Top Banner
2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General Circulation Modeling Coupled General Circulation Modeling 2.344 Übersicht über komplexere Modelle 2.34 GHG= Greenhouse Gas
103

2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Apr 05, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

2.34 Modelle

2.341 Ein einfaches Energiebilanz Modell (EBM)

2.342 Komplexere Modele

2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General Circulation Modeling Coupled General Circulation Modeling

2.344 Übersicht über komplexere Modelle

2.34

GHG= Greenhouse Gas

Page 2: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Hauruck Modell für mittlere Temperatur der Erdoberfläche

1. ParameterStefan-BoltzmannKonstante sigma= 5,7E-08 [W/m^2/K^4]

Emissionsfaktor eps= 1,00

Solare Einstrahlung S0= 1370 [W/m^2]

auf m 2̂ Kugeloberfläche E0= 342,5 [W/m^2] =S0 / 4

direkte Rückstrahlung, Albedo A= 0,30 [W/m^2]

absorbierte Solarstrahlung E= 239,8 [W/m^2] = (1 - A ) * E0

2.Stefan Boltzmann Gesetz für schwarzen Körper: P = sigma *( T1^4 - T2^4 )

P = sigma *T1^4 sofern T2 --> 0 T1 = Wurzel(Wurzel(P/sigma))

3. Stefan Boltzmann Gesetz für graue Körper: P = eps * sigma *(T1^4 - T2^4) sei T2 = 0 --> T1 = Wurzel(Wurzel(P/ (eps*sigma)))

5. Strahlungsgleichgewicht: Absorption solar = thermische i.r. Ausstrahlung der grauen Erde

Gleichgewicht: P = E P= 239,8 [W/m^2] = E

T1= 255,002 [K] =WURZEL(WURZEL(P/eps/sigma))-18 [°C] =Z(-1)S-273,15

Goto spielen

Page 3: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

Ta

FS = 1370 [W/m^2] solar constantF0 = 1/4 * (1-A)* FS

A simple model of the greenhouse effect

Ground

Tg

Atmosphere

F0

s*F0

Fa

Fat*Fg

Fg

Solartransmittances

thermaltransmittancet

thermal emittance = (1- t )

Fa = (1- t )* Ta4

Fg = Tg4

2.341

Page 4: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

Ground

Tg

AtmosphereTa

F0

s*F0

Fa

Fat*Fg

Fg

Solartransmittances

thermaltransmittancet

thermal emittance = (1- t ) [Kirchhoff‘s law]

A simple model of the greenhouse effect:

Bilance at the top of the atmosphere:

F0 = Fa + t*Fg (1)

Bilance at the ground:

s*F0 + Fa = Fg (2)

Page 5: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

A simple model of the greenhouse effect:

Bilance at the top of the atmosphere: (1) F0 = Fa + t*Fg

Bilance at the ground: (2) Fg = Fa + s*F0

Fa aus (1) in (2) einsetzen : Fg = [F0 - t*Fg ]+ s*F0

Fg = F0 * (1+ s ) / ( 1+ t)

andererseits gilt: Fg = Tg4

Also : Tg4= F0 * (1+ s ) / ( 1+ t)

Page 6: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle:D.G. Andrews:“An introduction to Atmospherical Physics; fig.1.2

A simple model of the greenhouse effect:

Also : Tg4 = F0 * (1+ s ) / ( 1+ t)

Zahlenwerte: s = 0,9 ; t = 0,2 ; Albedo A=0,3

ferner: F0 = 1/4 * (1-A)* FS = 0,7* 1370/ 4 = 0,7* 340 = 240 [W/m2]

= 5,67 *10- 8 [Wm-2K-4]

Tg = 286 [K]

The close agreement with Tg = 288 [K] is partly fortuitous, since inreality non radiative processes also contribute to the energy balance

Page 7: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Goto spielen Modell mit einfacher Atmosphäre

1. ParameterStefan-BoltzmannKonstante sigma= 5,7E-08 [W/m^2/K^4]

Emissionsfaktor eps= 0,95

Solare Einstrahlung: S0= 1370 [W/m^2]

auf m^2 Kugeloberfläche : =S0 / 4 E0= 342,5 [W/m^2]

direkte Rückstrahlung, Albedo A= 0,33 [W/m^2]

Einstrahlung oben : (1 - A ) * S0/4 = F0= 229,475 [W/m^2]

Solare Einstrahlung am Grund

2. Spezielle Parameter des Modells

Transmission (solar) der Atmosphäre tau_s= 0,9Transmission (thermisch) der Atmosphäre tau_t= 0,2

tau_Faktor= 1,58333

5. Strahlungsgleichgewicht:

Gleichgewicht: P= sigma Tg^4 = Fo *tau_Faktor P= 363,3 [W/m^2]

Tg= 282,931 [K]

Tg= 10 [°C]

Page 8: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

2.342 Komplexere Modelle

Komplexere Modelle

Page 9: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Geographic resolution characteristic of climate Models of the generations of climate models used in the IPCC Assessment Re-ports: FAR (IPCC, 1990), SAR (IPCC, 1996), TAR (IPCC, 2001a), and AR4 (2007).

The figures above show how successive generations of these global models increasingly resolved northern Europe. These illustrations are representative of the most detailed horizontal resolution used for short-term climate simulations.

The century-long simulations cited in IPCC Assessment Reportsafter the FAR were typically run with the previous generation’s resolution.

Vertical resolution in both atmosphere and ocean models is not shown, but it has increased comparably with the horizontal resolution, beginning typically with a single-layer slab ocean and ten atmospheric layers in the FAR and progressing to about thirty levels in both atmosphere and ocean.

Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

Page 10: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Geographic resolution characteristic of climate Models

Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

Page 11: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle: IPCC-AR4-wg1 (2007), Figure 1.4

aktueller Stand (2007):

30 levels in both atmosphere and ocean.

Page 12: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :

Hierarchie der gekoppelten Modelle für Ozean und Atmosphärenach Raumdimensionen geordnet

Page 13: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Erläuterungen zur Tabelle 2.1 (Hierarchie der gekoppelten Modelle für Ozean und Atmosphäre ):

Die Richtung der Dimensionen ist in Klammern spezifiziert:

(lat = latitude, long = longitude, z = vertikal);

2.5d = mehrere 2-dimensionale Ozeanbecken, die im südlichen Ozean verbunden sind;

Weitere viel verwendete Abkürzungen:

EBM = energy balance model, AGCM = atmospheric general circulation model, OGCM = ocean general circulation model .

QG = für quasi-geostrophisch, SST = sea surface temperature.

In kursiv sind einige Modellbeispiele genannt (entweder Autoren oder Modellbezeichnung).

EMICS: Das grau schattierte Gebiet enthält Klimamodelle reduzierter Komplexität (auch Earth System Models of Intermediate Complexity, EMICs genannt), mit denen lange Integrationen durchgeführt werden können (mehrere 10^3 – 10^6 Jahre, oder grosse ensembles).

Quelle: Prof. T. Stocker: „Einführung in die Klimamodellierung“, Vorlesungsskript WS 2002/2003; p.19; Tab.2.1 :

Page 14: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Klimamodelle sind gar nicht so einfach zu verstehen und zu beurteilen (hmm…..- was tun?)

Daher :

1. Hinweis auf ausführliche Vorlesungen im www und auf gedruckte Publikationen.

2. Virtueller Gastvortrag : Prof. Broccoli, Rutgers University, New Jersey, USA

Page 15: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

1. Ausgewählte Internetquellen

Page 16: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

http://www.climate.unibe.ch/~stocker/papers/skript0203.pdfzum Original

Prof. Stocker, Bern

Page 17: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Inhalt der Vorlesung von Prof. Stocker

1 Einführung.................... .........................................................................................................11.1 Ziel der Vorlesung und weiterführende Literatur ................................................................11.2 Das Klimasystem..................................................................................................................31.3 Aufgaben und Grenzen der Klimamodellierung ..................................................................61.4 Historische Entwicklung ......................................................................................................91.5 Einige aktuelle Beispiele zur Klimamodellierung .............................................................131.6 Zusammenfassung.................................................................... ...........................17

2 Modellhierarchie und einfache Klimamodelle ..................................................................192.1 Hierarchie der physikalischen Klimamodelle ....................................................................192.2 Punktmodell der Strahlungsbilanz ....................................................................................272.3 Numerische Lösung einer gewöhnlichen Differentialgleichung 1. Ordnung ............. .......302.4 Klimasensitivität im Energiebilanzmodell ................................................................... ......34

3 Advektion, Diffusion und Konvektion................................................................................413.1 Advektion..........................................................................................................................413.2 Diffusion............................................................................................................................423.3 Konvektion........................................................................................................................433.4 Advektions-Diffusionsgleichung und Kontinuitätsgleichung....................... .....................443.5 Numerische Lösung der Advektions-Gleichung ................................................................453.6 Weitere Verfahren zur Lösung der Advektions-Gleichung ..................................... ..........533.7 Numerische Lösung der Advektions-Diffusions Gleichung ..................................... .........593.8 Numerische Diffusion .......................................................................................................59

4 Energietransport im Klimasystem und seine Parametrisierung .....................................614.1 Grundlagen........................................................................................................................614.2 Wärmetransport in der Atmosphäre ..................................................................................624.3 Breitenabhängiges Energiebilanzmodell............................................................................654.4 Wärmetransport im Ozean ................................................................................................66.......................................................

Page 18: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

5 Anfangswert- und Randwertprobleme...............................................................................715.1 Allgemeine Grundlagen .....................................................................................................715.2 Direkte numerische Lösung der Poissongleichung ............................................................725.3 Iterative Verfahren .............................................................................................................745.4 Successive Overrelaxation (SOR)......................................................................................75

6 Gross-skalige Zirkulation im Ozean...................................................................................776.1 Die Bewegungsgleichungen......................................................................................... .....776.2 Flachwassergleichungen als Spezialfall ............................................................................806.3 Verschiedene Typen von Gittern in Klimamodellen........................................................ ..816.4 Spektralmodelle.................................................................................................................856.5 Windgetriebene Strömung im Ozean (Stommel Modell) .............................................. ...876.6 Potentielle Vorticity: eine wichtige Erhaltungsgrösse .................................................... ..93

7 Gross-skalige Zirkulation in der Atmosphäre ..................................................................977.1 Zonale und meridionale Zirkulation .............................................................................. ....977.2 Das Lorenz-Saltzman Modell ..........................................................................................102

8 Atmosphäre-Ozean Wechselwirkung...............................................................................1098.1 Kopplung von physikalischen Modellkomponenten................................................... .....1098.2 Thermische Randbediungungen.................................................................................. .....1108.3 Hydrologische Randbedingungen............................................................................... .....1148.4 Impulsflüsse ............................................................................................................. ........1168.5 Gemischte Randbedingungen ................................................................................... .......1168.6 Gekoppelte Modelle................................................................................................... .. ...118

9 Multiple Gleichgewichte im Klimasystem .......................................................................1229.1 Abrupte Klimawechsel aufgezeichnet in polaren Eisbohrkernen ............................... .....1229.2 Multiple Gleichgewichte in einem einfachen Atmosphärenmodell............................. ....124 9.3 Multiple Gleichgewichte in einem einfachen Ozeanmodell ....................................... .....1259.4 Multiple Gleichgewichte in gekoppelten Modellen.................................................... .....1279.5 Schlussbemerkungen und Ausblick .................................................................................130

10 Übungsaufgaben zur Klimamodellierung........................................................................131

Page 19: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

http://www.pik-potsdam.de/~claussen/lectures/physikalische_klimatologie/physklim1.pdf

zum Original

Prof. Claussen, Potsdam

Page 20: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

IMPRS, 4 June 2003

Earth System Models of Intermediate Complexity

Martin Claussen

Potsdam-Institut für Klimafolgenforschung /

Universität Potsdam

• The spectrum of Earth system models

• Remarks on the Earth system

• Examples from CLIMBER-2 and EMIC workshops

• Perspective for Integrative Modelling

Quelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik-potsdam.de/~claussen/lectures/

1.

Page 21: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Climate modelling with quasi-realistic models - experiences in describing climate during the Holocene and the Eemian, and in designing scenarios of

plausible future climate change.

Hans von StorchInstitute for Coastal Research,

GKSS Research Center, Geesthacht, Germany

7.5.2004 Centro de Astrobiología, Madrid

The construction and utility of quasi-realistic climate models is reviewed. Examples of reconstructing past climates are presented, in particular for the last millennium and for the last interglacial, the Eemian (120 ka bp).In addition, the approach of constructing plausible future climates, conditional upon the extent the atmosphere is used as a dump for anthropogenic substances, is demonstrated with examples.

http://w3g.gkss.de/G/Mitarbeiter/storch/

Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Prof. von Storch, GKSS

Page 22: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Inst

itu

t fü

r K

üst

enfo

rsch

un

g

I f K

Page 23: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.
Page 24: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

2. Virtueller Gastvortrag

zunächst:

Vorbereitung und Einstimmung

Page 25: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Die Atmosphäre über Europa im diskreten Modell

U. CubaschBQuelle:DLR_Schumann200_Klimawandel.ppt

Page 26: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Europa im diskretisierten Modell

U. CubaschBQuelle:DLR_Schumann2000_Klimawandel.ppt

Page 27: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

McGuffie and Hendersson-Sellers, 1997McGuffie and Hendersson-Sellers, 1997

BezugsQuelle: Claussen: „Earth System Models of Intermediate Complexity“,IMPRS, 4.6.2003; www.pik-potsdam.de/~claussen/lectures/

Page 28: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Für die zeit- und ortsabhängigen Zustandsvariablen:

T = Temperatur = Dichte p = Druck {u,v,w} = Strömungsgeschwindigkeit (3 Komponenten)

gelten in jeder Zelle die Grundgleichungen der Strömungs- undThermodynamik. (Erhaltung von Impuls [NavierStokes], Masse [Kontinuitätsgleichung], und Energie, und Zustandsgleichung .)

Im Ozeanwird an Stelle der Dichte meist der Salzgehalt S benutzt, da: = (S,T,p) .

In der Atmosphäre kommen noch wg. der Energiebilanz der Wasserdampfgehalt q und flüssiges Wolkenwasser hinzu.

Quelle: / Storch-Güss-Heimann 99, p.99ff./

Page 29: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle: / Storch-Güss-Heimann 99, p.99ff./

Es wird ein auf der rotierenden Erde (Corioliskraft! ) ortsfestes (Advektionsterm! ) Koordinatensystem verwendet.

Daher treten in den Navier Stokes Gln.(Impulserhaltung) auf:

der Coriolis Parameter f: f = 2 * * sin mit: = Winkelgeschwindigkeit der Erddrehung , = geographische Breite und länge der Erdradius : a

Page 30: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Erinnerung an die Hydrodynamik: Eulerian and Lagrangian description

BQuelle: Prof. Dick Yue, MIT_ocw 13.021 „Marine Hydrodynamics“, lecture notes „2 Basic Equations“http:/ocw.mit.edu/OcwWeb/Ocean-Engineering/13-021MarineHydrodynamicsFall2001/CourseHome/index.htm

Page 31: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Erinnerung an die Hydrodynamik: D /Dt

BQuelle: Prof. Dick Yue, MIT_ocw 13.021

Behauptung : Es gilt:

Page 32: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Beweis :

Page 33: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

atmosphere

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 34: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

ocean

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 35: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Parameterizations

The terms Fu, Fv, Gq, Gs, GT and Q describe the effect of “unresolved” processes on state variables u, v, q, ρ and T, i.e., Fu = Fu,Δx(u, v, q, ρ,T)

These functions are called „parameterizations“; they are not uniquely determined (i.e., different formulations may serve the same purpose), and the limiting process is not defined, i.e.,

Fu,Δx(u, v, q, ρ,T) does not exist.

There is nothing like “the differential equations” of climate.

0lim

x

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 36: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Inst

itu

t fü

r K

üst

enfo

rsch

un

g

I f KDynamical processes in the atmosphereQuelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 37: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Inst

itu

t fü

r K

üst

enfo

rsch

un

g

I f KDynamical processes in a global atmospheric model

Quelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 38: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Inst

itu

t fü

r K

üst

enfo

rsch

un

g

I f KDynamical processes in the oceanQuelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 39: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Inst

itu

t fü

r K

üst

enfo

rsch

un

g

I f KDynamical processes in a global ocean modelQuelle: v.Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 40: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.
Page 41: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quasi-realistic Models

• Models of aximum complexity, which feature as many processes as is possible given the computational resource.

• Meant as a tool to simulate in space-time detail the trajectory of climate.

• Quasi-realistic models do not “explain” but allow for “numerical experiments”.Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004;

http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 42: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quasi-realistic models

Quelle: Hans von Storch: „Climate modelling with quasi-realistic models..”, Vortrag Madrid 7.5.2004; http://w3g.gkss.de/G/Mitarbeiter/storch/

Page 43: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

2.343 Virtueller Gastvortrag von Prof. Broccoli, USA:

1. Atmospheric General Circulation Modeling

2. Coupled General Circulation Modeling

Prof. Anthony J. Broccoli Dept. of Environmental Sciences Rutgers University, New Jersey, USA

Homepage: http://www.envsci.rutgers.edu/~broccoli/index.html

Page 44: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Atmospheric General Circulation Modeling

Anthony J. BroccoliDept. of Environmental Sciences

Zum Original:http://climate.envsci.rutgers.edu/climod/BroccoliAtmos_gcm_env544.ppt

Page 45: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Coupled General Circulation Modeling

Anthony J. BroccoliDept. of Environmental Sciences

Zum Original:http://climate.envsci.rutgers.edu/climod/BroccoliCoupled_gcm_env544.ppt

Page 46: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

2.344 Übersicht : Komplexere Modelle Ist dies Bild schöner als die Urfassung,das folgende Bild?

Page 47: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

IPCC2001_TAR1_TS-Box3

Page 48: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

IPCC2001_TAR1_TS-Box3

Box 3: Climate Models: How are they built and how are they applied?Comprehensive climate models are based on physical laws represented by mathematical equations that are solved using a three-dimensional grid over the globe.

For climate simulation, the major components of the climate system must be represented in submodels (atmosphere, ocean, land surface, cryosphere and biosphere), along with the processes that go on within and between them. Most results in this report are derived from the results of models, which include some represen-tation of all these components. Global climate models in which the atmosphere and ocean components have been coupled together are also known as Atmosphere-Ocean General Circulation Models (AOGCMs). In the atmospheric module, for example, equations are solved that describe the large-scale evolution of momentum, heat and moisture. Similar equations are solved for the ocean.

Currently, the resolution of the atmospheric part of a typical model is about 250 km in the horizontal and about 1 km in the vertical above the boundary layer. The resolution of a typical ocean model is about 200 to 400 m in the vertical, with a horizontal resolution of about 125 to 250 km. Equations are typically solved for every half hour of a model integration.

Many physical processes, such as those related to clouds or ocean convection, take place on much smaller spatial scales than the model grid and therefore cannot be modelled andresolved explicitly. Their average effects are approximately included in a simple way by taking advantage of physically based relationships with the larger-scale variables. This technique isknown as parametrization.

Page 49: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.
Page 50: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projektionen und Szenarios

für das 21. Jahrhundert

2.35

Page 51: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

The last 160,000 years (from ice cores) and the next 100 years

Time (thousands of years)

160 120 80 40 Now

–10

0

10

100

200

300

400

500

600

700

CO2 in 2100(with business as usual)

Double pre-industrial CO2

Lowest possible CO2

stabilisation level by 2100

CO2 now

Temperature difference from now °C

CO

2 co

ncen

trat

ion

(ppm

v)

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

2.351 „Historische Perspektive“

CO2

Page 52: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

2.352 Emissionsszenarien und die Komplexität der weiteren Entwicklung

•Die weitere Entwicklung der Emissionen

von GHG und SO4- Aerosolen hängen vom komplexen Zusammenwirken vieler Faktoren ab: u.a. Bevölkerung : Wachstum, Altersstruktur, Land-Stadt-Übergang, Wanderung Ökonomie : Wachstum, Struktur Technik : Stand der Technik und Marktdurchdringung „nachhaltiger“ Technologien Regierung und Kultur

• IPCC gibt einheitliche Emissionsszenarien vor:

Page 53: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Climate change is a sustainable development issue

Air pollu

tion

Interacti

ons

Socio-Economic Development Paths•Main drivers are economic

growth, technology, population, governance structures, energy

and land use

•Temperature rise•Sea level rise•Precipitation changes

Climate System •Water resources, agriculture, forestry•Ecological systems and biodiversity•Human health

Human & Natural Systems

Enhanced greenhouse

effect

Feedbacks

Non-climate change stressesEnvironmental

impacts

Climate change impacts

•Carbon dioxide•Methane•Nitrous oxide•Aerosols

Atmospheric Concentrations

Anthropogenic emissions

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 9

Page 54: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Summaries: SPM, TS

Chapters:1: Background and Overview2: An Overview of the Scenario Literature 3: Scenario Driving Forces4: An Overview of Scenarios5: Emission Scenarios6: Summary Discussions and Recommendations

Appendices:..... IV: Six Modeling Approaches V: Database Description VI: Open Process VII Data tables

IPCC gibt einheitliche Emissionsszenarien vor:

SRES = Special Report on Emission Szenarios published in 2000 AD, 592 Seiten

Page 55: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Die 4 Leitszenarien der IPCC -Berichte

BQuelle: VGB-Literaturrecherche 2006 „Klimawandel und Energiewqirtschaft“, p.106, Bild 8.6,UrQuelle: Kasang, HamburgerBildungsserver, 2005, nach IPCC

Page 56: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

The composition of the atmosphere is projected to change causing an increase in temperature and sea level

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 10

Stand: TAR 2001 Stand: TAR 2001

Page 57: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Main climate changes

• Higher temperatures - especially

on land

• Sea level rise

• Hydrological cycle more intense

• Changes at regional level

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

3.353

Page 58: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26.

3.3531 Higher Temperatures

Understanding Near Term CC

Page 59: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

OriginalBildunterschrift:

Model projections of global mean warming compared to observed warming. Observed temperature anomalies, as in Figure TS.6, are shown as annual (black dots) and decadal average values (black line).

Projected trends and their ranges

from the IPCC First (FAR) and Second (SAR) Assessment Reports are shown as green and magenta solid lines and shaded areas, and the projected range from the TAR is shown by vertical blue bars. These projections were adjusted to start at the observed decadal average value in 1990.

Multi-model mean projections from this report

for the SRES B1, A1B and A2 scenarios, as in Figure TS.32, are shown for the period 2000 to 2025 as blue, green and red curves with uncertainty ranges indicated against the right-hand axis.

The orange curve shows model projections of warming if greenhouse gas and aerosol concentrations were held constant from the year 2000 – that is, the committed warming.

Quelle:IPCC-AR4-wg1_TS, p.69, Fig.TS.26 Bildunterschrift:

Page 60: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

3.3531a Large Scale projections for the 21.Century

Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6

Projected global surface warming at theend of the 21st century.

Page 61: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projections of Future Changes in Climate

Best estimate for low scenario (B1) is 1.8°C (likely range is 1.1°C to 2.9°C), and for high scenario (A1FI) is 4.0°C (likely range is 2.4°C to 6.4°C).

Broadly consistent with span quoted for SRES in TAR, but not directly comparable

Quelle:IPCC-AR4wg1_Vortrag Pachauri

Page 62: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Scenario B1

Scenario A1B

Scenario A2

°C

Projections of Surface Temperature

Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28

Page 63: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projected warming in 21st century expected to be greatest over land and at most high northern latitudes

and

leastover the Southern Ocean and parts of the North Atlantic Ocean

Page 64: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Original Bildunterschrift:

Projected surface temperature changes for the early and late 21st century relative to the period 1980 to 1999.

The panels show the AOGCM multi-model average projections (°C) for the B1 (top), A1B (middle) and A2 (bottom) SRES scenariosaveraged over the decades 2020 to 2029 and 2090 to 2099 (right).

Some studies present results only for a subset of the SRES scenarios, or for various model versions. Therefore the difference in the number ofcurves, shown in the left-hand panels, is due only to differences in the availability of results. {Adapted from Figures 10.8 and 10.28}

Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28, Bildunterschrift

Page 65: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Uncertainties as the relative probabilities of estimated global average warming from several different AOGCM and EMIC studies for the same periods.

Corresponding uncertainties to the Projected Temperature Changes

Quelle:IPCC-AR4-wg1_TS, p.72, Fig. TS28 (nun vollständig)

Page 66: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Folgerung:

Near term projections insensitive to choice of scenario

Longer term projections depend on scenario and climate model sensitivities

Page 67: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Summary: Projections of Future Changes in Climate

For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emission scenarios.

Even if the concentrations of all greenhouse gases and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected.

Earlier IPCC projections of 0.15 to 0.3 oC per decade can now be compared with observed values of 0.2 oC

Quelle:IPCC-AR4wg1_Vortrag Pachauri

Page 68: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Land areas warm more than the oceans with the greatest warming at high latitudes

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)

(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)

Multi-model ensemble annual mean change of the temperature for emission scenario A2

Stand: TAR 2001

Page 69: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

3.3532 Sea Level Rise

Quelle:IPCC-AR4-wg1_TS, p.70, TableTS.6

Page 70: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Tens of millions of people are projected to be at risk of being displaced by sea level rise Assuming 1990s Level of Flood Protection

Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts: A Global Perspective.

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18

Stand: TAR 2001

Page 71: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Hydrological Cycle more intense

precipitation increases very likely in high latitudes

Decreases likely in most subtropical land regions

3.3533 Hydrological Cycle

Quelle:IPCC-AR4wg1_Vortrag Pachauri

Page 72: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Weitere Aussagen der Modelle

Page 73: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projections of Future Changes in Climate

There is now higher confidence in projected patterns of warming and other regional-scale features, including changes in wind patterns, precipitation, and some aspects of extremes and of ice.

Page 74: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

• Snow cover is projected to contract• Widespread increases in thaw depth most permafrost

regions• Sea ice is projected to shrink in both the Arctic and

Antarctic• In some projections, Arctic late-summer sea ice

disappears almost entirely by the latter part of the 21st century

PROJECTIONS OF FUTURE PROJECTIONS OF FUTURE CHANGES IN CLIMATE IN CLIMATE

Page 75: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

• Very likely that hot extremes, heat waves, and heavy precipitation events will continue to become more frequent

• Likely that future tropical cyclones will become more intense, with larger peak wind speeds and more heavy precipitation • less confidence in decrease of total number

• Extra-tropical storm tracks projected to move poleward with consequent changes in wind, precipitation, and temperature patterns

PROJECTIONS OF FUTURE CHANGES IN CLIMATEPROJECTIONS OF FUTURE CHANGES IN CLIMATE

Page 76: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.
Page 77: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Was tun ?

Erste Ansätze der Internationalen Gemeinschaft

2.36

Page 78: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE:

UNFCC92: Rio de Janeiro 1992

ARTICLE 2: OBJECTIVE The ultimate objective of this Convention .... is to achieve, .…

stabilization of greenhouse gas concentrations in the atmosphere

at a level that would prevent dangerous anthropogenic interference with the climate system.

Such a level should be achieved within a

time-frame sufficient :

• to allow ecosystems to adapt naturally to climate change.• to ensure that food production is not threatened, and • to enable economic development to proceed in a sustainable manner.

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Page 79: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Stabilization of the atmospheric concentration of carbon dioxide will require significant emissions reductions

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 19

Page 80: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Summary for Policymakers (SPM)

Drafted by a team of 59

Approved ‘sentence by sentence’

by WGI plenary (99 Governments and 45 scientists)

14 chapters

881 pages

120 Lead Authors

515 Contributing Authors

4621 References quoted

IPCC: Climate Change 2001- The Scientific Basis

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Page 81: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

Page 82: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

IPCC Website

http://www.ipcc.ch

Page 83: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Ansatzpunkte zur Wende1. CO2-freie Energiequellen • Erneuerbare Energien ( RE =Renewable Energies) Wasserkraft, Wind, Biomasse, Sonne (themisch, Strom)• Kernenergie , Generation IV ; Kernfusion• Geothermie (Oberflächennah, Tiefe Geothermie)

2. CO2 Sequester und GeoEngineering • CCS, Storage: in geologischen Schichten, im Meer• Eisendüngung zum Algenwachstum, Aufforsten • Sulfat in die Stratoposhäre

3. Rationelle Energieverwendung • Gleiche Energiedienstleistung mit geringerem Energieeinsatz• Höhere Wirkungsgrade bei Kraftwerken, Motoren etc.

4. Verhaltensänderung • Leben mit weniger Energiedienstleistungen, aus Knappheit oder Bescheidenheit• Ernährung: „Weniger Fleisch“

Page 84: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Spruch von JWG vom bescheidenen aber endlichen Beitrag eines Wasserträgers

Pflicht für jeden

Immer strebe zum Ganzen, und kannst Du selber kein Ganzes Werden, als dienendes Glied schließ an ein Ganzes Dich an

Quelle: J.W. Goethe: Gedichte, Herausgeber ErichTrunz, Verlag C.H. Beck. p.226 ; Urquelle:JWG: Distichon im Zusammenhang der Xenien entstanden, aber außerhalb des Xenien Zyklus veröffentlicht

Page 85: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Wichtigste benutzte Literatur für 0.2 :

1. IPCC-COP6a_Bonn2001_WatsonSpeech: Redemanuskript + Bilder

2. IPCC2001_TAR1: Climate Change 2001, The Scientific Basis insbesondere Technical Summary und die jeweils als Quelle oder „Urquelle“ angegebenen Seiten.

Page 86: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Reste

Page 87: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

CO2, temperature, precipitation and sea level in the 21.th century

All IPCC projections show that the atmospheric concentration of CO2 will increase significantly during the 21th century in the absence of climate change policies; Climate models project that the Earth will warm 1.4 to 5.8 °C between 1990 and 2100, with most land areas warming more than the global average;

Precipitation will increase globally, with increases and decreases locally, with an increase in heavy precipitation events over most land areas;

Sea level is projected to increase 8-88 cm between 1990 and 2100;

Models project an increase in extreme weather events, e.g. heatwaves, heavy precipitation events, floods, droughts, fires, pest outbreaks, mid-latitude continental summer soil moisture deficits, and increased tropical cyclone peak wind and precipitation intensities.

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary

Page 88: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Global mean surface temperature is projected to increase during the 21st century

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 11

Page 89: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projected surface temperatures for the 21st century would be unheralded in the last 1000 years

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 12

Page 90: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Land areas warm more than the oceans with the greatest warming at high latitudes

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 13; Urquelle: IPCCC2001_TAR1 Fig.9.10d, p.547 (vereinfacht)

(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)

Multi-model ensemble annual mean change of the temperature for emission scenario A2

Page 91: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

There is significant inertia in the climate system

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 14

Scenario: Stabilisation of [CO2] at 550 ppm

Page 92: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Some areas are projected to become wetter, others drier

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 15UrQuelle: IPCC2001_TAR: Fig.9.11d, p.550 (vereinfacht)

(SRES Scenario A2 for 2071-2100 AD relative to 1961-1990)

Multi-model ensemble annual mean change of the precipitation for emission scenario A2

Page 93: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projected Changes in Extreme Climate Events and Resulting Impacts

Projected Changes during the 21st

Century in Extreme Climate Phenomenaand their Likelihooda

Representative Examples of Projected Impactsb

(all high confidence of occurrence in some areasc)

1. Simple Extremes

Higher maximum temperatures,more hot days and heat wavesd over nearlyall land areas (Very likelya)

• Increased incidence of death and serious illness in olderage groups and urban poor [4.7]

• Increased heat stress in livestock and wildlife [4.2 and 4.3]• Shift in tourist destinations [Table TS-2 and 5.7]• Increased risk of damage to a number of crops [4.2]• Increased electric cooling demand and reduced energy

supply reliability [Table TS-4 and 4.5]Higher [Increasing]minimum temperatures,fewer cold days, frost days and cold wavesd

over nearly all land areas (Very likelya)

• Decreased cold-related human morbidity and mortality[4.7]

• Decreased risk of damage to a number of crops, andincreased risk to others [4.2]

• Extended range and activity of some pest and diseasevectors [4.2 and 4.3]

• Reduced heating energy demand [4.5]More intense precipitation events(Very likelya, over many areas)

• Increased flood, landslide, avalanche, and mudslidedamage [4.5]

• Increased soil erosion [5.2.4]• Increased flood runoff could increase recharge of some

floodplain aquifers [4.1]• Increased pressure on government and private flood

insurance systems and disaster relief [Table TS-4 and 4.6]

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1

Page 94: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projected Changes in Extreme Climate Events and Resulting Impacts (cont.)

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Tab 1 continued

2. Complex Extremes

Increased summer dryingover most mid-latitude continental interiorsandassociated risk of drought (Likelya)

• Decreased crop yields [4.2]• Increased damage to building foundations caused by

ground shrinkage [Table TS-4]• Decreased water resource quantity and quality [4.1 and

4.5]• Increased risk of forest fire [5.4.2]

Increase in tropical cyclone peak windintensities, mean and peak precipitationintensities (Likelya, over some areas)e

• Increased risks to human life, risk of infectious diseaseepidemics and many other risks[4.7]

• Increased coastal erosion and damage to coastal buildingsand infrastructure [4.5 and 7.2.4]

• Increased damage to coastal ecosystems such as coral reefsand mangroves [4.4]

Intensified droughts and floodsassociated with El Niño events in manydifferent regions (Likelya)[See also under droughts and intenseprecipitation events]

• Decreased agricultural and rangeland productivity indrought- and flood-prone regions [4.3]

• Decreased hydro-power potential in drought-prone regions[5.1.1 and Figure TS-7]

Increased Asian summer monsoonprecipitation variability (Likelya)

• Increase in flood and drought magnitude and damages intemperate and tropical Asia [5.2.4]

Increased intensity of mid-latitude storms (Little agreement between current models)d

• Increased risks to human life and health [4.7]• Increased property and infrastructure losses [Table TS-4]• Increased damage to coastal ecosystems [4.4]

Page 95: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Crop yields are projected to decrease throughout the tropics and sub-tropics, but increase at high latitudes

Percentage change in average crop yields for the climate change scenario. Effects of CO2 are taken into account. Crops modeled are: wheat, maize and rice.

Jackson Institute, University College London / Goddard Institute for Space Studies / International Institute for Applied Systems Analysis 97/1091 16

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 17

2020‘s

2050‘s

2080‘s

Page 96: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Tens of millions of people are projected to be at risk of being displaced by sea level rise Assuming 1990s Level of Flood Protection

Source: R. Nicholls, Middlesex University in the U.K. Meteorological Office. 1997. Climate Change and Its Impacts: A Global Perspective.

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 18

Page 97: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Biological systems have already been affected Biological systems have already been affected in many parts of the world by changes in climate, particularly increases in regional temperature

Bird migration patterns are changing and birds are laying their eggs earlier;

the growing season in the Northern hemisphere has lengthened

by about 1-4 days per decade during the last 40 years; and

there has been a pole-ward and upward migration of plants, insects and animals.

Projected changes in climate will have both beneficial and adverse effects on water resources, agriculture, natural ecosystems and human health, but the larger the changes in climate the more the adverse effects dominate

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary

Page 98: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Projected changes in climate will have

both beneficial and adverse effects on

• water resources,

• agriculture,

•natural ecosystems • human health,

but:

• the larger the changes in climate -

- - the more the adverse effects dominate

Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 2-Summary

Page 99: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5 BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

Early Results for 2007-Report IPCC-AR4

Page 100: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Early Results for 2007-Report IPCC-AR4Model calculations with 3 emissions scenarios, representing

550, 700 and 800 ppm CO2 by 2100 AD , give:

• Global temperatures are likely to rise by 2.5 – 4 °C by 2100,

• Arctic will become ice-free during summer by 2090 AD . (even in the 550 ppmCO2 case)

• The global sea level will rise by up to 40 cm ,

composed of up to 30 cm as water warms and expands, and by an additional 10 cm as part of Greenland’s ice sheet melts.

• weakening of the Atlantic ocean circulation. (not a shut down !)

• more rain and snow at high latitudes and in the tropics, and

• less rainfall in Mediterranean and subtropical regions.

• extreme precipitation and drought increase worldwide.

UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5 BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

Page 101: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.

Early Results for 2007-Report IPCC-AR4

Originaltext:

Global temperatures are likely to rise by 2.5–4 C by 2100, according to the latest calculations by scientists at the Max Planck Institute for Meteorology in Hamburg, Germany.

The institute is one of 15 asked by the Intergovernmental Panel on Climate Change to run extended climate simulations for its fourth assessment report. Theresearchers ran six parallel experiments, requiring 400,000 computing hours, using their atmospheric general circulation model ECHAM5. They looked at three emissions scenarios, representing carbon dioxide concentrations of 550, 700 and 800 parts per million (p.p.m.) by 2100 (see graph). Even under the most optimistic assumptions, the model suggests that the Arctic will become ice-free during summer by 2090, says Erich Roeckner, who heads the group. The global sea level will rise by up to 30 centimetres as water warms and expands, and by an additional 10 centimetres as part of Greenland’s ice sheet melts. The scientists also expect a weakening — but not a shut-down — of the Atlantic ocean circulation. There will be more rain and snow at high latitudes and in the tropics, and less rainfall in Mediterranean and subtropical regions.Extreme precipitation and extreme drought are likely to increase worldwide. Q.S.(Q.S.Quirin Schiermeier)

UrQuelle:MPI-Meteorologie, Hamburg, Modellrechnungen mit ECHAM5 BQuelle: nature439,2006-0126,p.375, „Early results“ of AR4, http://www.nature.com/nature/journal/v439/n7075/pdf/439374a.pdf

Page 102: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.
Page 103: 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM) 2.342 Komplexere Modele 2.343 Virtueller Gastvortrag von Prof. Broccoli, USA: Atmospheric General.