Top Banner
22.CANCER AS A GENETIC DISEASE 22.CANCER AS A GENETIC DISEASE A. Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B. Mutant embryo in which this genetic program dose not occur.
36

22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Dec 14, 2015

Download

Documents

Lindsay Raphael
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

22.CANCER AS A GENETIC DISEASE22.CANCER AS A GENETIC DISEASE

A. Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis).

B. Mutant embryo in which this genetic program dose not occur.

Page 2: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Cancer and the control of cell number: an overview - machinery of cell proliferation - machinery of cell death - linking cell proliferation and death to the the environment

Cell proliferation machinery - cell cycle - cyclin and CDKs - cdk targets - yeast: genetic models for the cell cycle

Machinery for programmed cell death - caspases - C. elegans: a genetic model for PCD

Controlling the cell-proliferation and death machinery - intracellular signals - extracellular signals

Cancer: the genetics of aberrant cell control - how cancer cells differ from normal cells - evidence for the genetic origin of cancers - mutations in cancer cells - classes of oncogenes - classes of tumor-suppressor genes - inheritance of the tumor types - p53: a link b/w the cell cycle and apoptosis - complexities of cancer

Cancer research in the genomic analysis era

Page 3: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

: Cancer is now clearly understood as a genetic disease of somatic cells.

Machinery of cell proliferation

The cell division cycle has evolved so that there are checks and balances to prevent a subsequent event from taking place before the prerequisite events have been achieved.

(phosphorylation-dephosphorylation system)

Machinery of cell death (in multicellular organisms)

- balance the numbers of the cell types in their various tissues - eliminate abnormal cells

mechanisms have evolved to eliminate certain cells-through a process called programmed cell death or apoptosis

Cancer and the control of cell Cancer and the control of cell number:number:An overview An overview

Page 4: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Linking cell proliferation and death to the environment

The cell proliferation and cell death machinery must be interconnected t each is activated only under the appropriate environmental circumstances.

Intercellular signaling pathways typically consist of several components - activity of many DNA-binding proteins - protein phosphorylation - interactions between proteins and small molecules - interaction between protein subunits

Cancer and the control of cell Cancer and the control of cell number:number:An overview An overview

Page 5: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Cell proliferation machineryCell proliferation machinery

Cell cycle

: There are four main parts to the cell cycle M phase – mitosis G1 phase – The gap period between the end of mitosis and the start of DNA replication S phase – The period during which DNA synthesis occurs G2 phase – The gap period following DNA replication and preceding the initiation of the mitotic prophase

The differences in the rate of cell division = the differences in the length of time between entering and exiting G1

Page 6: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Cell proliferation machineryCell proliferation machinery

- The engines that drive progression from one step of the cell cycle to the next are a series of protein complexes composed of two subunits

- Sequential activation of different CDK-cyclin complexes ultimately controls progression of the cell cycle

Cyclins and cyclin-dependent protein kinases

The target proteins for CDK phosphorylation are determined by the associated cyclin

Page 7: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

- Because different cyclins are present at different phases of the cell cycle, different phases of the cell cycle are characterized by the phosphorylation of different target proteins.

- The phosphorylation events are transient and reversible by phosphatases

Cell proliferation machineryCell proliferation machinery Cyclins and cyclin-dependent protein kinases

Page 8: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Cell proliferation machineryCell proliferation machinery

CDK targets•How does the phosphorylation of some target proteins control the cell cycle? phosphorylation activation of certain transcription factors promote the txn of certain genes required for the next stage of the cell cycle

* Rb-E2F pathway in mammalian cells

- Rb is the target protein of a Cdk2-cyclin A complex- E2F is the transcription factor that Rb regulates.

Page 9: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Cell proliferation machineryCell proliferation machinery

The cell cycle of the budding yeast Saccharomyces cerevisiae (different bud sizes)

Yeasts : genetic models for the cell cycle

•cdc (cell division cycle) mutations ts mutation stop growing at a specific time in the cell cycle at restrictive condition

•Different cdc phenotypes different defects in the machinery required to execute specific events in the progression of the cell cycle

Page 10: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Cell proliferation machineryCell proliferation machinery

Yeasts : genetic models for the cell cycle

The cell cycle of the fission yeast Schizosaccharomyces pombe (symmetrical fission)

The cdc genes identified in geneticscreens in these two very different yeastsencode the same set of proteins the cell cycle machinery is identical

Page 11: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Machinery for programmed cell deathMachinery for programmed cell death

Apoptosis pathway: In multicellular organisms, systems have evolved to eliminate damaged (and, hence, potentially harmful) cells through a self-destruct and disposal mechanism: programmed cell death, or apoptosis.

1. Fragmentation of the DNA of the chromosomes2. disruption of organelle structure3. loss of normal cell shape (apoptotic cells become spherical)

The cells break up into small cell fragments called apoptotic bodies that are phagocytosed ( ㅣ iterally, eaten up) by motile scavenger cells

Page 12: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Machinery for programmed cell death Machinery for programmed cell death

Caspases

- The engines of self-destruction are a series of enzymes called caspases (cysteine- containing aspartate-specific proteases).

-Each caspase is a protein rich in cysteines that, when activated, cleaves certain target proteins at specific aspartate residues in the target polypeptide chains. (initiators & executioners)

- In normal cells, each caspase is present in an enzymatically inactive state, called the zymogen form.

Page 13: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Caspases

Machinery for programmed cell deathMachinery for programmed cell death

The role of executioner caspases in apoptosis, executioner caspases enzymatically cut the target proteins.

Initiator caspases are cleaved In response to activation signals

Page 14: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Machinery for programmed cell death Machinery for programmed cell death

Examples of programmed cell death in the development of C. elegans.

Nematode’s life cycle

A cell that undergoes programmed cell death is indicated with a blue X at the end of a branch of a lineage

The nematode Caenorhabditis elegans: a genetic model for programmed cell death

mutant analysis ; identification of ced-3 (caspase)

Hatc

hin

g o

f the

eg

g

Page 15: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Controlling the cell-proliferation Controlling the cell-proliferation and death machinery and death machinery

* Engine in cell proliferation or apoptosis ; cyclin-CDK complex or the caspase cascade

* Ignition switches: accelerators (positive controls) and brakes (negative controls) a series of modulations of protein activities through protein-protein interactions and protein modifications

“checkpoint” system - When DNA is damaged during G1, the CDK activity of CDK-cyclin complexes is inhibited. - The inhibition seems to be mediated by a protein called p53. - Part of the p53 protein recognizes certain kinds of DNA mismatches.

Intracellular signals

1. The cell cycle: negative intracellular controls activation of proteins that can inhibit the protein kinase activity of CDK-cyclin complexes

Page 16: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

P53 is able to activate p21

P21 binds to the CDK-cyclin complex and inhibits its protein kinase enzymatic activity

- CDK’s target proteins are not phosphorylated- Cell cycle is unable to progress-When the DNA mismatches have been repaired, the drop of p53 levels & a cessation of inhibition

G1-to-S checkpoint block

The cell cycle: negative intracellular controls

Intracellular signals

-Fail-safe systems (checkpoints) ensure that the cell cycle does not progress until the cell is competent.

Page 17: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

2. The cell cycle: positive intracellular controls When the brake is released, independent signals from within or outside the cell induce a cascade of protein kinases that phosphorylate the appropriate cyclin-CDK complex, thereby activating the complex.

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

Intracellular signals

3. Apoptosis: positive intracellular controls The cytochrome c (mitochondrial proteins) - Apaf (apoptotic protease-activating factor) complex binds to and activates the initiator caspase.

4. Apoptosis: negative intracellular controls Apoptosis pathway remains “off” under normal conditions. (Bcl-2 ,Bcl-x: block the release of cytochrome c from mitochondria)

Page 18: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

<The roads to ruin: two major apoptotic pathways in mammalian cells><The roads to ruin: two major apoptotic pathways in mammalian cells>

Page 19: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

Extracellular signals

1. Mechanisms for cell-to-cell communication Ligands - endocrine signals: long-range - paracrine signals: local - class: hormones, small molecules, & proteins Transmembrane Receptors - protein ligands act as signals by binding to & thereby activating transmenbrane receptor proteins

Ligand-receptor complexes initiate chemical signals in the cytoplasm activation of a series of intermediary molecules alteration of transcription factors in nucleus activation or repression of txn of some genes

Page 20: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

Example : signal transduction of Receptor tyrosine kinase

RTK autophophorylation

Binding of adaptor proteins

Interaction withother proteins

Conformational changes

Phosphorylation of substrate proteins

Induction of signal transduction activity

Extracellular signals

Page 21: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Quite often, the next step in propagating the signal is to activate a G-proteinG-protein cycle

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

Extracellular signalsAn example : a pathway for RTK signaling

Sos ; adapter protein of RTK

Phosphorylation of transcription factorsRegulation of gene expression

Page 22: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

1. Cell-to-cell signaling depends on conformational changes - the binding of ligands to receptors conformational changes ex) conformational change of protein kinase

- recycling of the components of the signaling system

2. The cell cycle : positive extracellular controls - mitogens (polypeptide ligands released from a paracrine source)

3. The cell cycle : negative extracellular controls - an example is TGF- TGF- TGF- receptor serine/threonine kinase SMAD phosphorylation block the phosphorylation and inactivation of Rb protein cell cycle inhibition

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

Extracellular signals

Page 23: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

4. Apoptosis : positive extracellular controls - the command for self-destruction system comes from a neighboring cell ex) immune system

- Fas system

6. Apoptosis : negative extracellular controls -survival factors

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

Extracellular signals

Page 24: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

An integrated view of the control of cell numbers

The ways to modulate cell number control cell proliferation and self-destruction

Controlling the cell-proliferation Controlling the cell-proliferation and death machineryand death machinery

Page 25: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell controlHow cancer cells differ from normal cells

Cancer - aggregates of cells, all derived from an initial aberrant founder cell (clonal) - specific phenotypic changes: rapid division rate invasion of new cellular territory high metabolic rate abnormal shape

- occurs by the production of multiple mutation in a single cell

<normal cell> <cells transformed with Rous sarcoma virus>Contact inhibition

Page 26: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Evidence for the genetic origin of cancersCarcinogenic agents (mutagenic), inheritance pattern of certain cancersOncogenes : dominant mutant genes that contribute to cancer in animals isolated from tumor viruses

Tumors arise from the result of multiple mutation (benign cancerous)

<The multistep progression to malignancy in cancers of the colon and brain>

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 27: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Mutations in cancer cells

Tumor-promoting mutations 1. Dominant oncogene mutation (gain of function) 2. Recessive tumor suppressor gene mutation (loss of function)

How have tumor-promoting mutations been identified? 1. Pedigree analysis technique : molecular markers 2. Cytogenetic analysis : chromosomal translocations deletion of particular chromosomal regions

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 28: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Classes of oncogenesProto-oncogenes : normal counterparts of oncogenes 1. Positive control of cell cycle 2. Negative regulation of apoptotic pathway

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 29: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Types of oncogene mutations

1. Point mutations2. Loss of protein domains3. Gene fusions

Point mutationsExample : Ras oncoprotein produced by missense mutation

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 30: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Types of oncogene mutations

Loss of protein domains Example: v-erbB oncogene (mutated form of an RTK known as the EGFR)

Truncated EGFR form is able to dimerizeeven in the absence of the EGF ligand - Autophosphorylation

- Continuously initiate a signal transduction cascade

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 31: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Types of oncogene mutations

Gene fusions Example : bcr1-abl fusion in chronic myelogenous leukemia (Philadelphia chromosome) - Bcr1-Abl fusion oncoprotein has an activated protein kinase activity

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 32: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Types of oncogene mutations

Gene fusions Example : translocation between chromosoomes 14 and 18 in follicular lymphoma enhancer of Ig genes-bcl2 gene fusion (Bcl2 : negative regulator of apoptosis)

- introduction of an enhancer dominant gain-of-function phenotype by misregulation of transcription unit

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 33: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Classes of tumor-suppressor genes

1. Negative regulators of the cell cycle (ex : Rb protein, TGF- signaling pathways) 2. Positive regulators of apoptosis (ex : p53 protein) 3. Act indirectly through a general elevation in the mutation rate

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 34: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Inheritance of the tumor phenotype

Retinoblastoma, a cancer of the retina - Hereditary mutation ; germinal - Sporadic mutation ; somatic

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 35: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

P53 tumor-suppressor gene : a link between the cell cycle and apoptosis

- 50% of human tumors lack a functional p53 gene - p53 : a transcriptional regulator that is activated in response to DNA damage inhibition of cell cycle progression (G1 arrest) induction of apoptosis

Complexity of Cancer

- Numerous mutations

<The major pathways that are mutated to contribute to cancer formation and progression>

Cancer: the genetics of aberrant cell controlCancer: the genetics of aberrant cell control

Page 36: 22.CANCER AS A GENETIC DISEASE A.Wild-type embryo in which the bright spots are cells carrying out a genetic program to die (apoptosis). B.Mutant embryo.

Survey the expression levels of all gene products during the formationand progression of a particular type of tumor transcriptome, proteome

Cancer research in the genomic analysis eraCancer research in the genomic analysis era