Top Banner
Dynamics at Nano- and Microfluidic Interfaces Geoff Willmott NZIP Conference 19 October 2011
37

14.05 o15 g willmott

Aug 29, 2014

Download

Technology

NZIP

Research 15: G Willmott
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 14.05 o15 g willmott

Dynamics at Nano- and Microfluidic Interfaces

Geoff Willmott

NZIP Conference19 October 2011

Page 2: 14.05 o15 g willmott

• Nano- and Microfluidics

• Wetting: Capillaries, Droplets, Surfaces

• Resistive Pulse Sensing

Introduction

Page 3: 14.05 o15 g willmott

Fast Fluidic Microanalysis: compact, portable, user friendly devices

Advantages:

• reduced volumes of sample and waste; power use

• increased speed, resolution, control and safety

• multifunctional/integrated devices

High Growth Areas:

• pharmaceuticals; drug delivery

• analytical/diagnostic devices

• point of care

• veterinary

• food safety

• biosecurity

1

4 5

2

3

Microfluidics

Page 4: 14.05 o15 g willmott

Medical Device Technologies (MDT)

MTANZ Report April 2011:Large global demand for MDT

- Aging population with rising rates of chronic disease

- $437 b globally, driven by the USA

NZ has an emerging industry …- >$0.61 b revenues FY2010-11 with double-digit growth (wine approx $0.8 b)

- 95% exports; <10% of NZ health expenditure is on devices

- Good standard of clinicians and medical researchers

- Innovative approach to primary health care

… but faces challenges- $0.5 b of that revenue is F&P Healthcare

- 165 skilled workers required in the next two years

- 22 companies looking to raise $44 M capital

Page 5: 14.05 o15 g willmott

Nanofluidics: The study and application of fluid flow in and around nanosized objects.

Eijkel and van den Berg, Microfluid. Nanofluid. 1, 249 (2005)Branton et al., Nature Biotechnology 26, 1146 (2008)

D’Acunzi et al., Faraday Disc. 146, Paper #3 (2010)Schoch, Han and Renaud, Rev. Mod. Phys. 80, 839 (2008)

Tas et al., Appl. Phys. Lett. 85, 3274 (2004)

Page 6: 14.05 o15 g willmott

Interdisciplinary, Applied

Eijkel and van den Berg, Microfluid. Nanofluid. 1, 249 (2005)

Page 7: 14.05 o15 g willmott

Micro- and Nanofluidics: Forces and Transport

Inertia

- low Reynolds number, laminar flow

Eijkel and van den Berg, Microfluid. Nanofluid. 1, 249 (2005)

Viscosity

Surface tension

Electrostatics and electrokinetics

Surface slip

Molecular interactions (e.g. van der Waals, brush polymers)

Geometry- because measurement is difficult!!

Body forces (e.g. gravity, pressure)

Page 8: 14.05 o15 g willmott

• Nano- and Microfluidics

• Wetting: Capillaries, Droplets, Surfaces

• Resistive Pulse Sensing

Introduction

Page 9: 14.05 o15 g willmott

Thiolated, roughened copper Laurate solution (applied to any surface)

Substrates: Rod Stanley (IRL)

Contact angle > 160

Superhydrophobic Surfaces

Page 10: 14.05 o15 g willmott

Splash

Page 11: 14.05 o15 g willmott

Capillary Uptake Experiments

Thanks Rod Stanley (IRL) for making the substrates: Larmour, Bell and Saunders, Angew. Chem. Int. Edit., 1710 (2007)Willmott, Neto and Hendy, Soft Matter 7, 2357 (2011); Faraday Discuss. 146, 233 (2010)

- PTFE capillary (i.d. 300 m)

- drop on a superhydrophobic surface

- slowly brought into contact

Page 12: 14.05 o15 g willmott

No uptake if c > 90°

Classical Capillary Uptake

Page 13: 14.05 o15 g willmott

Not widely studied in experiments

Capillary + Droplet

Marmur, J. Colloid Interf. Sci., 209 (1988)Schebarchov and Hendy, Phys Rev E 78, 046309 (2008)

Page 14: 14.05 o15 g willmott

Application: Drop-Based Microfluidics

Baroud, Gallaire and Dangla, Lab Chip 10, 2032 (2010)Kintses et al., Curr. Opin. Chem. Biol. 14, 548 (2010)

Generation

Merging

Page 15: 14.05 o15 g willmott

Inspiration: Bottom-Up!

Schebarchov and Hendy, Nano Letters 8, 2253 (2008)

[Talk O14.1]

Page 16: 14.05 o15 g willmott

(1) Direction of non-wetting meniscus motion depends on drop size

Willmott, Neto and Hendy, Faraday Disc. 146, 233 (2010)

Page 17: 14.05 o15 g willmott

A bound on critical drop size for PTFE - consistent with contact angle 107.8 - 110.6

Willmott, Neto and Hendy, Faraday Disc., 146, 233 (2010)

(1) Direction of non-wetting meniscus motion depends on drop size

Page 18: 14.05 o15 g willmott

PTFE capillary; drop radius 0.38 mm

(2) Laplace pressure can drive uptake when c > 90°

• Borosilicate glass capillary (diameter 100 micron) • Silanized: contact angle of internal surface with water ~110

Willmott, Neto and Hendy, Soft Matter 7, 2357 (2011)

Page 19: 14.05 o15 g willmott

(3) Uptake Speed Depends on Drop Size

Willmott, Neto and Hendy, Soft Matter 7, 2357 (2011)

Page 20: 14.05 o15 g willmott

5 modes of interaction

Willmott, Neto and Hendy, Faraday Disc., 146, 233 (2010)

Page 21: 14.05 o15 g willmott

Uptake Enhanced by Detachment

0 ms 4.8 ms0.8 ms 1.6 ms 2.4 ms 3.2 ms 4.0 ms

Page 22: 14.05 o15 g willmott

Uptake Enhanced by Detachment

Direct correlation between pressure and meniscus motion with < 1 ms precision

Page 23: 14.05 o15 g willmott

Pressure Estimates

Significant uncertainty: image analysis method

Laplace:

21

11

RRP

Page 24: 14.05 o15 g willmott

(i) Geometry: - drop asphericity, pinning and dynamic shape change- tube entrance and interior

(ii) Entrance dynamics: - meniscus reorientation- prelinear inertial acceleration - viscous flow

(iii) Surfaces: - Pinning due to chemical / physical heterogeneity - The non-wetting dynamic contact angle

(iv) Pre-filled capillaries: - Incl. ‘jet’ vs ‘sink’ flow for filling/drainage applications

(v) Electrokinetics: - Electroviscosity and double layer structure

(vi) Close to 100 nm: - violation of the non-slip boundary condition - thermal capillary waves - disjoining pressure- thin film precursors to wetting - nanobubbles

A Can of Physics Worms

Page 25: 14.05 o15 g willmott

• Nano- and Microfluidics

• Wetting: Capillaries, Droplets, Surfaces

• Resistive Pulse Sensing

Introduction

Page 26: 14.05 o15 g willmott

“Resistive Pulse Sensing”+/-

Membrane

Electrolyte

Current

Time

“Translocations”

Page 27: 14.05 o15 g willmott

Motivation:

Duration & shape

Magnitude

Frequency

Willmott et al., J. Phys. Cond. Matt. 22, 454116 (2010)

Page 28: 14.05 o15 g willmott

A Semi-Analytic Model: R(z0)

Homogeneous resistivity(assume: uniform electric field across width)

g.willmott
And the Rs is the radius of the obstruction
Page 29: 14.05 o15 g willmott

End Effects

Artificial cone: ‘approximate’ or ‘estimate’

- cone pitch agrees with infinite half space result

Page 30: 14.05 o15 g willmott

End Effects: Important

Page 31: 14.05 o15 g willmott

FEM Comparison: On-Axis

Bryan Smith (IRL Auckland): Comsol 3.3, triangular mesh, ~ 60k degs freedom

Page 32: 14.05 o15 g willmott

Transport: Nernst-Planck for for z0(t)

Willmott et al., J. Phys. Cond. Matt. 22, 454116 (2010)

...

magpressure

poreparticle CC

CD JvEJ

DIFFUSION ELECTROKINETICS PRESSURE(CONVECTION)

OTHER …

Page 33: 14.05 o15 g willmott

Half max

Result: Resistive Pulse Shape

Parameters:

pH 8.0a = 465 nm (fit)b = 16.1 m (fit)d = 150 ma’ = 110 nm 0.3 V applied = 0.86 m

q = -1.54 x 10-3 C m-2

Willmott and Parry, J. Appl. Phys, DOI: 10.1063/1.3580283 (2011)

Page 34: 14.05 o15 g willmott

Summary of Assumptions Homogeneous resistivityArtificial cone end effectsLocally cylindricalAzimuthal symmetrySurface charges and electro-osmosisElectrode and electronic effectsParticle on-axisSpherical particleQuasi-staticSimplified drag in confinementOther transport insignificant

Page 35: 14.05 o15 g willmott

Electrophoretic Mobility of a Charged Particle

Schoch, Han and Renaud, Rev. Mod. Phys. 80, 839 (2008)

a -1E

v

Page 36: 14.05 o15 g willmott

Electrophoretic Mobility of a Charged Particle

Smoluchowski + no curvature dependence

Nanoparticle Detection and Charge Quantification Using Tunable Nanopores: Poster 9

epE

v

32

1a

1a Drag + Gauss … point charge aq 4

•Calculation of “effective charge” based on 2nd (classical) method

•Expect for constant surface charge, so

… conceptual difficulty for measurements?

2aq a

Page 37: 14.05 o15 g willmott

Thanks! Email: [email protected]

Mike Arnold and NMF team, esp. Rod Stanley (surfaces),

Bethan Parry, & James ‘Elf’ Eldridge (qNano)

U.Syd.: Chiara Neto (surfaces)

ESR: Michael Taylor (HSP)

Izon Science esp. Robert Vogel, Ben Glossop, Hans van

der Voorn

U of Q Collaborators