Top Banner
1 Spring 2011 Notes 6 ECE ECE 6345 6345 Prof. David R. Jackson ECE Dept.
45

1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

Jan 29, 2016

Download

Documents

Ethan Hodge
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

1

Spring 2011

Notes 6

ECE 6345ECE 6345

Prof. David R. JacksonECE Dept.

Page 2: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

2

OverviewOverview

In this set of notes we look at two different models for calculating the radiation pattern of a microstrip antenna:

Electric current model Magnetic current model

We also look at two different substrate assumptions:

Infinite substrate Truncated substrate (truncated at the edge of the patch).

Page 3: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

3

Review of Equivalence PrincipleReview of Equivalence Principle

new problem:

+- r

( , )E H

,out out

( , )E H

,out out (0,0)

esJ e

sM

S S

ˆ 0

ˆ 0

es

es

J n H

M n E

original problem:

PEC

,in in

Page 4: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

4

Review of Equivalence PrincipleReview of Equivalence Principle

A common choice:

ˆ

ˆ

es

es

J n H

M n E

( , )E H

,out out

esJ e

sM

S

PEC

The electric surface current sitting on the PEC object does not radiate, and can be ignored.

Page 5: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

Model of Patch and FeedModel of Patch and Feed

h rx

AS

Infinite substrate

(aperture)

patch

probe

coax feed

z

5

Page 6: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

6

Model of Patch and FeedModel of Patch and Feed

ˆesM z E Aperture:

h rx

esM

Magnetic frill model:

hr

x

AS

S

( , )E H

zero fields

Page 7: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

7

Electric Current Model: Electric Current Model: Infinite SubstrateInfinite Substrate

h rx

Sinfinite substrate

ˆ ˆ 0

ˆ

es t

es s

M n E n E

J n H J

Note: The direct radiation from the frill is ignored.

The surface S “hugs” the metal.

h rx

topsJ

probesJ

botsJ

( , )E H

zero fields

Page 8: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

8

Let patch top bots s sJ J J

Electric Current Model: Electric Current Model: Infinite Substrate Infinite Substrate (cont.)(cont.)

probesJ

patchsJ

top view

h rx

patchsJ

probesJ

Page 9: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

9

Magnetic Current Model: Magnetic Current Model: Infinite Substrate Infinite Substrate

h rx

Keep ground plane and substrate in the zero-field region. Remove patch, probe and frill current.

( , )E H

zero fieldsbS

hS

tS

ˆ 0, ,

ˆ 0,

0,

0,

es t b

es b

es t

es h

M n E r S S

J n H r S

J r S

J r S

(weak fields)

(approximate PMC)

esM

S

Page 10: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

10

Exact model:

ˆesM n E

Approximate model:

Magnetic Current Model:Magnetic Current Model: Infinite Substrate Infinite Substrate (cont.)(cont.)

h rx

esJ

esMe

sJesJ

esM

h rx

esM e

sM

Note: The magnetic currents radiate inside an infinite substrate above a ground plane.

Page 11: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

11

Magnetic Current Model: Magnetic Current Model: Truncated SubstrateTruncated Substrate

Note: The magnetic currents radiate in free space above a ground plane.

Approximate model:

esM

x

Now we remove the substrate inside the surface.

r

x

bS

Page 12: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

12

Electric Current Model: Electric Current Model: Truncated SubstrateTruncated Substrate

rx

S The patch and probe are replaced by surface currents, as before.

Next, we replace the dielectric with polarization currents.

patchsJ

r

patch top bots s sJ J J

x

Page 13: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

13

0 0

H j E

j E j E

0 1polrJ j E

Electric Current Model: Electric Current Model: Truncated SubstrateTruncated Substrate(cont.)(cont.)

0x

patchsJ

probesJ

polJ

In this model we have three separate electric currents.

Page 14: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

14

Comments on ModelsComments on Models

Infinite Substrate

The electric current model is exact (if we neglect the frill), but it requires knowledge of the exact patch and probe currents.

The magnetic current model is approximate, but fairly simple.

For a rectangular patch, both models are fairly simple if only the (1,0) mode is assumed.

For a circular patch, the magnetic current model is much simpler (it does not involve Bessel functions).

Page 15: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

15

Comments on Models (cont.)Comments on Models (cont.)

Truncated Substrate

The electric current model is exact (if we neglect the frill), but it requires knowledge of the exact patch and probe currents, as well as the field inside the patch cavity (to get the polarization currents). It is a complicated model.

The magnetic current model is approximate, but very simple. This is the recommended model.

For the magnetic current model the same formulation applies as for the infinite substrate – the substrate is simply taken to be air.

Page 16: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

16

TheoremTheorem

Assumptions:

1)The electric and magnetic current models are based on the fields of a single cavity mode corresponding to an ideal cavity with PMC walls.

2)The probe current is neglected in the electric current model.

Then the electric and magnetic models yield identical results

at the resonant frequency of the cavity mode.

(This is true for either infinite or truncated substrates).

Page 17: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

17

Electric-current model:

ˆesM n E

Magnetic-current model:

h rx

esJ

h rx

esM e

sM

Theorem (cont.)Theorem (cont.)

ˆesJ z H

(E, H) = fields of resonant cavity mode

Page 18: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

18

Theorem (cont.)Theorem (cont.)

Proof:

0 , 0,0f f E H At

ideal cavity

rx

PMC

PEC

( , )E H

We start with an ideal cavity having PMC walls on the sides. This cavity will support a valid non-zero set of fields at the resonance frequency f0 of the mode.

Page 19: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

19

ProofProof

Equivalence principle:

Put (0, 0) outside S

keep (E, H) inside S

xS ( , )E H 0,0

PEC

x

S PMC( , )E H

The PEC and PMC walls have been removed in the zero field region. We keep the substrate and ground plane.

Infinite substrate

Page 20: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

20

Proof (cont.)Proof (cont.)

x

( , )E HesM

esJ

0,0

ˆes iJ n H

ˆes iM n E

Note: The electric current on the ground is neglected (it does not radiate).

Note the inward pointing normal ˆin

Page 21: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

21

Proof (cont.)Proof (cont.)

Exterior Fields:0e e

s sE J E M

ˆe patch Js s siJ n H J J

(The equivalent electric current is the same as the electric current in the electric current model.)

(note the inward pointing normal)

ˆ

ˆ

ˆ

es i

Ms

M n E

n E

n E

M

(The equivalent current is the negative of the magnetic current in the magnetic current model.)

Page 22: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

22

Proof (cont.)Proof (cont.)

Hence

or

0J Ms sE J E M

J Ms sE J E M

Page 23: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

23

Proof for truncated model:

Theorem for Truncated SubstrateTheorem for Truncated Substrate

x

S PMC( , )E H

PEC

x

S PMC( , )E H

PEC

polJ

Replace the dielectric with polarization current:

Page 24: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

24

e patchs s

e Ms s

J J

M M

0patch pol MssE J E J E M

J MssE J E M

Proof (cont.)Proof (cont.)

Hence

x

( , )E H esM 0,0

polJ

esJ

patch pol MssE J E J E M or

Page 25: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

25

Extension of TheoremExtension of Theorem

h rx

The electric and magnetic models yield identical results at any frequency if we include the probe current and the currents from the higher-order modes

h rx

patchsJ

probesJ

Electric current model Magnetic current model

h rx

esM e

sM

Page 26: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

26

Extension of Theorem (cont.)Extension of Theorem (cont.)

Proof:

( , )E H

h rx

PMCPEC

(0, 0)

The frill source excites fields in the ideal cavity at any frequency. In general, all (infinite) number of modes are excited.

h rx

(0, 0)

esJ

esM

Page 27: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

27

Extension of Theorem (cont.)Extension of Theorem (cont.)

The probe is then replaced by its surface current:

h rx

(0, 0)

esJ

esM

0patch probe MssE J E J E M

These currents now account for all modes.

Page 28: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

28

h rx

patchsJ

probesJ

Electric current model Magnetic current model

Extension of Theorem (cont.)Extension of Theorem (cont.)

J MssE J E M

Hence, we have

h rx

esM e

sM

Page 29: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

29

Rectangular PatchRectangular Patch

Ideal cavity model:

022 zz EkE

( , ) ( ) ( )zE x y X x Y y

2

2

2

0

0

X Y XY k XY

X Yk

X YX Y

kX Y

Let

0z

C

E

n

PMC

C

L

W

x

y

Divide by X(x)Y(y):

so

Page 30: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

30

Rectangular Patch (cont.)Rectangular Patch (cont.)

Hence2( )

constant( ) x

X xk

X x

( ) sin cosx xX x A k x B k x

( ) cos( )xX x k x

Choose 1B

(0) sin( 0) 0x x x xX k A k B k k A

( ) sin 0x x

x

X L k k L

mk

L

General solution:

Boundary condition:

0A

Boundary condition:

Page 31: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

31

Rectangular Patch (cont.)Rectangular Patch (cont.)

so

so

( ) cosm x

X xL

2 2 0x

Yk k

Y

2 2 2constant y xY

k k kY

( ) cosn y

Y yW

( , ) ( , ) cos cosm nz

m x n yE x y

L W

Returning to the Helmholtz equation,

Following the same procedure as for the X(x) function, we have

Hence

Page 32: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

32

Rectangular Patch (cont.)Rectangular Patch (cont.)

where

0222 kkk yx

22

W

n

L

mkmn

mnmnk

221

W

n

L

mmn

2 2

mnr

c m n

L W

Using

we have

Hence

Page 33: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

33

Rectangular Patch (cont.)Rectangular Patch (cont.)

Current:

ˆ ˆpatchsJ n H z H

1

1ˆ ˆ

z

z z

H Ej

z Ej

z E z Ej

( )1zˆH z E

jωμ

-= ´ Ñ

so

Page 34: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

34

Rectangular Patch (cont.)Rectangular Patch (cont.)

Hence1patch

S zJ Ejωμ

=- Ñ

ˆ ˆsin cos cos sinzm m x n y n m x n y

E x yL L W W L W

Dominant (1,0) Mode:

1ˆ( , ) sins

xJ x y x

j L L

( , ) coszx

E x yL

Page 35: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

35

Rectangular Patch (cont.)Rectangular Patch (cont.)

00

( , ) 1

0

( , ) 0

z

s

E x y

J x y

Static (0,0) mode:

This is a “static capacitor” mode.

A patch operating in this mode can be made resonant if the patch is fed by an inductive probe (a good way to make a miniaturized patch).

Page 36: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

36

Radiation Model for Radiation Model for (1,0)(1,0) Mode Mode

Electric-current model:

ˆ sinpatchs

xJ x

j L L

L

W

x

y

hr

x

patchsJ

Page 37: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

37

Radiation Model for Radiation Model for (1,0)(1,0) Mode (cont.) Mode (cont.)

Magnetic-current model:

ˆ

ˆ ˆ cos

MsM n E

xn z

L

ˆ

ˆ

ˆ

yy

Wyy

xx

Lxx

nx

y

L

W

Page 38: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

38

Hence

ˆ ˆcos

ˆ ˆcos0 0

ˆ cos

ˆ cos 0

Ms

y y x L

y y x

Mx

x y WL

xx y

L

radiating edges

MsM

L

W

x

y

Radiation Model for Radiation Model for (1,0)(1,0) Mode (cont.) Mode (cont.)

The non-radiating edges do not contribute to the far-field pattern in the principal planes.

Page 39: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

39

Circular PatchCircular Patch

set

a

022 zz EkE

( ) cos( )cos

( ) sin( )n

zn

J k n m zE

Y k n h

1/ 22 2

1/ 222

zk k k

mk

h

k

0m

PMC

Page 40: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

40

Circular Patch (cont.)Circular Patch (cont.)Note: cos and sin modes are degenerate (same resonance frequency).

cosz nE n J k Choose cos :

( ) 0nJ ka ( )nJ x

x

1nx 2nx

0z

a

E

Page 41: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

41

Circular Patch (cont.)Circular Patch (cont.)

Hence

so

npka x

np np

r

cx

Dominant mode (lowest frequency)

11

( , ) (1,1)

1.841

n p

x

(1,1)1( , ) cos ( )zE J k

Page 42: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

42

Circular Patch (cont.)Circular Patch (cont.)Electric current model:

set

1 1ˆˆ

1 1ˆˆ cos ( ) ( )sin ( )

J z zs z

n n

E EJ E

j

k n J k n n J kj

1 1

1 1ˆˆ cos ( ) sin ( )JsJ k J k J k

j

1, 1n p

x

y Very complicated!

Page 43: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

43

Circular Patch (cont.)Circular Patch (cont.)Magnetic current model:

so

ˆ

ˆ ˆ

ˆ

Ms

z

z

M n E

z E

E

ˆ cos ( )Ms nM n J ka

set

1ˆ cos ( )M

sM J ka

1, 1n p

Page 44: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

44

Circular Patch (cont.)Circular Patch (cont.)

Note:

At

so

1

( ) ( )

cos ( )

z aV hE

h J ka

0

0ˆ cosMs

VM

h

0 1(0) ( )V V h J ka

Hence 01

ˆ ˆcos ( ) cosMs

VM J ka

h

Page 45: 1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.

45

Circular Patch (cont.)Circular Patch (cont.)Ring approximation:

000

cos cosh M M

s s

VK M dz hM h V

h

0( ) cosK V

x

y

( )K

h rx

esM

h rx

K

ˆK K