Top Banner
Separations ChEN 4253 Design I Chapter 19 Terry A. Ring University of Utah
34

11 L23 24 Separation Methods

Apr 07, 2015

Download

Documents

joaquingon
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 11 L23 24 Separation Methods

Separations

ChEN 4253 Design IChapter 19Terry A. RingUniversity of Utah

Page 2: 11 L23 24 Separation Methods

Simple Separation Units

• Flash– Quench

• Liquid-liquid decantation– Liquid-liquid Flash

• Sublimation– Solid/Vapor Flash

• Crystallization• Filtration

Page 3: 11 L23 24 Separation Methods

Use of Separation Units

Page 4: 11 L23 24 Separation Methods

Separation Reaction

Hydrodealkylation of Toluene

T+H2B+CH4

side reaction2B Biphenyl+H2

Reactor EffluentT=1,350FP = 500 psia

Page 5: 11 L23 24 Separation Methods

Reactor Effluent

Component kmole/hrHydrogen 1292Methane 1167Benzene 280Toluene 117Biphenyl 3Total 2859

Reaction ConditionsT=1,350FP = 500 psia

Page 6: 11 L23 24 Separation Methods

After Flash to 100F @ 500 psia

Effluent Vapor LiquidComponent kmole/hr kmole/hr kmole/hrHydrogen 1292 1290 2Methane 1167 1149 18Benzene 280 16 264Toluene 117 2 115Biphenyl 3 0 3Total 2859 2457 402

Recycled Reactants

Page 7: 11 L23 24 Separation Methods

Separation

• Vapor Separation– CH4 from H2

• Liquid Separation

Page 8: 11 L23 24 Separation Methods

Further SeparationWhat separation units should be used?

• Liquid Separation– Toluene, BP=110.6ºC– Benzene, BP=80.1ºC

• What happens to the Methane (BP= -161.5ºC) and Biphenyl (BP=255.9ºC) impurities?

• Gas Separation – Hydrogen– Methane

• what happens to the Toluene and Benzene impurities?

Page 9: 11 L23 24 Separation Methods
Page 10: 11 L23 24 Separation Methods

Direct Distillation Sequence

Page 11: 11 L23 24 Separation Methods

Criteria for the Selection of a Separation Method

• Energy Separation Agent (ESA)– Phase condition of feed

– Separation Factor

– Cost

• Mass Separation Agent (MSA)– Phase condition of feed

– Choice of MSA Additive

– Separation Factor

– Regeneration of MSA

– Cost

II

II

I

I

CC

CC

SF

2

1

2

1

Phases I and II, Components 1 and 2 (light key and heavy key)

Page 12: 11 L23 24 Separation Methods

Distillation

Page 13: 11 L23 24 Separation Methods

Distillation

Page 14: 11 L23 24 Separation Methods

Plate Types• Bubble Cap Tray • Sieve Tray

Page 15: 11 L23 24 Separation Methods

Packed Towers

• Random Packing

• Structured Packing

Note: Importance of Distributor plate

Page 16: 11 L23 24 Separation Methods

Distillation

• Relative Volatility

• Equilibrium Line

α=KL/KH

Page 17: 11 L23 24 Separation Methods

Distillation

• Rectifying Section– R= reflux ratio– V=vapor flow rate

• Stripping Section– VB= Boil-up ratio

• Feed Line

Page 18: 11 L23 24 Separation Methods

Minimum Reflux Ratio

Page 19: 11 L23 24 Separation Methods

McCabe-Thiele

Page 20: 11 L23 24 Separation Methods

Step Off Equilibrium Trays

Page 21: 11 L23 24 Separation Methods

Marginal Vapor Rate

• Marginal Annualized Cost~ Marginal Vapor Rate• Marginal Annualized Cost proportional to

– Reboiler Duty (Operating Cost)

– Condenser Duty (Operating Cost)

– Reboiler Area (Capital Cost)

– Condenser Area (Capital Cost)

– Column Diameter (Capital Cost)

• Vapor Rate is proportional to all of the above

Page 22: 11 L23 24 Separation Methods

Short cut to Selecting a Column Design

• Minimum Cost for Distillation Column will occur when you have a– Minimum of Total Vapor Flow Rate for column– Occurs at

• R= 1.2 Rmin @ N/Nmin=2

– V=D (R+1) • V= Vapor Flow Rate• D= Distillate Flow Rate (=Production Rate)• R=Reflux Ratio

Page 23: 11 L23 24 Separation Methods

How To Determine the Column Pressure given coolant

• Cooling Water Available at 90ºF• Distillate Can be cooled to 120ºF min.• Calculate the Bubble Pt. Pressure of Distillate

Composition at 120ºF– equals Distillate Pressure– Bottoms Pressure = Distillate Pressure +10 psia delta P

• Compute the Bubble Pt. Temp for an estimate of the Bottoms Composition at Distillate Pressure– Give Bottoms Temperature

• Not Near Critical Point for mixture

Page 24: 11 L23 24 Separation Methods

Design Issues• Packing vs Trays• Column Diameter from flooding consideration

– Trays, DT=[(4G)/((f Uflood π(1-Adown/AT)ρG)]1/2 eq. 19.11• Uflood= f(dimensionless density difference), f = 0.75-0.85 eq. 19.12

– Packed, DT =[(4G)/((f Uflood πρG)]1/2 eq. 19.14• Uflood= f(flow ratio), f = 0.75-0.85 eq. 19.15

• Column Height – Nmin=log[(dLK/bLK)(bHK/dHK)]/log[αLK,HK] eq. 19.1– N=Nmin/ε

• Tray Height = N*Htray

• Packed Height = Neq*HETP – HETP(height equivalent of theoretical plate)– HETPrandom = 1.5 ft/in*Dp eq. 19.9

• Tray Efficiency, ε = f(viscosityliquid * αLK,HK) Fig 19.3• Pressure Drop

• Tray, ΔP=ρLg hL-wier N• Packed, ΔP=Packed bed

Page 25: 11 L23 24 Separation Methods

Costing

Page 26: 11 L23 24 Separation Methods

Column Costs

• Column – Material of Construction gives ρmetal

– Pressure Vessel Cp= FMCv(W)+CPlatform

• Reboiler CB α AreaHX

• Condenser CB α AreaHX

• Pumping Costs – feed, reflux, reboiler– Work = Q*ΔP

• Tanks– Surge tank before column, reboiler accumulator,

condensate accumulator

Page 27: 11 L23 24 Separation Methods

CPI

Page 28: 11 L23 24 Separation Methods

Problem

• Methanol-Water Distillation

• Feed – 10 gal/min– 50/50 (mole) mixture

• Desired to get – High Purity MeOH in D– Pure Water in B

Page 29: 11 L23 24 Separation Methods

Simulator Methods - Aspen

• Start with simple distillation method– DSDTW or Distil

• Then go to more complicated one for sizing purposes– RadFrac– Sizing in RadFrac

• Costing

Page 30: 11 L23 24 Separation Methods

Tray Efficiency

μL * αLK,HK

Page 31: 11 L23 24 Separation Methods

Simulation Methods- ProMax

• Start with 10 trays (you may need up to 100 for some difficult separations)• set ΔP on column, reboiler, condenser and separator• set ΔT on condenser• Create a component recovery for HK in bottom with large ±• Set Reflux ratio = 0.1 (increase to get simulation to run w/o errors). • May need pump around loop estimate. • Determine αLK,HK, viscosity• (use Plots Tab to determine extra trays) determine Nmin and feed tray• Use Fig. 19.1 to determine Rmin from R, N and Nmin

• Redo calc with tray efficiency defined see Figure 19.3 correlation.• Recommendations for final design

– Use N/Nmin=2 (above and below feed tray)– R/Rmin=1.2

Page 32: 11 L23 24 Separation Methods

Figure 19.1

Page 33: 11 L23 24 Separation Methods

Tray Efficiency

μL * αLK,HK

Page 34: 11 L23 24 Separation Methods

Distillation Problems

• Multi-component Distillation– Selection of Column Sequences

• Azeotropy– Overcoming it to get pure products

• Heat Integration– Decreasing the cost of separations