Top Banner
1 Radiosondes 1. History of upper air measurements 2. Radiosondes (sensors, calibration, telemetry,multiplexing) 3. The Vaisala radiosondes 4. Special radiosondes (Ozone,atmospheric electricity, radioactivity)
28

1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

Mar 28, 2015

Download

Documents

Logan Mooney
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

1

Radiosondes

1. History of upper air measurements

2. Radiosondes (sensors, calibration, telemetry,multiplexing)

3. The Vaisala radiosondes

4. Special radiosondes (Ozone,atmospheric electricity, radioactivity)

Page 2: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

2

EuropeanUpper Air stations

• Operational stations launch 4 times per day

Page 3: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

3

Requirements for upper air

measurements:(1) To make accurate measurements of important atmospheric parameters (usually temperature, pressure and humidity) above the surface

(2) To send this information back in as close to real-time as possible

[(1) and (2) usually achieved by making a profile measurement, with a balloon carried instrument, but aircraft data is also used.

(2) was once achieved using sondes which dropped something (the lizardsonde), or even exploded (the crackersonde) when a certain condition was fulfilled.]

Page 4: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

4

Kite-carried sensors

Handbook of Meteorological Instruments (Part 2: Instruments for upper air observations), HMSO, 1961

Page 5: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

5

Dines’ Kite Meteorograph

Handbook of Meteorological Instruments (Part 2: Instruments for upper air observations), HMSO, 1961

Page 6: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

6

Dines’ balloon meteorograph (1907-1939)

Aneroid capsule (pressure)

Silvered recording plate

Bimetallic strip (temperature)

Hair humidity element

Handbook of Meteorological Instruments (Part 2: Instruments for upper air observations), HMSO, 1961

Page 7: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

7

Radiosondes

Small and compact radio transmitters allow the data obtained by a sensors carried on a balloon to be transmitted back to a receiving station.

First successful radiosonde in the UK was the “Kew” Met Office sonde, in use from 1939.

Improvements followed, and the “Mark2” was used from 1945 up until the 1960s

Radiosondes require:

Sensors (with an electrical output)

Radiotelemetry (the data transfer system)

Batteries (which will work at low temperatures)

…balloons and parachutes…

Page 8: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

8

SensorsThe sensors must ultimately provide an electrical output, which can be turned into a frequency for the radio transmission. Mechanical sensors are coupled to transducers to achieve this.

An example is a pressure sensor. Small mechanical variations in an aneroid capsule are used to move an iron core within an electrical inductor. The inductance changes, which leads to a change in an audio frequency, transmitted directly over the radio link.

Other sensors used include

Temperature: bimetallic strips (mechanical), resistance wire (electrical)

Humidity: hair or gold beaters skin (mechanical), the “humicap” (electrical)

Pressure: aneroid (mechanical or electrical)

Page 9: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

9

Radio TelemetryA simple (carrier) radio wave requires a change (modulation) to be applied for information to be transmitted. This is usually either AM (amplitude modulation) or FM (frequency modulation)

AM

FM

“Information”

Transmitted signal

Page 10: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

10

MultiplexingIf more than one signal is required, and in a radiosonde, three different signals (humidity, temperature and pressure) are usually sent, the radio transmitter has to be switched between the three sensors in turn.

This is called multiplexing.

If the three signals are sufficiently different, or the order of switching is known, the individual signals can be recovered.

Multiplexing switch

Handbook of Meteorological Instruments (Part 2: Instruments for upper air observations), HMSO, 1961

Page 11: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

11

Mk2 MO radiosonde

Multiplexing switch driven by wind mill

sensors

Thermionic valves in radio transmitter

receiver

Handbook of Meteorological Instruments (Part 2: Instruments for upper air observations), HMSO, 1961

Page 12: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

12

Calibration•Radiosonde sensors have to be calibrated if they are to produce accurate measurements over a range of conditions.

•Calibration requires the sensor to be exposed to the full range of variation they will receive in service, but in a controlled environment.

•The results of a calibration are used to construct a response function, which is an equation used to link the values found by a sensor to the magnitude of the parameter it is sensing.

•The precise response function is unique to each sensor, and is used by the receiving computer to turn the data received into meaningful physical values.

•The response functions are typically polynomial functions, with many coefficients to cover the range of values required. These coefficients are supplied with each radiosonde.

Page 13: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

13

Calibration

Page 14: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

14

Mk3 MO radiosonde

Page 15: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

15

View of Mk3 sonde

Thermometer (resistance wire)

Polystyrene housing

rotary multiplexing switch

Page 16: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

16

Vaisala RS80 Radiosonde

(Vaisala)

Temperature sensor

Relative Humidity sensor (“humicap”)

Page 17: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

17

RS80 Specification

(Vaisala)

Page 18: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

18

“Windfinding”

If the location of a radiosonde is known, and recorded, its direction of motion can be determined from a set of the locations.

This allows the wind directions to be found, often referred to as “windfinding”. The profile of wind direction and strengths can therefore also be plotted.

The location of a radiosonde can be found by different methods:

•Tracking it with radar

•Using a Global Positioning System (GPS) receiver on the sonde to send back its location

•Using the LORAN positioning system on the sonde to send back its location

Page 19: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

19

GPS satellite system

Page 20: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

20

RS90 radiosonde

(Vaisala)

Page 21: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

21

RS90 specification

(Vaisala)

Page 22: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

22

Special radiosondesRadiosondes can carry a variety of sensors, either instead of, or in addition to, the standard meteorological sensors for temperature, pressure, and humidity.

Atmospheric properties which have been extensively with modified radiosondes include:

Ozone

Atmospheric electricity (the charges and electric fields within clouds and thunderstorms)

Radioactivity

Radiosondes for measuring the profile of ozone in the atmosphere are known as Ozonesondes.

Page 23: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

23

“Kew-Oxford” OzonesondeContains an ozone cell in which an electrolytic reaction occurs, using potassium iodide. When ozone is passed through iodine is formed, which causes a small current to flow.

From Brewer and Milford, Proc Roy Soc, 256 1960

Page 24: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

24

Ozone profiles

From Brewer and Milford, Proc Roy Soc, 256 1960

Page 25: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

25

Atmospheric electricity radiosondes

Electric field probe-

measures change in voltage with height, “Potential Gradient”

Haze layer

Venkiteshawaran S.P. Measurement of the electrical potential gradient and conductivity by radiosonde at Poona, India, pp89-100 In Smith L.G. (1958) Recent advances in atmospheric electricity, Pergamon Press

Page 26: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

26

Charge distribution in thunderclouds

Stolzenburg et al. (1998)

Page 27: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

27

In-cloud measurements

Harrison R.G. Rev Sci Inst 72, 6 pp2738-2741 (2001)

Balloon-carried disposable instruments have been designed at Reading to make in-cloud measuerements. These have:

•Detected charged particles emitted in aircraft exhausts

•Found thin and persistent, highly-charged layers

Sensor responds to changes in charge

Page 28: 1 Radiosondes 1.History of upper air measurements 2.Radiosondes (sensors, calibration, telemetry,multiplexing) 3.The Vaisala radiosondes 4.Special radiosondes.

28

RS80 radioactivity sonde

(Vaisala)

Carries Geiger tubes, sensitive to beta and gamma radioactivity, as well as standard temperature, pressure and humidity