurements  !   target  frequency  and  triggers  

!   Source  eNB  receives  UE    measurement  reports  

!   HO  decision  is  made  and    target  eNB  is  selected  by  the  source  eNB  

Mobility: X2-Handover(1)

E-UTRAN Mobility: Handover

Page 25: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   HO  request  sent  from  source  eNB  to  target  eNB  

!   Target  eNB  performs    admission  control  and  accepts  the  HO  request  

!   HO  Ack  sent  to  source  eNB    from  target  eNB  

25

Source eNB

Target eNB

UE

S-GW

MME

control plane user plane user data

S1-U S1-MME

control plane signalling

measurements

HO request

HO Request Ack

Mobility: X2-Handover(2)

E-UTRAN Mobility: Handover

Page 26: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 26

Source eNB

Target eNB

UE

X2

S-GW

MME

control plane user plane user data

S1-U S1-MME

control plane signalling

HO command

!   HO  command  is  sent  to  the  UE  !   RRCConnec'onReconfigura'on  

message  including  the    mobilityControlInfo  

!   Data  forwarding  ini@ated  towards  the  target  eNB    

Mobility: X2-Handover(3)

E-UTRAN Mobility: Handover

Page 27: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 27

Source eNB

Target eNB

UE

X2

S-GW

MME

control plane user plane user data

S1-U S1-MME

control plane signalling

HO confirm

!   UE  accesses  the  target  eNB  and  confirms  the  HO  !   RACH  procedure  is  ini@ated  !   RRCConnec'onReconfigura'onComplete  

is  sent  

Mobility: X2-Handover(3)

E-UTRAN Mobility: Handover

Page 28: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 28

Source eNB

Target eNB

UE

X2

S-GW

MME

control plane user plane user data

control plane signalling

!   Target  eNB  requests  EPC  to  switch  the  data  path  !   eNB  →  MME  :  path  switch  request    

!   MME  →  S-­‐GW  :  modify  bearer  request  

!   S-­‐GW  →  MME  :  modify  bearer  response  

!   MME  →  eNB  :  path  switch  request  ACK  

!   Target  eNB  no@fies  the  source  eNB  that  UE  resources  can  be  released  

Mobility: X2-Handover(4)

E-UTRAN Mobility: Handover

Page 29: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 29

Source eNB

Target eNB

X2

S-GW

MME

control plane user plane user data

S1-U S1-MME

control plane signalling

!   Path  is  switched  

!   Source  eNB  finishes  forwarding  packets  !   once  completed  UE  context  can  be  

cleared  and  resources  freed  

!   HO  is  completed  

UE

Mobility: X2-Handover(5)

E-UTRAN Mobility: Handover

Page 30: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   Main goal of Rel-10 was to fulfil the IMT-Advanced requirements !   up to 1Gbps in downlink and 500Mbps in uplink [36.913] !   took 2 years of efforts in 3GPP

!   Release-10 Features: !   Carrier Aggregation: increase the bit rate and reach IMT-A requirements [WID] !   eICIC: to efficiently support highly increasingly complex network deployment scena

rios with unbalanced transmit power nodes sharing the same frequency [WID] !   Relay Nodes: to improve the coverage of high data rates, cell-edge throughput

and ease temporary network deployments [WID] !   Minimisation of Drive Tests / SON Enhancements: enhanced and combined effort

to optimize the performance of the network aiming to automate the collection of UE measurements and thus minimize the need for operators to rely on manual drive-tests [WID] [WID]

!   MBMS enhancements: to enable the network to know the reception status of Ues receiving a given MBMS service in connected mode… [WID]

!   Machine Type Communication: protect the core network from signalling congestion & overload [WID]

30

Release-10

E-UTRAN: Beyond Release-8

Page 31: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   Goal of Carrier aggregation is to aggregate Rel-8 compatible carriers to increase peak data rate

!   up to 5 carriers can be aggregated in DL for a maximum BW of 100 MHz

!   non-contiguous carriers can also be aggregated in DL for increased flexibility

31

LTE-Advanced maximum bandwidth

Carrier 1 Carrier 4 Carrier 5Carrier 3Carrier 2

Rel’8 BW Rel’8 BW Rel’8 BW Rel’8 BW Rel’8 BW

Release-10: Carrier Aggregation(1)

E-UTRAN: Beyond Release-8

Page 32: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   Basic Concept !   When CA is configured, the UE only has one

RRC connection with the network

!   At RRC connection establishment, one serving cell provides the NAS mobility information (e.g. TAI) / security input: Primary Cell (PCell)

!   In the downlink, the carrier corresponding to the PCell is the Downlink Primary Component Carrier (DL PCC) while in the uplink it is the Uplink Primary Component Carrier (UL PCC)

!   Depending on UE capabilities, Secondary Cells (SCells) can be configured to form together with the PCell a set of serving cells (“helper cells/resources”)

!   In the downlink, the carrier corresponding to an SCell is a Downlink Secondary Component Carrier (DL SCC) while in the uplink it is an Uplink Secondary Component Carrier (UL SCC)

!   The configured set of serving cells for a UE therefore always consists of one Pcell and one or more SCells

32

Release-10: Carrier Aggregation(2)

E-UTRAN: Behond Release-8

PCell  

SCell  

SCell  

PCC

SCC

SCC

Page 33: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   Impact on L2 Architecture (nwk side)

33

HARQ HARQ

DL-SCHon CC1

...

Segm.ARQ etc

Multiplexing UE1 Multiplexing UEn

BCCH PCCH

Unicast Scheduling / Priority Handling

Logical Channels

MAC

Radio Bearers

Security Security...

CCCH

MCCH

Multiplexing

MTCH

MBMS Scheduling

PCHBCH MCH

RLC

PDCPROHC ROHC...

Segm.ARQ etc...

Transport Channels

Segm.ARQ etc

Security Security...

ROHC ROHC...

Segm.ARQ etc...

Segm. Segm.

...

...

...

DL-SCHon CCx

HARQ HARQ

DL-SCHon CC1

...

There is one PDCP and RLC per Radio Bearer. Not visible from

RLC on how many CCs the PHY layer transmission is conducted.

Dynamic L2 packet scheduling across multiple CCs supported

Independent HARQ per CC. HARQ retransmissions shall be sent on the same CC as the CC

of the original transmission

Separate TrCH per CC

Release-10: Carrier Aggregation(3)

E-UTRAN: Beyond Release-8

Page 34: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

!   Release 11 (specifications completed March 2013)

!   Coordinate MultiPoint Transmission (COMP)

!   Release-12 (specifications to be completed March 2015) !   LTE Device to Device Proximity Services

!   UEs can “discover” each other directly, when in network coverage !   UEs can “communicate” directly, when in and out of coverage (Public Safety) !   Also heavy CN impact

!   Dual Connectivity for LTE !   One UE served by a “Main eNB” and “Secondary eNB”

!   Release-13 (work started) !   Licensed-Assisted Access using LTE

!   CA with LTE in licensed + unlicensed spectrum

!   Physical layer enhancements for Low cost Machine Type Communication !   Internet Of Things

!   Full dimension MIMO

34

E-UTRAN: Beyond Release-8

Example features in later releases

Page 35: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

III Enhanced Packet Core (EPC) •  Core Network Architecture

•  Example Signalling Sequences

•  PS CN evolution

•  Interworking with non-3GPP accesses

Page 36: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 36

BSS A

Iu

HLR

IP UTRAN

PSTN/ ISDN

GSN PS-domain

MSC CS-domain

Iu

Gb

CN Two CN domains: - Circuit-Switched (CS) domain - Packet-Switched (PS) domain

Uu Gi

GSM/UMTS network architecture

CN Architecture

Page 37: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 37

LTE EPC architecture

Source: TS23.401

!   Two User Plane Gateways (which can be merged):

!   Serving SAE GW !   Local mobility Anchor for inter-eNB handover / inter-3GPP mobility

!   PDN SAE GW !   Policy enforcement, per user packet filtering, charging !   Mobility anchor for non-3GPP mobility

!   One Control Plane Node !   Mobility Management Entity (MME)

!   NAS control protocol between UE and MME (24.301) !   Mobility in IDLE mode !   EPS bearer management

!   Only 1 CN domain !   GSM/UMTS: CS & PS !   LTE: Only PS !   Resulting in large simplication of procedures

!   UMTS UE always registered in Location Area (CS: MSC) and Routing Area (PS: SGSN) !   LTE UE only registered in Tracking Area (MME)

CN Architecture

eNB

PHY

UE

PHY

MAC

RLC

MAC

MME

RLC

NAS NAS

RRC RRC

PDCP PDCP

Page 38: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 38

RRC CONNECTION SETUP (CCCH)

UE E-UTRAN RRC CONNECTION REQUEST

RRC CONNECTION SETUP RRC CONNECTION SETUP COMPLETE

E-UTRAN

UE

RRC CONNECTION SETUP COMPLETE

(DCCH) RRC CONNECTION REQUEST

(CCCH)

RRC Connection (C-plane)

UE

E-U

TRA

N C

N

E-R

adio

Acc

ess

Bea

rer S

ervi

ce

Rad

io B

eare

r Ser

vice

E-RAB (U-plane)

RB

SRB

E-RAB

E-UTRAN Radio Access Bearer (E-RAB) Signalling Radio Bearer (SRB) Radio Bearer (RB)

RRC Connection establishment (AS)

Signalling Sequence Example: Connection Establishment

MME GW

INITIAL UE MSG S1-connection (C-plane)

Page 39: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

3. Create Bearer Request

MME Serving GW PDN GW PCRF

4. Bearer Setup Request (NAS: Activate dedicated EPS bearer context request)

5. RRC Connection Reconfiguration (NAS: Activate dedicated EPS bearer context request)

2. Create Bearer Request

6. RRC Connection Reconfiguration

7. Bearer Setup Response

10. Create Bearer Response

eNodeB UE

(A)

(B)

1. Session Modification  

12. Session Modification  

11. Create Bearer Response

8. UL Direct Transfer (NAS: Activate default EPS bearer context accept)

9. Uplink NAS transport (NAS: Activate default EPS bearer context accept)

39

Dedicated Bearer Activation Procedure (NAS)

RB GPRS Tunnel

GPRS Tunnel IP-packets

IP Network

Signalling Sequence Example: Bearer Establishment

Page 40: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 40

PS-CN evolution

!   Normally uses dynamic IP addresses, only allocated to the UE when the UE establishes a PDP context; !   Results in “pull-based” approach (dial-up approach); !   Very limited support for “push-based” services;

!   No standardised way for establishing sessions with other users !   How to establish a video session, audio session with somebody on the Internet ?

E.g. user wants to start chess game with peer user ? What signalling to use ?

!   Network convergence (removal of CS CN) !   Operator could leave choice to user:

!   Multitude of different solutions !   Less control !   Charging might be complicated

!   Need a protocol that is suitable for session establishment, modification and release, and that addresses the “pull limitation”.

PS evolution: IMS

Page 41: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 41

IP Multimedia Core Network Subsystem (IMS)

!   IP Multimedia Core Network Subsystem (IMS) is part of 3GPP Rel-5 !   Uses SIP (Session Initiation Protocol) as the protocol for session

management !   SIP is standardised by IETF (RFC-3261) !   Main SIP functionality:

!   Setup, Modify and Tear down of multi-media Sessions !   Request and deliver presence information !   Instant messaging !   Works with URI’s “Uniform Resource Indicators”, which might be location

independent !   User related URI, also called AOR “Address of Record”

!   This you store in your address book

!   Device URI !   Associated to a user for a shorter period of time

PS evolution: IMS

Page 42: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 42

SIP: Simple signalling example (no proxy)

Irma Erik

INVITE

180 Ringing

200 OK

ACK

Media Session

BYE

200 OK

!   Peer-to-Peer !   Text based !   Transport can use UDP, TCP or SCTP !   Without Proxy, IP address of peer user needs to be known

INVITE sip:[email protected] SIP/2.0 Via: SIP/2.0/UDP server1.kpn.nl:5060; branch=d987fsdjhff Max-Forwards: 70 To: Erik <sip: [email protected]> From: Irma <sip: [email protected]>; tag=98774 Call-ID: 123456789”server1.kpn.nl Cseq: 1 INVITE Subject: When do we meet ? Contact: [email protected] Content-Type: application/SDP Content-Length: 158 SDP content………

PS evolution: IMS

Page 43: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 43

SIP: Signalling example (with proxy)

Irma Erik

INVITE

180 Ringing

200 OK

ACK

Media Session

BYE

200 OK

!   Irma does not know where Erik is: !   DNS lookup on Erik’s URI domain name (idols.nl) !   DNS lookup returns IP address of the proxy server !   INVITE is sent to this address

!   Proxy server: !   looks up the SIP URI in the request URI “sip: [email protected]” in its DB, and determines the current IP address

where Erik can be reached; !   Forwards INVITE to that address

!   If Erik is temporarily reachable via another node, he could sent a REGISTER message to a REGISTRAR server, to inform it about the new node. This information can then be used by a SIP Proxy.

SIP Proxy

180 Ringing

200 OK

PS evolution: IMS

-  User related URI Irma (from) -  User related URI Erik (to) -  Device URI Irma (contact)

-  User related URI Irma (from) -  User related URI Erik (to) -  Device URI Erik (contact)

INVITE

Page 44: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 44

IMS architecture (1)

!   P-CSCF (Proxy-Call Session Control Function) !   is the first contact point within the IMS for the subscriber. !   interfaces to PCRF for RAN/EPC resource control

!   I-CSCF (Interrogating-CSCF) !   is the contact point within an operator's network for all connections destined to a

subscriber of that network operator, or a roaming subscriber currently located within that network operator's service area.

!   S-CSCF (Serving-CSCF) !   performs the session control services for the subscriber. It also acts as a SIP Registrar.

C h a n n e l

4s

ak

dj

fl

ö

la

dk

sf

j

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

sa

kd

jf

l

ad

ks

fj

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

sa

kd

jf

l

ad

ks

fj

as

ld

f

öa

d

öl

kd

qw

e

rr

ti

uo

d

kl

c

.

Source: RFC 3574

GPRS/UMTS Access IP Multimedia CN Subsystem

P-CSCF I-CSCF

S-CSCF SIP signalling

User Traffic

PS evolution: IMS

Page 45: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 45

IMS architecture (2): Routing of INVITE

Source: Luis Angel Galindo

PS evolution: IMS

Page 46: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 46

IMS Outgoing call example: SIP signalling [1]

PS evolution: IMS

Caller Called Visited P-CSCF Home S-CSCF Home P-CSCF

INVITE INVITE INVITE INVITE 100 Trying 100 Trying 100 Trying

183 183

183 183

SIP request messages ACK: Acknowledge final responses to INVITE requests INVITE: Establish session PRACK: Ack for reliable transported provisional response UPDATE: Update session without changing State of dialog SIP Response messages 100 Trying: hop-by-hop progress indication 180: Alerting is taking place 183: End-to-end progess (e.g. establish one-way media for ring tone, busy tone or announcement “you call is being diverted”)) 200 OK: 1) Accept session invitation 2) General confirmation stopping retransmissions

PRACK PRACK PRACK PRACK

200 OK 200 OK

200 OK 200 OK

UPDATE UPDATE UPDATE UPDATE

200 OK

200 OK 200 OK

200 OK 200 OK

200 OK 200 OK

200 OK

180 180

180 180

ACK ACK ACK ACK

Media Session

Page 47: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 47

IMS Outgoing call example: Overview originating side [2]

PS evolution: IMS

P-GW MME E-UTRAN UE

1) RRC Connection establishment

2) Attach (establish MM context)

3) Activate Default EPS bearer context - UE IP address

- P-CSCF IP address

P-CSCF I-CSCF S-CSCF

4) Service Registration (SIP Register)

5) INVITE

6) SDP negotiation

7) Activated Dedicated EPS bearer context

8) Session Confirmation (200OK & ACK)

9) Session in Progress

Page 48: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 48

Signalling and Traffic paths

PS evolution: IMS

Source: award solutions

Page 49: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 49

Logical architecture (non roaming)

Long Term Evolution

Source: TS23.401

Page 50: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 50

Inter-working with non-3GPP accesses

!   SAE supports both host-based and network-based mobility management solutions !   Dual-Stack MIPv6 (host-based) !   Proxy MIPv6 and MIPv4 in Foreign Agent mode (network-based)

!   PDN GW works as MIP/PMIP Home Agent !   When connected to a 3GPP access the UE can be assumed to be at home in MIP sense !   Mobility within 3GPP accesses (E-UTRAN, UTRAN and GERAN) is managed in a

network-based fashion using 3GPP-specific protocols

!   SAE distinguishes between “trusted” and “untrusted” non 3GPP accesses !   It is up to the operator to decide if a non 3GPP access is trusted or untrusted !   The decision is not based just on the access network technology but may depend

also on business considerations !   Interworking with an untrusted access is performed via an evolved PDG (ePDG)

!   the ePDG is similar to a VPN concentrator !   the UE has to establish an IPsec tunnel with the ePDG to access operator’s services !   the ePDG may implement IP mobility protocols (e.g. PMIPv6)

!   Interworking with a trusted access is performed using a more lightweight procedure !   The UE does not need to establish an IPsec tunnel with the ePDG in advance !   MIP or PMIP protocols can be used directly between the non 3GPP access network and

the EPC

Long Term Evolution; non-3GPP accesses

Page 51: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 51

Inter-working with non-3GPP accesses

Long Term Evolution; non-3GPP accesses

Page 52: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 52

Example: Handover to trusted non-3GPP access (1)

Source: IST Mobile Wireless

Long Term Evolution; non-3GPP accesses

HA: Home Agent (MIP/PMIP) MAG: Mobility Access Gateway (PMIP) AGW: Access GateWay ePDG: evolved Packet Data Gateway

Page 53: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 53

Source: IST Mobile Wireless

Long Term Evolution; non-3GPP accesses

Example: Handover to trusted non-3GPP access (2)

Page 54: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 54

Long Term Evolution; non-3GPP accesses

Example: Handover to trusted non-3GPP access (3)

Page 55: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

IV Summary

Page 56: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 56

Summary

!   3rd Generation Partnership Project (3GPP) !   Long History of Successful standardisation !   GSM, UMTS, UMTS-HSDPA/HSUPA, LTE, LTE-A (CA),…..

!   Access Stratum <-> Non Access Stratum (AS ó NAS) !   Required to introduce LTE in RAN/CN network architecture

!   E-UTRAN !   LTE RAN brings a new flat RAN architecture with high throughput/capacity

!   PS CN evolution !   Enhanced Packet Core (EPC) / IP Multimedia Core Network System (IMS)

!   Interesting new topics !   Dual-Connectivity (Rel-12) !   Direct Discovery/Direct Communication (Rel-12) !   Licensed-Assisted Access (Rel-13) !   Internet of Things IoT (Rel-12/13) !   …..

Summary

Page 57: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014

V Backup Slides

Page 58: 3GPP Telecommunication Systems Long Term Evolution …heijenk/mwn/slides/Lecture-11.pdf · 3GPP Telecommunication Systems Long Term Evolution (LTE) Gert-Jan van Lieshout Samsung Electronics

Mobile and Wireless; 23-10-2014 58

UMTS<-> LTE comparison: Radio technology

HSDPA/E-DCH 3GPP LTE Rel-8

Radio Technology W-CDMA OFDM (better suited for higher BW)

Peak Data Rates (DL/UL)

Lower Spectrum efficiency

100Mbps/50Mbps in 20Mhz

Flexible Bandwidth 5Mhz / N * 5Mhz

1.25 , …, 20Mhz / N * (1.25 , …, 20Mhz)

User plane latency ± 50ms ± 10ms

Long Term Evolution